JP2017133720A - Melting material component for induction electric furnace, and builing method for induction electric furnace - Google Patents

Melting material component for induction electric furnace, and builing method for induction electric furnace Download PDF

Info

Publication number
JP2017133720A
JP2017133720A JP2016012229A JP2016012229A JP2017133720A JP 2017133720 A JP2017133720 A JP 2017133720A JP 2016012229 A JP2016012229 A JP 2016012229A JP 2016012229 A JP2016012229 A JP 2016012229A JP 2017133720 A JP2017133720 A JP 2017133720A
Authority
JP
Japan
Prior art keywords
furnace
induction electric
electric furnace
melting
refractory lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016012229A
Other languages
Japanese (ja)
Other versions
JP6082138B1 (en
Inventor
佳裕 亀山
Yoshihiro Kameyama
佳裕 亀山
敏郎 前川
Toshiro Maekawa
敏郎 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMEYAMA CASTING CO Ltd
Original Assignee
KAMEYAMA CASTING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMEYAMA CASTING CO Ltd filed Critical KAMEYAMA CASTING CO Ltd
Priority to JP2016012229A priority Critical patent/JP6082138B1/en
Application granted granted Critical
Publication of JP6082138B1 publication Critical patent/JP6082138B1/en
Publication of JP2017133720A publication Critical patent/JP2017133720A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a melting material component for an induction electric furnace which enables effective preheating and in-furnace melting during an in-furnace melting for sintering process of refractory lining material at the time of building the induction electric furnace, and a building method for the induction electric furnace using the melting material component.SOLUTION: In a component 20 composed of a melting material for an induction electric furnace 10, a plurality of longitudinal materials 21 are integrally bundled to form an outer diameter approximate to an inner diameter of the furnace using the longitudinal materials 21 which is ferrous and has a length dimension adjusted to satisfy a dimension up to an upper end of a refractory lining layer 11 composing a part from a bottom to a wall inside the induction electric furnace 10 to be used.SELECTED DRAWING: Figure 1

Description

本発明は誘導電気炉用の溶解材構成体と、誘導電気炉の築炉方法に関する。   The present invention relates to a melting material structure for an induction electric furnace and a method for constructing an induction electric furnace.

鋳鉄、鋳鋼などの溶解炉として、低周波誘導電気炉、高周波誘導電気炉が多く用いられている。
これらの誘導電気炉は、定期的に或いは湯漏れやその他の問題が生じた場合に、築炉と称される炉の耐火物の張り替えを実施する必要が生じる。
炉の内壁を構成する耐火物ライニング材は、シリカ系、マグネシア系、アルミナ系などの粉末状の耐火物が多く用いられている。これらの耐火物は粉末状であるため、築炉時にシンターと呼ばれる焼結の工程を経て耐火物の内表面層を所定の深さまで焼結し、強化させることが重要となる。
前記シンターと呼ばれる炉内壁耐火物の焼結工程は、水冷銅コイルを配置した炉体の内側に、炉内形状となる鋼製のフォーマと称される内側型枠を配設し、該内側型枠の背後、前記炉体との隙間に粉末状の耐火物ライニング材を充填する。そしてその後、前記内側型枠の中(内側空間、即ち炉内空間)に鉄系の溶解材を挿入し、誘導加熱を開始して、内側型枠と溶解材とを加熱し、溶解させる。これにより、耐火物ライニング材が内表面側から加熱され、焼結が開始される。溶解材と内側型枠が全て溶けて炉頂部まで満たされた時点で、焼結工程が完了することとなる。
Low frequency induction electric furnaces and high frequency induction electric furnaces are often used as melting furnaces for cast iron, cast steel, and the like.
These induction electric furnaces require refurbishment of the furnace refractory, referred to as a built-in furnace, on a regular basis or when a hot water leak or other problems occur.
As the refractory lining material constituting the inner wall of the furnace, powder refractories such as silica, magnesia, and alumina are often used. Since these refractories are in powder form, it is important to sinter and strengthen the inner surface layer of the refractory to a predetermined depth through a sintering process called sinter at the time of building.
In the sintering process of the furnace inner wall refractory called the sinter, an inner mold called a steel former that is in the furnace shape is disposed inside the furnace body in which the water-cooled copper coil is arranged, and the inner mold A powder refractory lining material is filled behind the frame and in the gap with the furnace body. Thereafter, an iron-based melting material is inserted into the inner mold (inner space, ie, the furnace space), induction heating is started, and the inner mold and the melting material are heated and melted. Thereby, a refractory lining material is heated from the inner surface side, and sintering is started. When the melting material and the inner mold are all melted and filled to the top of the furnace, the sintering process is completed.

前記焼結工程で、内側型枠の内側に入れる前記溶解材は、効率よく加熱されることが好ましいので、従来からスターティングブロックと称される塊状の材料が用いられている。特に低周波誘導電気炉の場合は、塊状の溶解材を入れないと溶けない。
図4に示すように、従来用いられているスターティングブロックと称される塊状の溶解材は、炉容量の1/5〜1/3程度の比較的偏平な塊を用いており、この偏平塊200を誘導電気炉100内の炉底部101に1個配置し、或いはその上にスクラップを投入するか、又は偏平塊200を更に2〜3個重ねて配置する等、していた。
しかしながら、このような従来の焼結工程では、誘導電気炉100の特性上、最下部のスターティングブロックの偏平塊200のみが良く加熱され、その上にある溶解材はあまり順調には加熱されない傾向に陥り易い状況となっていた。このため、炉底部101付近における耐火物ライニング材120は、内表面から所定深さの焼結が順調に行われる一方、特に炉頂部102から炉上部付近における耐火物ライニング材120は、予備加熱なしにいきなり溶湯と接する事になるため、内表面からの焼結深さが不十分になったり、焼結状態そのものにムラやバラツキが生じて焼結不良が生じたりしていた。このため、炉の操業開始直後の溶解作業時に、炉頂部102から炉上部にかけての耐火物ライニング材120が剥がれ落ちたり、内表面からの湯差しが発生したりする等、築炉のやり直しを含むトラブルが発生し易い問題があった。
In the sintering step, the melting material to be put inside the inner mold is preferably heated efficiently, so that a lump-shaped material conventionally called a starting block has been used. In particular, in the case of a low-frequency induction electric furnace, it does not melt unless a lump of melting material is added.
As shown in FIG. 4, a lump of melting material used conventionally as a starting block uses a relatively flat lump of about 1/5 to 1/3 of the furnace capacity. One 200 is arranged on the furnace bottom 101 in the induction electric furnace 100, or scrap is thrown on it, or two or three flat lumps 200 are further stacked.
However, in such a conventional sintering process, due to the characteristics of the induction furnace 100, only the flat mass 200 of the lowermost starting block is well heated, and the melted material on the starting block tends not to be heated very smoothly. The situation was easy to fall into. Therefore, the refractory lining material 120 in the vicinity of the furnace bottom 101 is smoothly sintered at a predetermined depth from the inner surface, while the refractory lining material 120 in the vicinity of the furnace top from the furnace top 102 is not preheated. Because it suddenly comes into contact with the molten metal, the sintering depth from the inner surface becomes insufficient, or the sintered state itself is uneven and uneven, resulting in poor sintering. For this reason, during the melting operation immediately after the start of operation of the furnace, the refractory lining material 120 from the furnace top 102 to the upper part of the furnace is peeled off or a hot water bottle is generated from the inner surface. There was a problem that was likely to cause trouble.

