JP2017131004A - Non-contact power reception device - Google Patents

Non-contact power reception device Download PDF

Info

Publication number
JP2017131004A
JP2017131004A JP2016007539A JP2016007539A JP2017131004A JP 2017131004 A JP2017131004 A JP 2017131004A JP 2016007539 A JP2016007539 A JP 2016007539A JP 2016007539 A JP2016007539 A JP 2016007539A JP 2017131004 A JP2017131004 A JP 2017131004A
Authority
JP
Japan
Prior art keywords
coil
power
power receiving
common mode
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007539A
Other languages
Japanese (ja)
Other versions
JP6652841B2 (en
Inventor
昌弘 金川
Masahiro Kanekawa
昌弘 金川
加藤 雅一
Masakazu Kato
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2016007539A priority Critical patent/JP6652841B2/en
Priority to US15/286,694 priority patent/US10135300B2/en
Publication of JP2017131004A publication Critical patent/JP2017131004A/en
Application granted granted Critical
Publication of JP6652841B2 publication Critical patent/JP6652841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power reception device for suppressing generation of harmonic noise.SOLUTION: A non-contact power reception device comprises: a power reception coil that in a non-contact manner, receives AC power supplied from a power transmission device; a resonant circuit that includes the power reception coil and a resonant capacitor and resonates with a frequency of the AC power; a diode full-wave rectification circuit that at a first and second input ends, receives input of AC power from the resonant circuit and outputs DC power between an output end and a reference potential end; a common mode filter that includes a first coil and second coil that are wound around a common magnetic material in parallel, in the same direction, and with the same number of turns, the first coil's one end being connected to the output end of the diode full-wave rectification circuit, the second coil's one end being connected to the reference potential end; a smoothing capacitor connected between the other end of the first coil of the common mode filter and the other end of the second coil; and a load connected in parallel to the smoothing capacitor.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、非接触で送電装置から電力を受電する非接触受電装置に関する。 Embodiments described herein relate generally to a contactless power receiving device that receives power from a power transmitting device in a contactless manner.

近年、非接触で電力を給電する非接触給電システムが普及してきている。非接触給電システムは、電磁誘導や磁界共鳴などの電磁結合を利用して、携帯端末やタブレット端末などの受電装置に非接触で電力を給電する。一般に非接触給電システムは、送電装置と受電装置から構成され、送電装置では電力を給電するための送電回路及び送電コイルを備える。一方、受電装置では、非接触で送電装置から電力を受電するための受電コイルと、受電した電力を受電装置自機の駆動用に利用する電圧変換回路や、自機に搭載した2次電池を充電する充電回路などを備えている。 In recent years, contactless power supply systems that supply power without contact have become widespread. The non-contact power supply system supplies power to a power receiving device such as a mobile terminal or a tablet terminal in a non-contact manner using electromagnetic coupling such as electromagnetic induction or magnetic field resonance. In general, a non-contact power supply system includes a power transmission device and a power reception device, and the power transmission device includes a power transmission circuit and a power transmission coil for supplying power. On the other hand, the power receiving device includes a power receiving coil for receiving power from the power transmitting device in a non-contact manner, a voltage conversion circuit that uses the received power for driving the power receiving device itself, and a secondary battery mounted on the own device. A charging circuit for charging is provided.

非接触給電装システムは、送電装置と受電装置が1〜2cm以上離れても受電装置に給電できるようにするため、送電コイル及び受電コイルのQ値を高くする必要がある。このため、送電装置が出力する交流電力の周波数として、コイルのQ値を高くすることが可能な数MHz以上の周波数(例えば、6.78MHzや13.56MHzなど)が利用される。コイルのQ値を高くすると、送電コイルと受電コイルの間の距離が離れても、効率よく給電できる特性が得られる。   In the non-contact power supply system, it is necessary to increase the Q values of the power transmission coil and the power reception coil in order to supply power to the power reception device even if the power transmission device and the power reception device are separated by 1 to 2 cm or more. For this reason, a frequency (for example, 6.78 MHz or 13.56 MHz) of several MHz or higher that can increase the Q value of the coil is used as the frequency of the AC power output from the power transmission device. When the Q value of the coil is increased, even if the distance between the power transmission coil and the power reception coil is increased, a characteristic capable of supplying power efficiently can be obtained.

また受電装置は、受電コイルと共振コンデンサでLC共振回路を構成し、LC共振回路のインピーダンスを低くなるように設計することで、送電装置が出力する交流電力を効率よく受け取ることができる。受電装置に給電した交流電力は、整流回路により直流電力に変換する。整流回路によって直流化した電力は、電圧変換回路により自機の駆動に必要な電圧に変換して利用する。   Moreover, the power receiving device can efficiently receive the AC power output from the power transmitting device by configuring the LC resonant circuit with the power receiving coil and the resonant capacitor and designing the impedance of the LC resonant circuit to be low. The AC power supplied to the power receiving device is converted into DC power by the rectifier circuit. The electric power converted into a direct current by the rectifier circuit is converted into a voltage necessary for driving the own machine by the voltage conversion circuit and used.

ところで、整流回路としては、一般的にダイオード全波整流回路が用いられるが、ダイオード全波整流回路は、ダイオードに接合容量Cjが含まれるために高調波ノイズが発生する。即ち、ダイオードに逆電圧が印加されたときの等価回路は、0.数Ωの抵抗と数十pFの接合容量Cj(コンデンサ)が直列接続された構成として模擬できる。   Incidentally, a diode full-wave rectifier circuit is generally used as the rectifier circuit, but the diode full-wave rectifier circuit generates harmonic noise because the diode includes the junction capacitance Cj. That is, the equivalent circuit when a reverse voltage is applied to the diode is 0. It can be simulated as a configuration in which a resistance of several Ω and a junction capacitance Cj (capacitor) of several tens of pF are connected in series.

このため、ダイオードに順方向電圧が印加されている状態から逆方向電圧が印加される切り替わり目の直後において、ダイオードの接合容量Cjが急速に充電されて、短時間に大電流が流れて高調波ノイズを発生してしまう。発生した高調波ノイズは受電装置の受電コイルなどから放射される。   For this reason, immediately after the switching in which the reverse voltage is applied from the state in which the forward voltage is applied to the diode, the junction capacitance Cj of the diode is rapidly charged, and a large current flows in a short time to generate harmonics. Noise will be generated. The generated harmonic noise is radiated from a power receiving coil of the power receiving device.

また送電コイルと受電コイルとが数cm以上離れても受電装置に電力を給電できるようにした非接触給電システムにおいては、受電コイルが送電コイルと密に結合しないため、受電コイルから高調波ノイズを含む電磁波が空間に放射されやすくなる。したがって、受電コイルから出力する高調波ノイズを含む電磁波を低減するためには、ダイオード全波整流回路から発生する高調波ノイズを低減することが必要となる。   In a non-contact power feeding system that can feed power to the power receiving device even if the power transmitting coil and the power receiving coil are separated by several centimeters or more, since the power receiving coil is not tightly coupled to the power transmitting coil, harmonic noise is generated from the power receiving coil. The contained electromagnetic wave is easily radiated into the space. Therefore, in order to reduce the electromagnetic wave including the harmonic noise output from the power receiving coil, it is necessary to reduce the harmonic noise generated from the diode full-wave rectifier circuit.

受電装置の高調波ノイズ対策の一例として、特許文献1のようなワイヤレス電力受電機が知られている。特許文献1の受電機は、ダイオード全波整流回路と平滑コンデンサとの間にバンドストップフィルタ回路を設け、整流器からの放射を電気的に絶縁するようにしている。   As an example of measures against harmonic noise of a power receiving device, a wireless power receiver as disclosed in Patent Document 1 is known. In the power receiving apparatus of Patent Document 1, a band stop filter circuit is provided between a diode full-wave rectifier circuit and a smoothing capacitor so as to electrically insulate radiation from the rectifier.

しかしながら、バンドストップフィルタ回路のコンデンサが、整流器のダイオードの接合容量Cjと同様の働きをし、高調波ノイズを低減することは困難である。また、バンドストップフィルタ回路のコンデンサを極力小さくしてインダクタのみで構成する場合は、ノイズ低減に大きなインダクタが必要となる。このため、負荷回路に十分な電流を供給できなくなり、結果として受電装置の出力電力が低下してしまう。   However, it is difficult for the capacitor of the band stop filter circuit to function in the same manner as the junction capacitance Cj of the diode of the rectifier and reduce the harmonic noise. In addition, when the capacitor of the band stop filter circuit is made as small as possible and configured with only an inductor, a large inductor is required for noise reduction. For this reason, it is impossible to supply a sufficient current to the load circuit, and as a result, the output power of the power receiving apparatus decreases.

特表2014−530592号公報Special table 2014-53092 gazette

発明が解決しようとする課題は、高調波ノイズの発生を抑制する非接触受電装置を提供することにある。 The problem to be solved by the invention is to provide a non-contact power receiving apparatus that suppresses the generation of harmonic noise.

実施形態に係る非接触受電装置は、送電装置から供給される交流電力を非接触で受電する受電コイルと、前記受電コイルと共振用コンデンサを含み、前記交流電力の周波数に共振する共振回路と、前記共振回路からの交流電力を第1、第2の入力端に入力し、出力端と基準電位端間に直流電力を出力するダイオード全波整流回路と、共通の磁性体に並列に同一方向に同じ巻回数だけ巻かれた第1のコイル及び第2のコイルを含み、前記ダイオード全波整流回路の出力端に前記第1のコイルの一端を接続し、前記基準電位端に前記第2のコイルの一端を接続したコモンモードフィルタと、前記コモンモードフィルタの第1のコイルの他端と、前記第2のコイルの他端間に接続した平滑コンデンサと、前記平滑コンデンサに並列に接続した負荷と、を備える。   A contactless power receiving device according to the embodiment includes a power receiving coil that receives AC power supplied from a power transmitting device in a contactless manner, a power receiving coil and a resonance capacitor, and a resonance circuit that resonates at a frequency of the AC power, A full-wave diode rectifier circuit that inputs AC power from the resonance circuit to the first and second input terminals and outputs DC power between the output terminal and the reference potential terminal, and a common magnetic material in parallel in the same direction Including a first coil and a second coil wound by the same number of turns, one end of the first coil being connected to an output end of the diode full-wave rectifier circuit, and the second coil being connected to the reference potential end A common mode filter having one end connected thereto, the other end of the first coil of the common mode filter, a smoothing capacitor connected between the other ends of the second coil, and a load connected in parallel to the smoothing capacitor Equipped with a.

一実施形態に係る非接触給電システムの構成を示すブロック図。The block diagram which shows the structure of the non-contact electric power feeding system which concerns on one Embodiment. 一実施形態に係る非接触受電装置の構成を示す回路図。The circuit diagram which shows the structure of the non-contact power receiving apparatus which concerns on one Embodiment. 一実施形態の非接触受電装置に使用するコモンモードフィルタを概略的に示す構成図。The block diagram which shows schematically the common mode filter used for the non-contact power receiving apparatus of one Embodiment. 一実施形態の非接触受電装置に使用するコモンモードフィルタのインピーダンス・周波数特性を示す特性図。The characteristic view which shows the impedance and frequency characteristic of the common mode filter used for the non-contact electric power receiving apparatus of one Embodiment. 一実施形態の非接触受電装置に使用するダイオード全波整流回路の導通電流のシミュレーション波形図。The simulation waveform figure of the conduction current of the diode full wave rectifier circuit used for the non-contact power receiving device of one embodiment. 従来の非接触受電装置におけるダイオード全波整流回路のダイオードの導通電流のシミュレーション波形図。The simulation waveform figure of the conduction current of the diode of the diode full wave rectifier circuit in the conventional non-contact power receiving device. 第2の実施形態に係る非接触受電装置の構成を説明する回路図。The circuit diagram explaining the structure of the non-contact power receiving apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る非接触受電装置の構成を説明する回路図。The circuit diagram explaining the structure of the non-contact power receiving apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る非接触受電装置の他の構成を説明する回路図。The circuit diagram explaining other composition of the non-contact power receiving device concerning a 3rd embodiment. 第3の実施形態に係る非接触受電装置の別の構成を説明する回路図。The circuit diagram explaining another structure of the non-contact power receiving apparatus which concerns on 3rd Embodiment.

以下、発明を実施するための実施形態について、図面を参照して説明する。尚、各図において同一箇所については同一の符号を付す。   Embodiments for carrying out the invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected about the same location.

(第1の実施形態)
図1は、一実施形態に係る非接触受電装置を含む給電システム100を示すブロック図である。給電システム100は、電力を給電する送電装置10と、給電された電力を非接触で受電する受電装置20とを備えている。
(First embodiment)
FIG. 1 is a block diagram illustrating a power feeding system 100 including a contactless power receiving device according to an embodiment. The power supply system 100 includes a power transmission device 10 that supplies power and a power reception device 20 that receives the supplied power in a contactless manner.

送電装置10は、送電コイル11を有し、受電装置20は受電コイル21を有している。送電装置10から出力された電力は、送電コイル11と受電コイル21との間の電磁誘導または磁界共鳴等の電磁結合を利用して、受電装置20に給電される。   The power transmission device 10 includes a power transmission coil 11, and the power reception device 20 includes a power reception coil 21. The power output from the power transmission device 10 is fed to the power reception device 20 by using electromagnetic coupling such as electromagnetic induction or magnetic field resonance between the power transmission coil 11 and the power reception coil 21.

送電装置10には、ACアダプタ等の直流電源12から直流電力が供給される。送電装置10は、高周波電力を発生する送電回路13と、送電コイル11と、電圧変換回路14と、発振回路15及び制御回路16を備えている。   The power transmission device 10 is supplied with DC power from a DC power source 12 such as an AC adapter. The power transmission device 10 includes a power transmission circuit 13 that generates high-frequency power, a power transmission coil 11, a voltage conversion circuit 14, an oscillation circuit 15, and a control circuit 16.

送電回路13は、直流を高周波の交流に変換して出力するもので、E級増幅器、または、ハーフブリッジ方式や、フルブリッジ方式のスイッチング回路で構成される。送電回路13は、ゼロ電圧スイッチング(ZVS)または、ゼロ電流スイッチング(ZCS)を行い、ソフトスイッチングを行う。   The power transmission circuit 13 converts a direct current into a high-frequency alternating current and outputs the alternating current. The power transmission circuit 13 includes a class E amplifier, or a half-bridge or full-bridge switching circuit. The power transmission circuit 13 performs soft switching by performing zero voltage switching (ZVS) or zero current switching (ZCS).

ソフトスイッチングは、共振現象を利用し、電圧または電流がゼロになるタイミングでスイッチング素子のオン/オフの切り替えを行う。ゼロ電圧スイッチング(ZVS)または、ゼロ電流スイッチング(ZCS)により、スイッチング損失を低減することができる。また、電圧波形または電流波形の変化が緩やかであることから、スイッチングノイズや伝導ノイズ、放射ノイズを低減可能である。   Soft switching uses a resonance phenomenon and switches the switching element on and off at the timing when the voltage or current becomes zero. Switching loss can be reduced by zero voltage switching (ZVS) or zero current switching (ZCS). In addition, since the voltage waveform or current waveform changes slowly, switching noise, conduction noise, and radiation noise can be reduced.

電圧変換回路14は、直流電源12から入力された電圧を、発振回路15や制御回路16が動作可能な適正な電圧に変換する。例えば、直流電源12の出力電圧24Vを、電圧変換回路14で5Vもしくは3.3Vなどの電圧に変換する。   The voltage conversion circuit 14 converts the voltage input from the DC power supply 12 into an appropriate voltage at which the oscillation circuit 15 and the control circuit 16 can operate. For example, the output voltage 24V of the DC power supply 12 is converted into a voltage such as 5V or 3.3V by the voltage conversion circuit 14.

発振回路15は、送電回路13のスイッチング素子を制御する駆動信号を生成する。発振回路15の発振周波数は、送電コイル11及びコンデンサで構成される共振回路の自己共振周波数と同一、或いはほぼ同一の周波数となっている。発振回路15の発振周波数、即ち、送電回路13のスイッチング周波数は、送電コイル11と受電コイル21との距離を1〜2cm以上確保するという点から、数MHz〜十数MHzのスイッチング周波数を使用する。具体的には、6.78MHzや13.56MHzの周波数を使用する。   The oscillation circuit 15 generates a drive signal that controls the switching element of the power transmission circuit 13. The oscillation frequency of the oscillation circuit 15 is the same as or substantially the same as the self-resonance frequency of the resonance circuit composed of the power transmission coil 11 and the capacitor. As the oscillation frequency of the oscillation circuit 15, that is, the switching frequency of the power transmission circuit 13, a switching frequency of several MHz to several tens of MHz is used from the viewpoint of securing a distance of 1 to 2 cm or more between the power transmission coil 11 and the power reception coil 21. . Specifically, a frequency of 6.78 MHz or 13.56 MHz is used.

尚、送電コイル11と受電コイル21との距離が数mm程度と近ければ、数十kHz〜数百kHz程度の周波数に対しても本実施形態の構成を適用することは可能である。ただし、送電回路13のスイッチング回路に使用するコイルのインダクタンス値やコンデンサの値は周波数に合わせて調節が必要である。   If the distance between the power transmission coil 11 and the power reception coil 21 is as short as several millimeters, the configuration of this embodiment can be applied to frequencies of several tens of kHz to several hundreds of kHz. However, the inductance value of the coil and the value of the capacitor used in the switching circuit of the power transmission circuit 13 need to be adjusted according to the frequency.

制御回路16は、CPUを含むマイクロコンピュータである。制御回路16は、送電回路13を必要に応じて動作させ、または停止させる駆動制御や、受電装置20との間の通信制御などを行う。   The control circuit 16 is a microcomputer including a CPU. The control circuit 16 performs drive control for operating or stopping the power transmission circuit 13 as necessary, communication control with the power receiving device 20, and the like.

