JP2017133043A - Center speed control method and device for continuous heat treatment line - Google Patents

Center speed control method and device for continuous heat treatment line Download PDF

Info

Publication number
JP2017133043A
JP2017133043A JP2016011308A JP2016011308A JP2017133043A JP 2017133043 A JP2017133043 A JP 2017133043A JP 2016011308 A JP2016011308 A JP 2016011308A JP 2016011308 A JP2016011308 A JP 2016011308A JP 2017133043 A JP2017133043 A JP 2017133043A
Authority
JP
Japan
Prior art keywords
heat treatment
speed
acceleration
central speed
deceleration rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016011308A
Other languages
Japanese (ja)
Other versions
JP6477519B2 (en
Inventor
卓郎 見坂
Takuro Kenzaka
卓郎 見坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016011308A priority Critical patent/JP6477519B2/en
Publication of JP2017133043A publication Critical patent/JP2017133043A/en
Application granted granted Critical
Publication of JP6477519B2 publication Critical patent/JP6477519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a center speed control method and device of a continuous heat treatment line capable of achieving maximum production efficiency with securing quality by preventing plate temperature from going out of tolerance even when acceleration and deceleration with large speed change is generated and setting necessary and sufficient acceleration and deceleration rate.SOLUTION: A limit fuel speed is calculated per steel band unit based on a facility performance control condition of a continuous heat treatment line and a quality securing limitation condition due to quality of a steel band, the limit fuel speed calculated per the steel band unit is connected in order to calculate center speed limit schedule with a horizontal axis as a steel band longitudinal position, acceleration and deceleration rate is corrected at a point where center speed is changed to a threshold or more in the center speed limit schedule, rescheduling for calculating the center speed limit schedule based on the corrected acceleration and deceleration is conducted by the center speed limit schedule is converged and center speed is controlled according to the finally calculated center speed limit schedule and the acceleration and deceleration rate.SELECTED DRAWING: Figure 2

Description

本発明は、連続熱処理ラインの中央速度を制御する連続熱処理ラインの中央速度制御方法および装置に関するものである。   The present invention relates to a method and an apparatus for controlling the central speed of a continuous heat treatment line for controlling the central speed of the continuous heat treatment line.

コイル状の金属帯(以下、鋼帯とも称する)を装入し、需要家オーダに応じて寸法、材質等の異なる製品を製造する連続熱処理ラインにおいて、製品が所定の材質を確保しつつ、連続熱処理ラインにおける金属帯搬送速度(以降、ライン速度、炉速、また単に速度とも称する)を最大にするために、これまでに板温や速度を制御する技術が開示されている。   In a continuous heat treatment line that inserts a coiled metal strip (hereinafter also referred to as a steel strip) and manufactures products with different dimensions and materials according to the customer's order, the product is continuously secured while maintaining a predetermined material. In order to maximize the metal band conveyance speed (hereinafter, also referred to as line speed, furnace speed, or simply speed) in the heat treatment line, techniques for controlling the plate temperature and speed have been disclosed so far.

例えば、特許文献1の「連続焼鈍ラインにおけるライン速度の加減速レート自動設定システム」には、オペレータによるライン速度変更操作がなされたときに、板温制御回路において操業条件変更処理指令に対応する加減速レートを所定周期で繰返し設定計算し、設定計算結果を加減速レート制御信号としてライン制御回路へ周期的に戻し、ライン制御回路で加減速レート制御信号に基づいて設定後のライン速度及び燃焼量を演算し、ライン速度変更指令をライン速度制御機構に、燃焼量変更指令を炉況変更制御機構に出力する方法が開示されている。   For example, the “Line speed acceleration / deceleration rate automatic setting system in the continuous annealing line” of Patent Document 1 describes that when the line speed change operation is performed by the operator, the plate temperature control circuit responds to an operation condition change processing command. The deceleration rate is repeatedly set and calculated at a predetermined cycle, and the setting calculation result is periodically returned to the line control circuit as an acceleration / deceleration rate control signal. The line control circuit sets the line speed and combustion amount based on the acceleration / deceleration rate control signal. And a method for outputting a line speed change command to the line speed control mechanism and a combustion amount change command to the furnace condition change control mechanism is disclosed.

また、特許文献2の「連続処理ラインの中央速度制御方法」には、品種、寸法の異なる金属帯がルーパ間を移送する際に、入側ルーパ容量から受ける入側ルーパ制約速度と、炉負荷能力、均熱時間、過時効処理時間等から受ける中央制約速度と、出側ルーパ容量から受ける出側ルーパ制約速度と、モータ容量等の設備上の最高速度や最小速度、及びオペレータの設定に係る上下限速度から受ける共通制約速度と、これらすべての速度を満たすための速度変更タイミングとを予測し、夫々の制約速度が付加される制約範囲に金属帯の先端が到達してから尾端が通過するまでの間、全制約速度を満足する最大速度に達するよう、中央速度の速度変更を行う方法が開示されている。なお、このように制約条件に基づいて決ってくる速度(制約条件を満たすように決まるライン速度)を、以下では制約速度と称する。   In addition, the “central speed control method for continuous processing line” in Patent Document 2 describes the input side looper restriction speed received from the input side looper capacity and the furnace load when metal strips of different varieties and dimensions are transferred between the loopers. The central restriction speed received from capacity, soaking time, overaging treatment time, etc., the outgoing looper restricted speed received from the outgoing looper capacity, the maximum and minimum speeds on the equipment such as motor capacity, and the operator setting Predict the common constrained speed received from the upper and lower speed limits and the speed change timing to satisfy all these speeds, and the tail end passes after the tip of the metal band reaches the constrained range where each constrained speed is added In the meantime, a method of changing the speed of the central speed so as to reach the maximum speed satisfying all the restricted speeds is disclosed. The speed determined based on the constraint condition (line speed determined so as to satisfy the constraint condition) is hereinafter referred to as the constraint speed.

