JP2017130414A - Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof - Google Patents

Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof Download PDF

Info

Publication number
JP2017130414A
JP2017130414A JP2016010693A JP2016010693A JP2017130414A JP 2017130414 A JP2017130414 A JP 2017130414A JP 2016010693 A JP2016010693 A JP 2016010693A JP 2016010693 A JP2016010693 A JP 2016010693A JP 2017130414 A JP2017130414 A JP 2017130414A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium ion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016010693A
Other languages
Japanese (ja)
Inventor
潮田 勉
Tsutomu Shioda
勉 潮田
貫一郎 乾
Kanichiro Inui
貫一郎 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cs Energy Mat Ltd
CS Energy Materials Ltd
Original Assignee
Cs Energy Mat Ltd
CS Energy Materials Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cs Energy Mat Ltd, CS Energy Materials Ltd filed Critical Cs Energy Mat Ltd
Priority to JP2016010693A priority Critical patent/JP2017130414A/en
Publication of JP2017130414A publication Critical patent/JP2017130414A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material useful as a positive electrode active material of a laminate battery.SOLUTION: A positive electrode active material for a lithium ion secondary battery comprises a lithium metal composite oxide expressed by the following formula: LiNiCoAlO(where a=0.8-1.2, b=0.7-0.95, c=0.02-0.2, d=0.005-0.1, and b+c+d=1). The lithium metal composite oxide is coated with a compound including an element M2 (where M2 is selected from an alkali metal, an alkali-earth metal, a lanthanoid element, an actinoid element, and elements of Groups III to XVII of the periodic table). The amount (weight) of aluminum eluting into high-temperature sodium hydroxide is over 10% of a total weight of aluminum included in the positive electrode active material.SELECTED DRAWING: None

Description

本発明はリチウムイオン電池用の正極活物質と、これを正極に用いたリチウムイオン電池、特にこれを正極に用いたラミネート電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery and a lithium ion battery using the positive electrode active material as a positive electrode, and more particularly, to a laminate battery using the same as a positive electrode.

リチウムイオン電池の歴史は古く、その商業生産は1990年代に始まっている。しかしながら、リチウムイオン電池の開発は、2000年以降の携帯端末、スマートフォン、電気自動車などの普及によって本格的に発展したと言ってよい。リチウムイオン電池は、他の電池と同様に正極、負極、電解質、外装体を主な構成部材とするが、中でも正極に用いられる正極活物質はリチウムイオン電池の電池性能を左右する重要な材料である。すでにリチウムイオン電池に用いられる正極活物質として様々なリチウム系金属酸化物が見出されている(非特許文献1)。   Lithium ion batteries have a long history and their commercial production began in the 1990s. However, it can be said that the development of lithium-ion batteries has been developed in earnest with the spread of mobile terminals, smartphones, electric vehicles and the like since 2000. Lithium ion batteries, like other batteries, have a positive electrode, a negative electrode, an electrolyte, and an outer package as the main components. Among them, the positive electrode active material used for the positive electrode is an important material that affects the battery performance of the lithium ion battery. is there. Various lithium metal oxides have already been found as positive electrode active materials used in lithium ion batteries (Non-patent Document 1).

これまで、携帯端末、スマートフォン、電気自動車の低コスト化、長時間使用を達成するために、高出力のリチウムイオン電池のための正極活物質が提案されてきた。その一方で、リチウムイオン電池を搭載する携帯端末、スマートフォン、電気自動車には安全性と耐久性も求められるため、正極活物質には高い耐熱性や電池本体の変形を引き起こさないという性質が要求される。このような要求を満足するために様々なリチウムイオン電池用正極活物質が提案されている(非特許文献1)。   So far, positive electrode active materials for high-power lithium-ion batteries have been proposed in order to achieve low cost and long-time use of portable terminals, smartphones, and electric vehicles. On the other hand, since safety and durability are also required for mobile terminals, smartphones, and electric vehicles equipped with lithium ion batteries, the positive electrode active material is required to have high heat resistance and the property of not causing deformation of the battery body. The In order to satisfy such requirements, various positive electrode active materials for lithium ion batteries have been proposed (Non-Patent Document 1).

中でもNCA系正極活物質は、高エネルギー密度の電極を製造できるという利点がある。近年は特に、携帯端末やスマートフォンの薄型化、小型化が進行しており、リチウムイオン電池の形態そのものにも変化の兆しがある。これまでは積載時の耐久性に優れる角形電池、円筒電池が主流であったが、より薄型で軽量のラミネート電池も実用化されている(特許文献1)。ただし、ラミネート電池は薄く柔軟なフィルムで電極などの部材を被覆しているため、従来の金属製の外装体を有する角形あるいは円筒形の電池よりも内外からの圧力に対して弱いという問題点がある。そして、リチウムイオン電池では、電池の使用過程で正極活物質に含まれる不純物によって炭酸ガスなどのガスが発生することが知られている。このようなガス発生による電池の膨れは、ラミネート電池ではより深刻な問題である。角形電池、筒型電池では電池膨れを生じない程度のガス発生であっても、ラミネート電池では膨れや破壊を引き起こす可能性がある。   Among these, the NCA-based positive electrode active material has an advantage that an electrode having a high energy density can be produced. In recent years, in particular, mobile terminals and smartphones have been made thinner and smaller, and the form of the lithium ion battery itself is showing signs of change. Up to now, prismatic batteries and cylindrical batteries, which have excellent durability when loaded, have been mainstream, but thinner and lighter laminate batteries have also been put into practical use (Patent Document 1). However, since the laminated battery covers the electrode and other members with a thin and flexible film, there is a problem that it is weaker to the pressure from the inside and outside than the rectangular or cylindrical battery having a conventional metal outer casing. is there. And in a lithium ion battery, it is known that gas, such as a carbon dioxide gas, will be generated by the impurity contained in a positive electrode active material in the use process of a battery. Such swelling of the battery due to gas generation is a more serious problem in laminated batteries. Even in the case of gas generation to such an extent that battery expansion does not occur in rectangular batteries and cylindrical batteries, there is a possibility of causing expansion and destruction in laminated batteries.

そこで、ガス発生時の不具合を低減するためのラミネート電池の構造が提案されている。例えば、ラミネート電池のケースに内部で発生したガスを逃す貫通孔を設ける(特許文献2)、正極に正極合剤不塗布部分を設けることによって内部に凹凸を生じにくくする(特許文献3)、電極収納部にガス吸着剤を配置する(特許文献4)という改善方法が提案されている。   In view of this, a structure of a laminated battery has been proposed in order to reduce defects at the time of gas generation. For example, a laminated battery case is provided with a through-hole through which gas generated inside is released (Patent Document 2), and a positive electrode mixture-uncoated portion is provided on the positive electrode, thereby making it difficult to cause unevenness inside (Patent Document 3). The improvement method of arrange | positioning a gas adsorbent in a storage part (patent document 4) is proposed.

このように、ラミネート電池で特に懸念されるガス発生時の問題を解消し、電池の安全性と耐久性を向上する手段として、ラミネート電池に特別な積層構造や追加的な部材を設ける例は見出される。しかしながら、ラミネート電池に適した正極活物質、特にNCA系正極活物質の検討は十分になされていない。   As described above, examples of providing a special laminated structure and additional members for the laminated battery as a means of solving the problem at the time of gas generation particularly concerned with the laminated battery and improving the safety and durability of the battery have been found. It is. However, positive electrode active materials suitable for laminated batteries, particularly NCA-based positive electrode active materials, have not been sufficiently studied.

例えば、特許文献5では、硫酸ニッケルと硫酸コバルトとを所定の配合にて溶解し、この溶液に水酸化ナトリウム溶液を添加して、ニッケル及びコバルトの複合水酸化物を乾燥させ、水酸化アルミニウムを添加し、撹拌、混合し、更に共沈水酸化物と水酸化アルミニウムとの混合物に水酸化リチウム一水塩を混合し、酸素雰囲気中、800℃にて5時間焼成することによりリチウム金属複合酸化物を得ている。しかしながら、ここで得られた正極活物質の電池性能は完全に満足できるものではなかった。例えばその初期充放電効率は85〜90%にとどまっており、高効率な電池設計に耐える高品質の正極活物質とは言えない。   For example, in Patent Document 5, nickel sulfate and cobalt sulfate are dissolved in a predetermined composition, a sodium hydroxide solution is added to this solution, the nickel and cobalt composite hydroxide is dried, and aluminum hydroxide is added. Lithium metal composite oxide by adding, stirring and mixing, and further mixing lithium hydroxide monohydrate with a mixture of coprecipitated hydroxide and aluminum hydroxide and firing in an oxygen atmosphere at 800 ° C. for 5 hours Have gained. However, the battery performance of the positive electrode active material obtained here was not completely satisfactory. For example, the initial charge / discharge efficiency is only 85 to 90%, which cannot be said to be a high-quality positive electrode active material that can withstand a highly efficient battery design.

特開2011− 77030号公報JP 2011-77030 A 特開2003−168410号公報JP 2003-168410 A 特開2004−303590号公報JP 2004-303590 A 特開2012− 59489号公報JP2012-59489A 特開2001−266876号JP 2001-266876 A 「機能材料」 2011年9月号 Vol31 No.9 12〜19頁“Functional Materials” September 2011 Vol. 9 pages 12-19

本発明者らは、正極活物質自体の改良という、従来と異なるアプローチでラミネート電池の改良を行った。本発明者らは、高容量性、良好な初期充放電効率、高い熱安定性といったリチウムイオン電池用正極活物質全般に求められる性能と、ラミネート電池用正極活物質に特に求められる内部ガス発生が極めて抑制されているという性能を併せ持つNCA系正極活物質を求めた。   The inventors of the present invention have improved the laminate battery by a different approach, that is, improvement of the positive electrode active material itself. The inventors of the present invention have the performance required for all positive electrode active materials for lithium ion batteries such as high capacity, good initial charge / discharge efficiency, and high thermal stability, and the generation of internal gas particularly required for positive electrode active materials for laminated batteries. An NCA-based positive electrode active material having the performance of being extremely suppressed was sought.

本発明者らは、驚くべきことに、そのようなラミネート電池に好適な正極活物質を特定する指標として、正極活物質に含まれるアルミニウム原子のうち特定の画分を定量することが有効であることを見出した。この「特定の画分」とは、正極活物質に含まれるアルミニウム原子のうちで特別に高い負荷の下で抽出される画分であって、具体的には正極活物質に含まれるアルミニウム原子のうちで、高温下で溶融状態にある水酸化ナトリウムに溶出する画分である。   Surprisingly, it is effective for the present inventors to quantify a specific fraction of aluminum atoms contained in the positive electrode active material as an index for identifying a positive electrode active material suitable for such a laminated battery. I found out. The “specific fraction” is a fraction extracted under a particularly high load among the aluminum atoms contained in the positive electrode active material, and specifically, the aluminum atom contained in the positive electrode active material. Among them, it is a fraction that elutes into sodium hydroxide in a molten state at high temperature.

本発明者が新たに見出した、正極活物質に含まれる、上記高温の水酸化ナトリウムに溶出する画分の定量方法は、以下の方法(ア)に従う。
方法(ア):12.5gの正極活物質と20.0gの水酸化ナトリウムをニッケル製のるつぼに取る。このるつぼを500℃に加熱したマッフル炉に設置する。水酸化ナトリウムが十分溶解してから5分後にるつぼをマッフル炉から取り出す。直ちにるつぼの内容物を250mlの純水に分散し攪拌する。上澄み液を誘導結合プラズマ発光分析(ICP分析)により分析することにより、500℃の水酸化ナトリウムに溶出したアルミニウム元素の重量を測定する。
The method of quantifying the fraction eluted in the high-temperature sodium hydroxide contained in the positive electrode active material newly found by the present inventors follows the following method (A).
Method (a): Take 12.5 g of the positive electrode active material and 20.0 g of sodium hydroxide in a nickel crucible. This crucible is placed in a muffle furnace heated to 500 ° C. 5 minutes after the sodium hydroxide is sufficiently dissolved, the crucible is removed from the muffle furnace. Immediately disperse the contents of the crucible in 250 ml of pure water and stir. By analyzing the supernatant by inductively coupled plasma optical emission spectrometry (ICP analysis), the weight of aluminum element eluted in sodium hydroxide at 500 ° C. is measured.

本発明者らは、上記方法(ア)により求められるアルミニウム溶出量が高い、すなわち、上記方法(ア)により求められるアルミニウム溶出量が正極活物質に含まれる全アルミニウム重量の10%超である正極活物質が、上述のリチウムイオン電池用正極、特にラミネート型リチウムイオン電池用正極に対する要求性能をバランス良く備えることを発見した。
すなわち本発明は以下のものである。
(発明1)以下の一般式(1)で表される組成を有するリチウム金属複合酸化物からなり、
LiNiCoAl ・・・(1)
(ただしa=0.8〜1.2、b=0.7〜0.95、c=0.02〜0.2、d=0.005〜0.1であり、かつ、b+c+d=1である。)
上記リチウム金属複合化合物はさらに、
元素M2(M2は、アルカリ金属、アルカリ土類金属、ランタノイド系元素、アクチノイド系元素、及び周期律表第3族〜17族の元素から選択される少なくとも1種の元素である。)を含有する化合物で被覆されており、
以下の方法(ア)により測定される高温水酸化ナトリウムに溶出するアルミニウム量(重量)が該リチウム金属複合酸化物に含まれる全アルミニウム重量の10%を超える、
〔方法(ア):12.5gの正極活物質と20.0gの水酸化ナトリウムをニッケル製のるつぼに取る。このるつぼを500℃に加熱したマッフル炉に設置する。水酸化ナトリウムが十分溶解してから5分後にるつぼをマッフル炉から取り出す。直ちにるつぼの内容物を250mlの純水に分散し攪拌する。上澄み液を誘導結合プラズマ発光分析(ICP分析)により分析することにより、500℃の水酸化ナトリウムに溶出したアルミニウム元素の重量を測定する。〕
リチウムイオン二次電池用の正極活物質。
(発明2)LiOH残渣が0.2重量%以下であり、LiCO残渣が0.2重量%以下である、発明1の正極活物質。
(発明3)発明1又は2の正極活物質を用いたリチウムイオン電池用正極。
(発明4)発明3のリチウムイオン電池用正極を備えるリチウムイオン電池。
(発明5)ラミネート電池である、発明4のリチウムイオン電池。
The present inventors have a high aluminum elution amount obtained by the above method (a), that is, a positive electrode in which the aluminum elution amount obtained by the above method (a) is more than 10% of the total aluminum weight contained in the positive electrode active material. It has been found that the active material has a well-balanced performance required for the above-described positive electrode for a lithium ion battery, particularly a positive electrode for a laminated lithium ion battery.
That is, the present invention is as follows.
(Invention 1) A lithium metal composite oxide having a composition represented by the following general formula (1):
Li a Ni b Co c Al d O 2 (1)
(However, a = 0.8 to 1.2, b = 0.7 to 0.95, c = 0.02 to 0.2, d = 0.005 to 0.1, and b + c + d = 1. is there.)
The lithium metal composite compound further includes
Element M2 (M2 is at least one element selected from alkali metals, alkaline earth metals, lanthanoid elements, actinoid elements, and elements of Groups 3 to 17 of the periodic table). Coated with a compound,
The amount of aluminum (weight) eluted in high-temperature sodium hydroxide measured by the following method (a) exceeds 10% of the total aluminum weight contained in the lithium metal composite oxide,
[Method (a): Take 12.5 g of the positive electrode active material and 20.0 g of sodium hydroxide in a nickel crucible. This crucible is placed in a muffle furnace heated to 500 ° C. 5 minutes after the sodium hydroxide is sufficiently dissolved, the crucible is removed from the muffle furnace. Immediately disperse the contents of the crucible in 250 ml of pure water and stir. By analyzing the supernatant by inductively coupled plasma optical emission spectrometry (ICP analysis), the weight of aluminum element eluted in sodium hydroxide at 500 ° C. is measured. ]
Positive electrode active material for lithium ion secondary battery.
(Invention 2) The positive electrode active material of Invention 1, wherein the LiOH residue is 0.2% by weight or less and the Li 2 CO 3 residue is 0.2% by weight or less.
(Invention 3) A positive electrode for a lithium ion battery using the positive electrode active material of Invention 1 or 2.
(Invention 4) A lithium ion battery comprising the positive electrode for a lithium ion battery of Invention 3.
(Invention 5) The lithium ion battery of Invention 4, which is a laminate battery.

本発明では、ラミネート電池用正極活物質として有効な正極活物質を新規な指標によって選別した。こうして得られた正極活物質を用いることにより、従来よりも優れた電池性能を発現させることに成功した。上記指標によって選別された正極活物質を用いた正極は、高容量性、良好な初期充放電効率、高い熱安定性を示し、さらに内部ガス発生が極めて抑制されている。したがって本発明の正極活物質はラミネート電池用途に特に適している。   In the present invention, a positive electrode active material effective as a positive electrode active material for a laminated battery is selected according to a novel index. By using the positive electrode active material thus obtained, the present inventors have succeeded in developing battery performance superior to that of the prior art. The positive electrode using the positive electrode active material selected by the above index exhibits high capacity, good initial charge / discharge efficiency, and high thermal stability, and the generation of internal gas is extremely suppressed. Therefore, the positive electrode active material of the present invention is particularly suitable for laminated battery applications.

〔正極活物質とその製造方法〕
本発明の正極活物質を構成するリチウム金属複合酸化物は以下の一般式(1)で表される組成を有する。
LiNiCoAl ・・・(1)
(ただしa=0.8〜1.2、b=0.7〜0.95、c=0.02〜0.2、d=0.005〜0.1であり、かつ、b+c+d=1である。)
本発明で用いるリチウム金属複合酸化物の製造方法は限定されないが、一般的には以下の方法(I)〜(III)により得られたリチウム金属複合酸化物を元素M2を含有する化合物によって被覆する製造方法が用いられる。
(I)Li化合物、Al化合物、Co化合物、Ni化合物を、別々に調整、混合し、得られた混合物を酸素存在下で焼成する。
(II)Ni、Coの両方を含む複合水酸化物を共沈法により製造し、その後、この複合水酸化物にLi化合物、Al化合物を混合する。得られた混合物を酸素存在下で焼成する。
(III)Ni、Co、Alの全てを含む複合水酸化物を共沈法により製造し、その後、この複合水酸化物を酸素存在下で焼成する。
上記方法(I)〜(III)の中で方法(II)が好ましい。以下、方法(II)を用いた正極活物質の製造方法について詳述する。
[Positive electrode active material and its production method]
The lithium metal composite oxide constituting the positive electrode active material of the present invention has a composition represented by the following general formula (1).
Li a Ni b Co c Al d O 2 (1)
(However, a = 0.8 to 1.2, b = 0.7 to 0.95, c = 0.02 to 0.2, d = 0.005 to 0.1, and b + c + d = 1. is there.)
The method for producing the lithium metal composite oxide used in the present invention is not limited, but in general, the lithium metal composite oxide obtained by the following methods (I) to (III) is coated with a compound containing the element M2. A manufacturing method is used.
(I) A Li compound, an Al compound, a Co compound, and a Ni compound are separately prepared and mixed, and the resulting mixture is fired in the presence of oxygen.
(II) A composite hydroxide containing both Ni and Co is produced by a coprecipitation method, and then a Li compound and an Al compound are mixed with the composite hydroxide. The resulting mixture is calcined in the presence of oxygen.
(III) A composite hydroxide containing all of Ni, Co, and Al is produced by a coprecipitation method, and then the composite hydroxide is fired in the presence of oxygen.
Among the above methods (I) to (III), the method (II) is preferable. Hereinafter, the manufacturing method of the positive electrode active material using the method (II) will be described in detail.

(原料の溶解)原料としては、一般式(1)を構成する金属の、硫酸塩、硝酸塩などの水溶性塩を用いることができる。ただし、硝酸性窒素を含む廃液処理にコストがかかるため、硝酸塩の使用は工業的には好ましくない。このため通常はニッケル、コバルトの硫酸塩を用いる。この場合、硫酸ニッケル、硫酸コバルトのそれぞれの硫酸塩を水に溶解する。   (Dissolution of raw material) As a raw material, a water-soluble salt of a metal constituting the general formula (1) such as sulfate or nitrate can be used. However, the use of nitrate is not industrially preferable because of the cost of treating waste liquid containing nitrate nitrogen. For this reason, nickel and cobalt sulfates are usually used. In this case, each sulfate of nickel sulfate and cobalt sulfate is dissolved in water.

(沈殿)硫酸ニッケルの硫酸塩、硫酸コバルトの硫酸塩の水溶液、沈殿剤としての水酸化ナトリウム、錯化剤としてのアンモニア水とを沈殿槽内で混合する。沈殿槽内で水酸化ニッケルと水酸化コバルトとからなる複合水酸化物が共沈殿物として生成する。共沈殿物はスラリーとして取り出される。様々な品種に対応する商業生産のためには、共沈殿物の固体濃度を調節できる沈殿槽、一般的には固液分離機構を備える沈殿槽の使用が好ましい。固液分離機構としては特に制限はなく、例えば、遠心分離装置やフィルターなどが用いられる。生産効率などの面から、共沈物スラリーの固体濃度は好ましくは300g/L以上、より好ましくは400g/L以上、さらに好ましくは500g/L以上である。   (Precipitation) Nickel sulfate sulfate, cobalt sulfate sulfate aqueous solution, sodium hydroxide as a precipitating agent, and ammonia water as a complexing agent are mixed in a precipitation tank. A composite hydroxide composed of nickel hydroxide and cobalt hydroxide is produced as a coprecipitate in the precipitation tank. The coprecipitate is removed as a slurry. For commercial production corresponding to various varieties, it is preferable to use a precipitation tank capable of adjusting the solid concentration of the coprecipitate, generally a precipitation tank equipped with a solid-liquid separation mechanism. There is no restriction | limiting in particular as a solid-liquid separation mechanism, For example, a centrifugal separator, a filter, etc. are used. From the standpoint of production efficiency, the solid concentration of the coprecipitate slurry is preferably 300 g / L or more, more preferably 400 g / L or more, and even more preferably 500 g / L or more.

(濾過・洗浄)得られた沈殿物を濾過し、水分を除去して水酸化物ケーキを分離する。水酸化物ケーキを水酸化ナトリウム水溶液で洗浄し、硫酸イオンを除去する。さらに水酸化物ケーキを純水で洗浄して水酸化ナトリウムを除去する。こうしてニッケル−コバルト−複合水酸化物からなる前駆体ケーキが得られる。   (Filtration and washing) The resulting precipitate is filtered to remove water and separate the hydroxide cake. The hydroxide cake is washed with an aqueous sodium hydroxide solution to remove sulfate ions. Further, the hydroxide cake is washed with pure water to remove sodium hydroxide. Thus, a precursor cake made of nickel-cobalt-complex hydroxide is obtained.

(乾燥)得られた前駆体ケーキを乾燥する。乾燥方法は、大気圧下での熱風乾燥、赤外線乾燥、真空乾燥などのいずれでもよい。短時間で乾燥することができる真空乾燥が好ましい。前駆体中の水分が1重量%程度になるまで乾燥することにより、前駆体粉末が得られる。   (Drying) The obtained precursor cake is dried. The drying method may be any of hot air drying under atmospheric pressure, infrared drying, vacuum drying, and the like. Vacuum drying which can be dried in a short time is preferable. The precursor powder is obtained by drying until the moisture in the precursor is about 1% by weight.

(粉体混合)得られた前駆体粉末に水酸化リチウム粉末もしくは炭酸リチウム粉末と、水酸化アルミニウムとを加え、剪断力をかけて混合する。混合に用いる機器として、ボールミル、ヘンシェルミキサーなど各種粉体混合に用いる機器を制限なく使用することができる。こうして焼成用粉体が得られる。   (Powder Mixing) Lithium hydroxide powder or lithium carbonate powder and aluminum hydroxide are added to the obtained precursor powder and mixed by applying a shearing force. As a device used for mixing, a device used for mixing various powders such as a ball mill and a Henschel mixer can be used without limitation. In this way, a powder for firing is obtained.

(焼成)得られた焼成用粉体を酸素存在下で焼成する。焼成により以下の反応が起こる。ただし以下の反応式はリチウム原料として水酸化リチウムを用いた場合の反応を示す。
4Co(OH)+4LiOH+O → 4LiCoO+6H
Al(OH)+LiOH → LiAlO+2H
4Ni(OH)+4LiOH+O → 4LiNiO+6H
焼成は、酸素の存在下、450〜900℃の温度域で行う。焼成は複数回行うこともできる。いずれの回の焼成でも最高温度で2時間〜30時間保持して反応を完了させる。焼成する際に用いる焼成炉に制限はないが、管状炉、マッフル炉、RK(ロータリーキルン)、RHK(ローラーハースキルン)などが好ましい。特に好ましい焼成炉はRHKである。焼成後、好ましくは、焼成後に得られたリチウム金属複合酸化物を、適宜、各種ミキサーや乳鉢などを用いて粉砕し、粒子の凝集をほぐす工程を設ける。この工程によって電極作成の際の弊害となる50μm以上の粗粒が除去される。
(Firing) The obtained powder for firing is fired in the presence of oxygen. The following reaction occurs by firing. However, the following reaction formula shows the reaction when lithium hydroxide is used as the lithium raw material.
4Co (OH) 2 + 4LiOH + O 2 → 4LiCoO 2 + 6H 2 O
Al (OH) 3 + LiOH → LiAlO 2 + 2H 2 O
4Ni (OH) 2 + 4LiOH + O 2 → 4LiNiO 2 + 6H 2 O
Firing is performed in the temperature range of 450 to 900 ° C. in the presence of oxygen. Firing can be performed a plurality of times. In any of the firings, the reaction is completed by holding at the maximum temperature for 2 to 30 hours. Although there is no restriction | limiting in the baking furnace used when baking, A tubular furnace, a muffle furnace, RK (rotary kiln), RHK (roller hearth kiln), etc. are preferable. A particularly preferred firing furnace is RHK. After firing, preferably, a lithium metal composite oxide obtained after firing is appropriately pulverized using various mixers, mortars, and the like to provide a step of loosening the particles. By this step, coarse particles of 50 μm or more that are harmful to electrode production are removed.

(元素M2を含有する化合物による被覆)
上述の工程を経て得られたリチウム金属複合酸化物は、さらに元素M2を含む化合物によって被覆される。元素M2は、アルカリ金属、アルカリ土類金属、ランタノイド系元素、アクチノイド系元素、及び周期律表第3族〜17族の元素から選択される少なくとも1種の元素であり、好ましくはアルカリ金属、アルカリ土類金属、期律表第4族〜17族の元素から、選択される1つ以上の元素であり、より好ましくはNa,Mg,Ca,Ba,Ti,Zr,V,Nb,Mo,W,Mn,Fe,Co,Ni,Cu,Zn,B,Al,C,Si,N,P,O,S,F,Clから選択される1つ以上の元素であり、特に好ましくはNa,Mg,Ca,Ba,Ti,Zr,Nb,Mo,W,Mn,Fe,Co,Cu,Zn,Al,C,Si,N,P,O,S,Fから選択される1つ以上の元素である。
(Coating with compound containing element M2)
The lithium metal composite oxide obtained through the above steps is further coated with a compound containing the element M2. The element M2 is at least one element selected from alkali metals, alkaline earth metals, lanthanoid elements, actinoid elements, and elements of Groups 3 to 17 of the periodic table, preferably alkali metals, alkalis One or more elements selected from earth metals and elements of groups 4 to 17 of the periodic table, more preferably Na, Mg, Ca, Ba, Ti, Zr, V, Nb, Mo, W , Mn, Fe, Co, Ni, Cu, Zn, B, Al, C, Si, N, P, O, S, F, Cl, particularly preferably Na, Mg One or more elements selected from Ca, Ba, Ti, Zr, Nb, Mo, W, Mn, Fe, Co, Cu, Zn, Al, C, Si, N, P, O, S, and F is there.

上記被覆の方法は、湿式法、乾式法のいずれでも良い。元素M2を含む化合物による被覆量は、本発明の効果を示す限り制限はないが、好ましくはリチウム金属複合酸化物に対して0.1〜10重量%、より好ましくは0.5〜5重量%、更に好ましくは1〜4重量%である。上述の方法(I)、(III)を経たリチウム金属複合酸化物を用いた場合でも焼成工程の後に同様の被覆方法を用いることができる。   The coating method may be either a wet method or a dry method. The coating amount with the compound containing the element M2 is not limited as long as the effect of the present invention is exhibited, but is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight with respect to the lithium metal composite oxide. More preferably, it is 1 to 4% by weight. Even when the lithium metal composite oxide subjected to the above-described methods (I) and (III) is used, the same coating method can be used after the firing step.

上記被覆処理の後、被覆物を安定化して電池として好適に使用可能とするために熱処理することが好ましい。熱処理の温度は一般的には200℃〜800℃、好ましくは300℃〜700℃、より好ましくは400℃〜600℃である。こうして本発明の正極活物質を構成するリチウム金属複合酸化物が得られる。   After the coating treatment, heat treatment is preferably performed in order to stabilize the coating and make it suitable for use as a battery. The temperature of the heat treatment is generally 200 ° C to 800 ° C, preferably 300 ° C to 700 ° C, more preferably 400 ° C to 600 ° C. Thus, the lithium metal composite oxide constituting the positive electrode active material of the present invention is obtained.

(高温水酸化ナトリウムに溶出するアルミニウムの量(重量))
本発明の正極活物質を構成するリチウム金属複合酸化物は、更に、以下の方法(ア)により測定した高温水酸化ナトリウムに溶出するアルミニウム量(重量)が、該正極活物質に含まれる全アルミニウム重量の10%超、好ましくは10%超50%未満、より好ましくは15%超30%未満、特に好ましくは15%超20%未満であるという特徴を有する。
方法(ア):12.5gの正極活物質と20.0gの水酸化ナトリウムをニッケル製のるつぼに取る。このるつぼを500℃に加熱したマッフル炉に設置する。水酸化ナトリウムが十分溶解してから5分後にるつぼをマッフル炉から取り出す。直ちにるつぼの内容物を250mlの純水に分散し攪拌する。上澄み液を誘導結合プラズマ発光分析(ICP分析)により分析し、上澄み液に含まれるアルミニウム元素の重量を測定する。
(Amount of aluminum eluted in high-temperature sodium hydroxide (weight))
In the lithium metal composite oxide constituting the positive electrode active material of the present invention, the amount of aluminum (weight) eluted in high-temperature sodium hydroxide measured by the following method (a) More than 10% by weight, preferably more than 10% and less than 50%, more preferably more than 15% and less than 30%, particularly preferably more than 15% and less than 20%.
Method (a): Take 12.5 g of the positive electrode active material and 20.0 g of sodium hydroxide in a nickel crucible. This crucible is placed in a muffle furnace heated to 500 ° C. 5 minutes after the sodium hydroxide is sufficiently dissolved, the crucible is removed from the muffle furnace. Immediately disperse the contents of the crucible in 250 ml of pure water and stir. The supernatant is analyzed by inductively coupled plasma emission spectrometry (ICP analysis), and the weight of aluminum element contained in the supernatant is measured.

上記方法(ア)で用いるリチウム金属複合酸化物に含まれる全アルミニウム量(重量)はICP分析により求められる。上記方法(ア)で定量される水酸化ナトリウムに溶出するアルミニウム量(重量)が、正極活物質に含まれる全アルミニウム重量の10%超となるような正極活物質を正極活物質として用いたリチウムイオン電池用では初期充放電効率が良好となる。
上記アルミニウムの水酸化ナトリウム溶出量(重量)が如何様に電池特性に作用するかは未だ完全に解明されていないが、上記方法(ア)によるアルミニウムの水酸化ナトリウム溶出量(重量)が正極活物質に含まれるアルミニウム原子の偏在性を反映していることは注目に値する。
The total amount (weight) of aluminum contained in the lithium metal composite oxide used in the above method (a) can be determined by ICP analysis. Lithium using a positive electrode active material as a positive electrode active material such that the amount (weight) of aluminum eluted in sodium hydroxide determined by the above method (a) exceeds 10% of the total aluminum weight contained in the positive electrode active material For ion batteries, the initial charge / discharge efficiency is good.
It has not yet been fully clarified how the sodium hydroxide elution amount (weight) of aluminum affects the battery characteristics, but the sodium hydroxide elution amount (weight) of aluminum by the above method (a) is not positive electrode active. It is noteworthy that it reflects the uneven distribution of aluminum atoms contained in the material.

金属複合水酸化物と水酸化リチウム等のリチウム化合物との混合物を焼成することによってリチウム金属複合酸化物を製造する際に、焼成過程で原料に含まれるアルミニウム原子のすべてがリチウム金属複合酸化物中に取り込まれず、その一部が焼成後のリチウム金属複合酸化物粒子の周辺や表面に分布する可能性がある。このようなアルミニウム原子は、酸化アルミニウム、水酸化アルミニウム、アルミン酸リチウム等のアルミニウム化合物を構成して偏在し、正極活物質として機能するリチウム金属複合酸化物に完全に複合化していないと推測される。このようなアルミニウム原子は、リチウム金属複合酸化物の内部にあるアルミニウム原子と違って正極活物質の構成元素として完全には機能しないと考えられるから、その量は少ない方が好ましいと考えられてきた。しかしながら、このような偏在性のアルミニウム原子を含有する酸化アルミニウム、水酸化アルミニウム、アルミン酸リチウム等のアルミニウム化合物は水への溶解度が小さいため、Warder滴定法などの正極活物質の分析手法としてよく用いられる方法では定量することができない。このため、正極活物質に付随するこのような偏在性のアルミニウム原子を検出しようという試みも、これを定量する例はこれまでにほとんど報告されていない。   When a lithium metal composite oxide is produced by firing a mixture of a metal composite hydroxide and a lithium compound such as lithium hydroxide, all of the aluminum atoms contained in the raw material during the firing process are contained in the lithium metal composite oxide. There is a possibility that a part of the lithium metal composite oxide particles is not taken in and distributed on the periphery or surface of the fired lithium metal composite oxide particles. It is speculated that such aluminum atoms are unevenly distributed by constituting aluminum compounds such as aluminum oxide, aluminum hydroxide, and lithium aluminate, and are not completely complexed with a lithium metal composite oxide that functions as a positive electrode active material. . Such aluminum atoms, unlike the aluminum atoms in the lithium metal composite oxide, are considered not to function completely as constituent elements of the positive electrode active material, so it has been considered that a smaller amount is preferable. . However, since aluminum compounds such as aluminum oxide, aluminum hydroxide, and lithium aluminate containing ubiquitous aluminum atoms have low solubility in water, they are often used as analytical methods for positive electrode active materials such as the Warder titration method. Cannot be quantified by the method used. For this reason, there have been few reports so far on the attempts to detect such unevenly distributed aluminum atoms associated with the positive electrode active material.

本発明では、上述の方法(ア)という、これまで提案されていない過酷な条件下で、すなわち正極活物質を500℃の水酸化ナトリウムに分散、溶解することによって、初めて上述の粒子表面部に偏在するアルミニウム原子正極活物質から分離、定量することに成功した。本発明で用いた方法(ア)は正極活物質の新規な分析方法として注目に値する。   In the present invention, the above-mentioned method (a), which is not proposed so far, that is, the positive electrode active material is dispersed and dissolved in sodium hydroxide at 500 ° C. for the first time on the particle surface portion. We succeeded in separating and quantifying the ubiquitous aluminum atom positive electrode active material. The method (a) used in the present invention is notable as a novel analysis method of the positive electrode active material.

驚くべきことに、本発明では従来の予想に反して、上述の偏在性のアルミニウム原子の含有量が一定値を超える正極活物質が不可逆容量率からみて優れたリチウムイオン電池用正極活物質として機能することを発見した。   Surprisingly, in the present invention, contrary to conventional expectations, a positive electrode active material in which the content of unevenly distributed aluminum atoms exceeds a certain value functions as a positive electrode active material for a lithium ion battery, which is superior in terms of irreversible capacity ratio I found it to be.

本発明は同時に、上記方法(ア)をリチウムイオン二次電池用正極活物質の新たな選別方法として提供することにも成功した。本発明によって、上述の偏在性アルミニウム原子の含有量が多く、充放電を経ても初期容量が維持された正極活物質として機能することができる正極活物質を選別することが初めて可能となった。リチウムイオン電池に要求される放電容量、初期充放電効率、低発熱性と、特にラミネート電池に求められる低ガス発生特性のバランスを良好とするためには、正極活物質の上記偏在性のアルミニウム原子含有量は、正極活物質に含まれる全アルミニウム原子重量に対して10%超、好ましくは10%超50%未満、より好ましくは15%超30%未満、特に好ましくは15%超20%未満であることが求められる。   At the same time, the present invention has succeeded in providing the method (a) as a new method for selecting a positive electrode active material for a lithium ion secondary battery. The present invention makes it possible for the first time to select a positive electrode active material that can function as a positive electrode active material that has a high content of the above-mentioned ubiquitous aluminum atoms and that maintains its initial capacity even after charging and discharging. In order to achieve a good balance between the discharge capacity, initial charge / discharge efficiency, and low heat generation required for the lithium ion battery, and particularly the low gas generation characteristics required for the laminate battery, the unevenly distributed aluminum atoms of the positive electrode active material are used. The content is more than 10%, preferably more than 10% and less than 50%, more preferably more than 15% and less than 30%, particularly preferably more than 15% and less than 20% with respect to the total weight of aluminum atoms contained in the positive electrode active material. It is required to be.

このように、さらに上述の潜在性アルミニウム原子の含有量が一定量に制限されたリチウム金属複合酸化物を用いて、本発明の正極活物質が得られる。本発明の正極活物質は、その組成、被覆、偏在性アルミニウム含有量によって特徴づけられる新規な物質である。
〔正極活物質のLiOH残渣、LiCO残渣含有量〕
本発明で用いる正極活物質から余剰のリチウムが除去されていることが好ましい。上記正極活物質から余剰のリチウムを除去する方法としては、正極活物質を水性溶媒で洗浄する方法が一般的である。洗浄に用いられる水性溶媒としては、純水、酸性水、アルカリ性水、金属化合物の水溶液などが用いられる。このうち純水、酸性水またはアルカリ性水が好ましい。洗浄の結果、正極活物質から水で抽出されるLiOH残渣が0.2重量%以下で、かつLiCO残渣が0.2重量%以下となることが好ましい。
Thus, the positive electrode active material of the present invention can be obtained by using the lithium metal composite oxide in which the content of the latent aluminum atoms is further limited to a certain amount. The positive electrode active material of the present invention is a novel material characterized by its composition, coating, and ubiquitous aluminum content.
[LiOH residue and Li 2 CO 3 residue content of positive electrode active material]
It is preferable that excess lithium is removed from the positive electrode active material used in the present invention. As a method for removing excess lithium from the positive electrode active material, a method of washing the positive electrode active material with an aqueous solvent is common. As an aqueous solvent used for washing, pure water, acidic water, alkaline water, an aqueous solution of a metal compound, or the like is used. Of these, pure water, acidic water or alkaline water is preferred. As a result of washing, it is preferable that the LiOH residue extracted with water from the positive electrode active material is 0.2 wt% or less and the Li 2 CO 3 residue is 0.2 wt% or less.

〔正極、ラミネート型リチウムイオン電池〕
本発明の正極活物質はラミネート電池の正極材として好適である。ラミネート電池は通常の方法により製造することができる。すなわち本発明の正極活物質をバインダー、導電助剤と混合して正極活物質等を含むスラリーを製造し、このスラリーを正極基材に塗布、乾燥して正極を製造する。負極は負極基材にカーボン類からなる負極活物質を含む負極剤を塗布、乾燥して得られる。正極、負極、セパレータを含む積層体を外装フィルムでラミネートすると共に電解質を充填して、正極、負極、セパレータ、電解質が内包されたラミネート電池が完成する。
[Positive electrode, laminated lithium-ion battery]
The positive electrode active material of the present invention is suitable as a positive electrode material for a laminated battery. A laminated battery can be manufactured by a normal method. That is, the positive electrode active material of the present invention is mixed with a binder and a conductive additive to produce a slurry containing the positive electrode active material and the like, and this slurry is applied to a positive electrode substrate and dried to produce a positive electrode. The negative electrode is obtained by applying and drying a negative electrode agent containing a negative electrode active material composed of carbons on a negative electrode substrate. A laminated body including a positive electrode, a negative electrode, and a separator is laminated with an exterior film and filled with an electrolyte to complete a laminated battery including the positive electrode, the negative electrode, the separator, and the electrolyte.

〔実施例1〕以下の手順で、式 Li1.0Ni0.80Co0.15Al0.05 で表される組成を有し、元素M2がCoであるリチウム金属複合酸化物からなる正極活物質を製造した。
(原料の溶解)硫酸ニッケルの濃度が139.3g/L、硫酸コバルトの濃度が10.8g/Lとなるように、硫酸ニッケル6水和物と硫酸コバルト7水和物を純水に溶解し、金属塩の混合溶液(以下、金属塩溶液という)を得た。一方で、水酸化ナトリウム濃度が84.0g/Lの水酸化ナトリウム水溶液を調製した(以下アルカリ液という)。
(沈殿)得られた金属塩溶液とアルカリ液、錯化剤である25重量%アンモニア水とを、傾斜した多段の板で構成されるフィルターが設置された容量190Lの反応器へ連続供給し、金属水酸化物の共沈反応を進行させた。この際、水酸化ナトリウムの過剰量、アンモニア量は各々2.7g/Lおよび12g/Lとなるように調整した。同時に反応器のフィルターにスラリーを通過させることにより、当該スラリーに含まれる母液の一部を系外へ排出した。その結果、金属水酸化物の共沈物が生成、沈殿し、固体濃度が400g/Lに調整されたスラリーが得られた。
(濾過・洗浄)金属塩溶液とアルカリ混合液の供給開始から十分な時間が経過し、定常状態となった後、反応容器内部に設置されたスラリー抜き出し用パイプからスラリーを連続的に抜き出した。抜き出された金属水酸化物スラリーを濾過、水洗した。
(乾燥)得られた金属水酸化物を真空乾燥した。こうしてニッケル−コバルト−アルミニウム複合水酸化物が得られた。
(粉体混合)上記ニッケル−コバルト複合水酸化物3.809kg、水酸化アルミニウム0.147kg、水酸化リチウム1.044kgとを、せん断力をかけながら粉体混合し、混合物を得た。
(焼成)この混合物の4kgを酸素流通下2段階で焼成した。1段目焼成では、室温から730℃まで3時間かけて昇温し、730℃で4時間保持した。その後、4時間かけて室温まで冷却した。2段目焼成では、室温から770℃まで3時間かけて昇温し、770℃で10時間保持した。その後4時間かけて室温まで冷却した。こうしてリチウム金属複合酸化物が得られた。
(Coによる被覆)得られた焼成物の100gを取り、この上に18.3重量%(1.0モル/L)硝酸コバルト水溶液67.8gを静かに滴下しながら攪拌し、ホットプレート上で蒸発乾固させた。その後、酸素気流中700℃で5時間焼成し、コバルトで被覆されたリチウム金属複合酸化物が得られた。
(解砕)コバルトで被覆されたリチウム金属複合酸化物をホソカワミクロン製ジェットミル(AFG−100)にて解砕した。
(水洗)解砕物100gを水100gに分散させた。分散液を3分間攪拌し、吸引濾過、減圧乾燥し、更に酸素中500℃で5時間乾燥した。
[Example 1] A positive electrode comprising a lithium metal composite oxide having the composition represented by the formula Li 1.0 Ni 0.80 Co 0.15 Al 0.05 and the element M2 being Co in the following procedure. An active material was produced.
(Dissolution of raw materials) Nickel sulfate hexahydrate and cobalt sulfate heptahydrate were dissolved in pure water so that the concentration of nickel sulfate was 139.3 g / L and the concentration of cobalt sulfate was 10.8 g / L. A mixed solution of metal salts (hereinafter referred to as a metal salt solution) was obtained. On the other hand, a sodium hydroxide aqueous solution having a sodium hydroxide concentration of 84.0 g / L was prepared (hereinafter referred to as an alkali solution).
(Precipitation) The obtained metal salt solution, alkali solution, and 25% by weight ammonia water as a complexing agent are continuously supplied to a reactor having a capacity of 190 L provided with a filter composed of inclined multi-stage plates, The metal hydroxide coprecipitation reaction was allowed to proceed. At this time, the excess amount of sodium hydroxide and the ammonia amount were adjusted to be 2.7 g / L and 12 g / L, respectively. At the same time, by passing the slurry through the filter of the reactor, a part of the mother liquor contained in the slurry was discharged out of the system. As a result, a metal hydroxide coprecipitate was produced and precipitated, and a slurry having a solid concentration adjusted to 400 g / L was obtained.
(Filtration / Washing) After a sufficient time had elapsed from the start of the supply of the metal salt solution and the alkali mixture, the slurry was continuously extracted from the slurry extraction pipe installed inside the reaction vessel. The extracted metal hydroxide slurry was filtered and washed with water.
(Drying) The obtained metal hydroxide was vacuum-dried. Thus, a nickel-cobalt-aluminum composite hydroxide was obtained.
(Powder mixing) 3.809 kg of the above nickel-cobalt composite hydroxide, 0.147 kg of aluminum hydroxide, and 1.044 kg of lithium hydroxide were powder-mixed while applying a shearing force to obtain a mixture.
(Baking) 4 kg of this mixture was baked in two stages under oxygen flow. In the first stage baking, the temperature was raised from room temperature to 730 ° C. over 3 hours and held at 730 ° C. for 4 hours. Then, it cooled to room temperature over 4 hours. In the second stage baking, the temperature was raised from room temperature to 770 ° C. over 3 hours and held at 770 ° C. for 10 hours. Thereafter, it was cooled to room temperature over 4 hours. Thus, a lithium metal composite oxide was obtained.
(Coating with Co) 100 g of the obtained calcined product was taken, and 187.8 wt% (1.0 mol / L) of cobalt nitrate aqueous solution 67.8 g was gently dropped and stirred on the hot plate. Evaporate to dryness. Then, it baked at 700 degreeC in oxygen stream for 5 hours, and the lithium metal complex oxide coat | covered with cobalt was obtained.
(Crushing) The lithium metal composite oxide coated with cobalt was crushed with a jet mill (AFG-100) manufactured by Hosokawa Micron.
(Washing) 100 g of the crushed material was dispersed in 100 g of water. The dispersion was stirred for 3 minutes, suction filtered, dried under reduced pressure, and further dried in oxygen at 500 ° C. for 5 hours.

(高温水酸化ナトリウムに溶出するアルミニウムの量(重量))
得られたコバルト被覆リチウム金属複合酸化物に含まれるアルミニウムの水酸化ナトリウム溶出量を以下の方法で測定した。得られたコバルト被覆リチウム金属複合酸化物12.5g、水酸化ナトリウム20.0gをニッケル製のるつぼに取り、るつぼを500℃に加熱したマッフル炉に設置した。水酸化ナトリウムが十分溶解してから5分経過後、るつぼをマッフル炉から取り出し、るつぼの内容物を250mlの純水に分散し攪拌した。上澄み液を誘導結合プラズマ発光分析(ICP分析)により分析した。また得られたコバルト被覆リチウム金属複合酸化物に含まれる全アルミニウム量(重量)をICP分析により求めた。その結果、コバルト被覆リチウム金属複合酸化物に含まれるアルミニウム元素(重量)の18.9%に相当するアルミニウム元素が溶出していることがわかった。
(LiOH残渣、LiCO残渣)
得られた正極活物質2gを取り、25℃の純水100mlに加え3分間マグネチックスターラーで攪拌した後、吸引濾過を行う。得られた濾液を自動滴定装置を用い0.1規定の塩酸にて滴定し、水酸化リチウム量及び炭酸リチウム量を定量した。結果を表1に示す。
(Amount of aluminum eluted in high-temperature sodium hydroxide (weight))
The sodium hydroxide elution amount of aluminum contained in the obtained cobalt-coated lithium metal composite oxide was measured by the following method. 12.5 g of the obtained cobalt-coated lithium metal composite oxide and 20.0 g of sodium hydroxide were placed in a nickel crucible, and the crucible was placed in a muffle furnace heated to 500 ° C. Five minutes after the sodium hydroxide was sufficiently dissolved, the crucible was taken out of the muffle furnace, and the contents of the crucible were dispersed in 250 ml of pure water and stirred. The supernatant was analyzed by inductively coupled plasma emission spectrometry (ICP analysis). Further, the total aluminum amount (weight) contained in the obtained cobalt-coated lithium metal composite oxide was determined by ICP analysis. As a result, it was found that the aluminum element corresponding to 18.9% of the aluminum element (weight) contained in the cobalt-coated lithium metal composite oxide was eluted.
(LiOH residue, Li 2 CO 3 residue)
2 g of the obtained positive electrode active material is taken, added to 100 ml of pure water at 25 ° C., stirred for 3 minutes with a magnetic stirrer, and then subjected to suction filtration. The obtained filtrate was titrated with 0.1 N hydrochloric acid using an automatic titrator, and the amounts of lithium hydroxide and lithium carbonate were quantified. The results are shown in Table 1.

(正極の製造)
得られた正極活物質100重量部、導電助剤としてのアセチレンブラック1重量部及びグラファイトカーボン5重量部、バインダーとしてのポリフッ化ビニリデン4重量部を、分散媒としてのN−メチルピロリドンと共に混合して正極合剤を得た。この正極合剤を集電体であるアルミニウム箔に50μm厚で塗布、乾燥して、正極を製造した。
(ラミネート電池の製造)
人造黒鉛(MAG−D)98重量部、バインダーとしてのカルボキシメチルセルロース(CMC)1重量部、スチレンブタジエン共重合物(SBR)1重量部を、分散媒としての水と共に混合して負極合剤を得た。この負極合剤を集電体である銅箔に塗布、乾燥し負極を製造した。LiPFを1モル/Lの濃度で溶解したエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ビニルカーボネート(VC)を、重量比(EC:EMC:VC)が50:50:1となるように混合して電解液を製造した。上述の正極、負極、電解液を積層、封入してラミネート電池を製造した。
(Manufacture of positive electrode)
100 parts by weight of the obtained positive electrode active material, 1 part by weight of acetylene black as a conductive assistant, 5 parts by weight of graphite carbon, and 4 parts by weight of polyvinylidene fluoride as a binder were mixed together with N-methylpyrrolidone as a dispersion medium. A positive electrode mixture was obtained. This positive electrode mixture was applied to an aluminum foil as a current collector in a thickness of 50 μm and dried to produce a positive electrode.
(Manufacture of laminated batteries)
98 parts by weight of artificial graphite (MAG-D), 1 part by weight of carboxymethyl cellulose (CMC) as a binder and 1 part by weight of styrene butadiene copolymer (SBR) are mixed with water as a dispersion medium to obtain a negative electrode mixture. It was. This negative electrode mixture was applied to a copper foil as a current collector and dried to produce a negative electrode. Ethylene carbonate (EC), ethyl methyl carbonate (EMC), and vinyl carbonate (VC) in which LiPF 6 is dissolved at a concentration of 1 mol / L, the weight ratio (EC: EMC: VC) is 50: 50: 1. To prepare an electrolytic solution. A laminate battery was manufactured by laminating and enclosing the above positive electrode, negative electrode, and electrolyte.

得られたラミネート電池の性能を以下の観点で評価した。結果を表1に示す。
・初期放電容量及び初期充放電効率:3.0から4.2Vの間で0.1Cレートでの充電を行った時の容量を初期充電容量とした。4.2Vから3.0の間での0.1C放電を行った際の容量を初期放電容量とした。初期充放電効率を以下の式で求めた。
初期充放電効率(%)=(初期放電容量÷初期充電容量)×100
・DSC発熱量:前述の初期電気特性の評価で用いた方法に準じた方法で正極活物質を充電した後、電池を解体して正極を取り出し、その示差走査熱量分析を行った。示差走査熱量の測定には日立ハイテクサイエンス社製 DSC−7020 示差走査熱量計を用いた。
The performance of the obtained laminated battery was evaluated from the following viewpoints. The results are shown in Table 1.
-Initial discharge capacity and initial charge / discharge efficiency: The capacity when charging at a rate of 0.1 C between 3.0 and 4.2 V was defined as the initial charge capacity. The capacity when performing 0.1 C discharge between 4.2 V and 3.0 was defined as the initial discharge capacity. The initial charge / discharge efficiency was determined by the following formula.
Initial charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100
DSC calorific value: After charging the positive electrode active material by a method according to the method used in the evaluation of the initial electrical characteristics described above, the battery was disassembled, the positive electrode was taken out, and its differential scanning calorimetric analysis was performed. A differential scanning calorimeter manufactured by Hitachi High-Tech Science Co., Ltd. was used for measurement of the differential scanning calorific value.

〔実施例2〕正極活物質の製造の際、沈殿工程で実施例1の条件を変更した。すなわち、フィルターを通して系外に排出される母液の量を変更してスラリーの固体濃度を600g/Lに調整した。その他の条件は実施例1と同じであった。得られた正極活物質とラミネート電池の評価結果を表1に示す。   [Example 2] During the production of the positive electrode active material, the conditions of Example 1 were changed in the precipitation step. That is, the amount of the mother liquor discharged out of the system through the filter was changed to adjust the solid concentration of the slurry to 600 g / L. Other conditions were the same as in Example 1. Table 1 shows the evaluation results of the obtained positive electrode active material and laminated battery.

〔実施例3〕正極活物質の製造の際、焼成工程で実施例1の条件を変更した。すなわち、ローラーハースキルン内の最高温度設定を730℃に設定し、合計11時間かけて次の連続する3段階で焼成した。第1段階:室温から730℃まで3時間かけて昇温した。第2段階:730℃で5時間保持した。第3段階:730℃から室温まで3時間かけて冷却した。得られた正極活物質ラミネート電池の評価結果を表1に示す。   [Example 3] During the production of the positive electrode active material, the conditions of Example 1 were changed in the firing step. That is, the maximum temperature setting in the roller hearth kiln was set to 730 ° C., and firing was performed in the following three consecutive steps over a total of 11 hours. First stage: The temperature was raised from room temperature to 730 ° C. over 3 hours. Second stage: held at 730 ° C. for 5 hours. Third stage: Cooled from 730 ° C. to room temperature over 3 hours. Table 1 shows the evaluation results of the obtained positive electrode active material laminated battery.

〔比較例1〕正極活物質の製造の際、沈殿工程で実施例1の条件を変更した。すなわち、フィルターを通して系外に排出される母液の量を変更してスラリーの固体濃度を200g/Lに調整した。その他の条件は実施例1と同じであった。得られた正極活物質ラミネート電池の評価結果を表1に示す。
〔比較例2〕正極活物質の製造の際、沈殿工程で実施例1の条件を変更した。すなわち、フィルターを通して系外に排出される母液の量を変更してスラリーの固体濃度を100g/Lに調整した。その他の条件は実施例1と同じであった。得られた正極活物質ラミネート電池の評価結果を表1に示す。
[Comparative Example 1] During the production of the positive electrode active material, the conditions of Example 1 were changed in the precipitation step. That is, the amount of mother liquor discharged out of the system through the filter was changed to adjust the solid concentration of the slurry to 200 g / L. Other conditions were the same as in Example 1. Table 1 shows the evaluation results of the obtained positive electrode active material laminated battery.
[Comparative Example 2] During the production of the positive electrode active material, the conditions of Example 1 were changed in the precipitation step. That is, the amount of the mother liquor discharged out of the system through the filter was changed to adjust the solid concentration of the slurry to 100 g / L. Other conditions were the same as in Example 1. Table 1 shows the evaluation results of the obtained positive electrode active material laminated battery.

Figure 2017130414
Figure 2017130414

高温水酸化ナトリウムに溶出するアルミニウムの量(重量)の正極活物質に含まれる全アルミニウム重量に対する割合は、実施例では10%超であったが、比較例では10%以下であった。実施例の正極活物質ではLiOH残渣、LiCO残渣が低減されている。従って実施例の正極活物質を用いたラミネート電池ではガス発生量を極めて低いレベルに抑えることができる。しかも実施例では、初期放電容量と初期充放電効率の両方が高いから、極めて優れた電池性能が維持されることが予想される。しかも実施例の発熱量は低い。これに対して比較例では発熱量は実施例と同等であるものの、初期放電容量と初期充放電効率の両方が低いから、電池性能が急速に低下することが予想される。このように、本発明の正極活物質はガス発生を特に嫌うラミネート電池に好適であり、しかも初期放電容量、初期充放電効率、低発熱性といった電池の要求性能をバランス良く与えることができる。 The ratio of the amount (weight) of aluminum eluted in the high-temperature sodium hydroxide to the total weight of aluminum contained in the positive electrode active material was more than 10% in the examples, but 10% or less in the comparative examples. In the positive electrode active material of the example, LiOH residue and Li 2 CO 3 residue are reduced. Therefore, in the laminated battery using the positive electrode active material of the example, the gas generation amount can be suppressed to an extremely low level. Moreover, in the examples, since both the initial discharge capacity and the initial charge / discharge efficiency are high, it is expected that extremely excellent battery performance is maintained. Moreover, the calorific value of the example is low. On the other hand, in the comparative example, although the calorific value is equal to that in the example, since both the initial discharge capacity and the initial charge / discharge efficiency are low, it is expected that the battery performance rapidly decreases. As described above, the positive electrode active material of the present invention is suitable for a laminated battery that particularly dislikes gas generation, and can provide the required performance of the battery such as initial discharge capacity, initial charge / discharge efficiency, and low heat generation in a well-balanced manner.

本発明の正極活物質はリチウムイオン電池用正極材に適しており、特にラミネート電池に有用である。本発明はラミネート電池の性能向上に貢献し、携帯端末用電池や自動車用電池の一層の小型化と安全性向上、長寿命化をもたらすことができる。   The positive electrode active material of the present invention is suitable for a positive electrode material for a lithium ion battery, and is particularly useful for a laminate battery. The present invention contributes to improving the performance of a laminated battery, and can further reduce the size, improve safety, and prolong the life of a battery for mobile terminals and a battery for automobiles.

Claims (5)

以下の一般式(1)で表される組成を有するリチウム金属複合酸化物からなり、
LiNiCoAl ・・・(1)
(ただしa=0.8〜1.2、b=0.7〜0.95、c=0.02〜0.2、d=0.005〜0.1であり、かつ、b+c+d=1である。)
上記リチウム金属複合化合物はさらに、
元素M2(M2は、アルカリ金属、アルカリ土類金属、ランタノイド系元素、アクチノイド系元素、及び周期律表第3族〜17族の元素から選択される少なくとも1種の元素である。)を含有する化合物で被覆されており、
以下の方法(ア)により測定される高温水酸化ナトリウムに溶出するアルミニウム量(重量)が該リチウム金属複合酸化物に含まれる全アルミニウム重量の10%を超える、
〔方法(ア):12.5gの正極活物質と20.0gの水酸化ナトリウムをニッケル製のるつぼに取る。このるつぼを500℃に加熱したマッフル炉に設置する。水酸化ナトリウムが十分溶解してから5分後にるつぼをマッフル炉から取り出す。直ちにるつぼの内容物を250mlの純水に分散し攪拌する。上澄み液を誘導結合プラズマ発光分析(ICP分析)により分析することにより、500℃の水酸化ナトリウムに溶出したアルミニウム元素の重量を測定する。〕
リチウムイオン二次電池用の正極活物質。
It consists of a lithium metal composite oxide having a composition represented by the following general formula (1),
Li a Ni b Co c Al d O 2 (1)
(However, a = 0.8 to 1.2, b = 0.7 to 0.95, c = 0.02 to 0.2, d = 0.005 to 0.1, and b + c + d = 1. is there.)
The lithium metal composite compound further includes
Element M2 (M2 is at least one element selected from alkali metals, alkaline earth metals, lanthanoid elements, actinoid elements, and elements of Groups 3 to 17 of the periodic table). Coated with a compound,
The amount of aluminum (weight) eluted in high-temperature sodium hydroxide measured by the following method (a) exceeds 10% of the total aluminum weight contained in the lithium metal composite oxide,
[Method (a): Take 12.5 g of the positive electrode active material and 20.0 g of sodium hydroxide in a nickel crucible. This crucible is placed in a muffle furnace heated to 500 ° C. 5 minutes after the sodium hydroxide is sufficiently dissolved, the crucible is removed from the muffle furnace. Immediately disperse the contents of the crucible in 250 ml of pure water and stir. By analyzing the supernatant by inductively coupled plasma optical emission spectrometry (ICP analysis), the weight of aluminum element eluted in sodium hydroxide at 500 ° C. is measured. ]
Positive electrode active material for lithium ion secondary battery.
LiOH残渣が0.2重量%以下であり、LiCO残渣が0.2重量%以下である、請求項1に記載の正極活物質。 The positive electrode active material according to claim 1, wherein the LiOH residue is 0.2% by weight or less and the Li 2 CO 3 residue is 0.2% by weight or less. 請求項1又は2に記載の正極活物質を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive electrode active material of Claim 1 or 2. 請求項3に記載のリチウムイオン電池用正極を備えるリチウムイオン電池。   A lithium ion battery comprising the positive electrode for a lithium ion battery according to claim 3. ラミネート電池である、請求項4に記載のリチウムイオン電池。   The lithium ion battery according to claim 4 which is a laminate battery.
JP2016010693A 2016-01-22 2016-01-22 Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof Pending JP2017130414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010693A JP2017130414A (en) 2016-01-22 2016-01-22 Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010693A JP2017130414A (en) 2016-01-22 2016-01-22 Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2017130414A true JP2017130414A (en) 2017-07-27

Family

ID=59396271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010693A Pending JP2017130414A (en) 2016-01-22 2016-01-22 Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof

Country Status (1)

Country Link
JP (1) JP2017130414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020529715A (en) * 2018-03-09 2020-10-08 エルジー・ケム・リミテッド Positive electrode active material, its manufacturing method, positive electrode including this and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009016302A (en) * 2007-07-09 2009-01-22 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2010129471A (en) * 2008-11-28 2010-06-10 Sony Corp Cathode active material and nonaqueous electrolyte battery
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
WO2011089958A1 (en) * 2010-01-21 2011-07-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2014142314A1 (en) * 2013-03-14 2014-09-18 日本化学産業株式会社 Treatment process for a positive electrode active material for lithium-ion secondary battery
WO2015111740A1 (en) * 2014-01-27 2015-07-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009016302A (en) * 2007-07-09 2009-01-22 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2010129471A (en) * 2008-11-28 2010-06-10 Sony Corp Cathode active material and nonaqueous electrolyte battery
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
WO2011089958A1 (en) * 2010-01-21 2011-07-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2014142314A1 (en) * 2013-03-14 2014-09-18 日本化学産業株式会社 Treatment process for a positive electrode active material for lithium-ion secondary battery
WO2015111740A1 (en) * 2014-01-27 2015-07-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020529715A (en) * 2018-03-09 2020-10-08 エルジー・ケム・リミテッド Positive electrode active material, its manufacturing method, positive electrode including this and secondary battery
JP7031938B2 (en) 2018-03-09 2022-03-08 エルジー・ケム・リミテッド Positive electrode active material, its manufacturing method, positive electrode and secondary battery including this
US11482702B2 (en) 2018-03-09 2022-10-25 Lg Chem, Ltd. Positive electrode active material, preparation method thereof, positive electrode including same and secondary battery

Similar Documents

Publication Publication Date Title
CN108390022B (en) Carbon-metal oxide composite coated lithium battery ternary positive electrode material, preparation method thereof and lithium battery
JP5373889B2 (en) Cathode active material for lithium ion battery
JP5963745B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI527298B (en) A positive electrode active material particle powder, a method for producing the same, and a nonaqueous electrolyte battery
TWI596828B (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI479726B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP2006253140A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, its manufacturing method and lithium secondary battery containing the same
JP2015122269A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2022081638A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
WO2012128288A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2017130412A (en) Doped and coated positive electrode active material for composite lithium ion battery and lithium ion battery arranged by use thereof
JP6026404B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2017130409A (en) Doped and coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
CN110114917B (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery
JP2022504835A (en) Lithium transition metal composite oxide and its manufacturing method
JP2017130414A (en) Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP6030546B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2017130411A (en) Coated positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP2017126518A (en) Cathode active material for composite lithium ion battery, and lithium ion battery using the same
JP2017130410A (en) Doped positive electrode active material for composite lithium ion battery, and lithium ion battery arranged by use thereof
JP2017195020A (en) Method for producing positive electrode active material for lithium ion battery
TWI453984B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602