受電装置20は、受電コイル21とコンデンサ22、23によって構成される共振回路と、ダイオード全波整流回路24と、コモンモードフィルタ25と、平滑コンデンサ26と、電圧変換回路27と、負荷回路28と、制御回路29とを備えている。   The power receiving device 20 includes a resonance circuit including a power receiving coil 21 and capacitors 22, 23, a diode full-wave rectifier circuit 24, a common mode filter 25, a smoothing capacitor 26, a voltage conversion circuit 27, and a load circuit 28. And a control circuit 29.

受電コイル21とコンデンサ22、23による共振回路から送られる交流電圧は、ダイオード全波整流回路24によって直流電圧に変換され、その後、直流電圧はコモンモードフィルタ25と平滑コンデンサ26で平滑される。電圧変換回路27は、コモンモードフィルタ25と平滑コンデンサ26で平滑された直流電圧を、制御回路29と負荷回路28が動作可能な適正な電圧に変換する。例えば、平滑された40V程度の直流電圧を、電圧変換回路27で24Vに変換して負荷回路28に供給し、また5Vに変換して制御回路29に供給する。   The AC voltage sent from the resonance circuit including the power receiving coil 21 and the capacitors 22 and 23 is converted into a DC voltage by the diode full-wave rectifier circuit 24, and then the DC voltage is smoothed by the common mode filter 25 and the smoothing capacitor 26. The voltage conversion circuit 27 converts the DC voltage smoothed by the common mode filter 25 and the smoothing capacitor 26 into an appropriate voltage at which the control circuit 29 and the load circuit 28 can operate. For example, a smoothed DC voltage of about 40 V is converted into 24 V by the voltage conversion circuit 27 and supplied to the load circuit 28, and converted to 5 V and supplied to the control circuit 29.

負荷回路28は、携帯端末やタブレット端末等の電子機器の回路であり、受電装置20で受電した電力は、電子機器の動作や、電子機器が内蔵するバッテリーの充電等に利用される。制御回路29は、CPUを含むマイクロコンピュータで成り、受電電力を負荷回路28へ必要に応じて供給または停止させる駆動制御や、送電装置10との間の通信制御などを行う。   The load circuit 28 is a circuit of an electronic device such as a portable terminal or a tablet terminal, and the power received by the power receiving device 20 is used for operations of the electronic device, charging of a battery built in the electronic device, and the like. The control circuit 29 is composed of a microcomputer including a CPU, and performs drive control for supplying or stopping received power to the load circuit 28 as necessary, communication control with the power transmission device 10, and the like.

図2は、非接触受電装置20の具体的な構成を示す回路図である。図2において、受電装置20は、受電コイル21とコンデンサ22、23によって構成される共振回路50と、共振回路50の出力側にあってコンデンサ23の両端に接続されたダイオード全波整流回路24を含む。   FIG. 2 is a circuit diagram showing a specific configuration of the non-contact power receiving device 20. In FIG. 2, the power receiving device 20 includes a resonant circuit 50 including a power receiving coil 21 and capacitors 22 and 23, and a diode full-wave rectifier circuit 24 connected to both ends of the capacitor 23 on the output side of the resonant circuit 50. Including.

ダイオード全波整流回路24は、ダイオード41〜44で構成し、ダイオード全波整流回路24の一方の入力端241にダイオード41のアノードとダイオード43のカソードを接続し、他方の入力端242にダイオード42のアノードとダイオード44のカソードを接続している。ダイオード全波整流回路24の出力端243は、コモンモードフィルタ25の一次側のコイル31を介して平滑コンデンサ26の一端に接続し、ダイオード全波整流回路24の基準電位端(アース端)244は、コモンモードフィルタ25の二次側のコイル32を介して平滑コンデンサ26の他端に接続している。平滑コンデンサ26の両端には並列に負荷60を接続している。負荷60は、図1に示す電圧変換回路27と負荷回路28と制御回路29を含む。   The diode full-wave rectifier circuit 24 includes diodes 41 to 44, and the anode of the diode 41 and the cathode of the diode 43 are connected to one input terminal 241 of the diode full-wave rectifier circuit 24, and the diode 42 is connected to the other input terminal 242. And the cathode of the diode 44 are connected. The output terminal 243 of the diode full-wave rectifier circuit 24 is connected to one end of the smoothing capacitor 26 via the primary coil 31 of the common mode filter 25, and the reference potential terminal (ground terminal) 244 of the diode full-wave rectifier circuit 24 is The other end of the smoothing capacitor 26 is connected via a secondary coil 32 of the common mode filter 25. A load 60 is connected in parallel across the smoothing capacitor 26. The load 60 includes the voltage conversion circuit 27, the load circuit 28, and the control circuit 29 shown in FIG.

コモンモードフィルタ25は、図3(A),(B)に概略的に示すように、分割巻きとバイファイラ巻きがある。図3(A),(B)では、左側にコイルの巻き方を示し、右側に等価回路を示し、各コイルの端子を1〜4の番号で示している。   As shown schematically in FIGS. 3A and 3B, the common mode filter 25 has divided winding and bifilar winding. 3A and 3B, the winding method of the coil is shown on the left side, the equivalent circuit is shown on the right side, and the terminals of each coil are shown by numbers 1 to 4.

分割巻きは、図3(A)に示すようにコア33の外周に2本の線を別々に巻いて、一次側のコイル31と二次側のコイル32を同じ巻回数だけ巻いたものである。バイファイラ巻きは、図3(B)に示すようにコア33の外周に2本の平行線をそのまま巻いて、一次側のコイル31と二次側のコイル32を同じ巻回数だけ巻いたものである。   As shown in FIG. 3A, the split winding is obtained by winding two wires around the core 33 separately, and winding the primary side coil 31 and the secondary side coil 32 by the same number of turns. . In the bifilar winding, as shown in FIG. 3B, two parallel lines are wound as they are around the outer periphery of the core 33, and the primary coil 31 and the secondary coil 32 are wound the same number of times. .

コモンモードフィルタ25は、図3(A)に例示するように、コイル31とコイル32に互いに逆方向に電流(実線で示す)が流れるディファレンシャルモードと、コイル31とコイル32に同じ方向に電流(点線で示す)が流れるコモンモードで動作する。   As illustrated in FIG. 3A, the common mode filter 25 includes a differential mode in which currents (represented by solid lines) flow in opposite directions in the coil 31 and the coil 32, and a current (in the same direction in the coil 31 and the coil 32). It operates in the common mode in which the flow (shown by the dotted line) flows.

受電コイル21とコンデンサ22、23によって構成される共振回路50の自己共振周波数は、送電装置10の送電コイル11から放射する高周波電力の周波数と同一、或いはほぼ同一になっている。即ち、自己共振周波数と高周波電力の周波数は、例えば6.78MHzである。そして、送電装置10の送電コイル11と受電装置20の受電コイル21とが互いに電磁結合することで、送電側から非接触で受電側に効率よく電力が伝送される。   The self-resonant frequency of the resonance circuit 50 configured by the power receiving coil 21 and the capacitors 22 and 23 is the same as or substantially the same as the frequency of the high frequency power radiated from the power transmission coil 11 of the power transmission device 10. That is, the self-resonant frequency and the frequency of the high-frequency power are, for example, 6.78 MHz. Then, the power transmission coil 11 of the power transmission device 10 and the power reception coil 21 of the power reception device 20 are electromagnetically coupled to each other, so that power is efficiently transmitted from the power transmission side to the power reception side in a non-contact manner.

図2において受電コイル21で受電した交流電力の正のサイクルでは、受電コイル21とコンデンサ22、23が共振して電流が流れ、ダイオード全波整流回路24の入力端241からダイオード41、コモンモードフィルタ25の1次側のコイル31に電流が流れ、平滑コンデンサ26及び負荷60に流れ込み、コモンモードフィルタ25の2次側のコイル32及びダイオード44へ流れた後、受電コイル21およびコンデンサ23に戻る。   In the positive cycle of the AC power received by the power receiving coil 21 in FIG. 2, the power receiving coil 21 and the capacitors 22, 23 resonate and current flows, and the diode 41, common mode filter from the input terminal 241 of the diode full-wave rectifier circuit 24. The current flows through the coil 31 on the primary side of 25, flows into the smoothing capacitor 26 and the load 60, flows to the coil 32 and the diode 44 on the secondary side of the common mode filter 25, and then returns to the power receiving coil 21 and the capacitor 23.

受電コイル21で給電した交流電力の負のサイクルでは、受電コイル21とコンデンサ22、23が共振して電流が流れ、ダイオード全波整流回路24の入力端242からダイオード42、コモンモードフィルタ25の1次側のコイル31に電流が流れ、平滑コンデンサ26及び負荷60に流れ込み、コモンモードフィルタ25の2次側のコイル32及びダイオード43を流れた後、コンデンサ22、23および受電コイル21に戻る。   In the negative cycle of the AC power fed by the power receiving coil 21, the power receiving coil 21 and the capacitors 22, 23 resonate and current flows, and the diode 42 and the common mode filter 25 1 are input from the input terminal 242 of the diode full-wave rectifier circuit 24. A current flows through the coil 31 on the secondary side, flows into the smoothing capacitor 26 and the load 60, flows through the coil 32 and the diode 43 on the secondary side of the common mode filter 25, and then returns to the capacitors 22 and 23 and the power receiving coil 21.

図3で示すように、コモンモードフィルタ25は、一次側のコイル31と二次側のコイル32に流れる電流の向きが逆になるディファレンシャルモードのときは、特定の周波数でインピーダンスが低く、電流が流れやすい。また負荷60に接続される配線(電源ラインやアースライン)に高調波ノイズが伝搬して、信号ラインにコモンモードノイズとして回り込むことがあり、一次側のコイル31と二次側のコイル32に同じ方向に電流が流れることがある。しかし、コモンモードでは、コモンモードフィルタ25のインピーダンスが十分に高いため、コモンモードノイズを抑制することができる。   As shown in FIG. 3, the common mode filter 25 has a low impedance at a specific frequency and has a low current in the differential mode in which the directions of the currents flowing through the primary coil 31 and the secondary coil 32 are reversed. Easy to flow. In addition, harmonic noise may propagate to the wiring (power supply line or ground line) connected to the load 60, and may wrap around the signal line as common mode noise, which is the same for the primary side coil 31 and the secondary side coil 32. Current may flow in the direction. However, in the common mode, the common mode noise can be suppressed because the impedance of the common mode filter 25 is sufficiently high.

図4は、ダイオード全波整流回路24の後段に接続したコモンモードフィルタ25のインピーダンス・周波数特性を示す特性図である。図4の横軸は周波数、縦軸はインピーダンスを表し、特性Aはディファレンシャルモードのインピーダンスを示し、特性Bはコモンモードのインピーダンスを示している。   FIG. 4 is a characteristic diagram showing impedance / frequency characteristics of the common mode filter 25 connected to the subsequent stage of the diode full-wave rectifier circuit 24. 4, the horizontal axis represents frequency, the vertical axis represents impedance, characteristic A represents differential mode impedance, and characteristic B represents common mode impedance.

図4において、特性A上のポイントA1は、基本周波数6.78MHzにおけるディファレンシャルモードのインピーダンスを示す。ポイントA2は、周波数20.34MHz(基本周波数の3倍)におけるディファレンシャルモードのインピーダンスを示す。さらに、ポイントA3は、周波数155.94MHz(基本周波数の23倍)におけるディファレンシャルモードのインピーダンスを示す。また特性B上のポイントB1は、周波数47.46MHz(基本周波数の7倍)におけるコモンモードのインピーダンスを示す。   In FIG. 4, a point A1 on the characteristic A indicates the impedance of the differential mode at a fundamental frequency of 6.78 MHz. Point A2 indicates the differential mode impedance at a frequency of 20.34 MHz (three times the fundamental frequency). Furthermore, point A3 indicates the differential mode impedance at a frequency of 155.94 MHz (23 times the fundamental frequency). A point B1 on the characteristic B indicates a common mode impedance at a frequency of 47.46 MHz (seven times the fundamental frequency).

コモンモードフィルタ25の振る舞いとして、ディファレンシャルモードのインピーダンスは信号電流を抑制し、コモンモードのインピーダンスはコモンモードノイズを抑制する。また、コモンモードフィルタは高調波ノイズの差動信号の電流によって発生する磁界を打ち消しあう効果がある。   As the behavior of the common mode filter 25, the differential mode impedance suppresses the signal current, and the common mode impedance suppresses the common mode noise. Further, the common mode filter has an effect of canceling out the magnetic field generated by the current of the differential signal of the harmonic noise.

交流電力が6.78MHzの場合、ダイオード全波整流回路24の出力電圧は6.78MHzの電圧波形となる。周波数6.78MHzにおけるディファレンシャルモードのインピーダンス(A1)は50Ω程度と低いため、電流は抑制されることなく、ほとんどコモンモードフィルタ25を通過する。一方、6.78MHzの3次高調波(20.34MHz)でのディファレンシャルモードのインピーダンス(A2)は、210Ω程度に高くなるため、高調波ノイズを抑制することができる。また、コモンモードフィルタ25内で磁束が打ち消されることで高調波ノイズが低減される効果も得られる。さらに、6.78MHzの23次高調波(155.94MHz)でのディファレンシャルモードのインピーダンス(A3)は、5500Ω程度まで高くなるため、さらに高調波ノイズを抑制する効果が高くなる。   When the AC power is 6.78 MHz, the output voltage of the diode full-wave rectifier circuit 24 has a voltage waveform of 6.78 MHz. Since the differential mode impedance (A1) at a frequency of 6.78 MHz is as low as about 50Ω, the current passes through the common mode filter 25 without being suppressed. On the other hand, since the differential mode impedance (A2) at the 6.78 MHz third harmonic (20.34 MHz) is as high as 210Ω, harmonic noise can be suppressed. Moreover, the effect of reducing harmonic noise is also obtained by canceling out the magnetic flux in the common mode filter 25. Furthermore, since the differential mode impedance (A3) at the 6.78 MHz 23rd harmonic (155.94 MHz) is increased to about 5500Ω, the effect of suppressing harmonic noise is further increased.

また、高調波ノイズが抑制しきれずに、受電コイル21から高調波ノイズを含む電磁波が放射された場合、高調波ノイズが負荷60に接続される配線(電源ラインやアースライン)に伝搬して信号ラインに回り込むことがある。このため、コモンモードノイズとして現れる可能性がある。しかし、図4の特性Bで示すように、コモンモードフィルタ25のコモンモードのインピーダンスは、全周波数帯で十分に高いため、コモンモードノイズを抑制することができる。   In addition, when the electromagnetic noise including the harmonic noise is radiated from the power receiving coil 21 without suppressing the harmonic noise, the harmonic noise propagates to the wiring (power supply line or earth line) connected to the load 60 and is signaled. May wrap around the line. For this reason, it may appear as common mode noise. However, as shown by the characteristic B in FIG. 4, the common mode impedance of the common mode filter 25 is sufficiently high in all frequency bands, so that common mode noise can be suppressed.

次に受電装置20の受電動作を詳しく説明する。図5は、ダイオード全波整流回路24で使用されるダイオード41の導通電流のシミュレーション波形である。図5の横軸は時間を示し、縦軸は電流を表している。受電コイル21が受電する交流電力の周波数は6.78MHzである。   Next, the power receiving operation of the power receiving device 20 will be described in detail. FIG. 5 is a simulation waveform of the conduction current of the diode 41 used in the diode full-wave rectification circuit 24. The horizontal axis in FIG. 5 represents time, and the vertical axis represents current. The frequency of the AC power received by the power receiving coil 21 is 6.78 MHz.

図5において、ポイントCは、ダイオード41の導通電流がアノードからカソードに流れる状態から、カソードからアノードに流れる状態への切り替わる点である。またポイントDは、ダイオード41の導通電流がカソードからアノードに流れる状態から、アノードからカソードに流れる状態への切り替わる点を示している。   In FIG. 5, point C is a point where the conduction current of the diode 41 switches from a state in which the current flows from the anode to the cathode to a state in which the current flows from the cathode to the anode. Point D indicates a point where the conduction current of the diode 41 switches from a state where the current flows from the cathode to the anode to a state where the current flows from the anode to the cathode.

受電コイル21で受電した交流電力の正のサイクルでは、上述したように、受電コイル21とコンデンサ22、23が共振して電流が流れ、ダイオード41とコモンモードフィルタ25の1次側のコイル31を介して平滑コンデンサ26及び負荷60に流れ込む。さらに、コモンモードフィルタ25の2次側のコイル33、ダイオード44を流れた後、受電コイル21およびコンデンサ23に戻る。   In the positive cycle of the AC power received by the power receiving coil 21, as described above, the power receiving coil 21 and the capacitors 22, 23 resonate and current flows, and the diode 41 and the coil 31 on the primary side of the common mode filter 25 are connected. Through the smoothing capacitor 26 and the load 60. Furthermore, after flowing through the coil 33 and the diode 44 on the secondary side of the common mode filter 25, the process returns to the power receiving coil 21 and the capacitor 23.

一方、受電コイル21で給電した交流電力が正のサイクルから負のサイクルに変わるタイミング(図5のポイントC)では、ダイオード41のカソードからアノードに流れる。この状態の受電装置20の導通電流の概要を説明する。   On the other hand, at the timing when the AC power fed by the power receiving coil 21 changes from the positive cycle to the negative cycle (point C in FIG. 5), the current flows from the cathode of the diode 41 to the anode. An outline of the conduction current of the power receiving device 20 in this state will be described.

通常、ダイオードは、カソードからアノードに電流は流れないとされているが、ダイオードに逆電圧が印加されたときの等価回路は、抵抗と接合容量Cjが直列接続された構成となるため、高周波の交流電力を整流するとダイオード41の接合容量Cjの分だけカソードからアノードに電流が流れる特性がある。   Normally, a diode does not allow current to flow from the cathode to the anode, but an equivalent circuit when a reverse voltage is applied to the diode has a configuration in which a resistor and a junction capacitor Cj are connected in series. When the AC power is rectified, the current flows from the cathode to the anode by the junction capacitance Cj of the diode 41.

このため、正のサイクルから負のサイクルに変わるタイミングでは、受電コイル21とコンデンサ22、23が共振して電流が流れ、ダイオード44とコモンモードフィルタ25の2次側のコイル32を介して、平滑コンデンサ26及び負荷60に電流が流れ込む。さらにコモンモードフィルタ25の1次側のコイル31及びダイオード41を介して流れた後、コンデンサ22、23を経由して受電コイル21に戻る。   Therefore, at the timing when the cycle changes from the positive cycle to the negative cycle, the power receiving coil 21 and the capacitors 22 and 23 resonate and current flows, and the smoothing is performed via the diode 44 and the coil 32 on the secondary side of the common mode filter 25. A current flows into the capacitor 26 and the load 60. Furthermore, after flowing through the coil 31 and the diode 41 on the primary side of the common mode filter 25, the flow returns to the power receiving coil 21 through the capacitors 22 and 23.

ダイオード41のカソードからアノードに流れる時間は実際には短く、ダイオード41の接合容量Cjの大きさに左右される。接合容量Cjが大きいと、カソードからアノードに流れる電流の導通時間は長くなり、接合容量Cjが少ないと電流の導通時間は短くなる。したがって、高調波ノイズの低減には限りなく接合容量Cjが少ないダイオードが理想である。   The time for the diode 41 to flow from the cathode to the anode is actually short and depends on the size of the junction capacitance Cj of the diode 41. When the junction capacitance Cj is large, the conduction time of the current flowing from the cathode to the anode becomes long, and when the junction capacitance Cj is small, the conduction time of the current becomes short. Therefore, a diode with a small junction capacitance Cj is ideal for reducing harmonic noise.

実施形態では、ダイオード41と直列に配置されたコモンモードフィルタ25によって、カソードからアノードに流れる導通電流のピーク電流が抑えられ、正弦波に近い電流波形となる。このため、高調波成分が電流波形に重畳しにくくなり、高調波ノイズの発生を低減するという効果が得られる。   In the embodiment, the peak current of the conduction current flowing from the cathode to the anode is suppressed by the common mode filter 25 arranged in series with the diode 41, and a current waveform close to a sine wave is obtained. For this reason, it is difficult to superimpose harmonic components on the current waveform, and the effect of reducing the generation of harmonic noise can be obtained.

即ち、図5に示すように、ダイオード41のカソードからアノードに電流が流れる期間(ポイントC→D)の導通電流(Is)はコモンモードフィルタ25のインピーダンスによって押さえられ、43nsの間に0.26Aの電流が流れ、正弦波に近い波形となって流れる。したがって、高調波ノイズが少ない波形となる。   That is, as shown in FIG. 5, the conduction current (Is) during the period in which current flows from the cathode to the anode of the diode 41 (point C → D) is suppressed by the impedance of the common mode filter 25 and is 0.26 A during 43 ns. Current flows, and the current flows in a waveform close to a sine wave. Therefore, the waveform has less harmonic noise.

また受電コイル21で受電した交流電力の負のサイクルでは、上述したように、受電コイル21とコンデンサ22、23が共振して電流が流れ、ダイオード42とコモンモードフィルタ25の1次側のコイル32を流れ、平滑コンデンサ26及び負荷60に流れ込む。さらにコモンモードフィルタ25の2次側のコイル32とダイオード43を流れた後、コンデンサ22、23および受電コイル21に戻る。   Further, in the negative cycle of the AC power received by the power receiving coil 21, as described above, the power receiving coil 21 and the capacitors 22 and 23 resonate and current flows, and the diode 42 and the coil 32 on the primary side of the common mode filter 25. And flows into the smoothing capacitor 26 and the load 60. Further, after flowing through the coil 32 and the diode 43 on the secondary side of the common mode filter 25, the process returns to the capacitors 22 and 23 and the power receiving coil 21.

また、受電コイル21で受電した交流電力が負のサイクルから正のサイクルに切り替わるタイミング(図5のポイントD)では、ダイオード42のカソードからアノードに流れる。このときは、受電コイル21が交流電力を受電し、コンデンサと共振して交流電流が流れ、ダイオード43、コモンモードフィルタ25の2次側のコイル32を経由し、平滑コンデンサ26及び負荷60に流れ込む。さらに、コモンモードフィルタ25の1次側のコイル31、ダイオード42を流れた後、コンデンサ22、23を経由して受電コイル21に戻る。   Further, at the timing when the AC power received by the power receiving coil 21 is switched from the negative cycle to the positive cycle (point D in FIG. 5), it flows from the cathode of the diode 42 to the anode. At this time, the receiving coil 21 receives AC power, resonates with the capacitor, and an alternating current flows, and flows into the smoothing capacitor 26 and the load 60 via the diode 43 and the coil 32 on the secondary side of the common mode filter 25. . Furthermore, after flowing through the coil 31 and the diode 42 on the primary side of the common mode filter 25, it returns to the power receiving coil 21 via the capacitors 22 and 23.

交流電力が負のサイクルから正のサイクルに切り替わるタイミングでは、ダイオード42と直列に配置されたコモンモードフィルタ25によって、ダイオード42カソードからアノードに流れる導通電流が抑制される。   At the timing when the AC power is switched from the negative cycle to the positive cycle, the conduction current flowing from the cathode of the diode 42 to the anode is suppressed by the common mode filter 25 arranged in series with the diode 42.

尚、図5では、ダイオード41の接合容量Cjによりカソードからアノードに流れる電流について説明したが、他のダイオード42,43,44についても、カソードからアノードに電流が流れるとき、コモンモードフィルタ25によって、カソードからアノードに流れる導通電流のピーク電流が抑えられ、正弦波に近い電流波形となる。   In FIG. 5, the current flowing from the cathode to the anode due to the junction capacitance Cj of the diode 41 has been described. However, when the current flows from the cathode to the anode in the other diodes 42, 43, and 44, the common mode filter 25 The peak current of the conduction current flowing from the cathode to the anode is suppressed, and a current waveform close to a sine wave is obtained.

図6は、従来の非接触受電装置におけるダイオード全波整流回路24のダイオード41の導通電流のシミュレーション波形である。   FIG. 6 is a simulation waveform of the conduction current of the diode 41 of the diode full-wave rectifier circuit 24 in the conventional non-contact power receiving apparatus.

図6は、図2の構成において、コモンモードフィルタ25を取り除き、ダイオード全波整流回路24の出力端243を平滑コンデンサ26の一端に直接接続し、基準電位端244を平滑コンデンサ26の他端に直接接続した回路での、ダイオード41の導通電流のシミュレーション波形である。図6の横軸は時間を示し、縦軸は電流を表している。受電コイル21が受電する交流電力の周波数は6.78MHzである。   6, the common mode filter 25 is removed from the configuration of FIG. 2, the output terminal 243 of the diode full-wave rectifier circuit 24 is directly connected to one end of the smoothing capacitor 26, and the reference potential terminal 244 is connected to the other end of the smoothing capacitor 26. It is a simulation waveform of the conduction current of the diode 41 in a directly connected circuit. The horizontal axis in FIG. 6 represents time, and the vertical axis represents current. The frequency of the AC power received by the power receiving coil 21 is 6.78 MHz.

例えば、シミュレーションで用いたダイオード41の接合容量Cjは、740pFと想定した場合を説明する。受電コイル21が給電した交流電力をダイオード全波整流回路24で直流電力に変換する。交流電力が正のサイクルから負のサイクルに変わった時に、ダイオード41の導通電流はカソードからアノードに流れる。このとき、コモンモードフィルタ25が無いため、導通電流が抑制されることなく流れる。   For example, the case where the junction capacitance Cj of the diode 41 used in the simulation is assumed to be 740 pF will be described. The alternating current power fed by the power receiving coil 21 is converted into direct current power by the diode full-wave rectifier circuit 24. When the AC power changes from a positive cycle to a negative cycle, the conduction current of the diode 41 flows from the cathode to the anode. At this time, since there is no common mode filter 25, the conduction current flows without being suppressed.

図6のシミュレーション波形において、ポイントCは、ダイオード41の導通電流がアノードからカソードに流れる状態から、カソードからアノードに流れる状態への切り替わる点である。またポイントDは、ダイオード41の導通電流がカソードからアノードに流れる状態から、アノードからカソードに流れる状態への切り替わる点を示している。   In the simulation waveform of FIG. 6, point C is a point where the conduction current of the diode 41 switches from a state in which the current flows from the anode to the cathode to a state in which the current flows from the cathode to the anode. Point D indicates a point where the conduction current of the diode 41 switches from a state where the current flows from the cathode to the anode to a state where the current flows from the anode to the cathode.

図6では、ポイントCとD間のわずか15nsの間に、0.45Aのピーク電流(Ip)が流れる。このピーク電流が、受電コイル21の交流電圧に高調波を発生させる原因となる。したがって、実施形態の受電装置の方が高調波のノイズの発生を低減することができる。   In FIG. 6, a peak current (Ip) of 0.45 A flows for only 15 ns between points C and D. This peak current causes a harmonic in the AC voltage of the power receiving coil 21. Therefore, the power receiving apparatus of the embodiment can reduce the generation of harmonic noise.

次に、表1を参照して、実機での測定結果を説明する。

Figure 2017131004
Next, with reference to Table 1, the measurement result with an actual machine will be described.
Figure 2017131004

表1は、実施形態の非接触受電装置と、比較例として従来の受電装置に相当する実機を試作し、それぞれの受電装置から放射されるノイズレベルを簡易的に測定した結果を示す。尚、従来の受電装置に相当する実機は、実施形態の受電装置からコモンモードフィルタ25を取り除いた構成である。   Table 1 shows the result of simply measuring the noise level emitted from each non-contact power receiving device of the embodiment and an actual device corresponding to a conventional power receiving device as a comparative example. An actual machine corresponding to the conventional power receiving apparatus has a configuration in which the common mode filter 25 is removed from the power receiving apparatus of the embodiment.

表1では、受電する交流電力の周波数6.78MHzを基本周波数としたときの高調波周波数(基本周波数の3倍、7倍、23倍)のノイズレベルを、実施形態と従来の受電装置(比較例)で測定し、値の差から低減量を算出した結果を示している。表1に示すように、3次高調波(20.34MHz)のノイズレベル低減量は、実施形態の受電装置のノイズレベルが−78dBmであるのに対し、比較例の受電装置では、−68dBmであり、実施形態の方が10dB低減されている。   In Table 1, the noise level of the harmonic frequency (3 times, 7 times, and 23 times the fundamental frequency) when the frequency of the AC power to be received is 6.78 MHz is used as the fundamental frequency. The result of calculating the reduction amount from the difference between the values measured in Example) is shown. As shown in Table 1, the noise level reduction amount of the third harmonic (20.34 MHz) is −68 dBm in the power receiving device of the comparative example, whereas the noise level of the power receiving device in the embodiment is −78 dBm. Yes, the embodiment is reduced by 10 dB.

同様に、7次高調波(47.46MHz)においては、実施形態でのノイズレベルが−83dBmであるのに対し、比較例では、−65dBmであり、実施形態の方が18dB低減されている。さらに23次高調波(155.94MHz)においては、実施形態でのノイズレベルが−91dBmであるのに対し、比較例では、−68dBmであり、実施形態の方が23dB低減されていることが確認できた。   Similarly, in the seventh harmonic (47.46 MHz), the noise level in the embodiment is −83 dBm, while in the comparative example, it is −65 dBm, and the embodiment is reduced by 18 dB. Furthermore, in the 23rd harmonic (155.94 MHz), the noise level in the embodiment is -91 dBm, whereas in the comparative example, it is -68 dBm, and it is confirmed that the embodiment is reduced by 23 dB. did it.

以上述べたように、第1の実施形態によれば、高調波のノイズレベルを低減することができる。   As described above, according to the first embodiment, the noise level of harmonics can be reduced.

(第2の実施形態)
次に、図7を参照して第2実施形態に係る非接触受電装置の構成を説明する。
(Second Embodiment)
Next, the configuration of the non-contact power receiving device according to the second embodiment will be described with reference to FIG.

図7の受電装置20は、コモンモードフィルタ25として、1つのコアに4つのコイル31,32,33,34を同じ方向に同じ巻回数だけ巻いたものを使用した例である。図7では、ダイオード全波整流回路24の入力端241、242に共振回路からの交流電力を入力し、ダイオード全波整流回路24の出力端243と基準電位端244間に直流電力を出力するようにし、ダイオード41のカソードと出力端243との間の電流路、及びダイオード42のカソードと出力端243との間の電流路に、それぞれコモンモードフィルタ25の一次側のコイル31と二次側のコイル32を配置している。   The power receiving device 20 of FIG. 7 is an example using a common mode filter 25 in which four coils 31, 32, 33, and 34 are wound around one core by the same number of turns. In FIG. 7, AC power from the resonance circuit is input to the input terminals 241 and 242 of the diode full-wave rectifier circuit 24, and DC power is output between the output terminal 243 of the diode full-wave rectifier circuit 24 and the reference potential terminal 244. In the current path between the cathode of the diode 41 and the output end 243 and the current path between the cathode of the diode 42 and the output end 243, the primary side coil 31 and the secondary side of the common mode filter 25 are respectively connected. A coil 32 is arranged.

またダイオード43のアノードと基準電位端244との間の電流路、及びダイオード44のアノードと基準電位端244との間の電流路に、それぞれコモンモードフィルタ25の三次側のコイル33と四次側のコイル34を配置している。そして、出力端243と基準電位端244間に平滑コンデンサ26を接続している。   Further, the coil 33 on the tertiary side and the quaternary side of the common mode filter 25 are respectively connected to the current path between the anode of the diode 43 and the reference potential terminal 244 and the current path between the anode of the diode 44 and the reference potential terminal 244. The coil 34 is arranged. The smoothing capacitor 26 is connected between the output terminal 243 and the reference potential terminal 244.

図7の受電装置20の構成は、コモンモードフィルタ25に4つのコイルを設けた点以外は、図2と同様であり、図2の実施形態と同様の作用・効果が得られる。   The configuration of the power receiving device 20 of FIG. 7 is the same as that of FIG. 2 except that the common mode filter 25 is provided with four coils, and the same operations and effects as those of the embodiment of FIG. 2 are obtained.

(第3の実施形態)
次に、図8、図9、図10を参照して第3実施形態に係る非接触受電装置の構成を説明する。
(Third embodiment)
Next, the configuration of the non-contact power receiving device according to the third embodiment will be described with reference to FIGS. 8, 9, and 10.

図8の受電装置20は、ダイオード全波整流回路24の入力端241、242に共振回路からの交流電力を入力し、ダイオード全波整流回路24の出力端243と基準電位端244間に直流電力を出力するようにし、ダイオード41のカソードと出力端243との間の電流路、及びダイオード42のカソードと出力端243との間の電流路にそれぞれコモンモードフィルタ251の一次側のコイル31と二次側コイル32を配置している。   The power receiving device 20 of FIG. 8 inputs AC power from the resonance circuit to the input terminals 241 and 242 of the diode full-wave rectifier circuit 24, and DC power between the output terminal 243 of the diode full-wave rectifier circuit 24 and the reference potential terminal 244. In the current path between the cathode of the diode 41 and the output terminal 243, and the current path between the cathode of the diode 42 and the output terminal 243, the coil 31 on the primary side of the common mode filter 251 The secondary coil 32 is arranged.

またダイオード43のアノードと基準電位端244との間の電流路、及びダイオード44のアノードと基準電位端244との間の電流路にそれぞれ、コモンモードフィルタ252の一次側のコイル31と二次側のコイル32を配置している。そして、出力端243と基準電位端244間に平滑コンデンサ26を接続している。   Further, a primary side coil 31 and a secondary side of the common mode filter 252 are respectively connected to a current path between the anode of the diode 43 and the reference potential end 244 and a current path between the anode of the diode 44 and the reference potential end 244. The coil 32 is arranged. The smoothing capacitor 26 is connected between the output terminal 243 and the reference potential terminal 244.

つまり、図8の受電装置20は、図2の構成におけるコモンモードフィルタ25を2つ設けて、それぞれダイオード41,42用と、ダイオード43,44用に分けた構成としたものである。図8の構成は、コモンモードフィルタ25を2つ設けた以外は、図2と同様であり、図2の実施形態と同様の作用・効果が得られる。   That is, the power receiving device 20 in FIG. 8 has two common mode filters 25 in the configuration in FIG. 2 and is divided into diodes 41 and 42 and diodes 43 and 44, respectively. The configuration of FIG. 8 is the same as that of FIG. 2 except that two common mode filters 25 are provided, and the same operation and effect as the embodiment of FIG. 2 can be obtained.

図9の受電装置20は、ダイオード全波整流回路24の入力端241、242に共振回路からの交流電力を入力し、ダイオード全波整流回路24の出力端243と基準電位端244間に直流電力を出力するようにし、ダイオード41,42の各カソードと出力端243との間の電流路にコモンモードフィルタ25の一次側のコイル31と二次側コイル32を配置している。またダイオード43、44のアノードを基準電位端244に接続し、出力端243と基準電位端244間に平滑コンデンサ26を接続している。   The power receiving device 20 in FIG. 9 inputs AC power from the resonance circuit to the input terminals 241 and 242 of the diode full-wave rectifier circuit 24, and DC power between the output terminal 243 and the reference potential terminal 244 of the diode full-wave rectifier circuit 24. The primary side coil 31 and the secondary side coil 32 of the common mode filter 25 are arranged in the current path between the cathodes of the diodes 41 and 42 and the output terminal 243. The anodes of the diodes 43 and 44 are connected to the reference potential terminal 244, and the smoothing capacitor 26 is connected between the output terminal 243 and the reference potential terminal 244.

つまり、図9の受電装置20は、図8の構成に対して、コモンモードフィルタ25を、ダイオード41,42用のみに配置したものである。コモンモードフィルタ25は、ダイオード41,42に対して作用するため、ディファレンシャルモードとしての働きはないが、チョークコイルとして作用するため、高調波の抑制効果は得られる。   That is, the power receiving device 20 in FIG. 9 is configured such that the common mode filter 25 is disposed only for the diodes 41 and 42 with respect to the configuration in FIG. Since the common mode filter 25 acts on the diodes 41 and 42, it does not function as a differential mode, but acts as a choke coil, so that a harmonic suppression effect can be obtained.

また高調波ノイズが抑制しきれずに、高調波ノイズが配線(電源ラインやアースライン)に伝搬して信号ラインに回り込み、コモンモードノイズとして現れる可能性があるが、図4の特性Bで示すように、コモンモードフィルタ25のコモンモードのインピーダンスが十分に高いため、コモンモードノイズを抑制することができる。ダイオード43,44に対してコモンモードフィルタ25が配置されていない点で、図8の構成に比べて高調波ノイズの抑制力は、やや劣るものの有効な構成である。   In addition, the harmonic noise cannot be suppressed, and the harmonic noise may propagate to the wiring (power supply line or ground line), wrap around the signal line, and appear as common mode noise. However, as shown by the characteristic B in FIG. Furthermore, since the common mode impedance of the common mode filter 25 is sufficiently high, common mode noise can be suppressed. Since the common mode filter 25 is not disposed with respect to the diodes 43 and 44, the suppression power of harmonic noise is slightly inferior to that of the configuration of FIG.

図10の受電装置20は、ダイオード全波整流回路24の入力端241、242に共振回路からの交流電力を入力し、ダイオード全波整流回路24の出力端243と基準電位端244間に直流電力を出力するようにし、ダイオード43、44の各アノードと基準電位端244との間の電流路にコモンモードフィルタ25の一次側のコイル31と二次側コイル32を配置している。またダイオード41、42のカソードを出力端243に接続し、出力端243と基準電位端244間に平滑コンデンサ26を接続している。   10 receives AC power from the resonance circuit to input terminals 241 and 242 of the diode full-wave rectifier circuit 24, and DC power is supplied between the output terminal 243 of the diode full-wave rectifier circuit 24 and the reference potential terminal 244. The primary side coil 31 and the secondary side coil 32 of the common mode filter 25 are arranged in the current path between the anodes of the diodes 43 and 44 and the reference potential terminal 244. The cathodes of the diodes 41 and 42 are connected to the output terminal 243, and the smoothing capacitor 26 is connected between the output terminal 243 and the reference potential terminal 244.

つまり、図10の受電装置20は、図8の構成に対して、コモンモードフィルタ25を、ダイオード43,44用のみに配置したものである。図9の構成と同様に、コモンモードフィルタ25は、チョークコイルとして作用するため、高調波の抑制効果は得られる。またコモンモードノイズを抑制することができる。   That is, the power receiving device 20 in FIG. 10 is configured such that the common mode filter 25 is disposed only for the diodes 43 and 44 with respect to the configuration in FIG. Similarly to the configuration of FIG. 9, the common mode filter 25 acts as a choke coil, so that a harmonic suppression effect can be obtained. Moreover, common mode noise can be suppressed.

尚、非接触給電システムを製品化するに当たっては、各国での放射ノイズや伝導ノイズ(EMI)に対する規制値を満足する必要がある。伝導ノイズ等で規制される30MHz以下の周波数で考えると、スイッチング周波数である6.78MHzは国際的にISM(Industry-Science-Medical)周波数であるため規制値は緩い。また6.78MHzの2倍の13.56MHzや4倍の27.12MHzもISM周波数であるため規制は緩い。一方、3倍の高調波の20.34MHzはISM周波数ではないため、伝導ノイズ及び放射ノイズを低く抑える必要があり、本実施形態の構成は、ノイズ低減のための有効な手段となる。   In order to commercialize a non-contact power supply system, it is necessary to satisfy regulatory values for radiation noise and conduction noise (EMI) in each country. Considering a frequency of 30 MHz or less that is regulated by conduction noise or the like, the switching frequency of 6.78 MHz is an ISM (Industry-Science-Medical) frequency internationally, so the regulation value is loose. Moreover, since 13.56 MHz, which is twice 6.78 MHz, and 27.12 MHz, which is four times higher, are also ISM frequencies, the regulations are loose. On the other hand, since 20.34 MHz, which is a triple harmonic, is not an ISM frequency, it is necessary to keep conduction noise and radiation noise low, and the configuration of this embodiment is an effective means for noise reduction.

送電装置10から放射されるノイズは、特に送電コイル11から放射されるが、電力伝送時には受電コイル21からも放射されるため、受電コイル21に加わる電力から高調波歪を除去する必要がある。実施形態に示した構成によれば、3次高調波や7次高調波だけでなく、他の高次高調波成分も大きく減衰させることが可能であり、ノイズ低減に効果がある。   The noise radiated from the power transmission device 10 is radiated from the power transmission coil 11 in particular, but is also radiated from the power reception coil 21 during power transmission. Therefore, it is necessary to remove harmonic distortion from the power applied to the power reception coil 21. According to the configuration shown in the embodiment, not only the third harmonic and the seventh harmonic, but also other higher harmonic components can be greatly attenuated, which is effective in reducing noise.

尚、本発明のいくつかの実施形態を述べたが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

10…送電装置
20…受電装置
21…受電コイル
24…ダイオード全波整流回路
25…コモンモードフィルタ
26…平滑コンデンサ
41〜44…ダイオード
50…共振回路
60…負荷
DESCRIPTION OF SYMBOLS 10 ... Power transmission apparatus 20 ... Power reception apparatus 21 ... Reception coil 24 ... Diode full wave rectification circuit 25 ... Common mode filter 26 ... Smoothing capacitors 41-44 ... Diode 50 ... Resonance circuit 60 ... Load

Claims (5)

送電装置から供給される交流電力を非接触で受電する受電コイルと、
前記受電コイルと共振用コンデンサを含み、前記交流電力の周波数に共振する共振回路と、
前記共振回路からの交流電力を第1、第2の入力端に入力し、出力端と基準電位端間に直流電力を出力するダイオード全波整流回路と、
共通の磁性体に並列に同一方向に同じ巻回数だけ巻かれた第1のコイル及び第2のコイルを含み、前記ダイオード全波整流回路の出力端に前記第1のコイルの一端を接続し、前記基準電位端に前記第2のコイルの一端を接続したコモンモードフィルタと、
前記コモンモードフィルタの第1のコイルの他端と、前記第2のコイルの他端間に接続した平滑コンデンサと、
前記平滑コンデンサに並列に接続した負荷と、
を備える非接触受電装置。
A power receiving coil for receiving AC power supplied from a power transmitting device in a contactless manner;
A resonance circuit including the power receiving coil and a resonance capacitor and resonating at a frequency of the AC power;
A diode full-wave rectifier circuit that inputs AC power from the resonance circuit to the first and second input terminals and outputs DC power between the output terminal and the reference potential terminal;
Including a first coil and a second coil wound in the same direction in the same direction in parallel on a common magnetic body, and connecting one end of the first coil to the output end of the diode full-wave rectifier circuit; A common mode filter having one end of the second coil connected to the reference potential end;
A smoothing capacitor connected between the other end of the first coil of the common mode filter and the other end of the second coil;
A load connected in parallel to the smoothing capacitor;
A non-contact power receiving apparatus.
送電装置から供給される交流電力を非接触で受電する受電コイルと、
前記受電コイルと共振用コンデンサを含み、前記交流電力の周波数に共振する共振回路と、
前記共振回路からの交流電力を第1、第2の入力端に入力し、出力端と基準電位端間に直流電力を出力するダイオード全波整流回路と、
共通の磁性体に並列に同一方向に同じ巻回数だけ巻かれた第1乃至第4のコイルを含み、前記ダイオード全波整流回路のうち前記第1、第2の入力端にそれぞれアノードが接続された第1、第2のダイオードの各カソードと前記出力端との間の電流路に前記第1のコイルと前記第2のコイルを配置し、前記ダイオード全波整流回路のうち前記第1、第2の入力端にそれぞれカソードが接続された第3、第4のダイオードの各アノードと前記基準電位端との間の電流路に前記第3のコイルと前記第4のコイルを配置したコモンモードフィルタと、
前記出力端と前記基準電位端間に接続した平滑コンデンサと、
前記平滑コンデンサに並列に接続した負荷と、
を備える非接触受電装置。
A power receiving coil for receiving AC power supplied from a power transmitting device in a contactless manner;
A resonance circuit including the power receiving coil and a resonance capacitor and resonating at a frequency of the AC power;
A diode full-wave rectifier circuit that inputs AC power from the resonance circuit to the first and second input terminals and outputs DC power between the output terminal and the reference potential terminal;
It includes first to fourth coils wound in the same direction in the same direction in parallel with a common magnetic material, and anodes are respectively connected to the first and second input terminals of the diode full-wave rectifier circuit. The first coil and the second coil are disposed in a current path between each cathode of the first and second diodes and the output terminal, and the first and second coils of the diode full-wave rectifier circuit are arranged. Common mode filter in which the third coil and the fourth coil are arranged in the current path between the anodes of the third and fourth diodes, each of which has a cathode connected to the input terminal of 2 and the reference potential terminal When,
A smoothing capacitor connected between the output terminal and the reference potential terminal;
A load connected in parallel to the smoothing capacitor;
A non-contact power receiving apparatus.
送電装置から供給される交流電力を非接触で受電する受電コイルと、
前記受電コイルと共振用コンデンサを含み、前記交流電力の周波数に共振する共振回路と、
前記共振回路からの交流電力を第1、第2の入力端に入力し、出力端と基準電位端間に直流電力を出力するダイオード全波整流回路と、
共通の磁性体に並列に同一方向に同じ巻回数だけ巻かれた第1、第2のコイルを含み、前記ダイオード全波整流回路のうち前記第1、第2の入力端にそれぞれアノードが接続された第1、第2のダイオードの各カソードと前記出力端との間の電流路、及び前記ダイオード全波整流回路のうち前記第1、第2の入力端にそれぞれカソードが接続された第3、第4のダイオードの各アノードと前記基準電位端との間の電流路の少なくとも一方の電流路に前記第1のコイルと前記第2のコイルを配置したコモンモードフィルタと、
前記出力端と前記基準電位端間に接続した平滑コンデンサと、
前記平滑コンデンサに並列に接続した負荷と、
を備える非接触受電装置。
A power receiving coil for receiving AC power supplied from a power transmitting device in a contactless manner;
A resonance circuit including the power receiving coil and a resonance capacitor and resonating at a frequency of the AC power;
A diode full-wave rectifier circuit that inputs AC power from the resonance circuit to the first and second input terminals and outputs DC power between the output terminal and the reference potential terminal;
It includes first and second coils wound in the same direction by the same number of turns in parallel on a common magnetic material, and anodes are respectively connected to the first and second input terminals of the diode full-wave rectifier circuit. Current paths between the cathodes of the first and second diodes and the output terminal, and third and third cathodes connected to the first and second input terminals of the diode full-wave rectifier circuit, respectively. A common mode filter in which the first coil and the second coil are arranged in at least one current path between each anode of a fourth diode and the reference potential end;
A smoothing capacitor connected between the output terminal and the reference potential terminal;
A load connected in parallel to the smoothing capacitor;
A non-contact power receiving apparatus.
前記第1、第2のダイオードの各カソードと前記出力端との間の電流路、及び前記第3、第4のダイオードの各アノードと前記基準電位端との間の電流路にそれぞれ前記コモンモードフィルタの前記第1のコイルと前記第2のコイルを配置してなる請求項3記載の非接触受電装置。   The common mode is provided in each of current paths between the cathodes of the first and second diodes and the output terminal, and current paths between the anodes of the third and fourth diodes and the reference potential terminal. The non-contact power receiving apparatus according to claim 3, wherein the first coil and the second coil of the filter are arranged. 前記第1、第2のダイオードの各カソードと前記出力端との間の電流路、及び前記第3、第4のダイオードの各アノードと前記基準電位端との間の電流路のいずれか一方の電流路に前記コモンモードフィルタの前記第1のコイルと前記第2のコイルを配置してなる請求項3記載の非接触受電装置。   One of a current path between each cathode of the first and second diodes and the output terminal, and a current path between each anode of the third and fourth diodes and the reference potential terminal The non-contact power receiving apparatus according to claim 3, wherein the first coil and the second coil of the common mode filter are arranged in a current path.
JP2016007539A 2016-01-19 2016-01-19 Non-contact power receiving device Expired - Fee Related JP6652841B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016007539A JP6652841B2 (en) 2016-01-19 2016-01-19 Non-contact power receiving device
US15/286,694 US10135300B2 (en) 2016-01-19 2016-10-06 Non-contact power reception apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007539A JP6652841B2 (en) 2016-01-19 2016-01-19 Non-contact power receiving device

Publications (2)

Publication Number Publication Date
JP2017131004A true JP2017131004A (en) 2017-07-27
JP6652841B2 JP6652841B2 (en) 2020-02-26

Family

ID=59313909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007539A Expired - Fee Related JP6652841B2 (en) 2016-01-19 2016-01-19 Non-contact power receiving device

Country Status (2)

Country Link
US (1) US10135300B2 (en)
JP (1) JP6652841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054192A (en) * 2017-09-19 2019-04-04 株式会社村田製作所 Common mode choke coil and wireless charging circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903691B2 (en) * 2017-11-29 2021-01-26 Tdk Corporation Wireless power receiver and wireless power transmission system using the same
US20220173688A1 (en) * 2020-11-30 2022-06-02 The Boeing Company Systems and methods for controlling motor impedance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723562A (en) * 1993-06-30 1995-01-24 Hitachi Metals Ltd Switching power supply
US5747981A (en) * 1996-12-02 1998-05-05 Ford Motor Company Inductor for an electrical system
JP2005261112A (en) * 2004-03-12 2005-09-22 Sanken Electric Co Ltd Dc-dc converter
JP2014072966A (en) * 2012-09-28 2014-04-21 Toyota Motor Corp Non-contact power receiving device
JP2014530592A (en) * 2011-09-26 2014-11-17 クアルコム,インコーポレイテッド System, method and apparatus for rectifier filtering for input waveform shaping
WO2016159093A1 (en) * 2015-03-31 2016-10-06 Tdk株式会社 Wireless electrical power reception device and wireless electrical power transmission device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995990B2 (en) * 2001-03-08 2006-02-07 Power Integrations, Inc. Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components
US7123117B2 (en) * 2003-05-21 2006-10-17 Bel-Fuse Inc. LAN magnetic interface circuit
US8437157B2 (en) * 2011-03-16 2013-05-07 Marmon Utility, Llc Power line current fed power supplies producing stable load currents and related methods
US9054599B2 (en) * 2012-03-15 2015-06-09 Rockwell Automation Technologies, Inc. Power converter and integrated DC choke therefor
KR101462719B1 (en) * 2012-05-31 2014-11-17 삼성전기주식회사 COIL COMPONENT, ELECTRIONIC DEVICE AND PoE SYSTEM HAVING THE SAME
US9806625B2 (en) * 2013-10-23 2017-10-31 Mitsubishi Electric Corporation Power conversion device including a transformer with three or more windings
JP2016067135A (en) 2014-09-25 2016-04-28 東芝テック株式会社 Non-contact power supply device
EP3465871B1 (en) * 2016-05-27 2022-01-19 WiTricity Corporation Voltage regulation in wireless power receivers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723562A (en) * 1993-06-30 1995-01-24 Hitachi Metals Ltd Switching power supply
US5747981A (en) * 1996-12-02 1998-05-05 Ford Motor Company Inductor for an electrical system
JP2005261112A (en) * 2004-03-12 2005-09-22 Sanken Electric Co Ltd Dc-dc converter
JP2014530592A (en) * 2011-09-26 2014-11-17 クアルコム,インコーポレイテッド System, method and apparatus for rectifier filtering for input waveform shaping
JP2014072966A (en) * 2012-09-28 2014-04-21 Toyota Motor Corp Non-contact power receiving device
WO2016159093A1 (en) * 2015-03-31 2016-10-06 Tdk株式会社 Wireless electrical power reception device and wireless electrical power transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054192A (en) * 2017-09-19 2019-04-04 株式会社村田製作所 Common mode choke coil and wireless charging circuit

Also Published As

Publication number Publication date
US20170207662A1 (en) 2017-07-20
US10135300B2 (en) 2018-11-20
JP6652841B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US9634495B2 (en) Wireless power transfer using separately tunable resonators
US9680311B2 (en) Wireless power supply system
US9088222B2 (en) Systems, methods, and apparatus for a high power factor single phase rectifier
JP5811292B2 (en) Power transmission system
US10411525B2 (en) System and method for frequency prediction
JP2016067135A (en) Non-contact power supply device
JP5862844B2 (en) Wireless power transmission system
Chang et al. 30 W capacitive wireless power transfer system with 5.8 pF coupling capacitance
JP6618006B2 (en) Wireless power transmission system and power transmission device
JPWO2012090700A1 (en) Wireless power feeding device, wireless power receiving device, wireless transmission system
JP6652841B2 (en) Non-contact power receiving device
US9948147B2 (en) Magnetic resonance type wireless charging circuit
US20120086413A1 (en) Reactive current transformer
WO2015125107A1 (en) Inductive charging device
JP2019161929A (en) Wireless power transmission system and power reception device
JP2019180203A (en) Device and system for wireless power transmission
JP6052301B2 (en) Non-contact power feeding apparatus and control method thereof
KR101189289B1 (en) A wireless power transmission apparatus
KR20160070540A (en) Wireless Power Transfer System
KR102559302B1 (en) Antenna apparatus andwireless poser transmission and reception system comprising the same
JP2019017151A (en) High frequency power supply device and power transmission device
KR20120033757A (en) Wireless power transfer system using electromagnetic field resonator
KR101786086B1 (en) A transmitter and receiver for wireless power transmission with minimized flux linkage
JP2020018060A (en) Power receiving device and wireless power supply system
JP6569799B2 (en) Power receiver and power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200124

R150 Certificate of patent or registration of utility model

Ref document number: 6652841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees