JP2017130385A - Scandia stabilized zirconia powder for solid oxide fuel cell, manufacturing method thereof, scandia-stabilized zirconia sintered compact for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell - Google Patents

Scandia stabilized zirconia powder for solid oxide fuel cell, manufacturing method thereof, scandia-stabilized zirconia sintered compact for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell Download PDF

Info

Publication number
JP2017130385A
JP2017130385A JP2016009819A JP2016009819A JP2017130385A JP 2017130385 A JP2017130385 A JP 2017130385A JP 2016009819 A JP2016009819 A JP 2016009819A JP 2016009819 A JP2016009819 A JP 2016009819A JP 2017130385 A JP2017130385 A JP 2017130385A
Authority
JP
Japan
Prior art keywords
scandia
stabilized zirconia
sintered body
zirconia powder
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016009819A
Other languages
Japanese (ja)
Other versions
JP6818411B2 (en
Inventor
史載 玉▲崎▼
Fuminori Tamasaki
史載 玉▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2016009819A priority Critical patent/JP6818411B2/en
Publication of JP2017130385A publication Critical patent/JP2017130385A/en
Application granted granted Critical
Publication of JP6818411B2 publication Critical patent/JP6818411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: scandia stabilized zirconia powder for a solid oxide fuel cell, which is high in crystal structure stability, and low in grain boundary resistance value and which has high ion conductivity; scandia-stabilized zirconia sintered compact for a solid oxide fuel cell; and methods for manufacturing them.SOLUTION: Scandia stabilized zirconia powder for a solid oxide fuel cell comprises: a compound expressed by the following general formula (1): (ZrO)(ScO)(AlO). In the formula (1), 0.09≤x≤0.11 and 0.002≤a<0.01. The scandia stabilized zirconia powder has a crystal structure of a rhombohedral crystal phase. A sintered compact of the scandia stabilized zirconia powder has a crystal structure of a cubic crystal phase. The sintered compact of the scandia stabilized zirconia powder is 12 Ωcm or less in grain boundary resistance value at 550°C.SELECTED DRAWING: None

Description

本発明は,固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末及びその製造方法,固体酸化物形燃料電池用スカンジア安定化ジルコニア焼結体及びその製造方法,並びに固体酸化物形燃料電池に関する。   The present invention relates to a scandia-stabilized zirconia powder for a solid oxide fuel cell and a production method thereof, a scandia-stabilized zirconia sintered body for a solid oxide fuel cell, a production method thereof, and a solid oxide fuel cell.

SOFCと称される固体酸化物形燃料電池(Solid Oxide Fuel Cell)は,他形式の燃料電池よりも発電効率が良いことが知られている。そのため,SOFCは,エネルギーを有効に利用できる新しい発電システムを構築できる点で注目されており,近年,その開発が盛んに進められている。   It is known that a solid oxide fuel cell called SOFC has better power generation efficiency than other types of fuel cells. Therefore, SOFC is attracting attention because it can construct a new power generation system that can effectively use energy, and its development has been actively promoted in recent years.

SOFCは,固体電解質の一方の面に燃料極を有し,固体電解質の反対側の面に空気極を有した単セル構造を備えて構成される。固体電解質を形成させるための電解質材料としては,イットリア安定化ジルコニア((ZrO0.92(Y0.08,以下,「8YSZ」と略記する)がよく知られている。また,ジルコニアの安定化剤であるスカンジアを用いたスカンジア安定化ジルコニア((ZrO0.9(Sc0.1,以下,「10ScSZ」と略記する)も,固体電解質用の電解質材料として知られている。10ScSZは,3点曲げ強度や破壊靱性等の機械的特性は8YSZと同等であるものの,10ScSZの導電率は,8YSZのそれよりも約3倍高いという特徴を有している。 The SOFC has a single cell structure having a fuel electrode on one surface of a solid electrolyte and an air electrode on the opposite surface of the solid electrolyte. As an electrolyte material for forming a solid electrolyte, yttria-stabilized zirconia ((ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 , hereinafter abbreviated as “8YSZ”) is well known. In addition, scandia-stabilized zirconia ((ZrO 2 ) 0.9 (Sc 2 O 3 ) 0.1 , hereinafter abbreviated as “10ScSZ”) using scandia, which is a zirconia stabilizer, is also used for solid electrolytes. It is known as an electrolyte material. Although 10ScSZ has mechanical characteristics such as three-point bending strength and fracture toughness equivalent to 8YSZ, 10ScSZ has a feature that the conductivity of 10ScSZ is about three times higher than that of 8YSZ.

10ScSZは,高温領域では結晶状態が立方晶相であるが,550℃付近になると立方晶相から菱面体晶相への相転移が起こることが知られている。この相転移が起こると,10ScSZの導電率が急激に低下するという欠点を有する。すなわち,10ScSZは,導電率の温度依存が大きい材料といえる。また,そのような相転移によって,体積変化が起こり,結果として,10ScSZの焼結体に微細な亀裂が発生しやすいという欠点も有する。   10ScSZ is known to have a cubic phase in the high-temperature region, but a phase transition from the cubic phase to the rhombohedral phase occurs at around 550 ° C. When this phase transition occurs, there is a disadvantage that the conductivity of 10ScSZ rapidly decreases. That is, 10ScSZ can be said to be a material having a large temperature dependence of conductivity. In addition, volume change occurs due to such a phase transition, and as a result, there is a drawback that fine cracks are likely to occur in the sintered body of 10ScSZ.

10ScSZの性能を向上させる方法としては,例えば,第3の成分を添加して10ScSZに固溶化させる技術が知られている(例えば,特許文献1,2等を参照)。   As a method for improving the performance of 10ScSZ, for example, a technique of adding a third component to form a solid solution in 10ScSZ is known (see, for example, Patent Documents 1 and 2).

特開平5−69720号公報JP-A-5-69720 特開2000−340240号公報JP 2000-340240 A

しかし,従来のスカンジア安定化ジルコニア材料では,第3の成分とスカンジア安定化ジルコニアの結晶構造との相関が詳細に分析されていないため,結晶構造の変化に伴う導電率の低下を招いていた。そのため,スカンジア安定化ジルコニア材料に高イオン電導性を付与するという観点からは課題が残るものであった。   However, in the conventional scandia-stabilized zirconia material, the correlation between the third component and the crystal structure of the scandia-stabilized zirconia has not been analyzed in detail, resulting in a decrease in conductivity due to a change in the crystal structure. Therefore, a problem remains from the viewpoint of imparting high ion conductivity to the scandia-stabilized zirconia material.

本発明は,上記に鑑みてなされたものであり,結晶構造の安定性が高く,しかも,低い粒界抵抗値を有する,高イオン電導性の固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末及び固体酸化物形燃料電池用スカンジア安定化ジルコニア焼結体,並びにこれらの製造方法,さらには固体酸化物形燃料電池を提供することを目的とする。   The present invention has been made in view of the above, and has high crystal structure stability and low grain boundary resistance, and has high ion conductivity scandia-stabilized zirconia powder for solid oxide fuel cells and An object of the present invention is to provide a scandia-stabilized zirconia sintered body for a solid oxide fuel cell, a production method thereof, and a solid oxide fuel cell.

本発明者は,上記目的を達成すべく鋭意研究を重ねた結果,スカンジア安定化ジルコニアにおいて,第3の成分としてアルミナを選択し,このアルミナの含有量を特定の範囲にすることによって,上記目的を達成できることを見出し,本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor selected alumina as the third component in scandia-stabilized zirconia, and made the content of this alumina within a specific range, thereby achieving the above object. The present invention has been completed.