特開平6−42879号公報JP-A-6-42879 特開平7−260363号公報JP-A-7-260363 特開平9−303967号公報JP-A-9-303967 特開2004−340413号公報JP 2004-340413 A

上記特許文献1、2の発明には、ライニング材の焼結のバラツキを改善する技術として、定形耐火物を用いる構成が開示されている。即ち、炉耐火物を定形耐火物とライニング材の2層構造とすることで、焼結のバラツキを解決しようとするものである。
しかしながら、この特許文献1、2の発明では、定形耐火物を製作するコストが高くつく問題と、定形耐火物を用いる場合、この定形耐火物が物理的衝撃に弱く、割れ易いという問題がある。
上記特許文献3の発明には、炉内面側に焼結し易いライニング材を使用した2層構造のライニング材を用いる技術が開示されている。
しかしながら、この特許文献3の発明では、2種類の異なる性質を有するライニング材を準備しなければならない問題がある。またセパレートシリンダーを抜き出した後の隙間を再度突き固める作業をしなければならない問題がある。
上記特許文献4の発明には、湯差し等の問題の発生し易い炉前部のライニング材を炉後部のライニング材とは異なる材質とした技術が開示されている。
しかしながら、この特許文献4の発明では、炉後部についての配慮が逆に不十分となり易く、炉後部のライニング材が剥がれ落ち易くなる問題がある。
In the inventions of Patent Documents 1 and 2 described above, a configuration using a fixed refractory is disclosed as a technique for improving the variation in sintering of the lining material. That is, the furnace refractory has a two-layer structure of a regular refractory and a lining material, thereby solving the variation in sintering.
However, in the inventions of Patent Documents 1 and 2, there are a problem that the cost of manufacturing the fixed refractory is high, and there is a problem that when the fixed refractory is used, the fixed refractory is weak against physical impact and easily cracked.
The invention of Patent Document 3 discloses a technique using a lining material having a two-layer structure using a lining material that is easily sintered on the furnace inner surface side.
However, in the invention of Patent Document 3, there is a problem that a lining material having two different properties must be prepared. In addition, there is a problem that it is necessary to re-tighten the gap after the separation cylinder is extracted.
The invention of Patent Document 4 discloses a technique in which a lining material at the front of the furnace, which is likely to cause problems such as hot water, is made of a material different from the lining material at the rear of the furnace.
However, in the invention of Patent Document 4, the consideration for the rear part of the furnace tends to be insufficient, and the lining material at the rear part of the furnace is easily peeled off.

そこで本発明は上記従来の誘導電気炉における問題点を解消し、誘導電気炉の築炉時に行う耐火物ライニング材の焼結処理のための炉内溶解において、良好な予備加熱と炉内溶解を行うことができる誘導電気炉用の溶解材構成体の提供を課題とする。またそのような溶解材構成体を用いた誘導電気炉の築炉方法の提供を課題とする。   Therefore, the present invention solves the problems in the conventional induction electric furnace, and in the melting in the furnace for sintering the refractory lining material performed at the time of building the induction electric furnace, good preheating and melting in the furnace are achieved. It is an object to provide a melting material structure for an induction furnace that can be performed. Another object of the present invention is to provide a method for constructing an induction electric furnace using such a melting material structure.

本発明者は従来の誘導電気炉の築炉時の問題を解消すべく、原因追及と検討とを種々の実験を繰り返して行った結果、誘導電気炉の築炉時における問題の原因が、耐火物ライニング材の焼結工程で行う炉内溶解に供するスターティングブロック、即ち溶解材に最大の原因があることを知見し、本発明を完成した。   As a result of repeating various experiments to investigate and investigate the cause in order to solve the problem at the time of building a conventional induction electric furnace, the present inventor has found that the cause of the problem at the time of building an induction electric furnace is refractory. It was found that the starting block used for melting in the furnace in the sintering process of the material lining material, that is, the melting material has the greatest cause, and the present invention was completed.

本発明の誘導電気炉用の溶解材構成体は、誘導電気炉用の溶解材からなる構成体であって、使用する誘導電気炉の炉内底から炉内壁を構成する耐火物ライニング層の上端までの寸法を満たす長さ寸法に調整した鉄系の長尺材を用い、該長尺材の複数を炉内径に近似する外径に束ねて一体化してあることを第1の特徴としている。
また本発明の誘導電気炉用の溶解材構成体は、上記第1の特徴に加えて、誘導電気炉の築炉において、炉内壁の耐火物ライニング層の焼結工程で用いる溶解材構成体であって、長尺材の長さ寸法は、該長尺材を束ねてなる溶解材構成体が溶解したときに減少する高さ分だけ、誘導電気炉内壁を構成する耐火物ライニング層の上端よりも突出する寸法となるように調整してあることを第2の特徴としている。
また本発明の誘導電気炉用の溶解材構成体は、上記第1又は第2の特徴に加えて、長尺材は角柱状のビレットを用い、これを複数本、所定長さに束ねた状態に一体化してあることを第3の特徴としている。
また本発明の誘導電気炉の築炉方法は、上記第1〜第3の何れかに記載の誘導電気炉用の溶解材構成体を用いた誘導電気炉の築炉方法であって、炉内壁を構成する耐火物ライニング層を未焼結状態で鉄系の内側型枠の背後に充填した後、内側型枠で囲まれた炉内空間に対して溶解材構成体を挿入することで、前記内側型枠で囲まれた炉内空間の全域を、上下方向に連続する長尺材の束で充填し、その後、電気を印加して、前記溶解材構成体と内側型枠の予熱から溶解までを行うことで、前記耐火物ライニング層の内表面の焼結を行うようにしたことを第4の特徴としている。
The melting material structure for an induction electric furnace according to the present invention is a structure made of a melting material for an induction electric furnace, and the upper end of the refractory lining layer constituting the furnace inner wall from the furnace bottom of the induction electric furnace to be used. The first feature is that an iron-based long material adjusted to a length satisfying the above dimensions is used, and a plurality of the long materials are bundled and integrated into an outer diameter that approximates the furnace inner diameter.
In addition to the first feature, the melting material structure for an induction electric furnace according to the present invention is a melting material structure used in a sintering process of a refractory lining layer on the inner wall of the furnace in the construction of an induction electric furnace. The length of the long material is higher than the upper end of the refractory lining layer constituting the inner wall of the induction furnace by the height that is reduced when the melted material structure formed by bundling the long material is melted. The second feature is that the size is adjusted so as to project.
In addition to the first or second feature, the melting material structure for an induction electric furnace of the present invention uses a prismatic billet as a long material, and a plurality of them are bundled into a predetermined length. The third feature is that they are integrated with each other.
An induction electric furnace building method according to the present invention is an induction electric furnace building method using the melting material structure for an induction electric furnace according to any one of the first to third aspects, the inner wall of the furnace After filling the refractory lining layer that constitutes the back of the iron-based inner mold in an unsintered state, the molten material structure is inserted into the furnace space surrounded by the inner mold, The entire space inside the furnace surrounded by the inner mold is filled with a bundle of long materials that are continuous in the vertical direction, and then electricity is applied, from preheating to melting of the melting material component and the inner mold. The fourth feature is that the inner surface of the refractory lining layer is sintered by performing the above.

請求項1に記載の誘導電気炉用の溶解材構成体によれば、使用する誘導電気炉の炉内底から炉内壁を構成する耐火物ライニング層の上端までの寸法を満たす長さ寸法に調整した鉄系の長尺材を用い、該長尺材の複数を炉内径に近似する外径に束ねて一体化してあることにより、
溶解材構成体の炉内での上下方向の誘導加熱と熱伝導が、炉内底から耐火物ライニング層の上端までの寸法を満たす長さ寸法に調整した鉄系の長尺材によって、速やかに行われる。そして炉内径に近似する外径に束ねた長尺材が炉内に挿入配置されることで、溶解材構成体と炉内壁とを近接させることができ、よって溶解材構成体が溶解する前においても、該溶解材構成体から炉内壁側への熱伝導を速やかに行うことができる。
よって誘導電気炉に誘導加熱が開始されると、炉内に配置された本発明の溶解材構成体の全体がより速やかに且つ均一的に加熱され、全体が短時間で溶融に至る。これに伴って炉内壁も、その下部から上部に至る全体がより速やかに且つ均一的に加熱されることになる。
従って請求項1に記載の誘導電気炉用の溶解材構成体を、誘導電気炉の築炉の際の炉内壁を構成する耐火物ライニング材の焼結工程で使用することにより、耐火物ライニング材の全体を速やかに且つ均一に加熱することができ、耐火物ライニング材の焼結をムラ無く均質に、均一な焼結深さで、速やかに、良好に行うことが可能となる。
勿論、本発明の溶解材構成体を用いることで、これが誘導電気炉の良好な鉄芯となることができるので、誘導電気炉としての発熱効率を上げることができる。よって誘導電気炉の築炉時に限らず、誘導電気炉による通常の操業時においても、本発明の溶解材構成体を用いることで、非常に良好で省エネの鉄系材の溶解を行うことができる。
According to the melting material structure for an induction electric furnace according to claim 1, the length is adjusted so as to satisfy the dimension from the inner bottom of the induction electric furnace to be used to the upper end of the refractory lining layer constituting the inner wall of the furnace. By using an iron-based long material that has been bundled and integrated into an outer diameter that approximates the furnace inner diameter,
With the iron-based long material adjusted to the length that satisfies the dimension from the furnace bottom to the top of the refractory lining layer, the induction heating and heat conduction in the vertical direction in the furnace of the molten material structure is quickly performed. Done. And the long material bundled to the outer diameter that approximates the furnace inner diameter is inserted and arranged in the furnace, so that the melted material structure and the furnace inner wall can be brought close to each other, and thus before the melted material structure melts In addition, heat conduction from the melting material constituting body to the furnace inner wall side can be performed quickly.
Therefore, when induction heating is started in the induction electric furnace, the entire melting material constituting body of the present invention disposed in the furnace is heated more rapidly and uniformly, and the whole is melted in a short time. Along with this, the entire inner wall of the furnace from the lower part to the upper part is heated more quickly and uniformly.
Therefore, the refractory lining material according to claim 1 is used in the sintering process of the refractory lining material constituting the inner wall of the induction electric furnace when constructing the induction electric furnace. As a result, the refractory lining material can be uniformly and uniformly sintered at a uniform sintering depth quickly and satisfactorily.
Of course, by using the melting material structure of the present invention, this can be a good iron core of the induction electric furnace, so that the heat generation efficiency as the induction electric furnace can be increased. Therefore, not only at the time of building an induction electric furnace but also at the time of normal operation by an induction electric furnace, by using the melting material structure of the present invention, it is possible to melt a very good and energy-saving iron-based material. .

また請求項2に記載の誘導電気炉用の溶解材構成体によれば、上記請求項1の構成による作用効果に加えて、誘導電気炉の築炉において、炉内壁の耐火物ライニング層の焼結工程で用いる溶解材構成体であって、長尺材の長さ寸法は、該長尺材を束ねてなる溶解材構成体が溶解したときに減少する高さ分だけ、誘導電気炉内壁を構成する耐火物ライニング層の上端よりも突出する寸法となるように調整してあるので、
築炉における炉内壁の耐火物ライニング層の焼結工程の際、溶解材構成体が炉内で溶解されても、その溶解された溶解材構成体の液面が耐火物ライニング層の上端よりも低くなってしまうのを防止することができる。よって溶解した溶解材構成体からの熱伝導を耐火物ライニング層の上端に至るまで良好に且つ速やかに行うことができ、耐火物ライニング層の焼結をその上端に至るまでの全領域で均質に、良好に行うことができる。
According to the melting material structure for an induction electric furnace according to claim 2, in addition to the operational effect of the structure according to claim 1, in the construction of the induction electric furnace, the refractory lining layer of the furnace inner wall is sintered. It is a melting material structure used in the ligation process, and the length dimension of the long material is the same as that of the induction electric furnace inner wall by a height that decreases when the melting material structure formed by bundling the long material melts. Since it has been adjusted to be a dimension that protrudes from the upper end of the refractory lining layer that constitutes,
During the sintering process of the refractory lining layer on the inner wall of the furnace, even if the molten material structure is melted in the furnace, the liquid level of the dissolved molten material structure is higher than the upper end of the refractory lining layer. It can prevent becoming low. Therefore, heat conduction from the melted dissolved material structure can be carried out well and promptly until reaching the upper end of the refractory lining layer, and sintering of the refractory lining layer is homogeneous in all regions up to the upper end. Can be done well.

また請求項3に記載の誘導電気炉用の溶解材構成体によれば、上記請求項1又は2の構成による作用効果に加えて、長尺材は角柱状のビレットを用い、これを複数本、所定の長さに束ねた状態に一体化してあるので、
連続鋳造や分塊圧延等で規格品的に得られる角柱状のビレットを用いることで、均質で形状の揃った長尺材を容易に調整して得ることができる。またそれらを束ねることで均質、均一な形状の溶解材構成体を、いつも容易に調達して得ることができる。よってこのようなビレットを用いた溶解材構成体によれば、いつも均質な溶解を行うことができ、誘導電気炉の築炉時はもとより、誘導電気炉による通常の操業時においても、非常に良好で速やかな溶解を行うことができる。
Moreover, according to the melting | dissolving material structure for induction electric furnaces of Claim 3, in addition to the effect by the structure of the said Claim 1 or 2, a long material uses a prism-shaped billet, and this is used in multiple numbers. Because it is integrated in a bundled state to a predetermined length,
By using a prismatic billet obtained as a standard product by continuous casting, partial rolling, or the like, a uniform and uniform long material can be easily adjusted and obtained. Also, by bundling them, it is always possible to easily procure and obtain a melting material structure having a uniform and uniform shape. Therefore, according to the melting material structure using such a billet, it is possible to always perform homogeneous melting, which is very good not only when the induction electric furnace is built but also during normal operation with the induction electric furnace. Can be quickly dissolved.

また請求項4に記載の誘導電気炉の築炉方法によれば、炉内壁を構成する耐火物ライニング層を未焼結状態で鉄系の内側型枠の背後に充填した後、前記内側型枠で囲まれた炉内空間に対して溶解材構成体が挿入され、その後に電気が炉に印加されることで、前記溶解材構成体と内側型枠とが予熱され、やがて溶解される。この耐火物ライニング層は、予熱を受けた前記溶解材構成体から内側型枠を介して、及び溶解材構成体及び内側型枠が溶解した後は溶湯から熱を受けることで、ライニング層の内表面が所定の深さに焼結される。
前記溶解材構成体は、使用する誘導電気炉の炉内底から耐火物ライニング層の上端までの寸法を満たす長さ寸法に調整した鉄系の長尺材を用い、該長尺材の複数を炉内径に近似する形状に束ねて一体化したものであるので、この溶解材構成体を内側型枠で囲まれた炉内空間に挿入することで、内側型枠で囲まれた炉内空間の全域が、上下方向に連続する長尺材の束で充填される。従って、この状態で電気を印加すると、炉内空間に充填された溶解材構成体の全体が均一的に予熱され、これに伴って溶解材構成体に近接状態にある内側型枠もその全体が均一的に予熱される。そして溶解材構成体は、その均一的な予熱によって、その下端から上端に至るまでの溶解が比較的短時間の間に行われ、それに伴って内側型枠の溶解もその下端から上端に至るまで比較的短時間の間に行われる。これらの結果、耐火物ライニング層の加熱もその下方から上端にかけて比較的均一的に且つ速やかに行われることになり、加熱状況の不均一が起こり難い状況となる。よって耐火物ライニング材の焼結処理が下端から上端に至る全域で比較的均一で安定したものとなり、全域での均質で良好な焼結層を、所定の深さに揃えて安定して形成することができる。
According to the method for constructing an induction electric furnace according to claim 4, the refractory lining layer constituting the furnace inner wall is filled in an unsintered state behind the iron-based inner mold, and then the inner mold The melted material structure is inserted into the furnace space surrounded by, and then electricity is applied to the furnace, so that the melted material structure and the inner mold are preheated and eventually melted. This refractory lining layer receives heat from the melted material structure that has been preheated through the inner mold, and after the melted material structure and the inner mold are melted, The surface is sintered to a predetermined depth.
The molten material component is an iron-based long material adjusted to a length that satisfies the dimension from the inner bottom of the induction electric furnace to be used to the upper end of the refractory lining layer, and a plurality of the long materials are used. Since it is bundled and integrated into a shape approximating the furnace inner diameter, by inserting this molten material structure into the furnace space surrounded by the inner mold, the furnace space enclosed by the inner mold is The entire area is filled with a bundle of long materials continuous in the vertical direction. Therefore, when electricity is applied in this state, the entire melted material structure filled in the furnace space is uniformly preheated, and the inner mold form that is in close proximity to the melted material structure as a whole. Preheated uniformly. The melting material structure is melted from the lower end to the upper end by the uniform preheating in a relatively short time, and accordingly, the inner mold is also melted from the lower end to the upper end. It takes place in a relatively short time. As a result, the refractory lining layer is heated relatively uniformly and rapidly from the lower side to the upper end, and the heating state is less likely to be uneven. Therefore, the sintering treatment of the refractory lining material becomes relatively uniform and stable throughout the entire area from the lower end to the upper end, and a uniform and good sintered layer throughout the entire area is stably formed at a predetermined depth. be able to.

本発明の実施形態を示す溶解材構成体を築炉中の誘導電気炉に挿入配置した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which inserted and arranged the melting | dissolving material structure which shows embodiment of this invention in the induction electric furnace in a building furnace. 本発明の実施形態を示す溶解材構成体を築炉中の誘導電気炉に挿入配置した状態を示す平面図である。It is a top view which shows the state which inserted and arranged the melting | dissolving material structure which shows embodiment of this invention in the induction electric furnace in a building furnace. 溶解材構成体が溶けた状態を示す築炉中の誘導電気炉の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the induction electric furnace in the construction of a furnace which shows the state which the melting material structural body melt | dissolved. 従来用いられているスターティングブロックと称される塊状の溶解材を築炉中の誘導電気炉に挿入配置した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which inserted and arranged the lump-shaped melt | dissolution material called the starting block used conventionally in the induction electric furnace in a building furnace.

図1〜3を参照して、本発明の誘導電気炉用の溶解材構成体、誘導電気炉の築炉方法について、その実施の形態につき以下に説明する。   With reference to FIGS. 1-3, the melting | dissolving material structure for induction electric furnaces of this invention and the construction method of an induction electric furnace are demonstrated below about the embodiment.

図1、図2は、本発明の実施形態である溶解材構成体20を築炉中の誘導電気炉10に挿入配置した状態を示す図である。
誘導電気炉10としては、高周波誘導電気炉(中周波を含む)と低周波誘導電気炉とがあり、本発明に係る誘導電気炉においても、その両方を含む概念である。しかし実際問題として、誘導電気炉10をコールドスタートする必要のある築炉時においては、発熱効率の悪い低周波誘導電気炉において特に問題となり易い。従って本実施形態の誘導電気炉10の場合も、低周波誘導電気炉を主に想定している。
FIG. 1 and FIG. 2 are views showing a state in which a melting material structure 20 according to an embodiment of the present invention is inserted into an induction electric furnace 10 being built.
The induction electric furnace 10 includes a high frequency induction electric furnace (including a medium frequency) and a low frequency induction electric furnace, and the induction electric furnace according to the present invention is a concept including both of them. However, as a practical problem, the low frequency induction electric furnace with low heat generation efficiency is particularly likely to be a problem at the time of building the furnace in which the induction electric furnace 10 needs to be cold started. Therefore, also in the case of the induction electric furnace 10 of this embodiment, the low frequency induction electric furnace is mainly assumed.

誘導電気炉10は、その概略構成として、炉の内壁となる耐火物ライニング層11を備え、その外側に耐火物ライニング層11を隔す外側隔壁12が設けられている。該外側隔壁12の更に外側には誘導コイル13が配設される。また耐火物ライニング層11の下側に耐火物ライニング層11を隔す下側隔壁15が設けられている。
築炉時においては、フォーマと称する鉄系、例えば鋼製の容器からなる内側型枠14を予め配設し、この内側型枠14の背後に未だ焼結がなされていない粉末状の耐火物ライニング材を充填して、耐火物ライニング層11とする。より具体的には、内側型枠14と外側隔壁12及び下側隔壁15との間に充填する。
前記耐火物ライニング材は、例えばシリカを主成分とした耐火物粉末、マグネシア又はアルミナを主成分とした耐火物粉末を用いることができ、これらにその他の副資材やバインダー等の添加材を必要に応じて含有させたものを用いることができる。
勿論、前記耐火物ライニング材が充填された時点における耐火物ライニング層11は、粉体が充填されただけで、未だ焼結がなされていない状態である。
The induction electric furnace 10 includes a refractory lining layer 11 as an inner wall of the furnace as a schematic configuration, and an outer partition wall 12 that separates the refractory lining layer 11 is provided on the outside thereof. An induction coil 13 is disposed further outside the outer partition wall 12. Further, a lower partition wall 15 that separates the refractory lining layer 11 is provided below the refractory lining layer 11.
At the time of building, an inner mold 14 made of an iron-based, for example, steel container called a former is disposed in advance, and a powder refractory lining that has not yet been sintered behind the inner mold 14. The material is filled to form a refractory lining layer 11. More specifically, the space is filled between the inner mold 14 and the outer partition wall 12 and the lower partition wall 15.
As the refractory lining material, for example, a refractory powder mainly composed of silica, a refractory powder mainly composed of magnesia or alumina can be used, and other auxiliary materials and additives such as a binder are necessary. What was contained according to it can be used.
Of course, the refractory lining layer 11 at the time when the refractory lining material is filled is only filled with powder and is not yet sintered.

築炉を完成させるには、前記耐火物ライニング層11の焼結工程を経て、耐火物ライニング層11の内表面を焼結する必要がある。
前記耐火物ライニング層11の焼結工程では、溶解材構成体20を前記内側型枠14に囲まれた炉内空間に挿入し、誘導電気炉10をコールドスタートする。時間の経過と共に前記溶解材構成体20と前記内側型枠14がやがて溶解し、一方、耐火物ライニング層11が予熱され、更に加熱されて、その内表面から内部へと焼結が進む。
In order to complete the building furnace, it is necessary to sinter the inner surface of the refractory lining layer 11 through the sintering step of the refractory lining layer 11.
In the sintering process of the refractory lining layer 11, the molten material component 20 is inserted into the furnace space surrounded by the inner mold 14, and the induction electric furnace 10 is cold started. As the time elapses, the melting material structure 20 and the inner mold 14 are eventually dissolved, while the refractory lining layer 11 is preheated and further heated, and sintering proceeds from the inner surface to the inside.

前記溶解材構成体20は、使用する誘導電気炉10の炉内底から炉内壁を構成する耐火物ライニング層11の上端までの寸法を満たす長さ寸法に調整した鉄系の長尺材21を用いる。そして複数の長尺材21を炉内径に近似する外径に束ねて一体化し、溶解材構成体20とする。
ここで、長尺材21の複数を炉内径に近似する外径に束ねるとは、より具体的には、複数の長尺材21が束ねられた状態で、炉内径よりは小径ではあるが、炉内径に近い径に束ねるという意味である。誘導電気炉10は通常は円形の炉内形状を持つので、そのような円形の誘導電気炉10に対しては、溶解材構成体20を構成する前記長尺材21の束も円形に構成することになる。ただし溶解材構成体20は、これを誘導電気炉10内に挿入する必要があるので、その挿入がスムーズに行える程度まで長尺材21の束の外径を誘導電気炉10内径よりも小さくする。しかし、できるだけ誘導電気炉10の内径に近い径とするのがよいのである。
また溶解材構成体20は複数の長尺材21を束ねたものであるので、その束の外周形状は完全な円や正多角形にはならないのが当然である。従って溶解材構成体20の外周形状は、誘導電気炉10の炉内形状と大まかには近似するが、実際には完全な相似形状とはならない。本発明では、このような大まかな相似形状を含む広い概念において、長尺材21の束の外径が誘導電気炉10の内径に近似するように構成している。
The melted material structure 20 includes an iron-based long material 21 adjusted to a length satisfying the size from the inner bottom of the induction electric furnace 10 to be used to the upper end of the refractory lining layer 11 constituting the inner wall of the furnace. Use. Then, a plurality of long materials 21 are bundled and integrated into an outer diameter that approximates the furnace inner diameter to obtain a melted material constituting body 20.
Here, bundling a plurality of long materials 21 to an outer diameter that approximates the furnace inner diameter is more specifically a state in which a plurality of long materials 21 are bundled and having a smaller diameter than the furnace inner diameter. This means that it is bundled to a diameter close to the furnace inner diameter. Since the induction electric furnace 10 usually has a circular shape in the furnace, the bundle of the long materials 21 constituting the melting material constituting body 20 is also formed in a circle for such a circular induction electric furnace 10. It will be. However, since it is necessary to insert the molten material structure 20 into the induction electric furnace 10, the outer diameter of the bundle of the long materials 21 is made smaller than the inner diameter of the induction electric furnace 10 to such an extent that the insertion can be performed smoothly. . However, the diameter should be as close to the inner diameter of the induction furnace 10 as possible.
Moreover, since the melted material component 20 is a bundle of a plurality of long materials 21, it is natural that the outer peripheral shape of the bundle is not a perfect circle or a regular polygon. Therefore, the outer peripheral shape of the melting material constituting body 20 roughly approximates the in-furnace shape of the induction electric furnace 10, but actually does not have a completely similar shape. In the present invention, the outer diameter of the bundle of long materials 21 is configured to approximate the inner diameter of the induction electric furnace 10 in a wide concept including such a rough similar shape.

前記長尺材21は鉄系とする。誘導電気炉10による溶解作業時における発熱を促進するのには、当然ながら、鉄系が良いからである。
長尺材21は、使用する誘導電気炉10の炉内底から耐火物ライニング層11の上端までの寸法を満たす長さ寸法のものを用いる。各長尺材21が炉内において立設されるように配置されることで、炉内或いは長尺材21そのものに発生する熱を、長尺材21を介して炉内の上下方向、即ち炉底から炉頂方向に亘って速やかに伝導させることができる。炉内底から耐火物ライニング層11の上端までの寸法を満たす長さ寸法の長尺材21を用いることで、炉底部から耐火物ライニング層11の上端に至る全域に熱が速やかに伝えられる。よって長尺材21、内側型枠14を介して耐火物ライニング層11が炉底から炉頂にかけて均一的に且つ速やかに予熱され、加熱される。更に長尺材21の複数を炉内径に近似する外径に束ねたものを用いることで、長尺材21の束と内側型枠14との隙間も狭くなり、予熱、加熱をより良好に均一化することができる。よって耐火物ライニング層11の速やかなる予熱、加熱ができる。
なお、炉内底から耐火物ライニング層11の上端までの寸法を満たす長さ寸法とは、長尺材21の長さが、炉内底から耐火物ライニング層11上端までの長さ及びそれを超える長さにされていることを意味している。
The long material 21 is iron-based. This is because, of course, the iron system is good for promoting the heat generation during the melting operation by the induction furnace 10.
The long material 21 has a length dimension that satisfies the dimension from the inner bottom of the induction electric furnace 10 to be used to the upper end of the refractory lining layer 11. By arranging each long material 21 so as to stand upright in the furnace, the heat generated in the furnace or the long material 21 itself is transmitted through the long material 21 in the vertical direction, that is, in the furnace. It is possible to conduct quickly from the bottom to the furnace top direction. By using the long material 21 having a length satisfying the dimension from the bottom of the furnace to the upper end of the refractory lining layer 11, heat can be quickly transmitted from the bottom of the furnace to the upper end of the refractory lining layer 11. Therefore, the refractory lining layer 11 is preheated uniformly and quickly from the bottom of the furnace to the top of the furnace via the long material 21 and the inner mold 14 and heated. Furthermore, by using a bundle of a plurality of long materials 21 having an outer diameter approximating the furnace inner diameter, the gap between the bundle of long materials 21 and the inner mold 14 is also narrowed, and preheating and heating are more uniform. Can be Therefore, the refractory lining layer 11 can be quickly preheated and heated.
The length dimension satisfying the dimension from the furnace bottom to the upper end of the refractory lining layer 11 means that the length of the long material 21 is the length from the furnace bottom to the refractory lining layer 11 upper end and that. It means that the length is exceeded.

耐火物ライニング層11の焼結には、該耐火物ライニング層11が適当な加熱勾配をもって予熱され、加熱されることが重要である。溶解材構成体20が溶ける前に、溶解材構成体20の熱が炉底から炉頂に向けて行き渡ることで、内側型枠14を介して耐火物ライニング層11が均一に予熱され、更に高温へと加熱される。このようにして耐火物ライニング層11が炉底から炉頂に向けて均一に予熱、加熱されることで、耐火物ライニング層11の焼結が、炉底から炉頂にかけて安定且つ均一に行われることが可能になる。
長尺材21を束ねた溶解材構成体20を用いるもう一つの利点は、該溶解材構成体20が炉内に配置されることで、炉内空間がその深さ方向に長い鉄系の長尺材21で充填されることになり、それが誘導コイル13に対する良好な芯材となって、該誘導コイル13による発熱効率を大きく向上させることができることである。
なお溶解材構成体20は、誘導電気炉10の炉内底から耐火物ライニング層11の上端までの寸法を満たす長さ寸法に調整した長尺材21を用いて構成するが、全てが長尺材21だけで構成される場合に限定されるものではない。炉内底から耐火物ライニング層11の上端までの寸法を満たさない溶解材が、長尺材21に対して補充的に組み合わされた溶解材構成体20であっても、耐火物ライニング層11の焼結が炉底から炉頂に向けて均一に行われるという程度において、本発明における溶解材構成体20に含まれる。
溶解材構成体20に占める長尺材21の割合は、70%以上が好ましく、より好ましくは90%以上がよい。
また寸法不足の溶解材を長尺材21に対して補充的に用いる場合、その寸法不足の溶解材の長さは長尺材21の半分以上の長さがあることが好ましく、より好ましくは2/3以上がよい。
For sintering the refractory lining layer 11, it is important that the refractory lining layer 11 is preheated and heated with an appropriate heating gradient. Before the melting material structure 20 melts, the heat of the melting material structure 20 spreads from the furnace bottom toward the furnace top, so that the refractory lining layer 11 is uniformly preheated through the inner mold 14 and further heated. To be heated. Thus, the refractory lining layer 11 is uniformly preheated and heated from the furnace bottom to the furnace top, so that the refractory lining layer 11 is sintered stably and uniformly from the furnace bottom to the furnace top. It becomes possible.
Another advantage of using the melted material structure 20 in which the long materials 21 are bundled is that the melted material structure 20 is arranged in the furnace, so that the length of the iron system in which the space in the furnace is long in the depth direction. It is filled with the scale material 21, which becomes a good core material for the induction coil 13, and the heat generation efficiency by the induction coil 13 can be greatly improved.
The melted material structure 20 is configured using a long material 21 adjusted to a length that satisfies the dimension from the furnace inner bottom of the induction electric furnace 10 to the upper end of the refractory lining layer 11, all of which are long. It is not limited to the case where only the material 21 is used. Even if the melted material that does not satisfy the dimension from the bottom of the furnace to the upper end of the refractory lining layer 11 is the melted material structure 20 that is supplementarily combined with the long material 21, To the extent that sintering is performed uniformly from the furnace bottom to the furnace top, it is included in the melting material structure 20 in the present invention.
The proportion of the long material 21 in the melting material constituting body 20 is preferably 70% or more, more preferably 90% or more.
In addition, when a melted material with insufficient dimensions is used as a supplement to the long material 21, the length of the melted material with insufficient dimensions is preferably at least half that of the long material 21, more preferably 2 / 3 or more is good.

前記溶解材構成体20は、複数の溶解材を束ねたものであるので、多少の隙間が存在する。このため溶解材構成体20が溶解すると、その高さが減少する。
従って長尺材21の長さ寸法は、該長尺材21を束ねてなる溶解材構成体20が溶解したときに減少する高さ分だけ、予め誘導電気炉10の内壁を構成する耐火物ライニング層11の上端よりも突出する寸法となるように調整しておくのが好ましい。このように構成することで、溶解材構成体20が溶解した時点においても、その溶湯面が耐火物ライニング層11の上端まで達することが可能となり、耐火物ライニング層11の均一な焼結をより良好に確保することができる。
溶解材構成体20の寸法を耐火物ライニング層11の上端よりも突出するように構成する場合、それに併せて前記内側型枠14の寸法を、耐火物ライニング層11の上端を越え、更に溶解材構成体20の上端以上に突出するように、その寸法を調整して構成するのが好ましい。溶解材構成体20が溶解した際に、その溶湯が耐火物ライニング層11の上端面へ侵入しないようするためである。溶解材構成体20よりも溶解するのが遅い内側型枠14の寸法を溶解材構成体20の寸法よりも高くすることで、溶湯の耐火物ライニング層11上への流れ込みを防ぎながら、耐火物ライニング層11における均質な焼結、均一深さの焼結を全域で確保することが可能となる。
Since the melting material construct 20 is a bundle of a plurality of melting materials, there are some gaps. For this reason, when the melting material component 20 is melted, its height decreases.
Therefore, the length dimension of the long material 21 is the refractory lining that forms the inner wall of the induction furnace 10 in advance by the height that decreases when the melted material structure 20 formed by bundling the long material 21 is melted. It is preferable to adjust the size so that it protrudes from the upper end of the layer 11. By comprising in this way, even when the melting material structure 20 melt | dissolves, the molten metal surface can reach the upper end of the refractory lining layer 11, and more uniform sintering of the refractory lining layer 11 is achieved. It can be secured well.
When the size of the melting material constituting body 20 is configured to protrude from the upper end of the refractory lining layer 11, the dimension of the inner mold 14 exceeds the upper end of the refractory lining layer 11. It is preferable to adjust the dimensions so as to protrude beyond the upper end of the structure 20. This is to prevent the molten metal from entering the upper end surface of the refractory lining layer 11 when the melting material component 20 is melted. The refractory is prevented from flowing into the refractory lining layer 11 by preventing the molten metal from flowing into the refractory lining layer 11 by making the dimension of the inner mold 14 that is slower to dissolve than the melting material structure 20 higher than the dimension of the melting material structure 20. It becomes possible to ensure uniform sintering and sintering at a uniform depth in the lining layer 11 throughout the entire area.

溶解材構成体20は、長尺材21を束ね、その所々を溶接することで一体化することができる。束ねられた溶解材構成体20はできるだけ隙間が小さいのが好ましい。このため長尺材21の隙間に適当な形状、寸法の溶解材を挿入することができる。また水平断面形状の異なる溶解材を組み合わせて、炉内径に近似するように溶解材構成体20を構成することができる。
図2には、その例として、断面積の異なる2種類の長尺材21a、21bを用いて構成した溶解材構成体を示す。
長尺材21は、角柱状のビレットを用いることができる。より一般的に言えば、長尺材21は、その水平断面が矩形、その他の多角形のものを、単独或いは組み合わせて用いることができるが、できるだけ水平断面積の大きい長尺材が好ましい。また水平断面積が異なる長尺材21を、単独或いは組み合わせて用いることができる。
The melted material structure 20 can be integrated by bundling the long material 21 and welding the parts. It is preferable that the bundled dissolved material structure 20 has as small a gap as possible. For this reason, a melting material having an appropriate shape and size can be inserted into the gap between the long materials 21. Further, the melting material constituting body 20 can be configured so as to approximate the furnace inner diameter by combining melting materials having different horizontal cross-sectional shapes.
FIG. 2 shows, as an example, a dissolved material structure constituted by using two types of long materials 21a and 21b having different cross-sectional areas.
The long material 21 can be a prismatic billet. More generally speaking, the long material 21 can be used in the form of a rectangle whose horizontal cross section is rectangular or other polygons, either alone or in combination, but a long material having as large a horizontal cross sectional area as possible is preferable. Moreover, the elongate material 21 from which a horizontal cross-sectional area differs can be used individually or in combination.

図1〜3を参照して、上記した溶解材構成体20を用いた誘導電気炉10の築炉の方法を説明する。
この種の誘導電気炉10の築炉に当たっては、炉内空間の空間形状を構成することになる容器状の内側型枠14が配設される。該内側型枠14の外側と下側には、前記耐火物ライニング層11の厚みに相当する間隙を介してコイルセメント等からなる外側隔壁12と耐火キャスタブル等からなる下側隔壁15とが予め配設されている。その後、前記内側型枠14の背後、外側隔壁12と下側隔壁15との間に、耐火物ライニング材を充填して耐火物ライニング層11とする。この状態では、耐火物ライニング層11は未だ焼結工程がなされておらす、未焼結の状態である。実質的に最後の築炉作業として焼結工程が行われる。
焼結工程は、前記内側型枠14の中に溶解材構成体20を挿入し、誘導コイル13に電気を印加することで開始される。電気の印加により、前記溶解材構成体20の加熱が開始され、生じた熱は、溶解材構成体20の長尺材21によって、炉内の下方から上方に至る全域に速やかに伝熱される。溶解材構成体20の熱は内側型枠14を介して、耐火物ライニング層11に伝熱され、耐火物ライニング層11が予熱され、更に高温へと加熱される。その後、溶解材構成体20が溶解し、続いて内側型枠14が溶解して、図3に示すように、消失する。溶湯面は耐火物ライニング層11に近い液位になるように予め溶解材構成体20のボリュームを調整しておくことになる。この場合、溶解材構成体20の長尺材21の高さは、耐火物ライニング層11の上端を超える高さとなる。また内側型枠14の高さも耐火物ライニング層11の上端よりも高くなる。
耐火物ライニング層11はその内表面から徐々に焼結が進み、所定の焼結深さが達成される時間を見計らって、炉内の溶湯が排出され、焼結工程が終了する。
With reference to FIGS. 1-3, the construction method of the induction electric furnace 10 using the above-mentioned melting material structure 20 is demonstrated.
In constructing the induction furnace 10 of this type, a container-shaped inner mold 14 that constitutes the space shape of the furnace space is disposed. On the outer side and the lower side of the inner mold 14, an outer partition wall 12 made of coil cement or the like and a lower partition wall 15 made of fireproof castable or the like are arranged in advance through a gap corresponding to the thickness of the refractory lining layer 11. It is installed. Thereafter, a refractory lining material is filled into the refractory lining layer 11 behind the inner mold 14 and between the outer partition 12 and the lower partition 15. In this state, the refractory lining layer 11 is in an unsintered state in which the sintering process has not yet been performed. The sintering process is carried out as a substantially final construction work.
The sintering process is started by inserting the melting material structure 20 into the inner mold 14 and applying electricity to the induction coil 13. By applying electricity, heating of the melting material structure 20 is started, and the generated heat is quickly transferred by the long material 21 of the melting material structure 20 from the lower part to the upper part in the furnace. The heat of the melting material constituting body 20 is transferred to the refractory lining layer 11 through the inner mold 14, and the refractory lining layer 11 is preheated and further heated to a high temperature. Thereafter, the melting material constituting body 20 is melted, and then the inner mold 14 is melted and disappears as shown in FIG. The volume of the melting material constituting body 20 is adjusted in advance so that the molten metal surface has a liquid level close to the refractory lining layer 11. In this case, the height of the long material 21 of the melting material constituting body 20 is higher than the upper end of the refractory lining layer 11. The height of the inner mold 14 is also higher than the upper end of the refractory lining layer 11.
The refractory lining layer 11 is gradually sintered from the inner surface thereof, and the molten metal in the furnace is discharged after the time required to achieve a predetermined sintering depth, and the sintering process is completed.

なお、本発明に係る溶解材構成体20は、誘導電気炉10の築炉の際に用いるだけでなく、誘導電気炉の築炉が完了した後における通常の操業時にも、当然ながら用いられる。本発明の溶解材構成体20を通常操業時にも用いることで、誘導電気炉による溶解効率を向上させ、溶解材料を追加装入する必要がないため作業性も向上し、速やかな温度上昇とそれに伴う速やかな溶解を実現させることができる。   In addition, the melting material structure 20 according to the present invention is not only used when the induction electric furnace 10 is built, but is naturally used also during normal operation after the induction electric furnace is completed. By using the melting material structure 20 of the present invention even during normal operation, the melting efficiency by the induction electric furnace is improved and the workability is improved because there is no need to add additional melting material, and the temperature rises quickly. The accompanying rapid dissolution can be realized.

炉内径900mm、炉内深さ1400mm、容量5トンの低周波誘導電気炉を対象として、溶解材構成体20を製作した。長尺材21として、150mm角の鉄製のビレットを用い、該ビレットを炉内深さである1400mmよりも100mm長く、即ち1500mmに切断して構成した。得られた150mm角、長さ1500mmの長尺材(ビレット)21を複数本組み合わせて、炉内径900mmに近い径とし、束ねて一体化し、溶解材構成体20とした。この溶解材構成体20を築炉中の前記低周波誘導電気炉10の内側型枠14の中に挿入、配置した。溶解材構成体20と内側型枠14の間に生じた隙間に、銑鉄、その他の鉄系材を溶解材として挿入し、隙間を埋めるようにした。
低周波誘導電気炉10に電気を印加し、加熱を開始した。通電後、約4時間で一体化した溶解材構成体20のビレットの下部が赤熱し始め、約6時間後には溶解材構成体20の上部で赤熱状態となり、また内側型枠14全体が赤熱状態となった。
その後、溶解材構成体20の溶解が始まり、約9時間後には炉内全体が溶湯で満たされた。溶湯温度を通常操業の溶解温度よりも100℃高い1600℃まで昇温し、そのまま約4時間保持し、焼結工程を終了した。
A melting material construct 20 was manufactured for a low frequency induction electric furnace having a furnace inner diameter of 900 mm, a furnace depth of 1400 mm, and a capacity of 5 tons. A 150 mm square iron billet was used as the long material 21, and the billet was cut to 100 mm longer than 1400 mm which is the furnace depth, that is, 1500 mm. A plurality of long materials (billets) 21 each having a 150 mm square and a length of 1500 mm were combined to obtain a diameter close to a furnace inner diameter of 900 mm, and bundled and integrated to obtain a melted material structure 20. The melted material structure 20 was inserted and placed in the inner mold 14 of the low frequency induction electric furnace 10 being built. A pig iron or other iron-based material was inserted as a melting material into the gap formed between the melting material constituting body 20 and the inner mold 14 to fill the gap.
Electricity was applied to the low frequency induction electric furnace 10 to start heating. After the energization, the lower part of the billet of the molten material structure 20 integrated in about 4 hours begins to red heat, and after about 6 hours, the upper part of the molten material structure 20 becomes red hot, and the entire inner mold 14 is red hot. It became.
Thereafter, melting of the melting material constituting body 20 started, and after about 9 hours, the entire furnace was filled with the molten metal. The temperature of the molten metal was raised to 1600 ° C., which is 100 ° C. higher than the melting temperature of normal operation, and maintained for about 4 hours, and the sintering process was completed.

焼結工程終了後、耐火物ライニング層11の内表面からの焼結層厚さを測定したところ、20〜25mm厚の焼結層が耐火物ライニング層11の全域で均一に形成されていた。従来における同様な焼結処理条件では、耐火物ライニング層11の下部と上部での焼結のバラツキが多く、下部において20〜25mm厚の焼結層が形成されていても、上部においては3〜10mm厚程度の焼結層しか形成されておらず、しかもその焼結自体が不均一で焼結不良の部分が多く生じていた。
また本実施例では、溶解材構成体20が炉内で溶解されるまでに9時間を要した。一方、従来においては、焼結工程において炉内に挿入される溶解材(スターティングブロック)の隙間が多いため、焼結工程の途中で、溶解材を何度も追加補充してゆく必要があり、しかもそれら追加された溶解材が炉内下部から順次溶解されていくため、実際問題として熱効率が悪く、炉内全体が溶湯で満たされるまでに約12時間を要していた。
即ち、本発明の溶解材構成体20を用いる場合は、焼結工程の時間を大幅に短縮しながら、且つ良好で均一な焼結層を得ることができる。
勿論、本発明の溶解材構成体20を用いることで、誘導電気炉による通常操業時における溶解作業も従来に比べて大幅に短縮することができる。
After the sintering process, the thickness of the sintered layer from the inner surface of the refractory lining layer 11 was measured. As a result, a sintered layer having a thickness of 20 to 25 mm was uniformly formed throughout the refractory lining layer 11. Under similar sintering conditions in the prior art, there are many variations in sintering at the lower and upper portions of the refractory lining layer 11, and even though a 20 to 25 mm thick sintered layer is formed at the lower portion, 3 to 3 at the upper portion. Only a sintered layer having a thickness of about 10 mm was formed, and the sintering itself was non-uniform and many portions with poor sintering occurred.
Further, in this example, it took 9 hours for the melting material structure 20 to be melted in the furnace. On the other hand, in the past, there are many gaps between the melting material (starting block) inserted into the furnace in the sintering process, so it is necessary to replenish the melting material repeatedly during the sintering process. In addition, since the added melting materials are sequentially melted from the lower part of the furnace, the thermal efficiency is actually poor, and it takes about 12 hours for the entire furnace to be filled with the molten metal.
That is, when the melting material construct 20 of the present invention is used, a good and uniform sintered layer can be obtained while greatly shortening the time of the sintering process.
Of course, by using the melting material structure 20 of the present invention, the melting operation during the normal operation by the induction electric furnace can be greatly shortened as compared with the prior art.

本発明によれば、誘導電気炉の築炉時に行う炉の内壁を構成する耐火物ライニング材の焼結処理のための炉内溶解を速やかに且つ良好に行うことができる築炉方法として、またその良好な焼結処理を実現できる溶解材構成体として、産業上の利用性が高い。   According to the present invention, as a furnace building method capable of quickly and satisfactorily performing melting in a furnace for sintering treatment of a refractory lining material constituting an inner wall of a furnace performed at the time of building an induction electric furnace, As a melting material structure that can realize the good sintering process, it has high industrial applicability.

10 誘導電気炉
11 耐火物ライニング層
12 外側隔壁
13 誘導コイル
14 内側型枠
15 下側隔壁
20 溶解材構成体
21 長尺材
21a 長尺材
21b 長尺材
DESCRIPTION OF SYMBOLS 10 Induction electric furnace 11 Refractory lining layer 12 Outer partition wall 13 Induction coil 14 Inner formwork 15 Lower partition wall 20 Melting material structure 21 Long material 21a Long material 21b Long material

Claims (4)

誘導電気炉用の溶解材からなる構成体であって、使用する誘導電気炉の炉内底から炉内壁を構成する耐火物ライニング層の上端までの寸法を満たす長さ寸法に調整した鉄系の長尺材を用い、該長尺材の複数を炉内径に近似する外径に束ねて一体化してあることを特徴とする誘導電気炉用の溶解材構成体。   It is a structure made of a melting material for an induction electric furnace, and is an iron-based material adjusted to a length satisfying the dimension from the inner bottom of the induction electric furnace used to the upper end of the refractory lining layer constituting the inner wall of the furnace. A melting material structure for an induction furnace, wherein a long material is used, and a plurality of the long materials are bundled and integrated into an outer diameter that approximates the furnace inner diameter. 誘導電気炉の築炉において、炉内壁の耐火物ライニング層の焼結工程で用いる溶解材構成体であって、長尺材の長さ寸法は、該長尺材を束ねてなる溶解材構成体が溶解したときに減少する高さ分だけ、誘導電気炉内壁を構成する耐火物ライニング層の上端よりも突出する寸法となるように調整してあることを特徴とする請求項1に記載の誘導電気炉用の溶解材構成体。   In the construction of an induction electric furnace, a melting material structure used in the sintering process of the refractory lining layer on the inner wall of the furnace, the length of the long material is a melting material structure formed by bundling the long material 2. The induction according to claim 1, wherein the dimension is adjusted so as to protrude from the upper end of the refractory lining layer constituting the inner wall of the induction electric furnace by a height that decreases when the metal melts. Melting material composition for electric furnace. 長尺材は角柱状のビレットを用い、これを複数本、所定の長さに束ねた状態に一体化してあることを特徴とする請求項1又は2に記載の誘導電気炉用の溶解材構成体。   The melting material structure for an induction electric furnace according to claim 1 or 2, wherein the long material is a prismatic billet and is integrated in a state where a plurality of billets are bundled in a predetermined length. body. 請求項1〜3の何れかに記載の誘導電気炉用の溶解材構成体を用いた誘導電気炉の築炉方法であって、炉内壁を構成する耐火物ライニング層を未焼結状態で鉄系の内側型枠の背後に充填した後、内側型枠で囲まれた炉内空間に対して溶解材構成体を挿入することで、前記内側型枠で囲まれた炉内空間の全域を、上下方向に連続する長尺材の束で充填し、その後、電気を印加して、前記溶解材構成体と内側型枠の予熱から溶解までを行うことで、前記耐火物ライニング層の内表面の焼結を行うようにしたことを特徴とする誘導電気炉の築炉方法。   A method for constructing an induction electric furnace using the melting material structure for an induction electric furnace according to any one of claims 1 to 3, wherein the refractory lining layer constituting the furnace inner wall is iron in an unsintered state. After filling the back of the inner mold of the system, by inserting a melting material structure into the furnace space surrounded by the inner mold, the entire area of the furnace space surrounded by the inner mold, It is filled with a bundle of long materials that are continuous in the vertical direction, and then, by applying electricity and performing from the preheating to melting of the melting material component and the inner mold, the inner surface of the refractory lining layer A method for constructing an induction furnace characterized in that sintering is performed.
JP2016012229A 2016-01-26 2016-01-26 Melting material structure for induction electric furnace, and method for constructing induction electric furnace Expired - Fee Related JP6082138B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012229A JP6082138B1 (en) 2016-01-26 2016-01-26 Melting material structure for induction electric furnace, and method for constructing induction electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012229A JP6082138B1 (en) 2016-01-26 2016-01-26 Melting material structure for induction electric furnace, and method for constructing induction electric furnace

Publications (2)

Publication Number Publication Date
JP6082138B1 JP6082138B1 (en) 2017-02-15
JP2017133720A true JP2017133720A (en) 2017-08-03

Family

ID=58043333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012229A Expired - Fee Related JP6082138B1 (en) 2016-01-26 2016-01-26 Melting material structure for induction electric furnace, and method for constructing induction electric furnace

Country Status (1)

Country Link
JP (1) JP6082138B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900352A (en) * 2022-12-12 2023-04-04 常州创明磁性材料科技有限公司 Furnace building mold and furnace building method for medium-frequency induction furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216334B (en) * 2021-12-20 2023-10-31 广东韶钢松山股份有限公司 Medium frequency induction smelting furnace and baking method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728672A (en) * 1980-07-29 1982-02-16 Mitsubishi Heavy Ind Ltd Method for operating low frequency induction furnace
JPS6033237B2 (en) * 1980-09-30 1985-08-01 日信工業株式会社 Heat dissipation prevention cover for crucible furnace charging inlet
JPS6191486A (en) * 1984-10-09 1986-05-09 大同特殊鋼株式会社 Method of sintering lining of induction furnace
JPS61272587A (en) * 1985-05-28 1986-12-02 旭テック株式会社 Method of operating low-frequency induction furnace
JPH02259388A (en) * 1989-03-31 1990-10-22 Nippon Steel Corp Repair of low frequency induction electric furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900352A (en) * 2022-12-12 2023-04-04 常州创明磁性材料科技有限公司 Furnace building mold and furnace building method for medium-frequency induction furnace
CN115900352B (en) * 2022-12-12 2023-12-01 常州创明磁性材料科技有限公司 Medium frequency induction furnace building mold and furnace building method thereof

Also Published As

Publication number Publication date
JP6082138B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6082138B1 (en) Melting material structure for induction electric furnace, and method for constructing induction electric furnace
CN103994663A (en) Method for prolonging service life of furnace lining of medium-frequency induction furnace
JP2009274098A (en) Sand mold for low-pressure casting and low-pressure casting apparatus utilizing the same
JP2017065985A (en) Refractory, method for manufacturing refractory and melting furnace
JP2008284608A (en) Casting method
JP5852126B2 (en) How to increase the self-feeding capacity of large section cast blanks
CN204718378U (en) A kind of coreless induction furnace
CN106424690A (en) Casting ladle with insulation layer
JP5730738B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP5774438B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP5267315B2 (en) Tundish for continuous casting and continuous casting method
KR100759310B1 (en) Furnace with refractory of dual structure and method for forming refractory of furnace
CN104019666A (en) Immediate repairing method for intermediate frequency furnace body crucible
JP5491815B2 (en) Immersion pipe for refining equipment
JP6452037B2 (en) Casting method and casting apparatus
CN102748946A (en) Knotting mould of crucible furnace body and knotting demoulding method thereof
CN205732944U (en) A kind of continuous casting production magnesia carbon brick impact-resistant panels prefabricated component
KR200485687Y1 (en) Metal melting furnace and metal block for use in the metal melting furnace
JPH08219659A (en) Construction method for induction furnace lining refractory
JP2016540649A (en) Mold for casting molten steel
CN103157783B (en) A kind of building method of bottom of steel ladle
CN215746389U (en) Detachable hot metal bottle protecting against shock structure
JPS63224839A (en) Mold for casting steel kind roll for rolling mill
JP6725250B2 (en) Front powder design method and front powder manufacturing method
JP2016011792A (en) Melting and holding furnace of non-ferrous metal and method for replacement and repair of refractory of melting furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6082138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees