JP2017128286A - Vehicular travelling control device - Google Patents

Vehicular travelling control device Download PDF

Info

Publication number
JP2017128286A
JP2017128286A JP2016010326A JP2016010326A JP2017128286A JP 2017128286 A JP2017128286 A JP 2017128286A JP 2016010326 A JP2016010326 A JP 2016010326A JP 2016010326 A JP2016010326 A JP 2016010326A JP 2017128286 A JP2017128286 A JP 2017128286A
Authority
JP
Japan
Prior art keywords
vehicle
front side
target acceleration
interrupt
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016010326A
Other languages
Japanese (ja)
Other versions
JP6497329B2 (en
Inventor
伊藤 達哉
Tatsuya Ito
達哉 伊藤
長谷川 達也
Tatsuya Hasegawa
達也 長谷川
幸仁 増田
yukihito Masuda
幸仁 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016010326A priority Critical patent/JP6497329B2/en
Publication of JP2017128286A publication Critical patent/JP2017128286A/en
Application granted granted Critical
Publication of JP6497329B2 publication Critical patent/JP6497329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicular travelling control device that can accurately calculate a probability of interruption of a vehicle into an adjacent lane.SOLUTION: A vehicular travelling control device 100 comprises: detecting portions 10, 11a and 11b; a first target acceleration calculating portion 30; an interruption probability calculating portion 64; a second target acceleration calculating portion 71; a target acceleration arbitrating portion 72; and a travelling control portion 82. The detecting portions 10, 11a and 11b detect a vehicle to be followed which travels ahead of its own vehicle and a vehicle ahead which travels ahead of its own vehicle. The interruption probability calculating portion 64 calculates an interruption probability at which the vehicle ahead may interrupt between the own vehicle and the vehicle to be followed, on the basis of a position in a lateral direction of the vehicle ahead and relative speed in the lateral direction of the vehicle ahead. The second target acceleration calculating portion 71 calculates target acceleration for dealing with interruption according to the interruption probability so that an inter-vehicle distances between its own vehicle and the vehicle ahead is equal to a predetermined second set inter-vehicle distance.SELECTED DRAWING: Figure 1

Description

本発明は、車間距離制御を行う車両用走行制御装置に関する。   The present invention relates to a vehicular travel control apparatus that performs inter-vehicle distance control.

従来、車間距離制御や定速走行制御を行う車両用走行制御装置が知られている。この車両用走行制御装置は、先行車両が存在するときには先行車両に対して設定車間距離が維持されるように自車両の車速を制御する車間距離制御を行い、先行車両が存在しないときには自車両の車速を設定車速に維持する定速走行制御を行う。このような車両用走行制御装置に関連して、例えば、特許文献1に記載の技術が知られている。   Conventionally, a vehicular travel control device that performs inter-vehicle distance control and constant speed travel control is known. The vehicle travel control device performs inter-vehicle distance control for controlling the vehicle speed of the host vehicle so that the set inter-vehicle distance is maintained with respect to the preceding vehicle when the preceding vehicle exists, and when the preceding vehicle does not exist, Constant speed running control is performed to maintain the vehicle speed at the set vehicle speed. In relation to such a vehicular travel control device, for example, a technique described in Patent Document 1 is known.

特開2004−114906号公報JP 2004-114906 A

先行車両に対して車間距離制御を行っている時に、隣接車線の車両が自車両と先行車両との間に割り込む確率が高い場合、隣接車線の車両に対して車間距離制御を行うことが好ましい。そのため、隣接車線の車両の割り込み確率を精度よく算出することが好ましい。   When the inter-vehicle distance control is performed on the preceding vehicle, it is preferable to perform the inter-vehicle distance control on the vehicle in the adjacent lane if the vehicle in the adjacent lane has a high probability of interrupting between the own vehicle and the preceding vehicle. For this reason, it is preferable to accurately calculate the interruption probability of the vehicle in the adjacent lane.

本発明はこうした状況に鑑みてなされたものであり、その目的は、隣接車線の車両の割り込み確率を精度よく算出できる車両用走行制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a vehicular travel control apparatus that can accurately calculate the interrupt probability of a vehicle in an adjacent lane.

上記課題を解決するために、本発明のある態様の車両用走行制御装置は、自車両の前方を走行する追従対象車両と、前記自車両の前側方を走行する前側方車両と、を検出する検出部と、前記自車両と前記追従対象車両との車間距離が所定の第1設定車間距離になるように、追従用目標加速度を演算する第1目標加速度演算部と、前記前側方車両の横方向の位置および前記前側方車両の横方向の相対速度に基づいて、前記前側方車両が前記自車両と前記追従対象車両との間に割り込んでくる割り込み確率を演算する割り込み確率演算部と、前記自車両と前記前側方車両との車間距離が所定の第2設定車間距離になるように、前記割り込み確率に応じて割り込み対応用目標加速度を演算する第2目標加速度演算部と、前記追従用目標加速度と前記割り込み対応用目標加速度のうち小さいものを調停後目標加速度として選択する目標加速度調停部と、前記自車両の加速度が前記調停後目標加速度に近づくように前記自車両の駆動力および制動力を制御する走行制御部と、を備える。   In order to solve the above problems, a vehicle travel control apparatus according to an aspect of the present invention detects a tracking target vehicle that travels in front of the host vehicle and a front side vehicle that travels in front of the host vehicle. A detection unit, a first target acceleration calculation unit for calculating a target acceleration for tracking so that an inter-vehicle distance between the host vehicle and the tracking target vehicle is a predetermined first set inter-vehicle distance; An interrupt probability calculating unit that calculates an interrupt probability that the front side vehicle interrupts between the host vehicle and the tracking target vehicle based on a position in a direction and a lateral relative speed of the front side vehicle; A second target acceleration calculation unit for calculating a target acceleration for interrupt according to the interrupt probability so that an inter-vehicle distance between the host vehicle and the front side vehicle is a predetermined second set inter-vehicle distance; Acceleration and said A target acceleration arbitration unit that selects a smaller target acceleration for intercession as a target acceleration after arbitration, and controls the driving force and braking force of the host vehicle so that the acceleration of the host vehicle approaches the target acceleration after arbitration And a traveling control unit that performs.

この態様によると、前側方車両の横方向の相対速度を用いることにより、前側方車両が車線端に偏って走行しているだけで自車線に近づいていないか、自車線に近づいてきているか判定できる。よって、前側方車両の割り込み確率を精度よく算出できる。   According to this aspect, by using the lateral relative speed of the front side vehicle, it is determined whether the front side vehicle is moving toward the lane edge and is not approaching the own lane or is approaching the own lane. it can. Therefore, the interruption probability of the front side vehicle can be accurately calculated.

本発明によれば、隣接車線の車両の割り込み確率を精度よく算出できる。   According to the present invention, it is possible to accurately calculate the interrupt probability of a vehicle in an adjacent lane.

第1の実施形態に係る車両用走行制御装置のブロック図である。1 is a block diagram of a vehicle travel control apparatus according to a first embodiment. 第1の実施形態に係る補正処理を説明する図である。It is a figure explaining the correction process which concerns on 1st Embodiment. 第1の実施形態に係る前側方車両の横方向の位置と、横方向の相対速度と、割り込み確率との関係の一例を示す図である。It is a figure which shows an example of the relationship of the horizontal position of the front side vehicle which concerns on 1st Embodiment, a horizontal relative speed, and an interruption probability. 第1の実施形態に係る第1閾値と第2閾値の一例を示す図である。It is a figure which shows an example of the 1st threshold value and 2nd threshold value which concern on 1st Embodiment. 第1の実施形態に係る割り込み確率の瞬時値と、一次遅れフィルタ処理が行われた割り込み確率と、割り込み判定結果との時間変化を示す図である。It is a figure which shows the time change of the instantaneous value of the interruption probability which concerns on 1st Embodiment, the interruption probability in which the first order lag filter process was performed, and the interruption determination result. 第1の実施形態に係る割り込み判定結果の演算処理を示すフローチャートである。It is a flowchart which shows the calculation process of the interruption determination result which concerns on 1st Embodiment. 第2の実施形態に係る補正処理を説明する図である。It is a figure explaining the correction process which concerns on 2nd Embodiment. 第3の実施形態に係る補正処理を説明する図である。It is a figure explaining the correction process which concerns on 3rd Embodiment.

(第1の実施形態)
図1は、第1の実施形態に係る車両用走行制御装置100のブロック図である。車両用走行制御装置100は、ACC(Adaptive Cruise Control)と称される場合がある。
(First embodiment)
FIG. 1 is a block diagram of a vehicle travel control apparatus 100 according to the first embodiment. The vehicle travel control apparatus 100 may be referred to as ACC (Adaptive Cruise Control).

車両用走行制御装置100は、前方レーダセンサ(検出部)10と、前側方レーダセンサ(検出部)11a,11bと、車間制御ECU(Electronic Control Unit)20と、ブレーキECU80と、エンジンECU81と、走行制御部82と、HMI(Human Machine Interface)出力装置83と、を備える。   The vehicle travel control apparatus 100 includes a front radar sensor (detection unit) 10, front side radar sensors (detection units) 11a and 11b, an inter-vehicle control ECU (Electronic Control Unit) 20, a brake ECU 80, an engine ECU 81, A travel control unit 82 and an HMI (Human Machine Interface) output device 83 are provided.

前方レーダセンサ10は、例えば車両のフロントバンパーやフロントグリルなど車両の前端部の中央に配置され、車両の前方を中心に所定の角度にミリ波を出射し、この範囲に存在する物標により反射した反射波を受信する。   The front radar sensor 10 is arranged at the center of the front end portion of the vehicle such as a front bumper or a front grille of the vehicle, emits a millimeter wave at a predetermined angle around the front of the vehicle, and is reflected by a target existing in this range. Receive reflected waves.

前側方レーダセンサ11a,11bは、例えば車両のフロントバンパーやフロントグリルなど車両の前端部に左右にオフセットして配置される。左側用の前側方レーダセンサ11aは、車両の左斜め前方を中心に所定の角度にミリ波を出射し、この範囲に存在する物標により反射した反射波を受信する。右側用の前側方レーダセンサ11bは、車両の右斜め前方を中心に所定の角度にミリ波を出射し、この範囲に存在する物標により反射した反射波を受信する。   The front side radar sensors 11a and 11b are disposed, for example, offset left and right at the front end of the vehicle such as a front bumper or a front grill of the vehicle. The front side radar sensor 11a for the left side emits a millimeter wave at a predetermined angle around the left front of the vehicle, and receives a reflected wave reflected by a target existing in this range. The front side radar sensor 11b for the right side emits a millimeter wave at a predetermined angle centered on the right front side of the vehicle, and receives a reflected wave reflected by a target existing in this range.

前方レーダセンサ10と前側方レーダセンサ11a,11bは、それぞれ、受信した反射波を解析することにより、物標の位置および相対速度を検出する。具体的には、前方レーダセンサ10等は、自車両を基準として、物標の前後方向の相対速度、横方向の相対速度、前後方向の位置および横方向の位置を検出する。これにより、前方レーダセンサ10と前側方レーダセンサ11a,11bは、自車両の前方を走行する追従対象車両と、自車両の前側方を走行する前側方車両と、を検出できる。追従対象車両は、自車線上の自車前方の車両であって、自車に最も近い車両である。   The front radar sensor 10 and the front side radar sensors 11a and 11b each detect the position and relative velocity of the target by analyzing the received reflected wave. Specifically, the front radar sensor 10 and the like detect the relative speed in the front-rear direction, the relative speed in the horizontal direction, the position in the front-rear direction, and the position in the horizontal direction with respect to the host vehicle. Thereby, the front radar sensor 10 and the front side radar sensors 11a and 11b can detect the tracking target vehicle that travels in front of the host vehicle and the front side vehicle that travels in front of the host vehicle. The tracking target vehicle is a vehicle in front of the own vehicle on the own lane, and is the vehicle closest to the own vehicle.

車間制御ECU20は、前方レーダセンサ10と前側方レーダセンサ11a,11bによる検出結果に基づいて、車間距離制御を行う。車間制御ECU20は、第1目標加速度演算部30と、周辺環境検出部40と、自車進路推定部50と、割り込み判定部60と、加速度調停部70と、を有する。   The inter-vehicle control ECU 20 performs inter-vehicle distance control based on the detection results of the front radar sensor 10 and the front side radar sensors 11a and 11b. The inter-vehicle control ECU 20 includes a first target acceleration calculation unit 30, a surrounding environment detection unit 40, a host vehicle course estimation unit 50, an interrupt determination unit 60, and an acceleration arbitration unit 70.

第1目標加速度演算部30は、前方レーダセンサ10により検出された追従対象車両の前後方向の相対速度と前後方向の位置に基づいて、自車両と追従対象車両との車間距離が第1設定車間距離になるように、追従用目標加速度を演算する。具体的には、第1目標加速度演算部30は、後述する補正後の追従対象車両の前後方向の相対速度と、補正後の追従対象車両の前後方向の位置とに基づいて、追従用目標加速度を演算する。追従用目標加速度は、正または負の値である。第1設定車間距離は、ドライバーによって設定される。第1目標加速度演算部30は、追従対象車両が存在しない場合、自車両の車速が設定車速になるように、定速走行用目標加速度を演算する。   The first target acceleration calculation unit 30 determines that the inter-vehicle distance between the host vehicle and the tracking target vehicle is based on the relative speed in the front-rear direction of the tracking target vehicle detected by the front radar sensor 10 and the position in the front-rear direction. The tracking target acceleration is calculated so as to be the distance. Specifically, the first target acceleration calculation unit 30 follows the target acceleration for tracking based on the corrected relative speed in the front-rear direction of the vehicle to be followed, which will be described later, and the position in the front-rear direction of the vehicle to be tracked after correction. Is calculated. The target acceleration for tracking is a positive or negative value. The first set inter-vehicle distance is set by the driver. The first target acceleration calculation unit 30 calculates the target acceleration for constant speed travel so that the vehicle speed of the host vehicle becomes the set vehicle speed when there is no tracking target vehicle.

周辺環境検出部40は、前方レーダセンサ10と前側方レーダセンサ11a,11bによる検出結果に基づいて、車両の周辺環境を検出する。周辺環境検出部40は、移動物判定部41と、対向車判定部42と、同一物判定部43と、を有する。   The surrounding environment detection unit 40 detects the surrounding environment of the vehicle based on the detection results of the front radar sensor 10 and the front side radar sensors 11a and 11b. The surrounding environment detection unit 40 includes a moving object determination unit 41, an oncoming vehicle determination unit 42, and an identical object determination unit 43.

移動物判定部41は、物標の相対速度に基づいて、物標が一定時間以上移動を続けているか判定する。対向車判定部42は、物標の相対速度に基づいて、物標が対向車であるか判定する。同一物判定部43は、前方レーダセンサ10により検出された物標と前側方レーダセンサ11a,11bにより検出された物標とが同一物であるか判定し、同一物である場合、それらを統合する。   The moving object determination unit 41 determines whether the target continues to move for a predetermined time or more based on the relative speed of the target. The oncoming vehicle determination unit 42 determines whether the target is an oncoming vehicle based on the relative speed of the target. The same object determination unit 43 determines whether the target detected by the front radar sensor 10 and the targets detected by the front side radar sensors 11a and 11b are the same, and if they are the same, integrates them. To do.

自車進路推定部50は、道路形状に合わせた自車進路を推定する。道路形状は、図示しないナビゲーションシステムに用いられる地図データから抽出できる。自車進路推定部50は、自車進路から、自車両を基準としたカーブ路の曲率半径を算出する。自車進路推定部50に替えて、道路を撮像して自車両が走行している車線を示す一対の白線を検出する白線検出センサ、または、自車両のヨーレートを検出するヨーレートセンサを用いて、カーブ路の曲率半径を算出してもよい。   The own vehicle route estimation unit 50 estimates the own vehicle route according to the road shape. The road shape can be extracted from map data used in a navigation system (not shown). The own vehicle course estimating unit 50 calculates the radius of curvature of the curved road with reference to the own vehicle from the own car course. Instead of the host vehicle course estimation unit 50, using a white line detection sensor that detects a pair of white lines indicating a lane in which the host vehicle is traveling by imaging a road, or a yaw rate sensor that detects the yaw rate of the host vehicle, The curvature radius of the curved road may be calculated.

割り込み判定部60は、補正部61と、割り込み位置判定部62と、割り込み車判定部63と、割り込み確率演算部64と、割り込み判定結果演算部65と、を有する。   The interrupt determination unit 60 includes a correction unit 61, an interrupt position determination unit 62, an interrupt vehicle determination unit 63, an interrupt probability calculation unit 64, and an interrupt determination result calculation unit 65.

補正部61は、自車進路推定部50により算出された曲率半径に基づいて、前方レーダセンサ10等により検出された追従対象車両と前側方車両とを含む物標の前後方向の相対速度、横方向の相対速度、横方向の位置および前後方向の位置を補正する。   Based on the radius of curvature calculated by the host vehicle course estimation unit 50, the correction unit 61 detects the relative speed in the front-rear direction and the lateral direction of the target including the tracking target vehicle and the front side vehicle detected by the front radar sensor 10 or the like. Correct the relative speed in the direction, the position in the horizontal direction and the position in the front-rear direction.

図2は、第1の実施形態に係る補正処理を説明する図である。図2に示すように、自車両Caと前側方車両C1は、カーブ路200を走行している。自車両Caは、自車進路推定部50で推定された自車進路RO1に沿って走行することが想定される。前側方車両C1は、自車両Caの車線に隣接する隣接車線を走行している。   FIG. 2 is a diagram for explaining correction processing according to the first embodiment. As shown in FIG. 2, the host vehicle Ca and the front side vehicle C <b> 1 are traveling on a curved road 200. It is assumed that the host vehicle Ca travels along the host vehicle route RO1 estimated by the host vehicle route estimation unit 50. The front side vehicle C1 is traveling in an adjacent lane adjacent to the lane of the host vehicle Ca.

自車両Caの前方先端の左右の中心をxy座標軸の原点とし、自車両Caの前方および右を正とする。前側方車両C1の前後方向の位置をY(m)とし、前側方車両C1の横方向の位置をX(m)とする。前側方車両C1の前後方向の相対速度をVy(m/s)とし、前側方車両C1の横方向の相対速度をVx(m/s)とする。xy座標軸の原点を基準としたカーブ中心の横方向の位置、即ち自車両Caを基準としたカーブ路200の曲率半径をR(m)とする。   The left and right center of the front tip of the host vehicle Ca is the origin of the xy coordinate axis, and the front and right of the host vehicle Ca are positive. The position in the front-rear direction of the front side vehicle C1 is Y (m), and the position in the lateral direction of the front side vehicle C1 is X (m). The relative speed in the front-rear direction of the front side vehicle C1 is defined as Vy (m / s), and the relative speed in the lateral direction of the front side vehicle C1 is defined as Vx (m / s). The lateral position of the curve center with respect to the origin of the xy coordinate axis, that is, the curvature radius of the curved road 200 with reference to the host vehicle Ca is defined as R (m).

補正部61は、補正後の前側方車両C1の横方向の位置として、自車両Caに対する前側方車両C1の道なりの横位置Llat(m)を、次の式(1)で算出する。

Figure 2017128286
The correction unit 61 calculates the lateral position Llat (m) along the road of the front side vehicle C1 with respect to the host vehicle Ca as the corrected lateral position of the front side vehicle C1 by the following equation (1).
Figure 2017128286

補正部61は、補正後の前側方車両C1の前後方向の相対速度として、自車両Caに対する前側方車両C1の道なりの相対速度Vr(m/s)を、次の式(2)で算出する。

Figure 2017128286
The correction unit 61 calculates the relative speed Vr (m / s) along the road of the front side vehicle C1 with respect to the host vehicle Ca as the corrected relative speed in the front-rear direction of the front side vehicle C1 by the following equation (2). To do.
Figure 2017128286

補正部61は、補正後の前側方車両C1の横方向の相対速度として、自車両Caに対する前側方車両C1の道なりの横方向の相対速度Vrlat(m/s)を、次の式(3)で算出する。

Figure 2017128286
The correction unit 61 calculates the lateral relative speed Vrlat (m / s) along the road of the front side vehicle C1 with respect to the host vehicle Ca as the corrected lateral relative speed of the front side vehicle C1 by the following formula (3 ).
Figure 2017128286

補正部61は、補正後の前側方車両C1の前後方向の位置、即ち補正後の自車両Caと前側方車両C1との車間距離として、自車両Caと前側方車両C1との道なりの距離L(m)を、次の式(4)で算出する。

Figure 2017128286
The correction unit 61 is the distance in the road between the host vehicle Ca and the front side vehicle C1 as the corrected position in the front-rear direction of the front side vehicle C1, that is, the inter-vehicle distance between the corrected host vehicle Ca and the front side vehicle C1. L (m) is calculated by the following equation (4).
Figure 2017128286

補正後の追従対象車両の前後方向の相対速度も式(2)に基づいて算出でき、補正後の追従対象車両の前後方向の位置も式(4)に基づいて算出できる。   The corrected relative velocity in the front-rear direction of the tracking target vehicle can also be calculated based on the equation (2), and the corrected position in the front-rear direction of the tracking target vehicle can also be calculated based on the equation (4).

図1に戻り、割り込み位置判定部62は、隣接車線の車両が割り込んでくると予想される割り込み位置が自車両の前方であるか判定する。   Returning to FIG. 1, the interrupt position determination unit 62 determines whether or not the interrupt position where the vehicle in the adjacent lane is expected to come in is ahead of the host vehicle.

割り込み車判定部63は、周辺環境検出部40で検出された車両の周辺環境と、割り込み位置判定部62の判定結果とに基づいて、検出された物標から、移動していない物標と、対向車と、割り込み位置が自車の後方である車両と、先行車とを除外し、残った物標を前側方車両とする。   The interrupting vehicle determination unit 63 is based on the surrounding environment of the vehicle detected by the surrounding environment detection unit 40 and the determination result of the interruption position determination unit 62, and from the detected target, An oncoming vehicle, a vehicle whose interrupt position is behind the host vehicle, and a preceding vehicle are excluded, and the remaining target is a front side vehicle.

割り込み車判定部63は、補正前の自車両と前側方車両との車間距離が所定の第1設定車間距離以下であり、且つ、その車間距離が所定の閾値以下である場合、前側方車両を、自車両と追従対象車両との間に割り込んでくると予想される予想割り込み車両として判定する。補正前の自車両と前側方車両との車間距離は、補正前の前側方車両の前後方向の位置と等しい。閾値は、前方レーダセンサ10と前側方レーダセンサ11a,11bの精度に基づいて予め設定される。割り込み車判定部63は、このような判定条件を用いず、常に前側方車両を予想割り込み車両として判定してもよい。   When the inter-vehicle distance between the host vehicle before correction and the front side vehicle is equal to or less than a predetermined first set inter-vehicle distance and the inter-vehicle distance is equal to or less than a predetermined threshold, Then, it is determined as an expected interruption vehicle that is expected to be interrupted between the own vehicle and the vehicle to be followed. The inter-vehicle distance between the host vehicle before correction and the front side vehicle is equal to the position in the front-rear direction of the front side vehicle before correction. The threshold is set in advance based on the accuracy of the front radar sensor 10 and the front side radar sensors 11a and 11b. The interrupting vehicle determination unit 63 may always determine the front side vehicle as the predicted interruption vehicle without using such a determination condition.

割り込み確率演算部64は、前側方車両の横方向の位置および横方向の相対速度に基づいて、予想割り込み車両である前側方車両が自車両と追従対象車両との間に割り込んでくる割り込み確率を所定の周期で定期的に演算する。具体的には、割り込み確率演算部64は、補正後の前側方車両の横方向の位置と、補正後の前側方車両の横方向の相対速度とに基づいて、図3の関係に従って、割り込み確率を演算する。割り込み確率演算部64は、基本的には、補正後の前側方車両の横方向の位置が近いほど、割り込み確率を高く演算し、補正後の前側方車両の横方向の相対速度が高いほど、割り込み確率を高く演算する。補正後の前側方車両の横方向の位置と、補正後の前側方車両の横方向の相対速度とを用いることにより、曲率半径が比較的小さいカーブ路200を走行中にも、より正確な割り込み確率を得ることができる。   The interruption probability calculation unit 64 calculates an interruption probability that the front side vehicle, which is an expected interruption vehicle, interrupts between the own vehicle and the tracking target vehicle based on the lateral position and the lateral relative speed of the front side vehicle. It calculates periodically with a predetermined cycle. Specifically, the interrupt probability calculation unit 64 determines the interrupt probability according to the relationship of FIG. 3 based on the corrected lateral position of the front side vehicle and the corrected lateral relative speed of the front side vehicle. Is calculated. The interruption probability calculation unit 64 basically calculates the interruption probability higher as the corrected lateral position of the front side vehicle is closer, and as the corrected lateral relative speed of the front side vehicle is higher, High interrupt probability is calculated. By using the corrected lateral position of the front side vehicle and the corrected lateral relative speed of the front side vehicle, a more accurate interruption can be achieved even while traveling on a curved road 200 having a relatively small radius of curvature. Probability can be obtained.

図3は、第1の実施形態に係る補正後の前側方車両の横方向の位置と、補正後の前側方車両の横方向の相対速度と、割り込み確率との関係の一例を示す図である。図3に示すように、補正後の前側方車両の横方向の位置が比較的近い場合、補正後の前側方車両の横方向の相対速度によらず割り込み確率は100%である。補正後の前側方車両の横方向の位置が比較的遠い場合、補正後の前側方車両の横方向の相対速度によらず割り込み確率は0%である。補正後の前側方車両の横方向の相対速度が負の場合、即ち前側方車両が自車両から遠ざかる場合であっても、補正後の前側方車両の横方向の位置が比較的近い場合には、割り込み確率は0%にはならない。これにより、前側方車両が左右にふらついている状況であっても、適切な割り込み確率を演算できる。   FIG. 3 is a diagram illustrating an example of the relationship between the lateral position of the corrected front side vehicle according to the first embodiment, the lateral relative speed of the corrected front side vehicle, and the interrupt probability. . As shown in FIG. 3, when the corrected lateral position of the front side vehicle is relatively close, the interrupt probability is 100% regardless of the corrected lateral lateral speed of the front side vehicle. When the corrected lateral position of the front side vehicle is relatively far, the interrupt probability is 0% regardless of the corrected lateral relative speed of the front side vehicle. When the corrected lateral lateral speed of the front side vehicle is negative, that is, when the corrected lateral position of the front side vehicle is relatively close even when the front side vehicle moves away from the host vehicle The interrupt probability is not 0%. As a result, even when the front side vehicle is staggered from side to side, an appropriate interrupt probability can be calculated.

図1に戻り、割り込み判定結果演算部65は、算出された割り込み確率に一次遅れフィルタ処理を行い、一次遅れフィルタ処理が行われた割り込み確率から割り込み判定結果を演算する。一次遅れフィルタ処理の時定数は、割り込み確率のふらつきや急変を除去できるよう、実験などによって適宜設定すればよい。割り込み判定結果は、確率として表され、例えば、0%(確率なし)、50%(中確率)、100%(高確率)の何れかである。割り込み判定結果は、0%と100%の何れかであってもよく、4つ以上の値の何れかであってもよい。   Returning to FIG. 1, the interrupt determination result calculation unit 65 performs a first-order lag filter process on the calculated interrupt probability, and calculates an interrupt determination result from the interrupt probability obtained by the first-order lag filter process. The time constant of the first-order lag filtering process may be set as appropriate through experiments or the like so as to eliminate fluctuations in interrupt probability and sudden changes. The interrupt determination result is expressed as a probability, and is, for example, 0% (no probability), 50% (medium probability), or 100% (high probability). The interrupt determination result may be either 0% or 100%, or any of four or more values.

一次遅れフィルタ処理が行われた割り込み確率から割り込み判定結果を演算する方法は特に限定されない。例えば、第1閾値と第2閾値を設定し、一次遅れフィルタ処理が行われた割り込み確率が第1閾値未満の場合に割り込み判定結果を0%とし、第1閾値以上かつ第2閾値未満の場合に割り込み判定結果を50%とし、第2閾値以上の場合に割り込み判定結果を100%としてもよい。   There is no particular limitation on the method of calculating the interrupt determination result from the interrupt probability in which the first-order lag filter processing has been performed. For example, when the first threshold value and the second threshold value are set, and the interrupt probability for which the first-order lag filter processing has been performed is less than the first threshold value, the interrupt determination result is 0%, and the first threshold value and the second threshold value are less than the second threshold value The interrupt determination result may be set to 50%, and the interrupt determination result may be set to 100% when the second threshold value is exceeded.

また、割り込み判定結果演算部65は、直前の割り込み判定結果に応じて第1閾値と第2閾値を変更し、ヒステリシスを持たせる。これにより、一次遅れフィルタ処理が行われた割り込み確率が第1閾値または第2閾値付近で小さくふらついても、割り込み判定結果が変化し難いようにできる。   Further, the interrupt determination result calculation unit 65 changes the first threshold value and the second threshold value according to the immediately previous interrupt determination result to provide hysteresis. As a result, even if the interrupt probability for which the first-order lag filter processing has been performed fluctuates small in the vicinity of the first threshold value or the second threshold value, it is possible to prevent the interrupt determination result from changing.

図4は、第1の実施形態に係る第1閾値と第2閾値の一例を示す図である。直前の割り込み判定結果が0%、即ち割り込み無しの場合、第1閾値は50%であり、第2閾値は70%である。直前の割り込み判定結果が50%、即ち割り込み判定(加速抑制)の場合、第1閾値は40%であり、第2閾値は70%である。直前の割り込み判定結果が100%、即ち割り込み判定(制動許可)の場合、第1閾値は40%であり、第2閾値は60%である。   FIG. 4 is a diagram illustrating an example of the first threshold and the second threshold according to the first embodiment. When the immediately preceding interrupt determination result is 0%, that is, when there is no interrupt, the first threshold is 50% and the second threshold is 70%. When the immediately preceding interruption determination result is 50%, that is, interruption determination (acceleration suppression), the first threshold is 40% and the second threshold is 70%. When the immediately preceding interruption determination result is 100%, that is, the interruption determination (braking permission), the first threshold is 40% and the second threshold is 60%.

図5は、第1の実施形態に係る割り込み確率の瞬時値110と、一次遅れフィルタ処理が行われた割り込み確率111と、割り込み判定結果112との時間変化を示す図である。前述のように、一次遅れフィルタ処理およびヒステリシスによって割り込み確率のふらつきや急変が除去されている。   FIG. 5 is a diagram showing temporal changes in the instantaneous value 110 of the interrupt probability according to the first embodiment, the interrupt probability 111 in which the first-order lag filtering process is performed, and the interrupt determination result 112. As described above, fluctuations and sudden changes in the interrupt probability are eliminated by the first-order lag filtering process and hysteresis.

図1に戻り、加速度調停部70は、第2目標加速度演算部71と、目標加速度調停部72と、を有する。第2目標加速度演算部71は、割り込み判定結果が所定値以上の場合、前方レーダセンサ10等により検出された前側方車両の前後方向の相対速度と前後方向の位置に基づいて、自車両と前側方車両との車間距離が所定の第2設定車間距離になるように、割り込み判定結果に応じて割り込み対応用目標加速度を演算する。具体的には、第2目標加速度演算部71は、補正後の前側方車両の前後方向の相対速度と、補正後の前側方車両の前後方向の位置に基づいて、割り込み対応用目標加速度を演算する。これにより、曲率半径が比較的小さいカーブ路200を走行中にも、より正確に車間距離制御を行うことができる。割り込み対応用目標加速度は、正または負の値である。
第2目標加速度演算部71は、割り込み判定結果が所定値未満の場合、割り込み対応用目標加速度を演算しない。
Returning to FIG. 1, the acceleration mediation unit 70 includes a second target acceleration calculation unit 71 and a target acceleration mediation unit 72. When the interrupt determination result is equal to or greater than a predetermined value, the second target acceleration calculation unit 71 determines whether the vehicle and the front side are based on the front-rear vehicle relative speed and the front-rear direction position detected by the front radar sensor 10 or the like. The target acceleration for interruption is calculated according to the interruption determination result so that the inter-vehicle distance with the direction vehicle becomes a predetermined second set inter-vehicle distance. Specifically, the second target acceleration calculation unit 71 calculates the target acceleration for interrupt based on the corrected front-rear relative speed of the front side vehicle and the corrected front-rear position of the front side vehicle. To do. Accordingly, the inter-vehicle distance control can be performed more accurately even while traveling on the curved road 200 having a relatively small radius of curvature. The target acceleration for interrupt handling is a positive or negative value.
When the interruption determination result is less than the predetermined value, the second target acceleration calculation unit 71 does not calculate the target acceleration for interruption.

所定値は、例えば、中確率に対応する値である50%であってもよい。割り込み判定結果が50%の場合、加速抑制を表し、第2目標加速度演算部71は、スロットルを閉じることにより得られる範囲で割り込み対応用目標加速度を演算する。割り込み判定結果が100%の場合、制動許可を表し、第2目標加速度演算部71は、スロットルを閉じると共にブレーキをかけることにより得られる範囲で割り込み対応用目標加速度を演算する。これにより、割り込み判定結果が50%の場合では、100%の場合と比較して、減速度が小さくなる。よって、割り込み判定結果が50%の場合、急激に減速され難いので、ドライバーの違和感を抑制できる。   For example, the predetermined value may be 50%, which is a value corresponding to the medium probability. When the interruption determination result is 50%, acceleration suppression is indicated, and the second target acceleration calculation unit 71 calculates the target acceleration for interruption within a range obtained by closing the throttle. When the interruption determination result is 100%, it represents braking permission, and the second target acceleration calculation unit 71 calculates the target acceleration for interruption within a range obtained by closing the throttle and applying the brake. Thereby, when the interruption determination result is 50%, the deceleration is smaller than when the interruption determination result is 100%. Therefore, when the interruption determination result is 50%, it is difficult to decelerate rapidly, so that the driver's uncomfortable feeling can be suppressed.

第2設定車間距離は、ドライバーによって設定されてもよく、予め定められていてもよい。第2設定車間距離は、第1設定車間距離と等しくてもよく、異なってもよい。   The second set inter-vehicle distance may be set by a driver or may be determined in advance. The second set inter-vehicle distance may be equal to or different from the first set inter-vehicle distance.

目標加速度調停部72は、追従用目標加速度と割り込み対応用目標加速度のうち小さいものを調停後目標加速度として選択する。   The target acceleration arbitration unit 72 selects a smaller one of the tracking target acceleration and the interrupt-response target acceleration as the post-arbitration target acceleration.

ブレーキECU80とエンジンECU81は、調停後目標加速度に基づいて、走行制御部82を制御する。走行制御部82は、自車両の加速度が調停後目標加速度に近づくように自車両の駆動力および制動力を制御する。   The brake ECU 80 and the engine ECU 81 control the travel control unit 82 based on the post-arbitration target acceleration. The traveling control unit 82 controls the driving force and the braking force of the host vehicle so that the acceleration of the host vehicle approaches the target acceleration after the arbitration.

HMI出力装置83は、車室内に設けられ、割り込み判定結果が50%と100%の場合に表示や音声などによりドライバーに通知する。   The HMI output device 83 is provided in the passenger compartment, and notifies the driver by display or voice when the interrupt determination result is 50% or 100%.

図6は、第1の実施形態に係る割り込み判定結果の演算処理を示すフローチャートである。図6の処理は、所定の周期で定期的に行われる。まず、前方レーダセンサ10または前側方レーダセンサ11a,11bが物標を更新したか判定し(S1)、更新していない場合(S1のN)、今回の処理を終了する。物標を更新した場合(S1のY)、補正部61は、前側方車両の横方向の位置および横方向の相対速度などを補正する(S2)。   FIG. 6 is a flowchart showing the calculation processing of the interrupt determination result according to the first embodiment. The processing in FIG. 6 is periodically performed at a predetermined cycle. First, it is determined whether the front radar sensor 10 or the front side radar sensors 11a and 11b have updated the target (S1). If not updated (N in S1), the current process is terminated. When the target is updated (Y in S1), the correction unit 61 corrects the lateral position of the front side vehicle, the lateral relative speed, and the like (S2).

次に、割り込み確率演算部64は、補正結果に基づいて割り込み確率を演算する(S3)。次に、割り込み判定結果演算部65は、算出された割り込み確率に一次遅れフィルタ処理を行う(S4)。次に、割り込み判定結果演算部65は、直前の割り込み判定結果と一次遅れフィルタ処理が行われた割り込み確率から、割り込み判定結果を演算する(S5)。   Next, the interrupt probability calculation unit 64 calculates an interrupt probability based on the correction result (S3). Next, the interrupt determination result calculation unit 65 performs a first-order lag filter process on the calculated interrupt probability (S4). Next, the interrupt determination result calculation unit 65 calculates the interrupt determination result from the previous interrupt determination result and the interrupt probability that the first-order lag filter processing has been performed (S5).

このように、本実施形態によれば、前側方車両の横方向の位置および前側方車両の横方向の相対速度に基づいて割り込み確率を演算している。前側方車両の横方向の相対速度を用いることにより、前側方車両が車線端に偏って走行しているだけで自車線に近づいていないか、自車線に近づいてきているか判定できる。よって、前側方車両の割り込み確率を精度よく算出できる。
また、一次遅れフィルタ処理およびヒステリシスによって割り込み確率のふらつきや急変を除去することができる。これにより、誤判定を抑制できる。
Thus, according to the present embodiment, the interrupt probability is calculated based on the lateral position of the front side vehicle and the relative speed in the lateral direction of the front side vehicle. By using the relative speed in the lateral direction of the front side vehicle, it can be determined whether the front side vehicle is moving toward the lane edge and is not approaching the own lane or approaching the own lane. Therefore, the interruption probability of the front side vehicle can be accurately calculated.
In addition, fluctuations in interrupt probability and sudden changes can be eliminated by the first-order lag filter processing and hysteresis. Thereby, erroneous determination can be suppressed.

さらに、前側方車両の横方向の位置および横方向の相対速度をカーブ路の曲率半径に基づいて補正している。これにより、曲率半径が比較的小さいカーブ路を走行中にも、より正確な割り込み確率を得ることができる。   Further, the lateral position and lateral relative speed of the front side vehicle are corrected based on the curvature radius of the curved road. As a result, a more accurate interruption probability can be obtained even while traveling on a curved road having a relatively small radius of curvature.

(第2の実施形態)
第2の実施形態では、カーブ中心の横方向の位置Rを算出する基準点が第1の実施形態と異なる。以下では、第1の実施形態との相違点を中心に説明する。
(Second Embodiment)
In the second embodiment, the reference point for calculating the lateral position R of the center of the curve is different from that of the first embodiment. Below, it demonstrates centering around difference with 1st Embodiment.

図7は、第2の実施形態に係る補正処理を説明する図である。図2に示すように、カーブ中心の横方向の位置Rは、自車両Caの後輪軸を基準点として算出されている。後輪軸中心の位置をΔY(m)とする。   FIG. 7 is a diagram for explaining correction processing according to the second embodiment. As shown in FIG. 2, the lateral position R of the center of the curve is calculated with the rear wheel axis of the host vehicle Ca as a reference point. Let the position of the center of the rear wheel axis be ΔY (m).

補正部61は、自車両Caに対する前側方車両C1の道なりの横位置Llat(m)を、次の式(5)で算出する。

Figure 2017128286
The correction unit 61 calculates the lateral position Llat (m) along the road of the front side vehicle C1 with respect to the host vehicle Ca by the following equation (5).
Figure 2017128286

補正部61は、自車両Caに対する前側方車両C1の道なりの相対速度Vr(m/s)を、次の式(6)で算出する。

Figure 2017128286
The correction unit 61 calculates the relative speed Vr (m / s) along the road of the front side vehicle C1 with respect to the host vehicle Ca by the following equation (6).
Figure 2017128286

補正部61は、自車両Caに対する前側方車両C1の道なりの横方向の相対速度Vrlat(m/s)を、次の式(7)で算出する。

Figure 2017128286
The correction unit 61 calculates a lateral relative speed Vrlat (m / s) along the road of the front side vehicle C1 with respect to the host vehicle Ca by the following equation (7).
Figure 2017128286

補正部61は、自車両Caと前側方車両C1との道なりの距離L(m)を、次の式(8)で算出する。

Figure 2017128286
The correction unit 61 calculates the distance L (m) along the road between the host vehicle Ca and the front side vehicle C1 using the following equation (8).
Figure 2017128286

このように、カーブ中心の横方向の位置Rが自車両Caの後輪軸を基準点として算出される場合であっても、道なりの横位置Llat等を適切に算出できる。したがって、第1の実施形態と同様の効果が得られる。   Thus, even when the lateral position R of the center of the curve is calculated using the rear wheel axis of the host vehicle Ca as a reference point, the lateral position Llat along the road can be appropriately calculated. Therefore, the same effect as the first embodiment can be obtained.

(第3の実施形態)
第3の実施形態では、補正部61は、曲率半径を用いずに、自車進路推定部50で推定された自車進路に基づいて、道なりの横位置Llat等を算出する。以下では、第1の実施形態との相違点を中心に説明する。
(Third embodiment)
In the third embodiment, the correcting unit 61 calculates the lateral position Llat along the road based on the own vehicle route estimated by the own vehicle route estimating unit 50 without using the radius of curvature. Below, it demonstrates centering around difference with 1st Embodiment.

図8は、第3の実施形態に係る補正処理を説明する図である。図8に示すように、自車両Caは、自車進路推定部50で推定された自車進路RO1に沿って走行することが想定される。自車進路RO1は、第1の実施形態で説明したように、道路形状に合わせて推定される。道路形状は図示されていない。自車進路RO1は、複数の自車進路予測点P0,P1,P2,・・・を通る折れ線である。自車進路予測点P0は、xy座標軸の原点である。i番目の自車進路予測点Piの前後方向の位置をYi(m)とし、i番目の自車進路予測点Piの横方向の位置をXi(m)とする。前側方車両C1の前端部に最も近い自車進路予測点をPnとする。図示する例では、n=4である。   FIG. 8 is a diagram for explaining correction processing according to the third embodiment. As shown in FIG. 8, the host vehicle Ca is assumed to travel along the host vehicle route RO1 estimated by the host vehicle route estimation unit 50. The host vehicle route RO1 is estimated according to the road shape as described in the first embodiment. The road shape is not shown. The own vehicle route RO1 is a broken line passing through a plurality of own vehicle route prediction points P0, P1, P2,. The own vehicle course predicted point P0 is the origin of the xy coordinate axes. The position in the front-rear direction of the i-th own vehicle course predicted point Pi is defined as Yi (m), and the lateral position of the i-th own vehicle course predicted point Pi is defined as Xi (m). Let the self-vehicle course predicted point closest to the front end of the front side vehicle C1 be Pn. In the illustrated example, n = 4.

補正部61は、自車両Caに対する前側方車両C1の道なりの横位置Llat(m)を、次の式(9)で算出する。

Figure 2017128286
The correcting unit 61 calculates the lateral position Llat (m) along the road of the front side vehicle C1 with respect to the host vehicle Ca by the following equation (9).
Figure 2017128286

補正部61は、自車両Caに対する前側方車両C1の道なりの相対速度Vr(m/s)を、次の式(10)で算出する。

Figure 2017128286
The correcting unit 61 calculates a relative speed Vr (m / s) along the road of the front side vehicle C1 with respect to the host vehicle Ca by the following equation (10).
Figure 2017128286

補正部61は、自車両Caに対する前側方車両C1の道なりの横方向の相対速度Vrlat(m/s)を、次の式(11)で算出する。

Figure 2017128286
The correcting unit 61 calculates a lateral relative speed Vrlat (m / s) along the road of the front side vehicle C1 with respect to the host vehicle Ca by the following equation (11).
Figure 2017128286

補正部61は、自車両Caと前側方車両C1との道なりの距離L(m)を、次の式(12)で算出する。この距離Lは、自車進路RO1をx軸方向に位置X,Yを通る位置まで平行移動したと仮定し、位置X,Yから自車進路RO1に沿ってx軸に達するまでの距離である。

Figure 2017128286
The correction unit 61 calculates the distance L (m) along the road between the host vehicle Ca and the front side vehicle C1 using the following equation (12). This distance L is a distance from the position X, Y to the x-axis along the own-vehicle route RO1, assuming that the own-vehicle route RO1 is translated in the x-axis direction to a position passing through the positions X, Y. .
Figure 2017128286

このように、曲率半径を用いずに、自車進路推定部50で推定された折れ線の自車進路RO1を用いた場合であっても、道なりの横位置Llat等を適切に算出できる。したがって、第1の実施形態と同様の効果が得られる。   As described above, the lateral position Llat along the road can be appropriately calculated even when the broken line own vehicle route RO1 estimated by the own vehicle route estimation unit 50 is used without using the curvature radius. Therefore, the same effect as the first embodiment can be obtained.

以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
例えば、曲率半径の比較的小さいカーブ路を走行する際の制御の精度を向上する必要が無い場合、第1の実施形態において自車進路推定部50と補正部61を設けなくてもよい。これにより、車間制御ECU20の処理を簡略化できる。
The present invention has been described based on the embodiments. The embodiments are exemplifications, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. .
For example, when it is not necessary to improve the accuracy of control when traveling on a curved road having a relatively small radius of curvature, the host vehicle course estimation unit 50 and the correction unit 61 may not be provided in the first embodiment. Thereby, the process of the inter-vehicle control ECU 20 can be simplified.

10…前方レーダセンサ(検出部)、11a,11b…前側方レーダセンサ(検出部)、30…第1目標加速度演算部、64…割り込み確率演算部、70…加速度調停部、71…第2目標加速度演算部、72…目標加速度調停部、82…走行制御部、100…車両用走行制御装置。 DESCRIPTION OF SYMBOLS 10 ... Front radar sensor (detection part), 11a, 11b ... Front side radar sensor (detection part), 30 ... 1st target acceleration calculation part, 64 ... Interruption probability calculation part, 70 ... Acceleration arbitration part, 71 ... 2nd target Acceleration calculator, 72... Target acceleration mediator, 82... Travel controller, 100.

Claims (1)

自車両の前方を走行する追従対象車両と、前記自車両の前側方を走行する前側方車両と、を検出する検出部と、
前記自車両と前記追従対象車両との車間距離が所定の第1設定車間距離になるように、追従用目標加速度を演算する第1目標加速度演算部と、
前記前側方車両の横方向の位置および前記前側方車両の横方向の相対速度に基づいて、前記前側方車両が前記自車両と前記追従対象車両との間に割り込んでくる割り込み確率を演算する割り込み確率演算部と、
前記自車両と前記前側方車両との車間距離が所定の第2設定車間距離になるように、前記割り込み確率に応じて割り込み対応用目標加速度を演算する第2目標加速度演算部と、
前記追従用目標加速度と前記割り込み対応用目標加速度のうち小さいものを調停後目標加速度として選択する目標加速度調停部と、
前記自車両の加速度が前記調停後目標加速度に近づくように前記自車両の駆動力および制動力を制御する走行制御部と、
を備えることを特徴とする車両用走行制御装置。
A detection unit for detecting a tracking target vehicle that travels in front of the host vehicle and a front side vehicle that travels in front of the host vehicle;
A first target acceleration calculation unit that calculates a target acceleration for tracking so that an inter-vehicle distance between the host vehicle and the tracking target vehicle is a predetermined first set inter-vehicle distance;
Based on the lateral position of the front side vehicle and the lateral relative speed of the front side vehicle, an interrupt that calculates an interrupt probability that the front side vehicle interrupts between the host vehicle and the tracking target vehicle A probability calculator,
A second target acceleration calculation unit that calculates an interrupt-response target acceleration according to the interrupt probability so that an inter-vehicle distance between the host vehicle and the front side vehicle is a predetermined second set inter-vehicle distance;
A target acceleration mediation unit that selects a smaller one of the target acceleration for tracking and the target acceleration for interrupt as a target acceleration after mediation; and
A travel control unit that controls the driving force and braking force of the host vehicle so that the acceleration of the host vehicle approaches the target acceleration after the arbitration;
A vehicle travel control device comprising:
JP2016010326A 2016-01-22 2016-01-22 Vehicle travel control device Active JP6497329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010326A JP6497329B2 (en) 2016-01-22 2016-01-22 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010326A JP6497329B2 (en) 2016-01-22 2016-01-22 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2017128286A true JP2017128286A (en) 2017-07-27
JP6497329B2 JP6497329B2 (en) 2019-04-10

Family

ID=59395870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010326A Active JP6497329B2 (en) 2016-01-22 2016-01-22 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP6497329B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154614A (en) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 Vehicle travel controlling apparatus
KR20190070760A (en) * 2017-12-13 2019-06-21 현대자동차주식회사 Apparatus and method for determining intention for cut-in
CN112441004A (en) * 2020-11-30 2021-03-05 重庆长安汽车股份有限公司 Longitudinal planning method and system for automatic driving lane changing, vehicle and storage medium
JP7274014B1 (en) 2022-03-02 2023-05-15 三菱電機株式会社 Lane change prediction device, lane change prediction method and program
GB2615203A (en) * 2020-01-09 2023-08-02 Jaguar Land Rover Ltd Vehicle control system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205366A (en) * 1997-01-22 1998-08-04 Hitachi Ltd Device and method for follow-up traveling for vehicle
JP2006327531A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Automatic cruising device for vehicle
JP2010228753A (en) * 2010-04-12 2010-10-14 Nissan Motor Co Ltd Automatic cruising device for vehicle
JP2011006007A (en) * 2009-06-29 2011-01-13 Nissan Motor Co Ltd Tracking control device and tracking control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205366A (en) * 1997-01-22 1998-08-04 Hitachi Ltd Device and method for follow-up traveling for vehicle
JP2006327531A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Automatic cruising device for vehicle
JP2011006007A (en) * 2009-06-29 2011-01-13 Nissan Motor Co Ltd Tracking control device and tracking control method
JP2010228753A (en) * 2010-04-12 2010-10-14 Nissan Motor Co Ltd Automatic cruising device for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154614A (en) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 Vehicle travel controlling apparatus
KR20190070760A (en) * 2017-12-13 2019-06-21 현대자동차주식회사 Apparatus and method for determining intention for cut-in
US10885790B2 (en) 2017-12-13 2021-01-05 Hyundai Motor Company Apparatus and method for determining intention to cut in
KR102506865B1 (en) * 2017-12-13 2023-03-08 현대자동차주식회사 Apparatus and method for determining intention for cut-in
GB2615203A (en) * 2020-01-09 2023-08-02 Jaguar Land Rover Ltd Vehicle control system and method
CN112441004A (en) * 2020-11-30 2021-03-05 重庆长安汽车股份有限公司 Longitudinal planning method and system for automatic driving lane changing, vehicle and storage medium
JP7274014B1 (en) 2022-03-02 2023-05-15 三菱電機株式会社 Lane change prediction device, lane change prediction method and program
JP2023127712A (en) * 2022-03-02 2023-09-14 三菱電機株式会社 Lane change prediction device, lane change prediction method, and program

Also Published As

Publication number Publication date
JP6497329B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5977270B2 (en) Vehicle control apparatus and program
CN109720345B (en) Cut-in vehicle monitoring method and system
JP6497329B2 (en) Vehicle travel control device
US10345443B2 (en) Vehicle cruise control apparatus and vehicle cruise control method
JP5716680B2 (en) Preceding vehicle selection device and inter-vehicle distance control device
EP3372464B1 (en) Vehicle travel assist device
CN107004368B (en) Vehicle travel control device and travel control method
US9487217B2 (en) Collision mitigation apparatus
US20150239472A1 (en) Vehicle-installed obstacle detection apparatus having function for judging motion condition of detected object
JP6363516B2 (en) Vehicle travel control device
JP6363519B2 (en) Vehicle control device
US9470790B2 (en) Collision determination device and collision determination method
JP6363558B2 (en) Vehicle control apparatus and vehicle control method
JP2018103703A (en) Drive assisting device
JP5974607B2 (en) Vehicle travel control device
CN110254421B (en) Driving assistance system
JP2013125403A (en) Preceding vehicle determination device and inter-vehicle controller
JP2016134094A (en) Vehicle cruise control device
US20150175167A1 (en) Course estimator
US20180265083A1 (en) Collision avoidance device
US10538251B2 (en) Course estimator and method of estimating a state of a course of a vehicle and a non-transitory computer-readable storage medium for the same
JP6481627B2 (en) Vehicle travel control device
KR20190045308A (en) A vehicle judging method, a traveling path correcting method, a vehicle judging device, and a traveling path correcting device
US9643576B2 (en) Collision avoidance assist device and collision avoidance assist method
JP2017136897A (en) Vehicle travel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151