さらに、特許文献3の「連続熱処理設備の速度制御方法、装置、及びコンピュータプログラム」には、各熱処理炉での設備能力、および、前記金属ストリップの板幅と板厚を含む製造仕様を含む制約条件に基づいて、各熱処理炉の数式モデルを用いて各熱処理炉の理論制約速度を算出し、予め用意した複数パターンの速度変更タイミング及び速度変更レートに基づいて速度スケジュールを作成し、それぞれの速度スケジュールについて熱処理設備に含まれる各熱処理炉を模擬したシミュレータにより得られた板温および目標板温並びに速度変更レートを要素として含む評価関数を使用して、速度変更タイミング及び速度変更レートを決定する方法が開示されている。   Further, the “speed control method, apparatus, and computer program for continuous heat treatment equipment” disclosed in Patent Document 3 includes restrictions on equipment capacity in each heat treatment furnace and manufacturing specifications including the width and thickness of the metal strip. Based on the conditions, calculate the theoretical constraint speed of each heat treatment furnace using the mathematical model of each heat treatment furnace, create a speed schedule based on the speed change timing and speed change rate of multiple patterns prepared in advance, and each speed Method for determining speed change timing and speed change rate using evaluation function including plate temperature, target plate temperature, and speed change rate obtained by simulator simulating each heat treatment furnace included in heat treatment equipment for schedule Is disclosed.

特開2003−226911号公報JP 2003-226911 A 特許第2910506号公報Japanese Patent No. 2910506 特許第4833614号公報Japanese Patent No. 4833614

しかしながら、上述の先行技術では以下の課題がある。   However, the above prior art has the following problems.

すなわち、特許文献1のライン速度変更操作がなされたときに、逐次加減速レートを変更する技術では、理論上の最大速度である制約速度スケジュールに基づいて予測計算を行うものではないため、板温実績に応じて逐次加減速レートを変更した結果、生産能率を阻害してしまう懸念がある。   That is, when the line speed changing operation of Patent Document 1 is performed, the technique of sequentially changing the acceleration / deceleration rate does not perform a predictive calculation based on the constrained speed schedule that is the theoretical maximum speed. As a result of sequentially changing the acceleration / deceleration rate according to the results, there is a concern that the production efficiency may be hindered.

また、特許文献2の全制約速度を満足する最大速度に達するように中央速度の速度変更を行う技術では、加減速レートの決定にライン速度と板厚を用いているが、速度変更を行う前の速度と速度変更後の速度との差の絶対値である速度変更幅は考慮されていない。そのため、同じ加減速レートでも速度変更幅が大きくなるケースにおいて、板温が目標値を外れてしまう懸念がある。   In the technique of changing the speed of the central speed so as to reach the maximum speed satisfying all the restricted speeds in Patent Document 2, the line speed and the plate thickness are used to determine the acceleration / deceleration rate. The speed change width, which is the absolute value of the difference between the speed and the speed after the speed change, is not considered. Therefore, there is a concern that the plate temperature may deviate from the target value in the case where the speed change width becomes large even at the same acceleration / deceleration rate.

さらに、特許文献3の設備能力やコイル諸元等からネック速度スケジュールを算出し、それを元に板温予測シミュレーションを実施することで速度変更タイミングおよび速度変更レートを算出する技術では、入側・出側の停止時間やルーパ消費量など、熱処理設備以外の動的な制約を考慮できていないため、想定していないパターンの操業が行われた際に、板温外れを防ぐための最適な加減速レート設定になっている保証が無く、板温が閾値を外れてしまう懸念がある。また、板温シミュレーションが実際の板温の挙動を十分に現せている保証も無い。   Furthermore, the technology of calculating the speed change timing and the speed change rate by calculating the neck speed schedule from the equipment capacity and coil specifications of Patent Document 3 and performing the plate temperature prediction simulation based on the schedule, Dynamic constraints other than heat treatment equipment such as outage time and looper consumption have not been taken into account, so the optimum addition to prevent the plate from coming off when an unexpected pattern of operation is performed. There is no guarantee that the deceleration rate is set, and there is a concern that the plate temperature may be out of the threshold. Further, there is no guarantee that the plate temperature simulation sufficiently shows the actual plate temperature behavior.

本発明は、このような従来の問題に鑑みてなされたものであり、速度変更幅の大きい加減速が発生した場合でも板温外れを防ぐとともに、必要十分な加減速レートを設定することで、品質を保証できる最大の生産能率を達成することができる、連続熱処理ラインの中央速度制御方法および装置を提供することを目的とする。   The present invention has been made in view of such a conventional problem, and even when acceleration / deceleration with a large speed change width occurs, it prevents the plate temperature from falling off, and by setting a necessary and sufficient acceleration / deceleration rate, It is an object of the present invention to provide a method and an apparatus for controlling the central speed of a continuous heat treatment line capable of achieving the maximum production efficiency capable of guaranteeing quality.

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 入出側にルーパーを持ち、これらのルーパー間に熱処理設備を配置した連続熱処理ラインにおいて、
連続熱処理ラインの設備能力制約条件および鋼帯の品質に起因する品質確保制約条件に基づき、鋼帯単位で制約炉速を算出し、
鋼帯単位で求めた制約炉速を順番に繋げて、横軸を鋼帯長手位置として中央速度制約スケジュールを求め、
該中央速度制約スケジュール内で中央速度を閾値以上に変更する点において加減速レートの修正を行い、
修正した加減速レートに基づいて中央速度制約スケジュールを求める再スケジューリングを、中央速度制約スケジュールが収束するまで行い、
最終的に求められた中央速度制約スケジュールと加減速レートに従って中央速度を制御することを特徴とする連続熱処理ラインの中央速度制御方法。
[1] In a continuous heat treatment line with loopers on the entry and exit sides and heat treatment equipment arranged between these loopers,
Based on the equipment capacity restriction conditions of the continuous heat treatment line and the quality assurance restrictions attributed to the quality of the steel strip, the restricted furnace speed is calculated for each steel strip,
By connecting the constrained furnace speeds obtained in units of steel strips in order, the central speed constraint schedule is obtained with the horizontal axis as the steel strip longitudinal position,
The acceleration / deceleration rate is corrected at the point where the central speed is changed to a threshold value or more in the central speed constraint schedule,
Rescheduling to find the central speed constraint schedule based on the corrected acceleration / deceleration rate until the central speed constraint schedule converges,
A central speed control method for a continuous heat treatment line, wherein the central speed is controlled according to a finally determined central speed restriction schedule and acceleration / deceleration rate.

[2] 上記[1]に記載の連続熱処理ラインの中央速度制御方法において、
加減速レートの修正にあたっては、
熱処理条件に応じた加減速レートを予め決めたテーブルからのテーブル値とする、あるいは熱処理設備の温度変更における時定数を利用した算出式を用いることを特徴とする連続熱処理ラインの中央速度制御方法。
[2] In the central speed control method of the continuous heat treatment line as described in [1] above,
In correcting the acceleration / deceleration rate,
A central speed control method for a continuous heat treatment line, wherein an acceleration / deceleration rate corresponding to a heat treatment condition is set to a table value from a predetermined table, or a calculation formula using a time constant in temperature change of heat treatment equipment is used.

[3] 入出側にルーパーを持ち、これらのルーパー間に熱処理設備を配置した連続熱処理ラインにおいて、
連続熱処理ラインの設備能力制約条件および鋼帯の品質に起因する品質確保制約条件に基づき、鋼帯単位で制約炉速を算出する手段と、
鋼帯単位で求めた制約炉速を順番に繋げて、横軸を鋼帯長手位置として中央速度制約スケジュールを求める手段と、
該中央速度制約スケジュール内で中央速度を閾値以上に変更する点において加減速レートの修正を行う手段と、
修正した加減速レートに基づいて中央速度制約スケジュールを求める再スケジューリングを、中央速度制約スケジュールが収束するまで行う手段と、
最終的に求められた中央速度制約スケジュールと加減速レートに従って中央速度を制御する手段とを具備することを特徴とする連続熱処理ラインの中央速度制御装置。
[3] In a continuous heat treatment line with loopers on the entry and exit sides and heat treatment equipment arranged between these loopers,
Based on the equipment capacity constraint condition of the continuous heat treatment line and the quality assurance constraint condition caused by the quality of the steel strip, means for calculating the restricted furnace speed in steel strip units,
Means to connect the constrained furnace speed obtained in units of steel strips in order, and to obtain a central speed constraint schedule with the horizontal axis as the steel strip longitudinal position,
Means for correcting the acceleration / deceleration rate at a point where the central speed is changed to a threshold value or more in the central speed constraint schedule;
Means for rescheduling the central speed constraint schedule based on the corrected acceleration / deceleration rate until the central speed constraint schedule converges;
A central speed control device for a continuous heat treatment line, comprising a central speed restriction schedule finally obtained and means for controlling the central speed in accordance with an acceleration / deceleration rate.

[4] 上記[3]に記載の連続熱処理ラインの中央速度制御装置において、
前記加減速レートの修正を行う手段では、
熱処理条件に応じた加減速レートを予め決めたテーブル、あるいは熱処理設備の温度変更における時定数を利用した算出式を具備することを特徴とする連続熱処理ラインの中央速度制御装置。
[4] In the central speed control device for the continuous heat treatment line according to [3] above,
In the means for correcting the acceleration / deceleration rate,
A central speed control device for a continuous heat treatment line, comprising a table in which acceleration / deceleration rates according to heat treatment conditions are determined in advance, or a calculation formula using a time constant in changing the temperature of heat treatment equipment.

本発明によれば、中央速度の速度変更幅に応じて加減速レートを動的に変化させることで、板温外れを防ぐとともに、必要十分な加減速レートを設定することで、品質を保証できる最大の生産能率を達成することができる。   According to the present invention, the acceleration / deceleration rate is dynamically changed according to the speed change width of the central speed, so that the temperature can be prevented from falling off and the quality can be guaranteed by setting the necessary and sufficient acceleration / deceleration rate. Maximum production efficiency can be achieved.

本発明を適用する連続熱処理ラインの設備列の一例を示す図である。It is a figure which shows an example of the equipment row | line of the continuous heat processing line to which this invention is applied. 本発明に係る連続熱処理ラインの中央速度制御方法における処理手順例を示す図である。It is a figure which shows the process sequence example in the central speed control method of the continuous heat processing line which concerns on this invention. 中央速度制約スケジュールの修正を説明する概念図である。It is a conceptual diagram explaining correction of a central speed restriction schedule. 加減速レートの修正前後の中央速度制約スケジュールを示す図である。It is a figure which shows the central speed restrictions schedule before and behind correction of an acceleration / deceleration rate.

図1は、本発明を適用する連続熱処理ラインの設備列の一例を示す図である。さらに、図2は、本発明に係る連続熱処理ラインの中央速度制御方法における処理手順例を示す図である。   FIG. 1 is a diagram showing an example of an equipment row of a continuous heat treatment line to which the present invention is applied. Furthermore, FIG. 2 is a figure which shows the example of a process sequence in the central speed control method of the continuous heat processing line which concerns on this invention.

図1中、1は払出しリール(ペイオフリール)、2は入側設備、3は入側ルーパー、4は熱処理設備、5は出側ルーパー、6は出側設備、7は巻取りリール(テンションリール)、および8はプロセスコンピュータをそれぞれ表す。   In FIG. 1, 1 is a payout reel (payoff reel), 2 is an entry side equipment, 3 is an entrance side looper, 4 is a heat treatment equipment, 5 is an exit side looper, 6 is an exit side equipment, 7 is a take-up reel (tension reel) ) And 8 represent process computers, respectively.

連続熱処理ラインの最先端に設けられた払出しリール1からコイル(以下、金属帯、鋼帯とも称する)が払出される。この時、板厚、板幅あるいは目標板温の異なる鋼帯を連続して熱処理するため、払出しリール1は複数設けられ(図示せず)、目標板温などの異なる鋼帯を払出し、入側設備2の一つである溶接機で溶接して一連の鋼帯として連続熱処理が行われる。   A coil (hereinafter also referred to as a metal strip or a steel strip) is delivered from a delivery reel 1 provided at the forefront of the continuous heat treatment line. At this time, in order to continuously heat-treat steel strips having different plate thicknesses, plate widths, or target plate temperatures, a plurality of pay-out reels 1 (not shown) are provided. A continuous heat treatment is performed as a series of steel strips by welding with a welding machine which is one of the facilities 2.

前記溶接機でコイルを停止した状態で溶接しなければならないため、入側ルーパー3では、少なくとも溶接に必要な時間の間に後段の熱処理設備4に送られる分の鋼帯を貯める。通常は、溶接に必要な時間の間にも熱処理設備4内のライン速度を一定に保つことが可能なように、溶接所要時間に見合う鋼帯量を後段に送り出している。   Since it is necessary to perform welding with the coil stopped by the welding machine, the entry-side looper 3 stores a steel strip that is sent to the subsequent heat treatment equipment 4 at least during the time required for welding. Usually, an amount of steel strip corresponding to the required welding time is sent to the subsequent stage so that the line speed in the heat treatment equipment 4 can be kept constant during the time required for welding.

熱処理設備4は、予熱帯、加熱帯、均熱帯、および冷却帯のいずれかのセクションを直列に組み合わせて配置した熱処理炉である。プロセスコンピュータ8は、入側ルーパー3から送り込まれた鋼帯が目標板温となるように、炉温制御およびライン速度制御している。   The heat treatment facility 4 is a heat treatment furnace in which any one of a pre-tropical zone, a heating zone, a soaking zone, and a cooling zone is combined in series. The process computer 8 performs furnace temperature control and line speed control so that the steel strip fed from the entry-side looper 3 reaches the target plate temperature.

熱処理設備4を出た鋼帯は、出側ルーパー5を経て、出側設備6の一つである切断機で切断され、巻取りリール7にてコイル状に巻取られる。図示していないが、払出しリール1と同様に、巻取りリール7も複数設置されている。   The steel strip exiting the heat treatment facility 4 passes through the exit side looper 5, is cut by a cutting machine that is one of the exit side facilities 6, and is wound in a coil shape by the take-up reel 7. Although not shown, a plurality of take-up reels 7 are provided in the same manner as the payout reel 1.

前記切断機では溶接した一連の鋼帯を切断するため、また巻取りリール7では巻取りが完了したリールから次のリールに交換するために、鋼帯の動きを停止しなければならない。出側ルーパー5では、少なくとも停止に必要な時間の間に熱処理設備4から送られてくる分の鋼帯を貯める。通常は、この停止時間の間にも熱処理設備4内のライン速度を一定に保つことが可能なように、停止時間に見合う鋼帯量を操業中に貯留している。   In order to cut a series of welded steel strips in the cutting machine, and in order to change from the reel that has been wound up to the next reel in the take-up reel 7, the movement of the steel strip has to be stopped. In the exit side looper 5, the steel strip for the amount sent from the heat treatment equipment 4 is stored at least during the time required for stopping. Usually, an amount of steel strip corresponding to the stop time is stored during operation so that the line speed in the heat treatment equipment 4 can be kept constant during the stop time.

一般的に、熱処理設備の温度変更における時定数は中央速度の速度変更における時定数と比べて大きく、炉温度が所望の温度になるまでの非定常期間が長くなる。特に、ラジアントチューブ炉などの時定数が比較的大きい熱処理設備においては両者の差が大きくなる。   Generally, the time constant in changing the temperature of the heat treatment equipment is larger than the time constant in changing the speed of the central speed, and the unsteady period until the furnace temperature reaches a desired temperature becomes longer. In particular, in a heat treatment facility having a relatively large time constant such as a radiant tube furnace, the difference between the two becomes large.

そして、速度変更幅が大きいほど、炉温度が所望の温度になるまでの非定常期間がより長くなり、加熱する鋼帯温度が目標から外れてしまい目標とする品質確保できなくなってしまう懸念が大きくなる。特に、板厚0.15mmといった薄物の鋼帯では、この傾向が顕著である。このような問題意識から、中央速度の変動幅を考慮した本発明に想到したものである。   And the larger the speed change width, the longer the unsteady period until the furnace temperature reaches the desired temperature, and there is a greater concern that the steel strip temperature to be heated will deviate from the target and the target quality cannot be secured. Become. This tendency is particularly remarkable in a thin steel strip having a thickness of 0.15 mm. From such a problem consciousness, the present invention has been conceived in consideration of the fluctuation range of the central speed.

図2にて本発明における処理手順を以下に説明していく。先ず、Step01では、鋼帯単位で制約炉速を算出する。ここでは、連続熱処理ラインの設備能力制約条件および熱処理温度・時間など鋼帯の品質に起因する品質確保制約条件に基づき、理論上可能な最大炉速である制約炉速を算出する。   The processing procedure in the present invention will be described below with reference to FIG. First, in Step 01, the restricted furnace speed is calculated for each steel strip. Here, the constrained furnace speed, which is the theoretically possible maximum furnace speed, is calculated based on the equipment capacity constraint conditions of the continuous heat treatment line and the quality assurance constraint conditions caused by the quality of the steel strip such as the heat treatment temperature and time.

ここで、設備能力に起因する制約条件とは、炉の加熱能力(炉燃焼負荷)、炉内のパス長、モータの制約に伴う最大速度、および入出側のルーパー容量の制約条件である。   Here, the constraint condition resulting from the facility capacity is a constraint condition of the furnace heating capacity (furnace combustion load), the path length in the furnace, the maximum speed associated with the motor limitation, and the looper capacity on the input / output side.

また、鋼帯に起因する制約条件とは、板厚、板幅、鋼帯の装入長さ、および分割長さといった鋼帯の寸法、ならびに鋼帯の成分・組織、さらに目標とする材質(成分・組織)を得るために必要な均熱温度や均熱時間などの製造条件の、制約条件である。   The constraints caused by the steel strip include steel strip dimensions such as plate thickness, strip width, steel strip insertion length, and split length, as well as the composition and structure of the steel strip, and the target material ( This is a constraint condition of manufacturing conditions such as soaking temperature and soaking time necessary for obtaining (component / structure).

制約炉速の算出としては、例えば、炉の加熱能力が最大でK(kg/h)、鋼帯の寸法が板厚t(m)、板幅w(m)、密度ρ(kg/m3)で、その他の制約はないものとすれば、理論上可能な最大炉速V(m/h)はK/(ρ×t×w)で与えられる。 For example, the maximum furnace heating capacity is K (kg / h), the steel strip dimensions are the plate thickness t (m), the plate width w (m), and the density ρ (kg / m 3). However, if there are no other restrictions, the theoretically possible maximum furnace speed V (m / h) is given by K / (ρ × t × w).

なお、実際には炉の加熱能力などの単一の制約から制約炉速が決定できる訳ではなく、熱処理炉の入側部分、中央部分である熱処理炉、熱処理炉の出側部分、それぞれにおける制約が存在し、それら全ての制約を満たす最大の炉速を選択するのが好ましい。   Actually, it is not possible to determine the restricted furnace speed from a single restriction such as the heating capacity of the furnace, but the restriction on the inlet part of the heat treatment furnace, the heat treatment furnace that is the central part, and the outlet part of the heat treatment furnace. It is preferable to select the maximum furnace speed that satisfies all these constraints.

各制約から規定される制約炉速としては、大きく4種類の制約炉速、すなわち、入側制約炉速、中央制約炉速、出側制約炉速、およびその他制約炉速がある。   There are roughly four types of restricted furnace speeds defined by each restriction, namely, an entry-side restricted furnace speed, a central restricted furnace speed, an outgoing-side restricted furnace speed, and other restricted furnace speeds.

先ず入側制約炉速としては、コイル切替時にルーパー短端(下限)とならないための制約炉速、コイル切替後にルーパーを回復するための制約炉速、および入側次コイルの準備を行う時間確保のための制約炉速などがある。   First, as the input side restricted furnace speed, the restricted furnace speed so as not to become the looper short end (lower limit) at the time of coil switching, the restricted furnace speed to recover the looper after coil switching, and the time required for preparing the inlet side next coil There are constraints such as furnace speed.

また中央制約炉速としては、炉の加熱能力による制約炉速、ヒートパターン変更での絞りを抑制するための制約炉速、および在炉時間確保のための制約炉速などがある。   Further, as the centrally constrained furnace speed, there are a constrained furnace speed due to the heating capacity of the furnace, a constrained furnace speed for suppressing throttling by changing the heat pattern, and a constrained furnace speed for securing the in-furnace time.

また出側制約炉速としては、コイル切替時にルーパー長端(上限)とならないための制約炉速、コイル切替後にルーパーを回復するための制約炉速、および次使用テンションリールの巻取準備を行う時間確保のための制約炉速などがある。   In addition, as the outlet side restricted furnace speed, the restricted furnace speed is set so that the looper does not reach the long end (upper limit) when the coil is switched, the restricted furnace speed is used to restore the looper after the coil is switched, and the next use tension reel is prepared for winding. There is a restricted furnace speed to secure time.

さらにその他制約炉速としては、オペレータの設定に係る上下限速度から受ける共通制約速度(たとえば、オペレータが強制的に設定できるコイル毎の制約炉速、オペレータが強制的に連続したコイル全体に設定できるステータス制約炉速など)、および後述する昇温・降温に間に合うための制約炉速などがある。   Further, as other restricted furnace speeds, common restricted speeds received from the upper and lower limit speeds set by the operator (for example, restricted furnace speeds for each coil that can be forcibly set by the operator, the operator can be set for the entire continuous coil. Status-restricted furnace speed, etc.), and restricted furnace speed in order to be in time for temperature increase / decrease described later.

以上の全ての制約炉速を満たす制約炉速を算出する。そして、連続熱処理ラインに装入される予定である、異なる複数の鋼帯について、それぞれの制約炉速を順に算出する。   The restricted furnace speed that satisfies all the above restricted furnace speeds is calculated. And each restricted furnace speed is calculated in order about a plurality of different steel strips which are going to be inserted into a continuous heat treatment line.

次に、Step02では、中央速度制約スケジュールの算出を行う。鋼帯単位で求めた制約炉速を順番に繋げて、横軸を鋼帯長手位置として中央速度制約スケジュールを求める。   Next, in Step 02, a central speed restriction schedule is calculated. Connect the constrained furnace speeds obtained in units of steel strips in order, and obtain a central speed constraint schedule with the horizontal axis as the steel strip longitudinal position.

そして、Step03では、再スケジュールが収束したかどうかの判断を行う。なお、この判断ステップは、中央速度制約スケジュールの再スケジュールを繰り返した場合にスケジュールに変更が見られなくなった場合の処理終了を判断するものである。前のStep02が最初に求めた中央速度制約スケジュールである場合は、無条件で次のStep04に進む。   In Step 03, it is determined whether the reschedule has converged. This determination step is to determine the end of the process when the schedule is no longer changed when the re-scheduling of the central speed restriction schedule is repeated. If the previous Step 02 is the central speed constraint schedule obtained first, the process proceeds to the next Step 04 unconditionally.

Step04では、加減速時点での速度変更幅>閾値 かどうかの判断を行う。中央速度を変更する点において、速度変更幅(速度変更量の絶対値)を算出し、この速度変更幅が予め決めた閾値を上回る場合には加減速レートの補正を行う。   In Step 04, it is determined whether or not the speed change width at acceleration / deceleration is greater than the threshold value. At the point of changing the central speed, a speed change width (absolute value of the speed change amount) is calculated, and if this speed change width exceeds a predetermined threshold value, the acceleration / deceleration rate is corrected.

図3は、中央速度制約スケジュールの修正を説明する概念図である。図3(a)は、Step01で求めた中央速度制約スケジュールを示し、図3(b)は、加減速時点の内で加減速レートを修正すべき時点または修正すべきでない時点を示している。   FIG. 3 is a conceptual diagram illustrating the correction of the central speed constraint schedule. FIG. 3 (a) shows the central speed restriction schedule obtained in Step 01, and FIG. 3 (b) shows the time point at which the acceleration / deceleration rate should be corrected or not corrected.

図3(a)の中央速度制約スケジュールでは、加速または減速を行うところ3箇所(加減速開始1〜3)あるが、加減速の速度変更幅が予め決めた閾値を超えた、鋼帯長手方向の2ヶ所が加減速レートの修正対象であることを示している(図3(b)参照)。   In the central speed restriction schedule of FIG. 3 (a), there are three places (acceleration / deceleration start 1 to 3) where acceleration or deceleration is performed, but the speed change width of acceleration / deceleration exceeds a predetermined threshold, the steel strip longitudinal direction These two points indicate that the acceleration / deceleration rate is to be corrected (see FIG. 3B).

Step04で閾値を超えなかった場合には、処理を終了し、Step04で閾値を超えた場合には、Step05で加減速レートを修正する。加減速レートの修正にあたっては、鋼帯のサイズや熱処理条件に応じた加減速レートを予め決めたテーブルからのテーブル値とする、あるいは熱処理設備の温度変更における時定数を利用した、例えば以下の(1)式による加減速レートとする。   If the threshold value is not exceeded in Step 04, the process is terminated. If the threshold value is exceeded in Step 04, the acceleration / deceleration rate is corrected in Step 05. In the correction of the acceleration / deceleration rate, the acceleration / deceleration rate corresponding to the size of the steel strip and the heat treatment condition is set as a table value from a predetermined table, or the time constant in the temperature change of the heat treatment equipment is used, for example, ( The acceleration / deceleration rate is calculated according to equation (1).

図4は、加減速レートの修正前後の中央速度制約スケジュールを示す図である。図4(a)は、加減速レートの修正前の中央速度制約スケジュールを示しており、鋼帯長手位置の中央の速度変動幅が小さい部分が修正の対象外であり、両側の加減速部分が修正対象である。そして、図4(b)の加減速レートの修正後の中央速度制約スケジュールでは、両側の修正対象での加減速レートが小さく修正されている。   FIG. 4 is a diagram showing a central speed restriction schedule before and after the acceleration / deceleration rate is corrected. FIG. 4 (a) shows a central speed restriction schedule before the acceleration / deceleration rate is corrected. The portion where the speed fluctuation width at the center of the steel strip longitudinal position is small is not subject to correction, and the acceleration / deceleration portions on both sides are not subject to correction. It is a correction target. In the central speed restriction schedule after the acceleration / deceleration rate correction in FIG. 4B, the acceleration / deceleration rates in the correction targets on both sides are corrected to be small.

図4(b)では加減速レートのみ変更するような例を示しているが、実際には加減速レートを変えることでルーパーの貯留・消費量や熱処理設備到達タイミングが変わるため、炉速スケジュール全てを見直すこと(再スケジューリング)が必要になる。そこで、Step05で加減速レートを修正した後には、Step06以降の再スケジューリングを行う。   Although FIG. 4B shows an example in which only the acceleration / deceleration rate is changed, in actuality, changing the acceleration / deceleration rate changes the storage / consumption amount of the looper and the arrival timing of the heat treatment equipment. Review (rescheduling) is required. Therefore, after correcting the acceleration / deceleration rate in Step 05, rescheduling after Step 06 is performed.

Step02中央速度制約スケジュールからの繰返し処理を、Step03でYesとなるか、Step04でNoとなるまで行い、最終的に求められた中央速度制約スケジュールと加減速レートに従った中央速度が決定される。この決定した中央速度に基づいて、熱処理設備の中央速度が制御される。   Step 02 Iterates from the central speed restriction schedule until it becomes Yes in Step 03 or No in Step 04, and the central speed according to the finally obtained central speed restriction schedule and acceleration / deceleration rate is determined. Based on the determined central speed, the central speed of the heat treatment equipment is controlled.

なお、Step03での再スケジュールの収束判断にあたっては、再スケジュール前後での加減速開始終了時点のそれぞれの違いが一定範囲に収まったことなどによって行うようにする。   Note that the rescheduling convergence determination in Step 03 is performed because the difference between the acceleration / deceleration start and end points before and after rescheduling is within a certain range.

1 払出しリール
2 入側設備
3 入側ルーパー
4 熱処理設備
5 出側ルーパー
6 出側設備
7 巻取りリール
8 プロセスコンピュータ
DESCRIPTION OF SYMBOLS 1 Dispensing reel 2 Entry side equipment 3 Entry side looper 4 Heat treatment equipment 5 Delivery side looper 6 Delivery side equipment 7 Take-up reel 8 Process computer

Claims (4)

入出側にルーパーを持ち、これらのルーパー間に熱処理設備を配置した連続熱処理ラインにおいて、
連続熱処理ラインの設備能力制約条件および鋼帯の品質に起因する品質確保制約条件に基づき、鋼帯単位で制約炉速を算出し、
鋼帯単位で求めた制約炉速を順番に繋げて、横軸を鋼帯長手位置として中央速度制約スケジュールを求め、
該中央速度制約スケジュール内で中央速度を閾値以上に変更する点において加減速レートの修正を行い、
修正した加減速レートに基づいて中央速度制約スケジュールを求める再スケジューリングを、中央速度制約スケジュールが収束するまで行い、
最終的に求められた中央速度制約スケジュールと加減速レートに従って中央速度を制御することを特徴とする連続熱処理ラインの中央速度制御方法。
In a continuous heat treatment line with loopers on the entry and exit sides and heat treatment equipment arranged between these loopers,
Based on the equipment capacity restriction conditions of the continuous heat treatment line and the quality assurance restrictions attributed to the quality of the steel strip, the restricted furnace speed is calculated for each steel strip,
By connecting the constrained furnace speeds obtained in units of steel strips in order, the central speed constraint schedule is obtained with the horizontal axis as the steel strip longitudinal position,
The acceleration / deceleration rate is corrected at the point where the central speed is changed to a threshold value or more in the central speed constraint schedule,
Rescheduling to find the central speed constraint schedule based on the corrected acceleration / deceleration rate until the central speed constraint schedule converges,
A central speed control method for a continuous heat treatment line, wherein the central speed is controlled according to a finally determined central speed restriction schedule and acceleration / deceleration rate.
請求項1に記載の連続熱処理ラインの中央速度制御方法において、
加減速レートの修正にあたっては、
熱処理条件に応じた加減速レートを予め決めたテーブルからのテーブル値とする、あるいは熱処理設備の温度変更における時定数を利用した算出式を用いることを特徴とする連続熱処理ラインの中央速度制御方法。
In the central speed control method of the continuous heat treatment line according to claim 1,
In correcting the acceleration / deceleration rate,
A central speed control method for a continuous heat treatment line, wherein an acceleration / deceleration rate corresponding to a heat treatment condition is set to a table value from a predetermined table, or a calculation formula using a time constant in temperature change of heat treatment equipment is used.
入出側にルーパーを持ち、これらのルーパー間に熱処理設備を配置した連続熱処理ラインにおいて、
連続熱処理ラインの設備能力制約条件および鋼帯の品質に起因する品質確保制約条件に基づき、鋼帯単位で制約炉速を算出する手段と、
鋼帯単位で求めた制約炉速を順番に繋げて、横軸を鋼帯長手位置として中央速度制約スケジュールを求める手段と、
該中央速度制約スケジュール内で中央速度を閾値以上に変更する点において加減速レートの修正を行う手段と、
修正した加減速レートに基づいて中央速度制約スケジュールを求める再スケジューリングを、中央速度制約スケジュールが収束するまで行う手段と、
最終的に求められた中央速度制約スケジュールと加減速レートに従って中央速度を制御する手段とを具備することを特徴とする連続熱処理ラインの中央速度制御装置。
In a continuous heat treatment line with loopers on the entry and exit sides and heat treatment equipment arranged between these loopers,
Based on the equipment capacity constraint condition of the continuous heat treatment line and the quality assurance constraint condition caused by the quality of the steel strip, means for calculating the restricted furnace speed in steel strip units,
Means to connect the constrained furnace speed obtained in units of steel strips in order, and to obtain a central speed constraint schedule with the horizontal axis as the steel strip longitudinal position
Means for correcting the acceleration / deceleration rate at a point where the central speed is changed to a threshold value or more in the central speed constraint schedule;
Means for rescheduling the central speed constraint schedule based on the corrected acceleration / deceleration rate until the central speed constraint schedule converges;
A central speed control device for a continuous heat treatment line, comprising a central speed restriction schedule finally obtained and means for controlling the central speed in accordance with an acceleration / deceleration rate.
請求項3に記載の連続熱処理ラインの中央速度制御装置において、
前記加減速レートの修正を行う手段では、
熱処理条件に応じた加減速レートを予め決めたテーブル、あるいは熱処理設備の温度変更における時定数を利用した算出式を具備することを特徴とする連続熱処理ラインの中央速度制御装置。
In the central speed control device of the continuous heat treatment line according to claim 3,
In the means for correcting the acceleration / deceleration rate,
A central speed control device for a continuous heat treatment line, comprising a table in which acceleration / deceleration rates according to heat treatment conditions are determined in advance, or a calculation formula using a time constant in changing the temperature of heat treatment equipment.
JP2016011308A 2016-01-25 2016-01-25 Central speed control method and apparatus for continuous heat treatment line Active JP6477519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011308A JP6477519B2 (en) 2016-01-25 2016-01-25 Central speed control method and apparatus for continuous heat treatment line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011308A JP6477519B2 (en) 2016-01-25 2016-01-25 Central speed control method and apparatus for continuous heat treatment line

Publications (2)

Publication Number Publication Date
JP2017133043A true JP2017133043A (en) 2017-08-03
JP6477519B2 JP6477519B2 (en) 2019-03-06

Family

ID=59503325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011308A Active JP6477519B2 (en) 2016-01-25 2016-01-25 Central speed control method and apparatus for continuous heat treatment line

Country Status (1)

Country Link
JP (1) JP6477519B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192322A (en) * 1987-09-30 1989-04-11 Nkk Corp Method for controlling sheet temperature in continuous annealing furnace
JPH02225626A (en) * 1989-02-23 1990-09-07 Sumitomo Metal Ind Ltd Method for controlling transfer speed of continuous annealing furnace
JPH05214448A (en) * 1992-01-31 1993-08-24 Kawasaki Steel Corp Plate temperature control method of continuous annealing furnace
WO2008099457A1 (en) * 2007-02-09 2008-08-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Process line control unit and method of controlling the line
JP2008231485A (en) * 2007-03-19 2008-10-02 Nippon Steel Corp Line-speed control system in continuous production line, method and computer program therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192322A (en) * 1987-09-30 1989-04-11 Nkk Corp Method for controlling sheet temperature in continuous annealing furnace
JPH02225626A (en) * 1989-02-23 1990-09-07 Sumitomo Metal Ind Ltd Method for controlling transfer speed of continuous annealing furnace
JPH05214448A (en) * 1992-01-31 1993-08-24 Kawasaki Steel Corp Plate temperature control method of continuous annealing furnace
WO2008099457A1 (en) * 2007-02-09 2008-08-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Process line control unit and method of controlling the line
JP2008231485A (en) * 2007-03-19 2008-10-02 Nippon Steel Corp Line-speed control system in continuous production line, method and computer program therefor

Also Published As

Publication number Publication date
JP6477519B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP2008238249A (en) Method and system for controlling rolled shape
US8459333B2 (en) Method for producing rolling stock rolled in a rolling train of a rolling mill, control and/or regulation device for rolling mill for producing rolled rolling stock, rolling mill for producing rolled rolling stock, machine readable program code and storage medium
JP2012183553A (en) Control device and control method
JP2007144483A (en) Method for controlling speed of continuous processing equipment
JP5910573B2 (en) Method and program for setting furnace speed and furnace temperature of continuous annealing line
JP6477519B2 (en) Central speed control method and apparatus for continuous heat treatment line
JP6075301B2 (en) COOLING CONTROL DEVICE AND COOLING CONTROL METHOD
JP5842552B2 (en) Control method and control device for continuous annealing line
JP5463743B2 (en) Slab hot rolling schedule determination method and slab hot rolling schedule determination device
JP2009056504A (en) Manufacturing method and manufacturing device of hot-rolled steel sheet
JP5130758B2 (en) Line speed control system, method, and computer program in continuous processing line
JP2013087319A (en) Method and apparatus for controlling direct-fired continuous heating furnace
JP2018158374A (en) Flying plate thickness changing method and flying plate thickness changing apparatus
JP2018153843A (en) Rolling method of steel plate and manufacturing method of steel plate
JPH07246407A (en) Designing method of continuous integrated process line
JP6319149B2 (en) Plate temperature control method and apparatus in continuous annealing furnace
JP2013221211A (en) Method for designing pid controller for furnace temperature control of continuous annealing furnace, pid controller, and method for controlling furnace temperature of continuous annealing furnace
JP4618154B2 (en) Strip centering method and apparatus
US20230249235A1 (en) Control device for cooling apparatus
JP2003205306A (en) Method for manufacturing steel plate
JP5283583B2 (en) Board processing line and board meandering correction method
JP2897134B2 (en) Furnace temperature control method for continuous annealing furnace
JP6816736B2 (en) How to adjust the extraction time and how to determine the extraction time
JP2584387B2 (en) Strip winding method for continuous strip processing line
JP2017170456A (en) Control method selection support system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250