すなわち,本発明は,例えば,以下の項に記載の主題を包含する。
項1.固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末であって,
下記一般式(1)
(ZrO1−x−a(Sc(Al (1)
で表される化合物を含有し,
前記式(1)において,0.09≦x≦0.11,かつ,0.002≦a<0.01であり,
結晶構造が菱面体晶相であり,
前記スカンジア安定化ジルコニア粉末の焼結体の結晶構造が立方晶相であり,
前記スカンジア安定化ジルコニア粉末の焼結体の550℃における粒界抵抗値が12Ω・cm以下である,スカンジア安定化ジルコニア粉末。
項2.前記スカンジア安定化ジルコニア粉末の焼結体の500℃における粒界抵抗値が60Ω・cm以下である,上記項1に記載のスカンジア安定化ジルコニア粉末。
項3.前記スカンジア安定化ジルコニア粉末の焼結体の450℃における粒界抵抗値が200Ω・cm以下である,上記項1に記載のスカンジア安定化ジルコニア粉末。
項4.前記スカンジア安定化ジルコニア粉末の焼結体の400℃における粒界抵抗値が1000Ω・cm以下である,上記項1に記載のスカンジア安定化ジルコニア粉末。
項5.前記焼結体は,600℃の温度雰囲気下,1000時間の熱処理を経ても結晶構造が変化しない,上記項1〜4のいずれか1項に記載のスカンジア安定化ジルコニア粉末。
項6.固体酸化物形燃料電池用スカンジア安定化ジルコニア焼結体であって,
下記一般式(1)
(ZrO1−x−a(Sc(Al (1)
で表される化合物を含有し,
前記式(1)において,0.09≦x≦0.11,かつ,0.002≦a<0.01であり,
結晶構造が立方晶相であり,
550℃における粒界抵抗値が12Ω・cm以下である,スカンジア安定化ジルコニア焼結体。
項7.500℃における粒界抵抗値が60Ω・cm以下である,上記項6に記載のスカンジア安定化ジルコニア焼結体。
項8.450℃における粒界抵抗値が200Ω・cm以下である,上記項6に記載のスカンジア安定化ジルコニア焼結体。
項9.400℃における粒界抵抗値が1000Ω・cm以下である,上記項6に記載のスカンジア安定化ジルコニア焼結体。
項10.600℃の温度雰囲気下,1000時間の熱処理を経ても結晶構造が変化しない,上記項6〜9のいずれか1項に記載のスカンジア安定化ジルコニア焼結体。
項11.上記項1〜5のいずれか1項に記載のスカンジア安定化ジルコニア粉末の製造方法であって,
ジルコニウム塩を含む原料とスカンジウム塩を含む原料とを混合した後に中和することによって,スカンジウム−ジルコニウム複合水酸化物を得る第一工程,
得られた前記水酸化物を焼成することにより酸化物を得る第二工程,
得られた前記酸化物にアルミナを添加する第三工程,
を含むスカンジア安定化ジルコニア粉末の製造方法。
項12.請求項6〜10のいずれか1項に記載のスカンジア安定化ジルコニア焼結体の製造方法であって,
ジルコニウム塩を含む原料とスカンジウム塩を含む原料とを混合した後に中和することによって,スカンジウム−ジルコニウム複合水酸化物を得る第一工程,
得られた前記水酸化物を焼成することにより酸化物を得る第二工程,
得られた酸化物にアルミナを添加する第三工程,
前記第三工程で得られたアルミナが添加された酸化物を焼結させる第四工程,
を含むスカンジア安定化ジルコニア焼結体の製造方法。
項13.上記項6〜10のいずれか1項に記載のスカンジア安定化ジルコニア焼結体を構成要素として含む,固体酸化物形燃料電池。
That is, the present invention includes, for example, the subject matters described in the following sections.
Item 1. Scandia-stabilized zirconia powder for solid oxide fuel cell,
The following general formula (1)
(ZrO 2 ) 1-xa (Sc 2 O 3 ) x (Al 2 O 3 ) a (1)
Containing a compound represented by
In the formula (1), 0.09 ≦ x ≦ 0.11, and 0.002 ≦ a <0.01,
The crystal structure is rhombohedral,
The crystal structure of the sintered body of the scandia-stabilized zirconia powder is a cubic phase,
The scandia-stabilized zirconia powder, wherein the sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 550 ° C. of 12 Ω · cm or less.
Item 2. The scandia-stabilized zirconia powder according to item 1, wherein the sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 500 ° C. of 60 Ω · cm or less.
Item 3. 2. The scandia-stabilized zirconia powder according to item 1, wherein the sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 450 ° C. of 200 Ω · cm or less.
Item 4. 2. The scandia-stabilized zirconia powder according to item 1, wherein the sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 1000 ° C. of 1000 Ω · cm or less.
Item 5. Item 5. The scandia-stabilized zirconia powder according to any one of Items 1 to 4, wherein the sintered body does not change in crystal structure even after heat treatment for 1000 hours in a temperature atmosphere of 600 ° C.
Item 6. A scandia-stabilized zirconia sintered body for a solid oxide fuel cell,
The following general formula (1)
(ZrO 2 ) 1-xa (Sc 2 O 3 ) x (Al 2 O 3 ) a (1)
Containing a compound represented by
In the formula (1), 0.09 ≦ x ≦ 0.11, and 0.002 ≦ a <0.01,
The crystal structure is cubic phase,
A scandia-stabilized zirconia sintered body having a grain boundary resistance value at 550 ° C. of 12 Ω · cm or less.
Item 7. The scandia-stabilized zirconia sintered body according to Item 6, wherein the grain boundary resistance value at 7.500 ° C is 60 Ω · cm or less.
Item 8. The scandia-stabilized zirconia sintered body according to Item 6, wherein the grain boundary resistance value at 450 ° C is 200 Ω · cm or less.
Item 9. The scandia-stabilized zirconia sintered body according to Item 6, wherein the grain boundary resistance at 400 ° C is 1000 Ω · cm or less.
Item 10. The scandia-stabilized zirconia sintered body according to any one of Items 6 to 9, wherein the crystal structure does not change even after 1000 hours of heat treatment in a temperature atmosphere of 600 ° C.
Item 11. 6. A method for producing a scandia-stabilized zirconia powder according to any one of items 1 to 5,
A first step of obtaining a scandium-zirconium composite hydroxide by mixing a raw material containing a zirconium salt and a raw material containing a scandium salt and then neutralizing the mixture,
A second step of obtaining an oxide by firing the obtained hydroxide,
A third step of adding alumina to the obtained oxide,
A process for producing scandia-stabilized zirconia powder.
Item 12. A method for producing a scandia-stabilized zirconia sintered body according to any one of claims 6 to 10,
A first step of obtaining a scandium-zirconium composite hydroxide by mixing a raw material containing a zirconium salt and a raw material containing a scandium salt and then neutralizing the mixture,
A second step of obtaining an oxide by firing the obtained hydroxide,
A third step of adding alumina to the resulting oxide,
A fourth step of sintering the oxide added with alumina obtained in the third step;
A process for producing a scandia-stabilized zirconia sintered body comprising:
Item 13. 11. A solid oxide fuel cell comprising the scandia-stabilized zirconia sintered body according to any one of items 6 to 10 as a constituent element.

本発明に係る固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末は,結晶構造の安定性が高く,しかも,当該粉末の焼結体は低い粒界抵抗値を有するため,高いイオン電導性を備える。そのため,上記スカンジア安定化ジルコニア粉末は,固体酸化物形燃料電池用の材料として使用すると,固体酸化物形燃料電池に高い発電効率を付与することができる。   The scandia-stabilized zirconia powder for a solid oxide fuel cell according to the present invention has high crystal structure stability, and the sintered body of the powder has low intergranular resistance, and thus has high ionic conductivity. . Therefore, when the scandia-stabilized zirconia powder is used as a material for a solid oxide fuel cell, high power generation efficiency can be imparted to the solid oxide fuel cell.

本発明に係る固体酸化物形燃料電池用スカンジア安定化ジルコニア焼結体は,結晶構造の安定性が高く,しかも,低い粒界抵抗値を有するため,高いイオン電導性を備える。そのため,上記スカンジア安定化ジルコニア焼結体を使用して固体酸化物形燃料電池を製作すると,該固体酸化物形燃料電池に高い発電効率を付与することができる。   The scandia-stabilized zirconia sintered body for a solid oxide fuel cell according to the present invention has high ionic conductivity because of its high crystal structure stability and low grain boundary resistance. Therefore, when a solid oxide fuel cell is manufactured using the scandia-stabilized zirconia sintered body, high power generation efficiency can be imparted to the solid oxide fuel cell.

本発明に係るスカンジア安定化ジルコニア粉末の製造方法は,上記スカンジア安定化ジルコニア粉末を製造する方法として適している。   The method for producing a scandia-stabilized zirconia powder according to the present invention is suitable as a method for producing the scandia-stabilized zirconia powder.

本発明に係るスカンジア安定化ジルコニア焼結体の製造方法は,上記スカンジア安定化ジルコニア焼結体を製造する方法として適している。   The method for producing a scandia-stabilized zirconia sintered body according to the present invention is suitable as a method for producing the scandia-stabilized zirconia sintered body.

以下,本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施形態のスカンジア安定化ジルコニア粉末は,固体酸化物形燃料電池に用いられるものであり,下記一般式(1)
(ZrO1−x−a(Sc(Al (1)
で表される化合物を含有する。
The scandia-stabilized zirconia powder of this embodiment is used for a solid oxide fuel cell and has the following general formula (1)
(ZrO 2 ) 1-xa (Sc 2 O 3 ) x (Al 2 O 3 ) a (1)
The compound represented by these is contained.

ここで,前記式(1)において,0.09≦x≦0.11,かつ,0.002≦a<0.01である。   Here, in the formula (1), 0.09 ≦ x ≦ 0.11, and 0.002 ≦ a <0.01.

以下,上記式(1)で表される化合物を「化合物A」と略記することがある。   Hereinafter, the compound represented by the above formula (1) may be abbreviated as “compound A”.

上記式(1)において,xの値は,0.09≦x≦0.11の範囲である。xの値がこの範囲であれば,化合物Aで形成される結晶構造が安定となる。より好ましいxの値は,0.095≦x≦0.105,特に好ましくは0.097≦x≦0.103である。   In the above formula (1), the value of x is in the range of 0.09 ≦ x ≦ 0.11. When the value of x is within this range, the crystal structure formed with compound A is stable. A more preferable value of x is 0.095 ≦ x ≦ 0.105, particularly preferably 0.097 ≦ x ≦ 0.103.

上記式(1)において,aの値は,0.002≦a<0.01である。aの値がこの範囲であれば,化合物Aで形成される結晶構造が安定となり,しかも,化合物Aを含むスカンジア安定化ジルコニア粉末の焼結体の粒界抵抗値が低くなり,高いイオン電導性を備える焼結体を形成しやすい。aの値が0.002を下回ると,スカンジア安定化ジルコニア粉末の焼結体は,後述するような立方晶相を維持することが困難になり,粒界抵抗値の上昇を引き起こす。また,aの値が0.01以上であると,スカンジア安定化ジルコニア粉末の焼結体の粒界抵抗値の上昇を引き起こす。より好ましいaの値は,0.003≦a<0.009であり,この場合,化合物Aを含むスカンジア安定化ジルコニア粉末の焼結体の粒界抵抗値が特に低くなり,さらに高いイオン電導性を備えるようになる。特に好ましいaの値は,0.004≦a≦0.008である。   In the above formula (1), the value of a is 0.002 ≦ a <0.01. If the value of a is within this range, the crystal structure formed with compound A becomes stable, and the grain boundary resistance value of the sintered body of scandia-stabilized zirconia powder containing compound A becomes low, resulting in high ionic conductivity. It is easy to form a sintered body comprising When the value of a is less than 0.002, it becomes difficult for the sintered body of the scandia-stabilized zirconia powder to maintain a cubic phase as will be described later, resulting in an increase in the grain boundary resistance value. On the other hand, if the value of a is 0.01 or more, the grain boundary resistance value of the sintered body of the scandia-stabilized zirconia powder is increased. A more preferable value of a is 0.003 ≦ a <0.009. In this case, the intergranular resistance value of the sintered body of the scandia-stabilized zirconia powder containing Compound A is particularly low, and the ionic conductivity is even higher. It comes to be equipped with. A particularly preferable value of a is 0.004 ≦ a ≦ 0.008.

化合物Aは,ジルコニア(ZrO)中にスカンジア(Sc)が固溶されたスカンジア安定化ジルコニア(以下,「ScSZ」と略記する)が主成分として形成されている。そして,Alは,ScSZ中に良好な分散状態で存在する。これにより,化合物Aは,結晶構造が安定となりやすく,しかも,優れたイオン電導性を備えることが可能になる。 Compound A is mainly composed of scandia-stabilized zirconia (hereinafter abbreviated as “ScSZ”) in which scandia (Sc 2 O 3 ) is dissolved in zirconia (ZrO 2 ). Then, Al 2 O 3 is present in a good dispersed state in a ScSZ. As a result, the compound A can easily have a stable crystal structure and can have excellent ionic conductivity.

上記化合物Aを含むスカンジア安定化ジルコニア粉末の結晶構造は菱面体晶相である。   The crystal structure of the scandia-stabilized zirconia powder containing the compound A is a rhombohedral phase.

さらに,本実施形態のスカンジア安定化ジルコニア粉末の焼結体は,結晶構造が立方晶相である。   Furthermore, the sintered body of the scandia-stabilized zirconia powder of this embodiment has a cubic crystal structure.

特に,本実施形態のスカンジア安定化ジルコニア粉末の焼結体は,結晶構造が立方晶相のみから形成されることが好ましい。スカンジア安定化ジルコニア粉末の焼結体の結晶構造が立方晶相のみから形成されることによって,焼結体の抵抗値が低くなり,高いイオン電導性を備える。   In particular, it is preferable that the sintered body of the scandia-stabilized zirconia powder of the present embodiment has a crystal structure formed only of a cubic phase. By forming the crystal structure of the scandia-stabilized zirconia powder sintered body only from the cubic phase, the resistance value of the sintered body is lowered and high ionic conductivity is provided.

スカンジア安定化ジルコニア粉末及びこの焼結体の結晶構造は,X線回折法(XRD)によって解析されるX線回折ピークから判別可能である。具体的には,スカンジア安定化ジルコニア粉末のX線回折測定を行い,得られたX線回折ピークにおいて,2θ=28°〜32°,49°〜52°付近に観測されるX線回折ピークが2本に,59°〜62°付近に観測されるX線回折ピークが4本に分裂した場合は菱面体晶相であり,分裂しない場合は立方晶相と判定できる。尚,菱面体晶相は三方晶相ということもできる。   The crystal structure of the scandia-stabilized zirconia powder and the sintered body can be discriminated from an X-ray diffraction peak analyzed by an X-ray diffraction method (XRD). Specifically, X-ray diffraction measurement of scandia-stabilized zirconia powder was performed, and in the obtained X-ray diffraction peaks, X-ray diffraction peaks observed in the vicinity of 2θ = 28 ° to 32 ° and 49 ° to 52 ° When the X-ray diffraction peak observed in the vicinity of 59 ° to 62 ° in two splits into four, it is a rhombohedral phase, and when it does not split, it can be determined as a cubic phase. The rhombohedral phase can also be called a trigonal phase.

本実施形態のスカンジア安定化ジルコニア粉末の焼結体は,600℃の温度雰囲気下,1000時間の熱処理を経ても結晶構造が変化しないことが好ましい。これによって,スカンジア安定化ジルコニア粉末の焼結体では,その粒界抵抗値が低くなり,より高いイオン電導性を備えやすくなり,しかも,結晶構造が温度に依存しにくくなることで,固体酸化物形燃料電池の耐久性も向上する。   The sintered body of the scandia-stabilized zirconia powder of the present embodiment preferably has no change in crystal structure even after 1000 hours of heat treatment in a temperature atmosphere of 600 ° C. As a result, the sintered body of scandia-stabilized zirconia powder has a low grain boundary resistance, is easily provided with higher ionic conductivity, and the crystal structure is less dependent on temperature. The durability of the fuel cell is also improved.

本実施形態のスカンジア安定化ジルコニア粉末では,その焼結体の550℃における粒界抵抗値が12Ω・cm以下である。粒界抵抗値がこの範囲であることによって,スカンジア安定化ジルコニア粉末の焼結体は,高いイオン電導性を備える。   In the scandia-stabilized zirconia powder of this embodiment, the grain boundary resistance value at 550 ° C. of the sintered body is 12 Ω · cm or less. When the grain boundary resistance is within this range, the sintered body of scandia-stabilized zirconia powder has high ionic conductivity.

スカンジア安定化ジルコニア粉末の焼結体がより高いイオン電導性を備えるという観点から,スカンジア安定化ジルコニア粉末の焼結体の500℃における粒界抵抗値は60Ω・cm以下であることが好ましい。   From the viewpoint that the sintered body of the scandia-stabilized zirconia powder has higher ionic conductivity, the grain boundary resistance value at 500 ° C. of the sintered body of the scandia-stabilized zirconia powder is preferably 60 Ω · cm or less.

また,スカンジア安定化ジルコニア粉末の焼結体がより高いイオン電導性を備えるという観点から,スカンジア安定化ジルコニア粉末の焼結体の450℃における粒界抵抗値が200Ω・cm以下であることが好ましい。   Further, from the viewpoint that the sintered body of the scandia-stabilized zirconia powder has higher ionic conductivity, the grain boundary resistance value at 450 ° C. of the sintered body of the scandia-stabilized zirconia powder is preferably 200 Ω · cm or less. .

また,スカンジア安定化ジルコニア粉末の焼結体がより高いイオン電導性を備えるという観点から,スカンジア安定化ジルコニア粉末の焼結体の400℃における粒界抵抗値が1000Ω・cm以下であることが好ましい。   Further, from the viewpoint that the sintered body of the scandia-stabilized zirconia powder has higher ionic conductivity, the grain boundary resistance value at 400 ° C. of the sintered body of the scandia-stabilized zirconia powder is preferably 1000 Ω · cm or less. .

本実施形態のスカンジア安定化ジルコニア粉末は,焼結されるとスカンジア安定化ジルコニア焼結体を形成する。当該焼結体は,上述したとおり,結晶構造が立方晶相であり,550℃における粒界抵抗値が12Ω・cm以下となる。例えば,スカンジア安定化ジルコニア焼結体は,スカンジア安定化ジルコニア粉末を1200〜1600℃の範囲内で焼結することで得ることができる。好ましくはスカンジア安定化ジルコニア粉末を1300〜1500℃の範囲内で焼結することである。   When the scandia-stabilized zirconia powder of this embodiment is sintered, it forms a scandia-stabilized zirconia sintered body. As described above, the sintered body has a cubic crystal structure and a grain boundary resistance at 550 ° C. of 12 Ω · cm or less. For example, a scandia-stabilized zirconia sintered body can be obtained by sintering scandia-stabilized zirconia powder within a range of 1200 to 1600 ° C. Preferably, the scandia-stabilized zirconia powder is sintered within a range of 1300 to 1500 ° C.

本実施形態のスカンジア安定化ジルコニア粉末及びこの焼結体(本実施形態のスカンジア安定化ジルコニア焼結体)はいずれも,結晶構造が維持されやすいので結晶構造の安定性が高く,しかも,前記焼結体は低い粒界抵抗値を有することから優れたイオン電導性を備える。そのため,上記スカンジア安定化ジルコニア粉末又は上記スカンジア安定化ジルコニア焼結体は,固体酸化物形燃料電池用の材料として使用すると,固体酸化物形燃料電池に高い発電効率を付与することができる。   Both the scandia-stabilized zirconia powder of this embodiment and this sintered body (scandia-stabilized zirconia sintered body of this embodiment) have a high crystal structure stability because the crystal structure is easily maintained. Since the aggregate has a low grain boundary resistance value, it has excellent ionic conductivity. Therefore, when the scandia-stabilized zirconia powder or the scandia-stabilized zirconia sintered body is used as a material for a solid oxide fuel cell, high power generation efficiency can be imparted to the solid oxide fuel cell.

本実施形態のスカンジア安定化ジルコニア粉末は,本発明の効果が阻害されない程度であれば,その他の添加剤が含まれていてもよい。例えば,スカンジア安定化ジルコニア粉末には,化合物A以外の化合物が含まれていてもよいし,あるいは,焼結助剤等の添加剤が含まれていてもよい。   The scandia-stabilized zirconia powder of this embodiment may contain other additives as long as the effects of the present invention are not inhibited. For example, the scandia-stabilized zirconia powder may contain a compound other than compound A, or may contain additives such as a sintering aid.

上記化合物Aは,共沈法,ゾルゲル法等の各種の方法で製造することができる。特に,上記化合物Aは,共沈法で製造することが好ましい。この場合,化合物AにおいてAl成分(アルミナ成分)の分散状態が向上しやすくなる。その結果として,化合物Aを含むスカンジア安定化ジルコニア粉末及びスカンジア安定化ジルコニア焼結体の結晶構造が安定する。また,スカンジア安定化ジルコニア焼結体の粒界抵抗値が低くなり,高いイオン電導性を備えるようになるので,固体酸化物形燃料電池に高い発電効率を付与することができる。 The compound A can be produced by various methods such as a coprecipitation method and a sol-gel method. In particular, the compound A is preferably produced by a coprecipitation method. In this case, in the compound A, the dispersion state of the Al 2 O 3 component (alumina component) is easily improved. As a result, the crystal structures of the scandia-stabilized zirconia powder containing compound A and the scandia-stabilized zirconia sintered body are stabilized. Also, the scandia-stabilized zirconia sintered body has a low grain boundary resistance value and high ionic conductivity, so that high power generation efficiency can be imparted to the solid oxide fuel cell.

共沈法で化合物Aを製造する場合,一例として,下記の第一工程,第二工程及び第三工程を含む工程によって製造することができる。
・ジルコニウム塩を含む原料とスカンジウム塩を含む原料とを混合した後に中和することによって,スカンジウム−ジルコニウム複合水酸化物を得る第一工程,
・得られた前記水酸化物を焼成することにより酸化物を得る第二工程,
・得られた前記酸化物にアルミナを添加する第三工程。
When compound A is produced by the coprecipitation method, it can be produced, for example, by the following steps including the first step, the second step and the third step.
A first step of obtaining a scandium-zirconium composite hydroxide by mixing a raw material containing a zirconium salt and a raw material containing a scandium salt and then neutralizing the mixture;
A second step of obtaining an oxide by firing the obtained hydroxide,
A third step of adding alumina to the obtained oxide.

第一工程では,ジルコニウム塩を含む原料とスカンジウム塩を含む原料を混合して混合物を調製し,この混合物をアルカリによって中和することで,スカンジウム−ジルコニウム複合水酸化物を得る。ここで使用するアルカリとしては特に限定されず,例えば,水酸化ナトリウム,水酸化カリウム,水酸化アンモニウム等を使用することができる。アルカリは1種又は2種以上を組み合わせて使用することができる。   In the first step, a raw material containing a zirconium salt and a raw material containing a scandium salt are mixed to prepare a mixture, and the mixture is neutralized with an alkali to obtain a scandium-zirconium composite hydroxide. It does not specifically limit as an alkali used here, For example, sodium hydroxide, potassium hydroxide, ammonium hydroxide etc. can be used. An alkali can be used 1 type or in combination of 2 or more types.

ジルコニウム塩としては,ジルコニウムイオンを供給できる化合物であれば特に限定されず,例えば,オキシ硝酸ジルコニウム,オキシ塩化ジルコニウム等のジルコニウム無機酸塩;ジルコニウムテトラブトキシド等のジルコニウム有機酸塩;などが挙げられる。ジルコニウム塩を含む原料は,上記ジルコニウム塩を1種又は2種以上含むことができる。   The zirconium salt is not particularly limited as long as it is a compound capable of supplying zirconium ions, and examples thereof include zirconium inorganic acid salts such as zirconium oxynitrate and zirconium oxychloride; zirconium organic acid salts such as zirconium tetrabutoxide; The raw material containing a zirconium salt can contain one or more of the above zirconium salts.

ジルコニウム塩は溶媒に溶解させてジルコニウム塩溶液として使用することができる。当該溶媒としては,ジルコニウム塩を溶解できるものであれば特に限定されず,例えば,水等の水系溶媒;メタノール,エタノール等の有機溶媒;などが挙げられる。溶媒は1種又は2種以上を組み合わせて使用することができる。   Zirconium salt can be dissolved in a solvent and used as a zirconium salt solution. The solvent is not particularly limited as long as it can dissolve a zirconium salt, and examples thereof include an aqueous solvent such as water; an organic solvent such as methanol and ethanol; A solvent can be used 1 type or in combination of 2 or more types.

ジルコニウム塩と溶媒との組み合わせに関して,以下に具体例を挙げる。溶媒として水等の水系溶媒を用いる場合は,ジルコニウム塩は,オキシ硝酸ジルコニウム,オキシ塩化ジルコニウム等のジルコニウム無機酸塩を用いることができる。また,溶媒としてメタノール,エタノール等の有機溶媒を用いる場合は,ジルコニウム塩は,ジルコニウムテトラブトキシド等のジルコニウム有機酸塩を用いることができる。本実施形態では,工業的規模での生産性等の見地より,溶媒として水系溶媒(特に水),ジルコニウム塩としてオキシ塩化ジルコニウムの組み合わせが好ましい。   Specific examples of the combination of the zirconium salt and the solvent will be given below. When an aqueous solvent such as water is used as the solvent, the zirconium salt may be a zirconium inorganic acid salt such as zirconium oxynitrate or zirconium oxychloride. When an organic solvent such as methanol or ethanol is used as the solvent, the zirconium salt can be a zirconium organic acid salt such as zirconium tetrabutoxide. In the present embodiment, a combination of an aqueous solvent (especially water) as a solvent and zirconium oxychloride as a zirconium salt is preferable from the viewpoint of productivity on an industrial scale.

スカンジウム塩としては,スカンジウムイオンを供給できる化合物であれば特に限定されず,例えば,硝酸スカンジウム,塩化スカンジウム,蓚酸スカンジウム等のスカンジウム無機酸塩;スカンジウムブトキシド等のスカンジウム有機酸塩;などが挙げられる。スカンジウム塩を含む原料は,上記ジルコニウム塩を1種又は2種以上含むことができる。   The scandium salt is not particularly limited as long as it is a compound that can supply scandium ions. Examples thereof include scandium inorganic acid salts such as scandium nitrate, scandium chloride, and scandium oxalate; scandium organic acid salts such as scandium butoxide; The raw material containing the scandium salt can contain one or more of the above zirconium salts.

スカンジウム塩は溶媒に溶解させてスカンジウム塩溶液として使用することができる。当該溶媒としては,スカンジウムを溶解できるものであれば特に限定されず,例えば,水等の水系溶媒;メタノール,エタノール等の有機溶媒;などが挙げられる。溶媒は1種又は2種以上を組み合わせて使用することができる。   The scandium salt can be dissolved in a solvent and used as a scandium salt solution. The solvent is not particularly limited as long as it can dissolve scandium, and examples thereof include an aqueous solvent such as water; an organic solvent such as methanol and ethanol; A solvent can be used 1 type or in combination of 2 or more types.

スカンジウム塩と溶媒との組み合わせに関して,以下に具体例を挙げる。溶媒として水等の水系溶媒を用いる場合は,スカンジウム塩は,硝酸スカンジウム,塩化スカンジウム,蓚酸スカンジウム等のスカンジウム無機酸塩を用いることができる。また,溶媒としてメタノール,エタノール等の有機溶媒を用いる場合は,スカンジウム塩は,スカンジウムブトキシド等のスカンジウム有機酸塩を用いることができる。本実施形態では,工業的規模での生産性等の見地より,溶媒として水系溶媒(特に水),ジルコニウム塩として塩化スカンジウムの組み合わせが好ましい。   Specific examples of the combination of the scandium salt and the solvent will be given below. When an aqueous solvent such as water is used as the solvent, the scandium salt may be a scandium inorganic acid salt such as scandium nitrate, scandium chloride, or scandium oxalate. When an organic solvent such as methanol or ethanol is used as the solvent, a scandium organic acid salt such as scandium butoxide can be used as the scandium salt. In this embodiment, from the viewpoint of productivity on an industrial scale, a combination of an aqueous solvent (particularly water) as the solvent and scandium chloride as the zirconium salt is preferable.

ジルコニウム塩を含む原料とスカンジウム塩を含む原料の混合割合は,ジルコニウム塩とスカンジウム塩とが酸化物換算(ZrO:Sc)で1−x−a:x(ただし,0.09≦x≦0.11,かつ,0.002≦a<0.01)のモル比になる範囲で,適宜,調整することができる。 The mixing ratio of the raw material containing the zirconium salt and the raw material containing the scandium salt is such that the zirconium salt and the scandium salt are 1-xa: x in terms of oxide (ZrO 2 : Sc 2 O 3 ), where 0.09 ≦ x ≦ 0.11, and 0.002 ≦ a <0.01).

第二工程では,上記のように得られたスカンジウム−ジルコニウム複合水酸化物を焼成することで,酸化物を得る。焼成条件は,例えば,焼成温度を600〜1200℃とすることができ,700〜1100℃とすることがより好ましい。また,焼成時間は2〜10時間とすることができ,3〜9時間とすることがより好ましい。この焼成は,例えば,大気圧下で行うことができる。   In the second step, the scandium-zirconium composite hydroxide obtained as described above is fired to obtain an oxide. As for the firing conditions, for example, the firing temperature can be 600 to 1200 ° C, and more preferably 700 to 1100 ° C. The firing time can be 2 to 10 hours, and more preferably 3 to 9 hours. This firing can be performed, for example, under atmospheric pressure.

第三工程では,得られた前記酸化物にアルミナを添加する。アルミナを添加する前にあらかじめ前記酸化物の粉砕を行ってもよい。アルミナの添加割合は,式(1)を満たすようにアルミナを添加する限りは特に限定されない。   In the third step, alumina is added to the obtained oxide. The oxide may be pulverized in advance before adding alumina. The addition ratio of alumina is not particularly limited as long as alumina is added so as to satisfy the formula (1).

アルミナを添加した後は,例えば,ボールミル等の工程の粉砕機で粉砕処理をしてもよい。この粉砕を行うことで,得られる化合物Aの焼結体中においてアルミナが分散して存在しやすくなる。粉砕後は,得られた粉末を乾燥処理する。これにより,化合物Aを得ることができる。乾燥処理は,例えば,乾燥温度を100〜250℃とすることができ,110〜240℃とすることがより好ましい。乾燥時間は12〜120時間とすることができ,24〜96時間とすることがより好ましい。この乾燥処理は,例えば,大気圧下で行うことができる。   After the alumina is added, for example, pulverization may be performed by a pulverizer such as a ball mill. By performing this pulverization, alumina is easily dispersed and present in the sintered body of the compound A obtained. After pulverization, the obtained powder is dried. Thereby, compound A can be obtained. In the drying treatment, for example, the drying temperature can be set to 100 to 250 ° C, and more preferably 110 to 240 ° C. The drying time can be 12 to 120 hours, and more preferably 24 to 96 hours. This drying process can be performed, for example, under atmospheric pressure.

上記のように,第一工程,第二工程及び第三工程を含む共沈法で製造される化合物Aは,ジルコニア(ZrO)中にスカンジア(Sc)が固溶されたスカンジア安定化ジルコニア(ScSZ)が主成分である。そして,Alは,ScSZ中に良好な分散状態で存在しやすくなる。 As described above, the compound A produced by the coprecipitation method including the first step, the second step, and the third step is stable in scandia in which scandia (Sc 2 O 3 ) is dissolved in zirconia (ZrO 2 ). Zirconia fluoride (ScSZ) is the main component. And Al 2 O 3 tends to exist in a good dispersion state in ScSZ.

本実施形態のスカンジア安定化ジルコニア粉末の製造方法は特に限定されないが,上述したように,AlがScSZ中に良好な分散状態で存在しやすくなるという観点から,上記共沈法によって化合物Aを製造する工程を含むことが好ましい。すなわち,スカンジア安定化ジルコニア粉末の製造方法は,上述した第一工程,第二工程,第三工程を含むことが好ましい。これにより,化合物Aを含むスカンジア安定化ジルコニア粉末を製造することができる。 The method for producing the scandia-stabilized zirconia powder of the present embodiment is not particularly limited. However, as described above, from the viewpoint that Al 2 O 3 tends to be present in a well dispersed state in ScSZ, the compound is prepared by the coprecipitation method. It is preferable to include the process of manufacturing A. That is, the scandia-stabilized zirconia powder production method preferably includes the first step, the second step, and the third step described above. Thereby, a scandia-stabilized zirconia powder containing Compound A can be produced.

なお,スカンジア安定化ジルコニア粉末を製造するにあたっては,化合物A以外の他の添加剤等の材料を添加する工程を有してもよい。他の添加剤としては,例えば,焼結状剤等が例示される。   In producing the scandia-stabilized zirconia powder, a step of adding a material such as an additive other than Compound A may be included. Examples of other additives include sintered agents.

本実施形態のスカンジア安定化ジルコニア焼結体の製造方法は特に限定されないが,上述したように,AlがScSZ中に良好な分散状態で存在しやすくなるとい観点から,上記共沈法によって化合物Aを製造する工程を含むことが好ましい。 The method for producing the scandia-stabilized zirconia sintered body of the present embodiment is not particularly limited. However, as described above, from the viewpoint that Al 2 O 3 tends to be present in a well dispersed state in ScSZ, the coprecipitation method is used. Preferably comprising the step of producing compound A.

より具体的には,スカンジア安定化ジルコニア焼結体の製造方法は,上述した第一工程,第二工程,第三工程を含み,さらに,第三工程で得られたアルミナが添加された酸化物を焼結させる第四工程を含むことが好ましい。   More specifically, the method for producing a scandia-stabilized zirconia sintered body includes the first step, the second step, and the third step described above, and the oxide obtained by adding the alumina obtained in the third step. It is preferable to include the 4th process of sintering.

第四工程における焼結は,例えば,冷間等方圧加圧法(CIP),熱間等方圧加圧法(HIP)等の焼結方法を採用することができる。例えば,CIPであれば,圧力を0.3〜2.5t/cmとすることができ,0.5〜2.0t/cmとすることがより好ましい。また,焼結温度は1200〜1600℃とすることができ,1300〜1500℃とすることがより好ましい。焼結時間は1〜24時間とすることができ,2〜20時間とすることがより好ましい。上記焼結は,例えば,大気雰囲気下で行うことができる。 For the sintering in the fourth step, for example, a sintering method such as cold isostatic pressing (CIP) or hot isostatic pressing (HIP) can be employed. For example, in the case of CIP, the pressure can be 0.3 to 2.5 t / cm 2, and more preferably 0.5 to 2.0 t / cm 2 . The sintering temperature can be 1200 to 1600 ° C, and more preferably 1300 to 1500 ° C. The sintering time can be 1 to 24 hours, and more preferably 2 to 20 hours. The sintering can be performed, for example, in an air atmosphere.

本実施形態のスカンジア安定化ジルコニア粉末は,固体酸化物型燃料電池用の材料として適している。具体的には,スカンジア安定化ジルコニア粉末を焼結して焼結体(スカンジア安定化ジルコニア焼結体)を形成し,この焼結体を所定形状に成形することで固体電解質を製造できる。該固体電解質は,SOFCの固体電解質板として用いられる。固体電解質を成形する方法は,例えば,静水圧プレス機により加圧成形する方法,あるいは,ドクターブレード法やカレンダーロール法を採用できる。成形条件等は特に限定されず,従来と同様の条件で行うことができる。   The scandia-stabilized zirconia powder of this embodiment is suitable as a material for a solid oxide fuel cell. Specifically, a solid electrolyte can be manufactured by sintering a scandia-stabilized zirconia powder to form a sintered body (scandia-stabilized zirconia sintered body) and then forming the sintered body into a predetermined shape. The solid electrolyte is used as a solid electrolyte plate for SOFC. As a method of forming the solid electrolyte, for example, a method of pressure forming with an isostatic press, a doctor blade method or a calendar roll method can be employed. Molding conditions and the like are not particularly limited, and can be performed under the same conditions as in the past.

上記固体電解質板の片面に燃料極を形成し,反対側の面に空気極を形成することで,固体電解質の片面に燃料極を有し,反対側面に空気極を有する単セル構造を備えて成る固体酸化物形燃料電池が得られる。   A single cell structure having a fuel electrode on one side of the solid electrolyte and an air electrode on the opposite side is formed by forming a fuel electrode on one side of the solid electrolyte plate and forming an air electrode on the opposite side. A solid oxide fuel cell is obtained.

固体電解質板の片面に燃料極を形成するにあたっては,燃料極を形成させるためのセラミックス粉末を含むスラリーを準備し,このスラリーをいわゆるスラリーコーティング法により固体電解質板の片面に塗布し,その後,所定温度で焼成を行う。これにより,固体電解質板の片面に薄膜状の燃料極が形成される。燃料極を形成させるためのセラミックス粉末としては,例えば,ニッケル60重量%−ジルコニア40重量%で構成されるNi−ジルコニアサーメット材料等が例示されるが,その他,従来から燃料極として使用されているセラミックス粉末も使用できる。燃料極の厚みは,例えば,50μmとすることができるが,この厚みに限定されるものではない。   In forming the fuel electrode on one side of the solid electrolyte plate, a slurry containing ceramic powder for forming the fuel electrode is prepared, and this slurry is applied to one side of the solid electrolyte plate by a so-called slurry coating method. Bake at temperature. As a result, a thin-film fuel electrode is formed on one side of the solid electrolyte plate. As the ceramic powder for forming the fuel electrode, for example, Ni-zirconia cermet material composed of 60% by weight of nickel and 40% by weight of zirconia is exemplified. Ceramic powder can also be used. The thickness of the fuel electrode can be, for example, 50 μm, but is not limited to this thickness.

一方,固体電解質板に空気極を形成するにあたっても燃料極の形成と同様,空気極を形成させるためのセラミックス粉末を含むスラリーを用いたスラリーコーティング法により固体電解質板の片面に塗布し,その後,所定温度で焼成を行う。これにより,固体電解質板の燃料極の形成面とは反対側の面に薄膜状の空気極が形成される。空気極を形成させるためのセラミックス粉末としては,例えば,ランタンストロンチウムマンガネイト(La(Sr)MnO)を等が例示されるが,その他,従来から空気極として使用されているセラミックス粉末も使用できる。空気極の厚みは,例えば,50μmとすることができるが,この厚みに限定されるものではない。 On the other hand, when forming the air electrode on the solid electrolyte plate, as with the formation of the fuel electrode, it was applied to one side of the solid electrolyte plate by a slurry coating method using a slurry containing ceramic powder for forming the air electrode. Firing is performed at a predetermined temperature. Thereby, a thin film-like air electrode is formed on the surface of the solid electrolyte plate opposite to the surface on which the fuel electrode is formed. As the ceramic powder for forming the air electrode, for example, lanthanum strontium manganate (La (Sr) MnO 3 ) is exemplified, but other ceramic powders conventionally used as an air electrode can also be used. . The thickness of the air electrode can be set to 50 μm, for example, but is not limited to this thickness.

上記のように構成される固体酸化物形燃料電池は,本実施形態のスカンジア安定化ジルコニア粉末で形成された固体電解質板を備えるので,優れた発電効率を有する。そのため,このような固体酸化物形燃料電池を使用すれば,エネルギー効率に優れる発電システムを構築することが可能である。   Since the solid oxide fuel cell configured as described above includes the solid electrolyte plate formed of the scandia-stabilized zirconia powder of the present embodiment, it has excellent power generation efficiency. Therefore, if such a solid oxide fuel cell is used, it is possible to construct a power generation system with excellent energy efficiency.

以下,実施例により本発明をより具体的に説明するが,本発明はこれら実施例の態様に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to the aspect of these Examples.

なお,実施例及び比較例において得られた材料中には,不可避不純物として酸化ハフニウムが酸化ジルコニウムに対して1.3〜2.5重量%含まれている。   In the materials obtained in Examples and Comparative Examples, hafnium oxide as an inevitable impurity is contained in an amount of 1.3 to 2.5% by weight with respect to zirconium oxide.

(実施例1)
オキシ塩化ジルコニウム水溶液と塩化スカンジウム水溶液とを,ジルコニア成分の重量とスカンジア成分の重量との比率が88.9:11.1となるよう混合し,ジルコニア及びスカンジアの総重量が1wt%となるよう水量を調整して分散液を得た。この分散液に,アルカリとしてNaOH(水酸化ナトリウム)を,ジルコニア成分及びスカンジア成分の総重量の6倍量添加することで中和処理を行った。これにより,スカンジウム−ジルコニウム複合水酸化物を得た。得られた水酸化物を固液分離によって回収し,得られた固形分を電気炉で大気中800℃にて5時間焼成した。次いで,得られた酸化物にアルミナを(ZrO0.895(Sc0.1(Al0.005となるよう添加し,ボールミルで粉砕,分散させた後,120℃で乾燥処理を行うことで,粉末を得た。
Example 1
Zirconium oxychloride aqueous solution and scandium chloride aqueous solution are mixed so that the ratio of the weight of the zirconia component to the weight of the scandia component is 88.9: 11.1, and the amount of water is such that the total weight of zirconia and scandia is 1 wt%. Was adjusted to obtain a dispersion. The dispersion was neutralized by adding NaOH (sodium hydroxide) as an alkali in an amount 6 times the total weight of the zirconia component and the scandia component. As a result, scandium-zirconium composite hydroxide was obtained. The obtained hydroxide was recovered by solid-liquid separation, and the obtained solid content was baked in an electric furnace at 800 ° C. for 5 hours. Next, alumina was added to the obtained oxide so as to be (ZrO 2 ) 0.895 (Sc 2 O 3 ) 0.1 (Al 2 O 3 ) 0.005, and pulverized and dispersed with a ball mill. The powder was obtained by performing a drying process at 120 degreeC.

得られた粉末のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは菱面体晶相であった。   As a result of measuring the XRD pattern of the obtained powder with an X-ray diffractometer, the XRD pattern of the sample was a rhombohedral phase.

次いで,上記粉末を,CIPを用いて1.0t/cmの圧力で2分間加圧した後,電気炉で大気中1450℃,2時間にわたって熱処理を行うことで焼結体を得た。 Next, the powder was pressed with CIP at a pressure of 1.0 t / cm 2 for 2 minutes, and then subjected to heat treatment in the air at 1450 ° C. for 2 hours to obtain a sintered body.

得られた焼結体のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは立方晶相であった。   As a result of measuring the XRD pattern of the obtained sintered body with an X-ray diffractometer, the XRD pattern of the sample was a cubic phase.

さらに,交流インピーダンス法を用い焼結体の粒界抵抗値を測定した結果,400℃で619.0Ω・cm,450℃で109.1Ω・cm,500℃で35.7Ω・cm,550℃で5.6Ω・cmであった。   Furthermore, as a result of measuring the grain boundary resistance value of the sintered body using the AC impedance method, 619.0 Ω · cm at 400 ° C, 109.1 Ω · cm at 450 ° C, 35.7 Ω · cm at 500 ° C, and 550 ° C. It was 5.6 Ω · cm.

(実施例2)
粉末に含まれる化合物の組成が(ZrO0.896(Sc0.1(Al0.004となるように,各原料の配合量を変更したこと以外は,実施例1と同様の方法により粉末及び焼結体を調製した。
(Example 2)
Except that the compounding amount of each raw material was changed so that the composition of the compound contained in the powder would be (ZrO 2 ) 0.896 (Sc 2 O 3 ) 0.1 (Al 2 O 3 ) 0.004 , A powder and a sintered body were prepared in the same manner as in Example 1.

得られた粉末のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは菱面体晶相であった。   As a result of measuring the XRD pattern of the obtained powder with an X-ray diffractometer, the XRD pattern of the sample was a rhombohedral phase.

得られた焼結体のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは立方晶相であった。   As a result of measuring the XRD pattern of the obtained sintered body with an X-ray diffractometer, the XRD pattern of the sample was a cubic phase.

さらに,交流インピーダンス法を用い焼結体の粒界抵抗値を測定した結果,400℃で548.7Ω・cm,450℃で127.9Ω・cm,500℃で36.2Ω・cm,550℃で8.3Ω・cmであった。   Furthermore, as a result of measuring the grain boundary resistance value of the sintered body using the AC impedance method, it was 548.7 Ω · cm at 400 ° C, 127.9 Ω · cm at 450 ° C, 36.2 Ω · cm at 500 ° C, and 550 ° C. It was 8.3 Ω · cm.

(実施例3)
粉末に含まれる化合物の組成が(ZrO0.897(Sc0.1(Al0.003となるように,各原料の配合量を変更したこと以外は,実施例1と同様の方法により粉末及び焼結体を調製した。
(Example 3)
As the composition of the compound contained in the powder is (ZrO 2) 0.897 (Sc 2 O 3) 0.1 (Al 2 O 3) 0.003, except for changing the amount of each raw material, A powder and a sintered body were prepared in the same manner as in Example 1.

得られた粉末のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは菱面体晶相であった。   As a result of measuring the XRD pattern of the obtained powder with an X-ray diffractometer, the XRD pattern of the sample was a rhombohedral phase.

得られた焼結体のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは立方晶相であった。   As a result of measuring the XRD pattern of the obtained sintered body with an X-ray diffractometer, the XRD pattern of the sample was a cubic phase.

さらに,交流インピーダンス法を用い焼結体の粒界抵抗値を測定した結果,400℃で592.0Ω・cm,450℃で142.2Ω・cm,500℃で42.1Ω・cm,550℃で9.5Ω・cmであった。   Furthermore, as a result of measuring the grain boundary resistance value of the sintered body using the AC impedance method, it was 592.0 Ω · cm at 400 ° C, 142.2 Ω · cm at 450 ° C, 42.1 Ω · cm at 500 ° C, and 550 ° C. It was 9.5 Ω · cm.

さらに,上記実施例3で得られた焼結体を,大気圧下,600℃で1000時間熱処理した後,XRDパターンをX線回折装置で測定した結果,焼結体のXRDパターンは立方晶単相であった。   Furthermore, the sintered body obtained in Example 3 was heat-treated at 600 ° C. under atmospheric pressure for 1000 hours, and the XRD pattern was measured with an X-ray diffractometer. As a result, the XRD pattern of the sintered body was a cubic single crystal. It was a phase.

(比較例1)
粉末に含まれる化合物の組成が(ZrO0.899(Sc0.1(Al0.001となるように,各原料の配合量を変更したこと以外は,実施例1と同様の方法により粉末及び焼結体を調製した。
(Comparative Example 1)
Except that the compounding amount of each raw material was changed so that the composition of the compound contained in the powder was (ZrO 2 ) 0.899 (Sc 2 O 3 ) 0.1 (Al 2 O 3 ) 0.001 A powder and a sintered body were prepared in the same manner as in Example 1.

得られた粉末のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは菱面体晶相であった。   As a result of measuring the XRD pattern of the obtained powder with an X-ray diffractometer, the XRD pattern of the sample was a rhombohedral phase.

得られた焼結体のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは菱面体晶相であった。   As a result of measuring the XRD pattern of the obtained sintered body with an X-ray diffractometer, the XRD pattern of the sample was a rhombohedral phase.

(比較例2)
粉末に含まれる化合物の組成が(ZrO0.89(Sc0.1(Al0.01となるように,各原料の配合量を変更したこと以外は,実施例1と同様の方法により粉末及び焼結体を調製した。
(Comparative Example 2)
Except that the amount of each raw material was changed so that the composition of the compound contained in the powder was (ZrO 2 ) 0.89 (Sc 2 O 3 ) 0.1 (Al 2 O 3 ) 0.01 , A powder and a sintered body were prepared in the same manner as in Example 1.

得られた粉末のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは菱面体晶相であった。   As a result of measuring the XRD pattern of the obtained powder with an X-ray diffractometer, the XRD pattern of the sample was a rhombohedral phase.

得られた焼結体のXRDパターンをX線回折装置で測定した結果,サンプルのXRDパターンは立方晶相であった。   As a result of measuring the XRD pattern of the obtained sintered body with an X-ray diffractometer, the XRD pattern of the sample was a cubic phase.

さらに,交流インピーダンス法を用い焼結体の粒界抵抗値を測定した結果,400℃で1036.4Ω・cm,450℃で217.7Ω・cm,500℃で60.8Ω・cm,550℃で13.7Ω・cmであった。   Furthermore, as a result of measuring the grain boundary resistance value of the sintered body using the AC impedance method, it was 1036.4 Ω · cm at 400 ° C, 217.7 Ω · cm at 450 ° C, 60.8 Ω · cm at 500 ° C, and 550 ° C. 13.7 Ω · cm.

(比較例3)
粉末に含まれる化合物の組成が(ZrO0.84(Sc0.1(Al0.06となるように,各原料の配合量を変更したこと以外は,実施例1と同様の方法により粉末及び焼結体を調製した。
(Comparative Example 3)
Except that the compounding amount of each raw material was changed so that the composition of the compound contained in the powder would be (ZrO 2 ) 0.84 (Sc 2 O 3 ) 0.1 (Al 2 O 3 ) 0.06 , A powder and a sintered body were prepared in the same manner as in Example 1.

交流インピーダンス法を用い焼結体の粒界抵抗値を測定した結果,400℃で1345.7Ω・cm,450℃で295.9Ω・cm,500℃で81.9Ω・cm,550℃で19.6Ω・cmであった。   As a result of measuring the grain boundary resistance value of the sintered body using the AC impedance method, it was found to be 1345.7 Ω · cm at 400 ° C, 295.9 Ω · cm at 450 ° C, 81.9 Ω · cm at 500 ° C, and 19.59 at 550 ° C. It was 6 Ω · cm.

(比較例4)
粉末に含まれる化合物の組成が(ZrO0.82(Sc0.1(Al0.08となるように,各原料の配合量を変更したこと以外は,実施例1と同様の方法により粉末及び焼結体を調製した。
(Comparative Example 4)
Except that the compounding amount of each raw material was changed so that the composition of the compound contained in the powder would be (ZrO 2 ) 0.82 (Sc 2 O 3 ) 0.1 (Al 2 O 3 ) 0.08 , A powder and a sintered body were prepared in the same manner as in Example 1.

交流インピーダンス法を用い焼結体の粒界抵抗値を測定した結果,400℃で2069.0Ω・cm,450℃で467.5Ω・cm,500℃で132.2Ω・cm,550℃で31.9Ω・cmであった。   As a result of measuring the grain boundary resistance value of the sintered body using the AC impedance method, it was 2069.0 Ω · cm at 400 ° C, 467.5 Ω · cm at 450 ° C, 132.2 Ω · cm at 500 ° C, and 31. It was 9 Ω · cm.

(X線回折法)
結晶構造は,X線回折(XRD)測定のスペクトルから判定した。X線回折測定は,リガク社製「MiniFlexII」を用い,CuKα1線により2θ=20°〜80°の範囲で室温にて測定を行なった。具体的には,各実施例で得られた粉末又は焼結体のX線回折測定で観測されたX線回折ピークのうち,2θ=28°〜32°,49°〜52°付近に観測されるX線回折ピークが2本に,59°〜62°付近に観測されるX線回折ピークが4本に分裂した場合は菱面体晶相,分裂しない場合は立方晶相であるとの判断をした。
(X-ray diffraction method)
The crystal structure was determined from the spectrum of X-ray diffraction (XRD) measurement. X-ray diffraction measurement was performed at room temperature in the range of 2θ = 20 ° to 80 ° with CuKα1 line using “MiniFlexII” manufactured by Rigaku Corporation. Specifically, among the X-ray diffraction peaks observed in the X-ray diffraction measurement of the powder or sintered body obtained in each example, it was observed in the vicinity of 2θ = 28 ° to 32 ° and 49 ° to 52 °. If the X-ray diffraction peak observed at 59 ° to 62 ° is split into four, the rhombohedral phase is determined, and if it is not split, the cubic phase is determined. did.

(交流インピーダンス法による導電率測定)
導電率の測定には,インピーダンスメーター(HP4194A)を用いた。インピーダンスメーターの周波数範囲を100Hz〜10MHzとして測定を行い,300℃〜800℃の温度範囲にて複素インピーダンス解析により,導電率と温度との関係をプロット(アレニウスプロット)することで導電率を測定し,粒界抵抗値を算出した。
(Conductivity measurement by AC impedance method)
An impedance meter (HP4194A) was used for the measurement of conductivity. Measure the impedance by measuring the frequency range of the impedance meter from 100Hz to 10MHz, and plot the relationship between conductivity and temperature (Arrhenius plot) by complex impedance analysis in the temperature range of 300 ℃ to 800 ℃. The grain boundary resistance value was calculated.

実施例と比較例の対比から(ZrO1−x−a(Sc(Al(0.09≦x≦0.11,かつ,0.002≦a<0.01)で表される化合物を含有するスカンジア安定化ジルコニア粉末の焼結体は,低い粒界抵抗値を有することがわかる。従って,スカンジア安定化ジルコニア粉末の焼結体は,高イオン電導性の固体酸化物形燃料電池に適した材料である。 From the comparison between the example and the comparative example, (ZrO 2 ) 1-xa (Sc 2 O 3 ) x (Al 2 O 3 ) a (0.09 ≦ x ≦ 0.11, and 0.002 ≦ a < It can be seen that a sintered body of scandia-stabilized zirconia powder containing a compound represented by 0.01) has a low grain boundary resistance. Therefore, the sintered body of scandia-stabilized zirconia powder is a material suitable for a high ion conductivity solid oxide fuel cell.

本発明の固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末は,従来よりも低い粒界抵抗値を有し,高いイオン電導性を備える焼結体となることができるため,固体酸化物形燃料電池に優れた発電効率を付与できる。そのため,固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末は,固体酸化物形燃料電池を構成する固体電解質用の電解質材料として有用である。   The scandia-stabilized zirconia powder for a solid oxide fuel cell according to the present invention can be a sintered body having a lower grain boundary resistance and higher ionic conductivity than conventional ones. Excellent power generation efficiency can be imparted to the battery. Therefore, the scandia-stabilized zirconia powder for solid oxide fuel cells is useful as an electrolyte material for the solid electrolyte constituting the solid oxide fuel cell.

Claims (13)

固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末であって,
下記一般式(1)
(ZrO1−x−a(Sc(Al (1)
で表される化合物を含有し,
前記式(1)において,0.09≦x≦0.11,かつ,0.002≦a<0.01であり,
結晶構造が菱面体晶相であり,
前記スカンジア安定化ジルコニア粉末の焼結体の結晶構造が立方晶相であり,
前記スカンジア安定化ジルコニア粉末の焼結体の550℃における粒界抵抗値が12Ω・cm以下である,スカンジア安定化ジルコニア粉末。
Scandia-stabilized zirconia powder for solid oxide fuel cell,
The following general formula (1)
(ZrO 2 ) 1-xa (Sc 2 O 3 ) x (Al 2 O 3 ) a (1)
Containing a compound represented by
In the formula (1), 0.09 ≦ x ≦ 0.11, and 0.002 ≦ a <0.01,
The crystal structure is rhombohedral,
The crystal structure of the sintered body of the scandia-stabilized zirconia powder is a cubic phase,
The scandia-stabilized zirconia powder, wherein the sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 550 ° C. of 12 Ω · cm or less.
前記スカンジア安定化ジルコニア粉末の焼結体の500℃における粒界抵抗値が60Ω・cm以下である,請求項1に記載のスカンジア安定化ジルコニア粉末。   The scandia-stabilized zirconia powder according to claim 1, wherein a sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 500 ° C. of 60 Ω · cm or less. 前記スカンジア安定化ジルコニア粉末の焼結体の450℃における粒界抵抗値が200Ω・cm以下である,請求項1に記載のスカンジア安定化ジルコニア粉末。   The scandia-stabilized zirconia powder according to claim 1, wherein a sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 450 ° C. of 200 Ω · cm or less. 前記スカンジア安定化ジルコニア粉末の焼結体の400℃における粒界抵抗値が1000Ω・cm以下である,請求項1に記載のスカンジア安定化ジルコニア粉末。   2. The scandia-stabilized zirconia powder according to claim 1, wherein the sintered body of the scandia-stabilized zirconia powder has a grain boundary resistance at 1000 ° C. of 1000 Ω · cm or less. 前記焼結体は,600℃の温度雰囲気下,1000時間の熱処理を経ても結晶構造が変化しない,請求項1〜4のいずれか1項に記載のスカンジア安定化ジルコニア粉末。   The scandia-stabilized zirconia powder according to any one of claims 1 to 4, wherein the sintered body does not change in crystal structure even after heat treatment for 1000 hours in a temperature atmosphere of 600 ° C. 固体酸化物形燃料電池用スカンジア安定化ジルコニア焼結体であって,
下記一般式(1)
(ZrO1−x−a(Sc(Al (1)
で表される化合物を含有し,
前記式(1)において,0.09≦x≦0.11,かつ,0.002≦a<0.01であり,
結晶構造が立方晶相であり,
550℃における粒界抵抗値が12Ω・cm以下である,スカンジア安定化ジルコニア焼結体。
A scandia-stabilized zirconia sintered body for a solid oxide fuel cell,
The following general formula (1)
(ZrO 2 ) 1-xa (Sc 2 O 3 ) x (Al 2 O 3 ) a (1)
Containing a compound represented by
In the formula (1), 0.09 ≦ x ≦ 0.11, and 0.002 ≦ a <0.01,
The crystal structure is cubic phase,
A scandia-stabilized zirconia sintered body having a grain boundary resistance value at 550 ° C. of 12 Ω · cm or less.
500℃における粒界抵抗値が60Ω・cm以下である,請求項6に記載のスカンジア安定化ジルコニア焼結体。   The scandia-stabilized zirconia sintered body according to claim 6, wherein the grain boundary resistance value at 500 ° C. is 60 Ω · cm or less. 450℃における粒界抵抗値が200Ω・cm以下である,請求項6に記載のスカンジア安定化ジルコニア焼結体。   The scandia-stabilized zirconia sintered body according to claim 6, wherein the grain boundary resistance value at 450 ° C. is 200 Ω · cm or less. 400℃における粒界抵抗値が1000Ω・cm以下である,請求項6に記載のスカンジア安定化ジルコニア焼結体。   The scandia-stabilized zirconia sintered body according to claim 6, wherein the grain boundary resistance at 400 ° C is 1000 Ω · cm or less. 600℃の温度雰囲気下,1000時間の熱処理を経ても結晶構造が変化しない,請求項6〜9のいずれか1項に記載のスカンジア安定化ジルコニア焼結体。   The scandia-stabilized zirconia sintered body according to any one of claims 6 to 9, wherein the crystal structure does not change even after heat treatment for 1000 hours in a temperature atmosphere of 600 ° C. 請求項1〜5のいずれか1項に記載のスカンジア安定化ジルコニア粉末の製造方法であって,
ジルコニウム塩を含む原料とスカンジウム塩を含む原料とを混合した後に中和することによって,スカンジウム−ジルコニウム複合水酸化物を得る第一工程,
得られた前記水酸化物を焼成することにより酸化物を得る第二工程,
得られた前記酸化物にアルミナを添加する第三工程,
を含むスカンジア安定化ジルコニア粉末の製造方法。
A method for producing a scandia-stabilized zirconia powder according to any one of claims 1 to 5,
A first step of obtaining a scandium-zirconium composite hydroxide by mixing a raw material containing a zirconium salt and a raw material containing a scandium salt and then neutralizing the mixture,
A second step of obtaining an oxide by firing the obtained hydroxide,
A third step of adding alumina to the obtained oxide,
A process for producing scandia-stabilized zirconia powder.
請求項6〜10のいずれか1項に記載のスカンジア安定化ジルコニア焼結体の製造方法であって,
ジルコニウム塩を含む原料とスカンジウム塩を含む原料とを混合した後に中和することによって,スカンジウム−ジルコニウム複合水酸化物を得る第一工程,
得られた前記水酸化物を焼成することにより酸化物を得る第二工程,
得られた酸化物にアルミナを添加する第三工程,
前記第三工程で得られたアルミナが添加された酸化物を焼結させる第四工程,
を含むスカンジア安定化ジルコニア焼結体の製造方法。
A method for producing a scandia-stabilized zirconia sintered body according to any one of claims 6 to 10,
A first step of obtaining a scandium-zirconium composite hydroxide by mixing a raw material containing a zirconium salt and a raw material containing a scandium salt and then neutralizing the mixture,
A second step of obtaining an oxide by firing the obtained hydroxide,
A third step of adding alumina to the resulting oxide,
A fourth step of sintering the oxide added with alumina obtained in the third step;
A process for producing a scandia-stabilized zirconia sintered body comprising:
請求項6〜10のいずれか1項に記載のスカンジア安定化ジルコニア焼結体を構成要素として含む,固体酸化物形燃料電池。   A solid oxide fuel cell comprising the scandia-stabilized zirconia sintered body according to any one of claims 6 to 10 as a constituent element.
JP2016009819A 2016-01-21 2016-01-21 Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production Active JP6818411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009819A JP6818411B2 (en) 2016-01-21 2016-01-21 Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009819A JP6818411B2 (en) 2016-01-21 2016-01-21 Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production

Publications (2)

Publication Number Publication Date
JP2017130385A true JP2017130385A (en) 2017-07-27
JP6818411B2 JP6818411B2 (en) 2021-01-20

Family

ID=59395780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009819A Active JP6818411B2 (en) 2016-01-21 2016-01-21 Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production

Country Status (1)

Country Link
JP (1) JP6818411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003422A1 (en) * 2017-06-30 2019-01-03 第一稀元素化学工業株式会社 Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003422A1 (en) * 2017-06-30 2019-01-03 第一稀元素化学工業株式会社 Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell
US11462760B2 (en) 2017-06-30 2022-10-04 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell

Also Published As

Publication number Publication date
JP6818411B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
KR101728434B1 (en) Method for preparing solid electrolyte material for all-solid-state lithium secondary battery and method for manufacturing all-solid-state lithium secondary battery comprising the same
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
Yang et al. The mechanical and electrical properties of ZrO2–TiO2–Na-β/β ″-alumina composite electrolyte synthesized via a citrate sol–gel method
Shao et al. A promising cathode for proton-conducting intermediate temperature solid oxide fuel cells: Y0. 8Ca0. 2BaCo4O7+ δ
CN110856455B (en) Scandium oxide-stabilized zirconia powder, sintered body, manufacturing method, and fuel cell
CN106558720B (en) Scandium-zirconium oxide composite, electrolyte material, and solid oxide fuel cell
Lai et al. Cold sintering process assisted sintering for 8YSZ ceramic: a way of achieving high density and electrical conductivity at a reduced sintering temperature
Ghatee et al. Investigation of electrical and mechanical properties of tetragonal/cubic zirconia composite electrolytes prepared through stabilizer coating method
Vasylyev et al. Structural, mechanical, and electrochemical properties of ceria doped scandia stabilized zirconia
JP2011079707A (en) Ceramic material and method for manufacturing the same
TWI697149B (en) Doped scandia stabilized zirconia electrolyte compositions
JP6818411B2 (en) Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production
JP5436588B2 (en) High ion conductive solid electrolyte material and sintered body, and solid electrolyte fuel cell
Morales et al. Electrical and mechanical characterization by instrumented indentation technique of La0. 85Sr0. 15Ga0. 8Mg0. 2O3− δ electrolyte for SOFCs
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
US9692076B2 (en) Electrolyte composition for solid oxide fuel cell, and solid oxide fuel cell
JP6554733B2 (en) Cerium oxide-stabilized zirconium oxide composition and method for producing the same
KR101579874B1 (en) Electrolytic composition for solid oxide fuel cell and solid oxide fuel cell
JP2003051321A (en) Low-temperature sintering solid electrolyte material and solid oxide type fuel cell using the same
JP2016222506A (en) Yttrium containing oxy-apatite lanthanum/germanate ceramic
Dudek et al. Synthesis of ceria-based nanopowders suitable for manufacturing solid oxide electrolytes
JP2004067489A (en) Zirconia sintered compact
Silva et al. Sintering analysis of 8ysz electrolyte correlated to the electrical performance
JP2004149385A (en) Method of producing oxygen ion conductive solid electrolyte
Cheng et al. Synthesis of BaCe0. 8Sm0. 1Gd0. 1O3− δ electrolyte by a sol-combustion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6818411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250