JP2017136865A - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
JP2017136865A
JP2017136865A JP2017091154A JP2017091154A JP2017136865A JP 2017136865 A JP2017136865 A JP 2017136865A JP 2017091154 A JP2017091154 A JP 2017091154A JP 2017091154 A JP2017091154 A JP 2017091154A JP 2017136865 A JP2017136865 A JP 2017136865A
Authority
JP
Japan
Prior art keywords
cooling
cooling gas
cylinder
cooling block
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017091154A
Other languages
Japanese (ja)
Other versions
JP6382392B2 (en
Inventor
昌博 阿部
Masahiro Abe
昌博 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JP2017136865A publication Critical patent/JP2017136865A/en
Application granted granted Critical
Publication of JP6382392B2 publication Critical patent/JP6382392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an injection molding machine capable of reducing the using amount of a coolant.SOLUTION: Provided is an injection molding machine comprising: a cylinder heating a molding material filled into a mold device; a cooling block of cooling the molding material feed port of the cylinder; and a cooling gas feed part of jetting a cooling gas of cooling the cooling block. The cooling block is formed with a cooling gas flow passage of flowing the cooling gas, the cooling block includes: a cooling block body having an insertion hole into which the cylinder is inserted; and a heat radiation part formed with the cooling gas flow passage, and, in the heat radiation part, the direction to the cooling block body is made variable,, and, when the temperature of the cylinder is reduced, a flow going from the cooling gas flow passage to the front part is formed.SELECTED DRAWING: Figure 2

Description

本発明は、射出成形機に関する。   The present invention relates to an injection molding machine.

射出成形機は、金型装置内に充填される成形材料を加熱するシリンダ、およびシリンダの成形材料供給口を冷却する冷却ブロックを備える(例えば、特許文献1参照)。冷却ブロックの内部には冷却液(例えば冷却水)を流す流路が形成され、シリンダの成形材料供給口の温度は成形材料(例えば樹脂ペレット)が溶融しない温度に保たれる。成形材料供給口の目詰まりが防止できる。   The injection molding machine includes a cylinder that heats a molding material filled in a mold apparatus, and a cooling block that cools a molding material supply port of the cylinder (for example, see Patent Document 1). A flow path for flowing a cooling liquid (for example, cooling water) is formed inside the cooling block, and the temperature of the molding material supply port of the cylinder is maintained at a temperature at which the molding material (for example, resin pellets) does not melt. Clogging of the molding material supply port can be prevented.

特開2005−103875号公報JP 2005-103875 A

従来、冷却ブロックの内部に流す冷却液の使用量が多かった。   Conventionally, a large amount of coolant is used to flow inside the cooling block.

本発明は、上記課題に鑑みてなされたものであって、冷却液の使用量を低減できる射出成形機の提供を目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at provision of the injection molding machine which can reduce the usage-amount of a cooling fluid.

上記課題を解決するため、本発明の一態様によれば、
金型装置内に充填される成形材料を加熱するシリンダと、
該シリンダの成形材料供給口を冷却する冷却ブロックと、
該冷却ブロックを冷却する冷却ガスを噴出する冷却ガス供給部とを備え、
前記冷却ブロックには、前記冷却ガスを流す冷却ガス流路が形成され、
前記冷却ブロックは、前記シリンダが挿入される挿入孔を有する冷却ブロック本体と、前記冷却ガス流路が形成される放熱部とを有し、
前記放熱部は、前記冷却ブロック本体に対する向きが可変とされ、前記シリンダの温度を下げるときに前記冷却ガス流路から前方に向かう流れを形成する、射出成形機
が提供される。
In order to solve the above problems, according to one aspect of the present invention,
A cylinder for heating the molding material filled in the mold apparatus;
A cooling block for cooling the molding material supply port of the cylinder;
A cooling gas supply unit that ejects cooling gas for cooling the cooling block;
The cooling block is formed with a cooling gas passage for flowing the cooling gas,
The cooling block has a cooling block main body having an insertion hole into which the cylinder is inserted, and a heat radiating portion in which the cooling gas flow path is formed,
An injection molding machine is provided in which the direction of the heat radiating portion is variable with respect to the cooling block main body and forms a flow forward from the cooling gas flow path when the temperature of the cylinder is lowered.

本発明の一態様によれば、冷却水の使用量を低減できる射出成形機が提供される。   According to one aspect of the present invention, an injection molding machine that can reduce the amount of cooling water used is provided.

本発明の一実施形態による射出成形機の射出装置を示す断面図である。It is sectional drawing which shows the injection apparatus of the injection molding machine by one Embodiment of this invention. 図1の射出装置の要部を示す側面図である。It is a side view which shows the principal part of the injection device of FIG. 風除け部の変形例を示す側面図である。It is a side view which shows the modification of a windshield part. 第1変形例による冷却ガス流路の縦断面図である。It is a longitudinal cross-sectional view of the cooling gas flow path by a 1st modification. 第1変形例による冷却ガス流路の横断面図である。It is a cross-sectional view of the cooling gas flow path by the 1st modification. 第2変形例による冷却ガス流路を示す図である。It is a figure which shows the cooling gas flow path by a 2nd modification. 第2変形例による冷却ガス流路の横断面図である。It is a cross-sectional view of the cooling gas flow path by the 2nd modification. 第3変形例による冷却ガス流路を示す図である。It is a figure which shows the cooling gas flow path by a 3rd modification. 第4変形例による冷却ガス流路を示す図である。It is a figure which shows the cooling gas flow path by the 4th modification. 本発明の別の実施形態による射出成形機の可変機構を示す上面図である。It is a top view which shows the variable mechanism of the injection molding machine by another embodiment of this invention. 図10の放熱部の回転動作を示す上面図である。It is a top view which shows rotation operation | movement of the thermal radiation part of FIG. 図11の放熱部の傾動動作を示す上面図である。It is a top view which shows the tilting operation | movement of the thermal radiation part of FIG. 図12の放熱部の直線移動動作を示す上面図である。It is a top view which shows the linear movement operation | movement of the thermal radiation part of FIG.

以下、本発明を実施するための形態について図面を参照して説明するが、各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。また、充填工程におけるスクリュの移動方向(図1および図2において左方向)を前方、計量工程におけるスクリュの移動方向(図1および図2において右方向)を後方として説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In each of the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof will be omitted. Further, the screw moving direction (left direction in FIGS. 1 and 2) in the filling step will be described as the front, and the screw moving direction (right direction in FIGS. 1 and 2) in the weighing step will be described as the rear.

図1は、本発明の一実施形態による射出成形機を示す図である。図2は、図1の射出装置の要部を示す側面図である。   FIG. 1 is a view showing an injection molding machine according to an embodiment of the present invention. FIG. 2 is a side view showing a main part of the injection apparatus of FIG.

図1および図2に示すように、射出成形機は、金型装置内に成形材料を充填する射出装置40を備える。射出装置40は、シリンダ41、スクリュ43、冷却ブロック44、冷却ガス供給部としての冷却ファン45、成形材料供給部としてのホッパ46などを含む。   As shown in FIGS. 1 and 2, the injection molding machine includes an injection device 40 that fills a molding material with a molding material. The injection device 40 includes a cylinder 41, a screw 43, a cooling block 44, a cooling fan 45 as a cooling gas supply unit, a hopper 46 as a molding material supply unit, and the like.

シリンダ41は、シリンダ41の外周に設けられるヒータなどの加熱源H1〜H4から供給される熱で成形材料を加熱する。シリンダ41の後部には成形材料供給口41aが形成され、成形材料供給口41aを介してホッパ46からシリンダ41内に成形材料が供給される。   The cylinder 41 heats the molding material with heat supplied from heating sources H <b> 1 to H <b> 4 such as a heater provided on the outer periphery of the cylinder 41. A molding material supply port 41a is formed at the rear portion of the cylinder 41, and the molding material is supplied from the hopper 46 into the cylinder 41 through the molding material supply port 41a.

尚、本実施形態では、成形材料供給部としてホッパ46が用いられるが、成形材料の供給速度を制御できるフィードスクリュなどが用いられてもよい。   In this embodiment, the hopper 46 is used as the molding material supply unit. However, a feed screw or the like that can control the supply speed of the molding material may be used.

スクリュ43は、シリンダ41内において回転自在に且つ進退自在に配設される。計量工程では、スクリュ43を回転させて、シリンダ41内に供給された成形材料をスクリュ43に形成される螺旋状の溝43aに沿って前方に送り、徐々に溶融させる。溶融させた成形材料がスクリュ43の前方に送られ、シリンダ41の前部に蓄積されるにつれ、スクリュ43が後退させられる。スクリュ43の前方に所定量の成形材料が蓄積すると、スクリュ43の回転が停止され、計量工程が完了する。その後、充填工程では、スクリュ43を前進させて、スクリュ43の前方に蓄積された成形材料をシリンダ41の前端に設けられるノズル42から射出し、金型装置内に充填する。ノズル42の外周にはヒータなどの加熱源H5が設けられてよい。   The screw 43 is disposed in the cylinder 41 so as to be rotatable and movable back and forth. In the measuring step, the screw 43 is rotated so that the molding material supplied into the cylinder 41 is fed forward along the spiral groove 43a formed in the screw 43 and gradually melted. As the molten molding material is fed to the front of the screw 43 and accumulated in the front portion of the cylinder 41, the screw 43 is retracted. When a predetermined amount of molding material is accumulated in front of the screw 43, the rotation of the screw 43 is stopped and the measuring process is completed. Thereafter, in the filling step, the screw 43 is advanced, and the molding material accumulated in front of the screw 43 is injected from the nozzle 42 provided at the front end of the cylinder 41 and filled into the mold apparatus. A heating source H5 such as a heater may be provided on the outer periphery of the nozzle 42.

スクリュ43に形成される螺旋状の溝43aの深さは、一定でもよいし、場所によって異なってもよい。   The depth of the spiral groove 43a formed in the screw 43 may be constant or may vary depending on the location.

冷却ブロック44は、シリンダ41の後部を挿入させる挿入孔を有し、シリンダ41の後部に形成される成形材料供給口41aを冷却する。成形材料供給口41aの温度は成形材料(例えば樹脂ペレット)が溶融しない温度に保たれる。成形材料供給口41aの目詰まりが防止できる。   The cooling block 44 has an insertion hole for inserting the rear portion of the cylinder 41, and cools the molding material supply port 41 a formed at the rear portion of the cylinder 41. The temperature of the molding material supply port 41a is maintained at a temperature at which the molding material (for example, resin pellets) does not melt. Clogging of the molding material supply port 41a can be prevented.

冷却ファン45は、冷却ブロック44を冷却する冷却ガスを噴出する。冷却ファン45から出た冷却ガスは冷却ブロック44に当たることにより、冷却ガスの流れ方向が変わる。冷却ファン45から噴出された冷却ガスは、冷却ブロック44の表面に沿って流れ、冷却ブロック44の熱を奪う。冷却ガスの種類は、特に限定されないが、例えば空気であってよい。   The cooling fan 45 ejects a cooling gas that cools the cooling block 44. The cooling gas exiting from the cooling fan 45 strikes the cooling block 44, thereby changing the flow direction of the cooling gas. The cooling gas ejected from the cooling fan 45 flows along the surface of the cooling block 44 and takes the heat of the cooling block 44. Although the kind of cooling gas is not specifically limited, For example, it may be air.

冷却ファン45からの冷却ガスの噴出方向(図2において紙面垂直方向)は、冷却ブロック44の表面に沿って流れる冷却ガスの流れ方向(図2において上下方向)に対して垂直とされる。冷却ファン45の噴出口の大口径化によって冷却ファン45から冷却ブロック44に向けて大量の冷却ガスが供給でき、冷却ブロック44が冷えやすい。従って、冷却ブロック44の内部に流す冷却液の使用量が減り、ゼロにすることも可能である。   The direction in which the cooling gas is ejected from the cooling fan 45 (the direction perpendicular to the paper surface in FIG. 2) is perpendicular to the direction of the cooling gas flowing along the surface of the cooling block 44 (the vertical direction in FIG. 2). By increasing the diameter of the outlet of the cooling fan 45, a large amount of cooling gas can be supplied from the cooling fan 45 toward the cooling block 44, and the cooling block 44 is easily cooled. Therefore, the amount of the cooling liquid used in the cooling block 44 is reduced and can be reduced to zero.

尚、本実施形態の冷却ファン45からの冷却ガスの噴出方向は、冷却ブロック44の表面に沿って流れる冷却ガスの流れ方向に対して垂直とされるが、平行でなければよく、斜めであってもよい。斜めの場合も、冷却ファン45の噴出口の大口径化によって、冷却ブロック44への冷却ガスの供給量が増加する。   In addition, the jet direction of the cooling gas from the cooling fan 45 of the present embodiment is perpendicular to the flow direction of the cooling gas flowing along the surface of the cooling block 44, but may not be parallel, and may be inclined. May be. Even in an oblique case, the supply amount of the cooling gas to the cooling block 44 is increased by increasing the diameter of the outlet of the cooling fan 45.

冷却ファン45は、例えば複数の羽根45aおよび複数の羽根45aと共に回転する回転軸45b等で構成され、回転軸45bの軸方向から冷却ガスを吸引し、回転軸45bの軸方向に冷却ガスを噴出してよい。冷却ファン45の薄型化が可能であり、射出装置40の大型化が抑制できる。   The cooling fan 45 includes, for example, a plurality of blades 45a and a rotating shaft 45b that rotates together with the plurality of blades 45a. The cooling fan 45 sucks cooling gas from the axial direction of the rotating shaft 45b and ejects cooling gas in the axial direction of the rotating shaft 45b. You can do it. The cooling fan 45 can be thinned, and an increase in the size of the injection device 40 can be suppressed.

尚、冷却ファン45は、多種多様であってよく、吸引方向と噴出方向とが異なるものでもよく、例えばシロッコファンなどでもよい。   The cooling fan 45 may be various, and the suction direction and the ejection direction may be different. For example, a sirocco fan may be used.

冷却ファン45は、例えば冷却ブロック44を挟んで左右両側に設けられてよい。冷却ブロック44が左右両側から冷却され、冷却ブロック44が冷えやすい。尚、冷却ファン45の数は3つ以上でもよく、例えば冷却ブロックの左右両側面および下面に取り付けられてもよい。また、冷却ファン45の数は1つでもよい。   The cooling fans 45 may be provided on both the left and right sides with the cooling block 44 interposed therebetween, for example. The cooling block 44 is cooled from both the left and right sides, and the cooling block 44 is easily cooled. The number of cooling fans 45 may be three or more, and may be attached to the left and right side surfaces and the lower surface of the cooling block, for example. Further, the number of cooling fans 45 may be one.

冷却ブロック44には、冷却ガスを流す冷却ガス流路47が形成されてよい。冷却ガス流路47は、例えば冷却ブロック44の表面に溝状に形成される。冷却ガス流路47を形成する壁部がフィンの役割を果たす。冷却ガス流路47に沿って冷却ガスが流れるので、流れが安定化する。   The cooling block 44 may be formed with a cooling gas passage 47 through which a cooling gas flows. The cooling gas channel 47 is formed in a groove shape on the surface of the cooling block 44, for example. The wall portion forming the cooling gas flow path 47 serves as a fin. Since the cooling gas flows along the cooling gas flow path 47, the flow is stabilized.

冷却ガス流路47の一端部から他端部にかけて、冷却ガス流路47の溝深さおよび溝幅は一定であってよく、冷却ガス流路47の断面積は一定であってよい。尚、本明細書において、「冷却ガス流路の断面積」とは、冷却ガス流路の流れ方向に対して垂直な断面の面積を意味する。   From one end of the cooling gas channel 47 to the other end, the groove depth and groove width of the cooling gas channel 47 may be constant, and the cross-sectional area of the cooling gas channel 47 may be constant. In the present specification, the “cross-sectional area of the cooling gas passage” means an area of a cross section perpendicular to the flow direction of the cooling gas passage.

シリンダ41の温度を上げる立ち上げ時や射出成形時には、シリンダ41の一部(冷却ブロック44よりも前方の部分)が加熱される。そこで、立ち上げ時や射出成形時に、冷却ガス流路47に沿って流れる冷却ガスの流れ方向は、シリンダ41の軸線に対して垂直であってよい。冷却ブロック44から前方(加熱源H1〜H5)に向かう冷却ガスの流れが形成されにくい。冷却ガスによる加熱源H1〜H5の冷却が抑制でき、加熱効率をほとんど阻害しない。   At the time of start-up for raising the temperature of the cylinder 41 or at the time of injection molding, a part of the cylinder 41 (a part ahead of the cooling block 44) is heated. Therefore, the flow direction of the cooling gas flowing along the cooling gas flow path 47 at the time of start-up or injection molding may be perpendicular to the axis of the cylinder 41. It is difficult to form a flow of cooling gas from the cooling block 44 toward the front (heating sources H1 to H5). Cooling of the heating sources H1 to H5 by the cooling gas can be suppressed, and heating efficiency is hardly hindered.

尚、立ち上げ時や射出成形時に、冷却ガス流路47に沿って流れる冷却ガスの流れ方向はシリンダ41の軸線に対して平行でもよい。冷却ブロック44から後方に向かう流れが形成されればよい。   Note that the flow direction of the cooling gas flowing along the cooling gas flow path 47 may be parallel to the axis of the cylinder 41 at the time of start-up or injection molding. It is only necessary to form a flow from the cooling block 44 toward the rear.

冷却ブロック44には、冷却ブロック44から前方に向かう冷却ガスの流れを遮る風除け部48が設けられてよい。風除け部48は、例えば冷却ブロック44の前面に取り付けられる。複数(例えば3つの)の風除け部48は、冷却ブロック44の左右両側面および下面から突出し、冷却ブロック44から加熱源H1〜H5に向かう冷却ガスの流れを遮る。   The cooling block 44 may be provided with a wind shield 48 that blocks the flow of cooling gas from the cooling block 44 toward the front. The wind shield 48 is attached to the front surface of the cooling block 44, for example. A plurality of (for example, three) wind shields 48 protrude from the left and right side surfaces and the bottom surface of the cooling block 44 and block the flow of cooling gas from the cooling block 44 toward the heating sources H1 to H5.

図3は、風除け部の変形例を示す側面図である。図3に示すように、冷却ブロック44には、冷却ブロック44から上方に向かう冷却ガスの流れを遮る風除け部49が設けられてよい。風除け部49は、例えば冷却ブロック44の上面に取り付けられ、冷却ブロック44の左右両側面から左右方向外側に突出する。冷却ブロック44の上方に配設される成形材料乾燥機などの設備に対する冷却ガスの影響が軽減できる。   FIG. 3 is a side view showing a modification of the wind shield. As shown in FIG. 3, the cooling block 44 may be provided with a wind shield 49 that blocks the flow of the cooling gas from the cooling block 44 upward. The wind shield 49 is attached to, for example, the upper surface of the cooling block 44 and protrudes outward in the left-right direction from the left and right side surfaces of the cooling block 44. The influence of the cooling gas on the equipment such as a molding material dryer disposed above the cooling block 44 can be reduced.

図4は、第1変形例による冷却ガス流路の縦断面図である。図5は、第1変形例による冷却ガス流路の横断面図である。   FIG. 4 is a longitudinal sectional view of the cooling gas flow path according to the first modification. FIG. 5 is a cross-sectional view of the cooling gas flow path according to the first modification.

図5に示すように、冷却ガス流路47Aは、矩形状の断面形状を有する。図4に示すように、冷却ガス流路47Aの上端部から下端部にかけて、冷却ガス流路47Aの溝深さが連続的に深くなる。溝幅は一定であってよい。従って、冷却ガス流路47Aの上端部から下端部にかけて、冷却ガス流路47Aの断面積が連続的に大きくなる。冷却ガス流路47Aの断面積が大きいほど冷却ガスの流動抵抗が小さく、冷却ガス流路47Aの断面積が大きくなる方向に冷却ガスが向かいやすい。よって、冷却ガス流路47Aにおいて、上向きの流れよりも下向きの流れが支配的となる。その結果、冷却ブロック44の上方に配設される設備に対する冷却ガスの影響が軽減できる。   As shown in FIG. 5, the cooling gas channel 47A has a rectangular cross-sectional shape. As shown in FIG. 4, the groove depth of the cooling gas channel 47A is continuously increased from the upper end to the lower end of the cooling gas channel 47A. The groove width may be constant. Therefore, the cross-sectional area of the cooling gas channel 47A continuously increases from the upper end to the lower end of the cooling gas channel 47A. The larger the cross-sectional area of the cooling gas flow path 47A, the smaller the flow resistance of the cooling gas, and the cooling gas tends to face in the direction in which the cross-sectional area of the cooling gas flow path 47A increases. Therefore, in the cooling gas flow path 47A, the downward flow is dominant over the upward flow. As a result, the influence of the cooling gas on the equipment disposed above the cooling block 44 can be reduced.

図6は、第2変形例による冷却ガス流路を示す図である。図6において、冷却ファン45の図示を省略する。図7は、第2変形例による冷却ガス流路の横断面図である。   FIG. 6 is a diagram showing a cooling gas passage according to a second modification. In FIG. 6, the cooling fan 45 is not shown. FIG. 7 is a cross-sectional view of a cooling gas passage according to a second modification.

図7に示すように、冷却ガス流路47Bは、矩形状の断面形状を有する。図6に示すように、冷却ガス流路47Bの上端部から下端部にかけて、冷却ガス流路47Bの溝幅が連続的に広がる。溝深さは一定であってよい。従って、冷却ガス流路47Bの上端部から下端部にかけて、冷却ガス流路47Bの断面積が連続的に大きくなる。よって、冷却ガス流路47Bにおいて、上向きの流れよりも下向きの流れが支配的となる。そのため、冷却ブロック44の上方に配設される設備に対する冷却ガスの影響が軽減できる。   As shown in FIG. 7, the cooling gas channel 47B has a rectangular cross-sectional shape. As shown in FIG. 6, the groove width of the cooling gas channel 47B continuously increases from the upper end to the lower end of the cooling gas channel 47B. The groove depth may be constant. Therefore, the cross-sectional area of the cooling gas channel 47B increases continuously from the upper end to the lower end of the cooling gas channel 47B. Therefore, in the cooling gas flow path 47B, the downward flow is dominant over the upward flow. Therefore, the influence of the cooling gas on the equipment disposed above the cooling block 44 can be reduced.

尚、冷却ガス流路の断面形状は、図5および図7に示す矩形状に限定されない。例えば、冷却ガス流路の断面形状は、三角形状、台形状などでもよい。また、冷却ガス流路の上端部から下端部にかけて、溝深さと溝幅との両方が変化してもよい。さらに、冷却ガス流路の断面積の変化は、連続的ではなく、断続的でもよい。また、冷却ガス流路の断面積が変化する場所は、冷却ガス流路の一端部から他端部までの全体でなくてもよく、冷却ガス流路の少なくとも一部であればよい。冷却ファンから冷却ブロックの中央部に当たる冷却ガスが下に流れやすくなるように、冷却ガス流路の中央部から下端部にかけて冷却ガス流路の断面積が変化してよい。冷却ファンから冷却ブロックの中央部に当たる冷却ガスが上に流れにくくなるように、冷却ガス流路の中央部から上端部にかけて冷却ガス流路の断面積が変化してよい。冷却ガス流路の断面積が大きくなる方向は、下方向に限定されず、冷却ガスによる影響を軽減または増大させる方向に応じて適宜設定されてよい。冷却ガス流路の一端部から他端部にかけて、冷却ガス流路の断面積が大きくなり続けなくてもよい。例えば、冷却ブロックの放熱面積を増やすため、冷却ガス流路の一端部から他端部にかけて溝深さが深くなったり浅くなったりしてもよい。以下の図8〜図13に示す冷却ガス流路において同様である。   In addition, the cross-sectional shape of the cooling gas channel is not limited to the rectangular shape shown in FIGS. For example, the cross-sectional shape of the cooling gas channel may be a triangle shape or a trapezoidal shape. Further, both the groove depth and the groove width may change from the upper end portion to the lower end portion of the cooling gas flow path. Furthermore, the change in the cross-sectional area of the cooling gas passage may be intermittent rather than continuous. Further, the place where the cross-sectional area of the cooling gas flow path changes may not be the entire area from one end to the other end of the cooling gas flow path, but may be at least a part of the cooling gas flow path. The cross-sectional area of the cooling gas passage may change from the central portion to the lower end portion of the cooling gas passage so that the cooling gas hitting the central portion of the cooling block from the cooling fan can easily flow downward. The cross-sectional area of the cooling gas flow path may change from the central part to the upper end part of the cooling gas flow path so that the cooling gas that hits the central part of the cooling block from the cooling fan does not easily flow upward. The direction in which the cross-sectional area of the cooling gas channel increases is not limited to the downward direction, and may be appropriately set according to the direction in which the influence of the cooling gas is reduced or increased. The cross-sectional area of the cooling gas channel does not have to continue to increase from one end to the other end of the cooling gas channel. For example, in order to increase the heat radiation area of the cooling block, the groove depth may increase or decrease from one end to the other end of the cooling gas flow path. The same applies to the cooling gas flow paths shown in FIGS.

図8は、第3変形例による冷却ガス流路を示す図である。図8において、冷却ファン45の図示を省略する。   FIG. 8 is a diagram showing a cooling gas passage according to a third modification. In FIG. 8, illustration of the cooling fan 45 is omitted.

図8に示す冷却ガス流路47Cは、冷却ブロック44の表面に渦巻状に形成される。渦巻は、旋回しながら中心から遠ざかる曲線である。冷却ガス流路47Cに沿って渦巻状の流れが形成できる。   The cooling gas channel 47 </ b> C shown in FIG. 8 is formed in a spiral shape on the surface of the cooling block 44. A spiral is a curve that turns away from the center while turning. A spiral flow can be formed along the cooling gas flow path 47C.

冷却ガス流路47Cの内側の端部から外側の端部にかけて、冷却ガス流路47Cの断面積が連続的にまたは断続的に大きくなってもよい。内側から外側に向かう流れが支配的となる。   The cross-sectional area of the cooling gas channel 47C may increase continuously or intermittently from the inner end to the outer end of the cooling gas channel 47C. The flow from inside to outside becomes dominant.

尚、冷却ガス流路47Cの断面積が一定の場合も、冷却ガス流路47Cに沿って渦巻状の流れは形成できる。   Even when the cross-sectional area of the cooling gas channel 47C is constant, a spiral flow can be formed along the cooling gas channel 47C.

図9は、第4変形例による冷却ガス流路を示す図である。図9において、冷却ファン45の図示を省略する。   FIG. 9 is a diagram showing a cooling gas flow path according to a fourth modification. In FIG. 9, the illustration of the cooling fan 45 is omitted.

図9に示す冷却ガス流路47Dは、冷却ブロック44の表面に放射状に形成される。放射状とは、一点を中心に四方八方に伸びた形であり、図9に示すように中心において四方八方に伸びる直線がつながる形でもよいし、つながらない形でもよい。冷却ガス流路47Dに沿って放射状の流れが形成できる。   9 is formed radially on the surface of the cooling block 44. The cooling gas channel 47D shown in FIG. The radial shape is a shape extending in all directions around one point, and may be a shape in which straight lines extending in all directions in the center are connected as shown in FIG. 9 or may not be connected. A radial flow can be formed along the cooling gas flow path 47D.

冷却ガス流路47Dの内側の端部から外側の端部にかけて、冷却ガス流路47Dの断面積が連続的にまたは断続的に大きくなってもよい。内側から外側に向かう流れが支配的となる。   The cross-sectional area of the cooling gas channel 47D may increase continuously or intermittently from the inner end to the outer end of the cooling gas channel 47D. The flow from inside to outside becomes dominant.

尚、冷却ガス流路47Dの断面積が一定の場合も、冷却ガス流路47Dに沿って放射状の流れは形成できる。   Even when the cross-sectional area of the cooling gas channel 47D is constant, a radial flow can be formed along the cooling gas channel 47D.

図10は、本発明の別の実施形態による射出成形機の可変機構を示す上面図である。図10には、可変機構の他、可変機構を作動させる駆動装置、および該駆動装置を制御する制御部も図示する。図11は、図10の放熱部の回転動作を示す上面図である。図12は、図11の放熱部の傾動動作を示す上面図である。図13は、図12の放熱部の直線移動動作を示す上面図である。図10〜図13において、シリンダを加熱する加熱源、および冷却ファン45の図示を省略する。   FIG. 10 is a top view showing a variable mechanism of an injection molding machine according to another embodiment of the present invention. FIG. 10 also shows a drive device that operates the variable mechanism, and a control unit that controls the drive device, in addition to the variable mechanism. FIG. 11 is a top view showing the rotation operation of the heat dissipating section of FIG. FIG. 12 is a top view showing the tilting operation of the heat dissipating section of FIG. FIG. 13 is a top view showing the linear movement operation of the heat dissipating section of FIG. 10 to 13, the illustration of the heating source for heating the cylinder and the cooling fan 45 is omitted.

冷却ブロック44は、冷却ブロック本体44aと、放熱部44bとを有する。冷却ブロック本体44aは、シリンダ41の後部を挿入させる挿入孔を有し、シリンダ41の後部に形成される成形材料供給口41aを冷却する。放熱部44bの表面には溝状の冷却ガス流路47が形成される。冷却ガス流路47は、放熱部44bのフィン同士の間に形成される。   The cooling block 44 includes a cooling block main body 44a and a heat radiating portion 44b. The cooling block main body 44 a has an insertion hole for inserting the rear portion of the cylinder 41, and cools the molding material supply port 41 a formed at the rear portion of the cylinder 41. A groove-like cooling gas passage 47 is formed on the surface of the heat radiating portion 44b. The cooling gas channel 47 is formed between the fins of the heat radiating portion 44b.

放熱部44bに形成される冷却ガス流路47は直線状に形成され、冷却ガス流路47の一端部から他端部にかけて、冷却ガス流路47の溝深さおよび溝幅は一定とされる。尚、放熱部44bに形成される冷却ガス流路は、多種多様であってよく、例えば図4および図5に示す冷却ガス流路47A、図6および図7に示す冷却ガス流路47B、図8に示す冷却ガス流路47C、または図9に示す冷却ガス流路47Dでもよい。   The cooling gas passage 47 formed in the heat radiating portion 44b is formed in a straight line, and the groove depth and groove width of the cooling gas passage 47 are constant from one end portion to the other end portion of the cooling gas passage 47. . The cooling gas passages formed in the heat radiating portion 44b may be various, for example, the cooling gas passage 47A shown in FIGS. 4 and 5, the cooling gas passage 47B shown in FIGS. The cooling gas channel 47C shown in FIG. 8 or the cooling gas channel 47D shown in FIG.

放熱部44bには、図2に示す冷却ファン45が固定される。尚、放熱部44bに対する冷却ファン45の配置が可変とされてもよい。放熱部44bに対する冷却ファン45の配置は、冷却ブロック本体44aに対する放熱部44bの配置に応じて変更されてよい。   The cooling fan 45 shown in FIG. 2 is fixed to the heat radiating part 44b. The arrangement of the cooling fan 45 with respect to the heat radiating part 44b may be variable. The arrangement of the cooling fan 45 with respect to the heat radiation part 44b may be changed according to the arrangement of the heat radiation part 44b with respect to the cooling block main body 44a.

射出成形機は、冷却ブロック本体44aに対する放熱部44bの配置を可変とする可変機構50を有する。「配置」は、向き、および距離の少なくとも一方を含んでよい。上記配置が可変とされることによって、冷却ガスの流れが調整できる。可変機構50は、例えば回転軸53、駆動軸55、およびヒンジ57を含む。   The injection molding machine has a variable mechanism 50 that makes the arrangement of the heat radiating portion 44b relative to the cooling block main body 44a variable. “Arrangement” may include at least one of orientation and distance. By making the arrangement variable, the flow of the cooling gas can be adjusted. The variable mechanism 50 includes, for example, a rotation shaft 53, a drive shaft 55, and a hinge 57.

回転軸53は、冷却ブロック本体44aに回転自在に取り付けられる。冷却ブロック本体44aは、回転軸53を回転自在に支持する軸受を保持してよい。   The rotating shaft 53 is rotatably attached to the cooling block main body 44a. The cooling block main body 44a may hold a bearing that rotatably supports the rotary shaft 53.

駆動軸55は、回転軸53と共に回転する。駆動軸55は、回転軸53に対してスプライン結合され、駆動軸55の軸方向に直線移動自在とされる。回転軸53および駆動軸55により、伸縮自在な伸縮ロッドが構成される。   The drive shaft 55 rotates together with the rotation shaft 53. The drive shaft 55 is spline-coupled to the rotary shaft 53 and is linearly movable in the axial direction of the drive shaft 55. The rotary shaft 53 and the drive shaft 55 constitute a telescopic rod that can expand and contract.

ヒンジ57は第1取付部57aおよび第2取付部57bを含み、第1取付部57aには駆動軸55が固定され、第2取付部57bには放熱部44bが固定される。第2取付部57bは、第1取付部57aに対して回動軸57cを中心に回動自在とされる。   The hinge 57 includes a first attachment portion 57a and a second attachment portion 57b. The drive shaft 55 is fixed to the first attachment portion 57a, and the heat dissipation portion 44b is fixed to the second attachment portion 57b. The second attachment portion 57b is rotatable about the rotation shaft 57c with respect to the first attachment portion 57a.

上記可変機構50によれば、放熱部44bは、回転軸53を中心として、冷却ブロック本体44aに対して回転自在とされる。これにより、冷却ブロック本体44aに対する冷却ガス流路47の向きが可変とされる。   According to the variable mechanism 50, the heat radiating portion 44b is rotatable with respect to the cooling block main body 44a around the rotation shaft 53. Thereby, the direction of the cooling gas flow path 47 with respect to the cooling block main body 44a is variable.

放熱部44bは、冷却ガス流路47が上下方向に平行な状態(例えば図10に示す状態)と、冷却ガス流路47が前後方向に平行な状態(例えば図11に示す状態)との間で回転自在とされる。「回転」は、1回転未満の回転、1回転以上の回転のいずれでもよい。回転方向は、反転されてもよいし、反転されなくてもよい。   The heat dissipating part 44b is between the state in which the cooling gas channel 47 is parallel to the vertical direction (for example, the state shown in FIG. 10) and the state in which the cooling gas channel 47 is parallel to the front-rear direction (for example, the state shown in FIG. 11). It can be rotated freely. “Rotation” may be any rotation of less than one rotation and one or more rotations. The direction of rotation may or may not be reversed.

立ち上げ時や射出成形時には、シリンダ41の一部(冷却ブロック44よりも前方の部分)が加熱される。この場合、放熱部44bは図10に示す状態とされてよい。冷却ガス流路47に沿って、上向きの流れと、下向きの流れとが形成される。前向きの流れが抑制でき、シリンダ41の加熱効率が良い。   At the time of start-up or injection molding, a part of the cylinder 41 (a part in front of the cooling block 44) is heated. In this case, the heat radiation part 44b may be in the state shown in FIG. An upward flow and a downward flow are formed along the cooling gas flow path 47. The forward flow can be suppressed and the heating efficiency of the cylinder 41 is good.

尚、立ち上げ時や射出成形時には、各冷却ガス流路において上向きの流れよりも下向きの流れが支配的となるように、各冷却ガス流路の上端部から下端部にかけて各冷却ガス流路の断面積が連続的または断続的に大きくなってよい。冷却ブロック44の上方に配設される設備に対する冷却ガスの影響が軽減できる。   Note that at the time of start-up and injection molding, each cooling gas flow path is arranged from the upper end to the lower end of each cooling gas flow path so that the downward flow is more dominant than the upward flow in each cooling gas flow path. The cross-sectional area may increase continuously or intermittently. The influence of the cooling gas on the equipment disposed above the cooling block 44 can be reduced.

一方、シリンダ41の温度を下げる立ち下げ時には、シリンダ41の冷却効率を上げるため、放熱部44bの状態は図11に示す状態とされてよい。冷却ガス流路47に沿って、前向きの流れと、後向きの流れとが形成される。前方に向かう冷却ガスによって、シリンダ41が効率良く冷却できる。   On the other hand, when the temperature of the cylinder 41 is lowered, in order to increase the cooling efficiency of the cylinder 41, the state of the heat radiating portion 44b may be the state shown in FIG. A forward flow and a backward flow are formed along the cooling gas flow path 47. The cylinder 41 can be efficiently cooled by the forward cooling gas.

尚、立ち下げ時には、各冷却ガス流路において後向きの流れよりも前向きの流れがより支配的となるように、各冷却ガス流路の後端部から前端部にかけて各冷却ガス流路の断面積が連続的または断続的に大きくなってよい。シリンダ41がさらに効率良く冷却できる。   At the time of falling, the cross-sectional area of each cooling gas channel from the rear end to the front end of each cooling gas channel is such that the forward flow is more dominant than the backward flow in each cooling gas channel. May increase continuously or intermittently. The cylinder 41 can be cooled more efficiently.

また、上記可変機構50によれば、放熱部44bは、ヒンジ57の回動軸57cを中心に回動自在とされる。これにより、冷却ブロック本体44aに対する放熱部44bの向きが可変とされる。   Further, according to the variable mechanism 50, the heat radiating portion 44 b is rotatable about the rotation shaft 57 c of the hinge 57. Thereby, the direction of the heat radiation part 44b with respect to the cooling block main body 44a is made variable.

放熱部44bは、冷却ブロック本体44aに対して平行な状態(例えば図11に示す状態)と、冷却ブロック本体44aに対して斜めの状態(例えば図12に示す状態)との間で回動自在とされる。尚、放熱部44bは、冷却ブロック本体44aに対して垂直な状態とされてもよい。   The heat dissipating part 44b is freely rotatable between a state parallel to the cooling block main body 44a (for example, the state shown in FIG. 11) and a state oblique to the cooling block main body 44a (for example, the state shown in FIG. 12). It is said. The heat radiating portion 44b may be perpendicular to the cooling block main body 44a.

立ち下げ時には、放熱部44bが、図11に示す状態の代わりに、図12に示す状態とされてもよい。冷却ガス流路47において、前方に向かうほどシリンダ41に近づく流れが形成される。よって、冷却ガスがシリンダ41に当たりやすい。   At the time of falling, the heat radiating portion 44b may be in the state shown in FIG. 12 instead of the state shown in FIG. In the cooling gas flow path 47, a flow is formed that approaches the cylinder 41 toward the front. Therefore, the cooling gas tends to hit the cylinder 41.

一方、立ち上げ時や射出成形時には、放熱部44bは、冷却ブロック本体44aから熱を受け取りやすいように、図10に示す状態とされてよい。   On the other hand, at the time of start-up or injection molding, the heat radiating portion 44b may be in the state shown in FIG. 10 so that heat can be easily received from the cooling block main body 44a.

尚、本実施形態の放熱部44bは、冷却ブロック本体44aに対して平行な状態(例えば図11に示す状態)から、回動軸57cを中心として一方向に回動自在とされるが、両方向に回動自在とされてよい。放熱部44bが、冷却ブロック本体44aに対して平行な状態から両側に傾斜できる。この場合、回動軸57cは、放熱部44bの中心近傍を通るように配設されてよい。   The heat radiating portion 44b of the present embodiment is rotatable in one direction around the rotation shaft 57c from a state parallel to the cooling block main body 44a (for example, the state shown in FIG. 11). It may be freely rotatable. The heat radiation part 44b can be inclined to both sides from a state parallel to the cooling block main body 44a. In this case, the rotation shaft 57c may be disposed so as to pass through the vicinity of the center of the heat radiating portion 44b.

さらに、上記可変機構50によれば、放熱部44bは、冷却ブロック本体44aに対して直線移動自在とされる。これにより、冷却ブロック本体44aに対する放熱部44bの距離が可変とされる。   Furthermore, according to the variable mechanism 50, the heat radiating portion 44b is linearly movable with respect to the cooling block main body 44a. Thereby, the distance of the thermal radiation part 44b with respect to the cooling block main body 44a is made variable.

放熱部44bは、回転軸53および駆動軸55で構成される伸縮ロッドの伸縮によって、冷却ブロック本体44aに近い状態(例えば図12に示す状態)と、冷却ブロック本体44aから遠い状態(例えば図13に示す状態)との間で直線移動させられる。   The heat dissipating part 44b is in a state close to the cooling block main body 44a (for example, the state shown in FIG. 12) and a state far from the cooling block main body 44a (for example, FIG. The state shown in FIG.

立ち下げ時には、放熱部44bが、図12に示す状態の代わりに、図13に示す状態とされてもよい。前向きの冷却ガスの流れが冷却ブロック本体44aの周辺部材によって遮られにくい。よって、シリンダ41がさらに効率良く冷却できる。   At the time of falling, the heat radiating portion 44b may be in the state shown in FIG. 13 instead of the state shown in FIG. The forward cooling gas flow is not easily blocked by the peripheral members of the cooling block main body 44a. Therefore, the cylinder 41 can be cooled more efficiently.

また、立ち下げ時に、冷却ブロック本体44aと放熱部44bとの距離を変えることにより、シリンダ41における冷却ガスの当たる場所が変更できる。当該場所は、変わり続けてもよく、往復してもよい。尚、当該場所を変更するため、冷却ブロック本体44aに対する放熱部44bの向きが変化してもよい。   Moreover, the place where the cooling gas hits in the cylinder 41 can be changed by changing the distance between the cooling block main body 44a and the heat radiating portion 44b at the time of lowering. The location may continue to change or reciprocate. In addition, in order to change the said place, the direction of the thermal radiation part 44b with respect to the cooling block main body 44a may change.

一方、立ち上げ時や射出成形時には、放熱部44bは、冷却ブロック本体44aから熱を受け取りやすいように、図10に示す状態とされてよい。   On the other hand, at the time of start-up or injection molding, the heat radiating portion 44b may be in the state shown in FIG. 10 so that heat can be easily received from the cooling block main body 44a.

可変機構50は、モータなどの駆動装置で駆動されてよい。駆動装置として、例えば図10に示すように、回転モータ54、駆動モータ56、ヒンジ駆動モータ58が用いられる。   The variable mechanism 50 may be driven by a driving device such as a motor. As the drive device, for example, as shown in FIG. 10, a rotation motor 54, a drive motor 56, and a hinge drive motor 58 are used.

回転モータ54を駆動させると、回転軸53が回転される。回転軸53の回転に伴って、駆動軸55およびヒンジ57が回転され、ヒンジ57の回動軸57cの向きが変化する。   When the rotary motor 54 is driven, the rotary shaft 53 is rotated. As the rotation shaft 53 rotates, the drive shaft 55 and the hinge 57 are rotated, and the direction of the rotation shaft 57c of the hinge 57 changes.

駆動モータ56を駆動させると、ボールねじ機構において駆動モータ56による回転運動が直線運動に変換され、駆動軸55およびヒンジ57が直線移動される。その結果、冷却ファン45が冷却ブロック44に対して直線移動される。   When the drive motor 56 is driven, the rotary motion by the drive motor 56 is converted into linear motion in the ball screw mechanism, and the drive shaft 55 and the hinge 57 are linearly moved. As a result, the cooling fan 45 is linearly moved with respect to the cooling block 44.

ヒンジ駆動モータ58を駆動させると、第1取付部57aに対して第2取付部57bが回動し、冷却ブロック44に対する冷却ファン45の向きが変わる。   When the hinge drive motor 58 is driven, the second mounting portion 57b rotates with respect to the first mounting portion 57a, and the direction of the cooling fan 45 with respect to the cooling block 44 changes.

制御部60は、回転モータ54、駆動モータ56、およびヒンジ駆動モータ58などの駆動装置を制御する。制御部60は、メモリなどの記憶部およびCPUを有し、記憶部に記憶されたプログラムをCPUに実行させることにより、可変機構50の駆動装置を制御する。   The control unit 60 controls drive devices such as the rotation motor 54, the drive motor 56, and the hinge drive motor 58. The control unit 60 includes a storage unit such as a memory and a CPU, and controls the driving device of the variable mechanism 50 by causing the CPU to execute a program stored in the storage unit.

制御部60は、冷却ブロック44の温度を温度センサによって監視し、監視結果に基づいて可変機構50の駆動装置を制御してよい。例えば、冷却ブロック44の温度が設定温度になるように、可変機構50の駆動装置が制御されてよい。   The control unit 60 may monitor the temperature of the cooling block 44 with a temperature sensor and control the driving device of the variable mechanism 50 based on the monitoring result. For example, the driving device of the variable mechanism 50 may be controlled so that the temperature of the cooling block 44 becomes the set temperature.

制御部60は、シリンダ41の温度を温度センサによって監視し、監視結果に基づいて可変機構50の駆動装置を制御してよい。例えば、シリンダ41の温度が設定温度になるように、可変機構50の駆動装置が制御されてよい。   The control unit 60 may monitor the temperature of the cylinder 41 with a temperature sensor and control the driving device of the variable mechanism 50 based on the monitoring result. For example, the drive device of the variable mechanism 50 may be controlled so that the temperature of the cylinder 41 becomes the set temperature.

制御部60は、冷却ブロック44の温度、およびシリンダ41の温度の両方の監視結果に基づいて、可変機構50の駆動装置を制御してもよい。   The control unit 60 may control the drive device of the variable mechanism 50 based on the monitoring results of both the temperature of the cooling block 44 and the temperature of the cylinder 41.

尚、可変機構50の構成要素は、多種多様であってよい。例えば、回転軸53、駆動軸55、およびヒンジ57は、単独で使用されてもよく、任意の2つの組合せで使用されてもよい。また、ヒンジ57の代わりに、リンク機構が使用されてもよい。また、可変機構50の駆動装置として、油圧シリンダなどが用いられてもよい。また、可変機構50は手動で駆動されてもよい。   In addition, the component of the variable mechanism 50 may be various. For example, the rotation shaft 53, the drive shaft 55, and the hinge 57 may be used alone or in any two combinations. A link mechanism may be used instead of the hinge 57. Further, a hydraulic cylinder or the like may be used as a driving device for the variable mechanism 50. The variable mechanism 50 may be driven manually.

以上、射出成形機の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。   As mentioned above, although embodiment of the injection molding machine was described, this invention is not limited to the said embodiment, In the range of the summary of this invention described in the claim, various deformation | transformation and improvement are possible. Is possible.

例えば、上記実施形態の射出装置は、インライン・スクリュ方式であるが、プリプラ方式でもよい。プリプラ方式の射出装置は、可塑化シリンダ内で溶融された成形材料を射出シリンダに供給し、射出シリンダから金型装置内に成形材料を射出する。スクリュ・プリプラ方式では可塑化シリンダ内にスクリュが配設され、プランジャ・プリプラ方式では可塑化シリンダ内にプランジャが配設される。プリプラ方式の場合、冷却ブロックは可塑化シリンダを冷却する。   For example, the injection device of the above embodiment is an inline screw system, but may be a pre-plastic system. A pre-plastic injection device supplies a molding material melted in a plasticizing cylinder to the injection cylinder, and injects the molding material from the injection cylinder into a mold device. In the screw / prepa system, a screw is disposed in the plasticizing cylinder, and in the plunger / prepa system, a plunger is disposed in the plasticizing cylinder. In the case of the pre-plastic method, the cooling block cools the plasticizing cylinder.

40 射出装置
41 シリンダ
41a 成形材料供給口
43 スクリュ
44 冷却ブロック
44a 冷却ブロック本体
44b 放熱部
45 冷却ファン(冷却ガス供給部)
46 ホッパ(成形材料供給部)
47、47A、47B、47C、47D 冷却ガス流路
48 風除け部
49 風除け部
50 可変機構
53 回転軸
54 回転モータ
55 駆動軸
56 駆動モータ
57 ヒンジ
58 ヒンジ駆動モータ
60 制御部
H1〜H5 加熱源
40 Injection Device 41 Cylinder 41a Molding Material Supply Port 43 Screw 44 Cooling Block 44a Cooling Block Body 44b Heat Dissipation Unit 45 Cooling Fan (Cooling Gas Supply Unit)
46 Hopper (molding material supply unit)
47, 47A, 47B, 47C, 47D Cooling gas passage 48 Wind shield 49 Wind shield 50 Variable mechanism 53 Rotating shaft 54 Rotating motor 55 Driving shaft 56 Driving motor 57 Hinge 58 Hinge driving motor 60 Control units H1 to H5 Heating source

Claims (2)

金型装置内に充填される成形材料を加熱するシリンダと、
該シリンダの成形材料供給口を冷却する冷却ブロックと、
該冷却ブロックを冷却する冷却ガスを噴出する冷却ガス供給部とを備え、
前記冷却ブロックには、前記冷却ガスを流す冷却ガス流路が形成され、
前記冷却ブロックは、前記シリンダが挿入される挿入孔を有する冷却ブロック本体と、前記冷却ガス流路が形成される放熱部とを有し、
前記放熱部は、前記冷却ブロック本体に対する向きが可変とされ、前記シリンダの温度を下げるときに前記冷却ガス流路から前方に向かう流れを形成する、射出成形機。
A cylinder for heating the molding material filled in the mold apparatus;
A cooling block for cooling the molding material supply port of the cylinder;
A cooling gas supply unit that ejects cooling gas for cooling the cooling block;
The cooling block is formed with a cooling gas passage for flowing the cooling gas,
The cooling block has a cooling block main body having an insertion hole into which the cylinder is inserted, and a heat radiating portion in which the cooling gas flow path is formed,
The heat radiating unit is an injection molding machine in which a direction with respect to the cooling block main body is variable, and a flow directed forward from the cooling gas flow path is formed when the temperature of the cylinder is lowered.
前記冷却ブロック本体に対する前記放熱部の距離が可変とされる、請求項1に記載の射出成形機。   The injection molding machine according to claim 1, wherein a distance of the heat radiating portion with respect to the cooling block main body is variable.
JP2017091154A 2013-03-25 2017-05-01 Injection molding machine Expired - Fee Related JP6382392B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013063058 2013-03-25
JP2013063058 2013-03-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013251483A Division JP6158059B2 (en) 2013-03-25 2013-12-04 Injection molding machine

Publications (2)

Publication Number Publication Date
JP2017136865A true JP2017136865A (en) 2017-08-10
JP6382392B2 JP6382392B2 (en) 2018-08-29

Family

ID=59564675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091154A Expired - Fee Related JP6382392B2 (en) 2013-03-25 2017-05-01 Injection molding machine

Country Status (1)

Country Link
JP (1) JP6382392B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284715A (en) * 1986-06-04 1987-12-10 Fanuc Ltd Forced cooling device of heating cylinder of injection molder
JPH08156062A (en) * 1994-12-08 1996-06-18 Fanuc Ltd Controlling method of temperature at resin charging port of injection molding machine
JPH08164536A (en) * 1994-12-14 1996-06-25 Japan Aviation Electron Ind Ltd Injection molding machine, injection device and mold clamping device
JP2004237700A (en) * 2003-02-10 2004-08-26 Sumitomo Heavy Ind Ltd Injection molding machine and its temperature monitoring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284715A (en) * 1986-06-04 1987-12-10 Fanuc Ltd Forced cooling device of heating cylinder of injection molder
JPH08156062A (en) * 1994-12-08 1996-06-18 Fanuc Ltd Controlling method of temperature at resin charging port of injection molding machine
JPH08164536A (en) * 1994-12-14 1996-06-25 Japan Aviation Electron Ind Ltd Injection molding machine, injection device and mold clamping device
JP2004237700A (en) * 2003-02-10 2004-08-26 Sumitomo Heavy Ind Ltd Injection molding machine and its temperature monitoring method

Also Published As

Publication number Publication date
JP6382392B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
RU2692346C2 (en) Granules / liquid flow control device for a printing head of a 3d printer, into which granules and / or liquid are fed
CN208497684U (en) A kind of wear-resisting print head of 3D printer
JP6158059B2 (en) Injection molding machine
US20210016481A1 (en) Plasticizing device, injection device, molding apparatus, and manufacturing method of molded parts
CN106799833A (en) A kind of printhead and its Method of printing of large scale industry level FDM printers
JP2011046103A (en) High shear apparatus
JP6382392B2 (en) Injection molding machine
JP6121315B2 (en) Injection molding machine
WO2009093710A1 (en) Screw type kneader
JP6777935B2 (en) Vent device and vent type injection molding machine
JP6087265B2 (en) Injection molding machine
JP6223840B2 (en) Injection molding machine
JP4786606B2 (en) Material feeder for molding machine
CN205291606U (en) Printing head and three -dimensional printer
JP2019171793A (en) Injection molding machine
JP2004229405A (en) Motor drive and molding machine
JP5814701B2 (en) Injection device, molding machine, and control method of injection device
JP6911177B2 (en) Injection device
CN216832231U (en) Multi-shaft combined type 3D printer capable of dissipating heat quickly
KR20100133640A (en) Extruder
JP6158102B2 (en) Injection molding machine
CN110315715B (en) Injection molding machine
US20210154901A1 (en) Plasticizing device, injection molding machine, and three-dimensional shaping apparatus
KR102165179B1 (en) Cooling system of 3d printer being capable of printing soft materials
EP2727703B1 (en) Injection molding machine and injection molding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees