JP2017128178A - Vehicular travel control device - Google Patents

Vehicular travel control device Download PDF

Info

Publication number
JP2017128178A
JP2017128178A JP2016007820A JP2016007820A JP2017128178A JP 2017128178 A JP2017128178 A JP 2017128178A JP 2016007820 A JP2016007820 A JP 2016007820A JP 2016007820 A JP2016007820 A JP 2016007820A JP 2017128178 A JP2017128178 A JP 2017128178A
Authority
JP
Japan
Prior art keywords
vehicle
inter
front side
distance
target acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007820A
Other languages
Japanese (ja)
Other versions
JP6481627B2 (en
Inventor
伊藤 達哉
Tatsuya Ito
達哉 伊藤
佳之 加藤
Yoshiyuki Kato
佳之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016007820A priority Critical patent/JP6481627B2/en
Publication of JP2017128178A publication Critical patent/JP2017128178A/en
Application granted granted Critical
Publication of JP6481627B2 publication Critical patent/JP6481627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicular travel control device that can suppress unnecessary acceleration and deceleration.SOLUTION: A vehicular travel control device 100 comprises: detecting units 10, 11a and 11b; an interrupting vehicle determining unit 63; a first target acceleration calculating unit 30; a second target acceleration calculating unit 71; a target acceleration arbitrating unit 72; and a travel controlling unit 82. When an inter-vehicle distance between its own vehicle and a vehicle ahead is below a predetermined first set inter-vehicle distance and the inter-vehicle distance or a direct distance between its own vehicle and the vehicle ahead is below a threshold defined based on precision of the detecting units, the interrupting-vehicle determining unit 63 determines the vehicle ahead as a predicted interrupting vehicle which is predicted to interrupt between its own vehicle and a vehicle to be followed. A second target acceleration calculating unit 71 calculates a target acceleration for dealing with interruption so that an inter-vehicle distance between its own vehicle and the predicted interrupting vehicle is equal to a predetermined second set inter-vehicle distance.SELECTED DRAWING: Figure 1

Description

本発明は、車間距離制御を行う車両用走行制御装置に関する。   The present invention relates to a vehicular travel control apparatus that performs inter-vehicle distance control.

従来、車間距離制御や定速走行制御を行う車両用走行制御装置が知られている。この車両用走行制御装置は、自車線に先行車両が存在するときには先行車両に対して設定車間距離が維持されるように自車両の車速を制御する車間距離制御を行い、先行車両が存在しないときには自車両の車速を設定車速に維持する定速走行制御を行う。このような車両用走行制御装置に関連して、例えば、特許文献1に記載の技術が知られている。   Conventionally, a vehicular travel control device that performs inter-vehicle distance control and constant speed travel control is known. The vehicle travel control device performs inter-vehicle distance control for controlling the vehicle speed of the host vehicle so that the set inter-vehicle distance is maintained with respect to the preceding vehicle when the preceding vehicle exists in the own lane, and when the preceding vehicle does not exist. Constant speed running control is performed to maintain the vehicle speed of the host vehicle at the set vehicle speed. In relation to such a vehicular travel control device, for example, a technique described in Patent Document 1 is known.

特開2004−114906号公報JP 2004-114906 A

しかし、従来の車両用走行制御装置では、自車両と先行車両との間に割り込んでくる可能性のある隣接車線の車両に対して車間距離制御を行う場合、不要な加減速が発生する。   However, in the conventional vehicular travel control device, unnecessary acceleration / deceleration occurs when inter-vehicle distance control is performed on a vehicle in an adjacent lane that may be interrupted between the host vehicle and the preceding vehicle.

本発明はこうした状況に鑑みてなされたものであり、その目的は、不要な加減速を抑制できる車両用走行制御装置を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the traveling control apparatus for vehicles which can suppress unnecessary acceleration / deceleration.

上記課題を解決するために、本発明のある態様の車両用走行制御装置は、自車両の前方を走行する追従対象車両と、前記自車両の前側方を走行する前側方車両と、を検出する検出部と、前記自車両と前記前側方車両との車間距離が所定の第1設定車間距離以下であり、且つ、前記車間距離または前記自車両と前記前側方車両との直線距離が前記検出部の精度に基づいて設定された閾値以下である場合、前記前側方車両を、前記自車両と前記追従対象車両との間に割り込んでくると予想される予想割り込み車両として判定する割り込み車判定部と、前記自車両と前記追従対象車両との車間距離が前記第1設定車間距離になるように、追従用目標加速度を演算する第1目標加速度演算部と、前記自車両と前記予想割り込み車両との車間距離が所定の第2設定車間距離になるように、割り込み対応用目標加速度を演算する第2目標加速度演算部と、前記追従用目標加速度と前記割り込み対応用目標加速度のうち小さいものを調停後目標加速度として選択する目標加速度調停部と、前記自車両の加速度が前記調停後目標加速度に近づくように前記自車両の駆動力および制動力を制御する走行制御部と、を備える。   In order to solve the above problems, a vehicle travel control apparatus according to an aspect of the present invention detects a tracking target vehicle that travels in front of the host vehicle and a front side vehicle that travels in front of the host vehicle. The inter-vehicle distance between the detection unit and the host vehicle and the front side vehicle is equal to or less than a predetermined first set inter-vehicle distance, and the inter-vehicle distance or the linear distance between the host vehicle and the front side vehicle is the detection unit. An interruption vehicle determination unit that determines that the front side vehicle is an expected interruption vehicle that is expected to interrupt between the host vehicle and the tracking target vehicle when the vehicle is below a threshold set based on the accuracy of A first target acceleration calculating unit that calculates a target acceleration for tracking so that an inter-vehicle distance between the host vehicle and the tracking target vehicle is the first set inter-vehicle distance; and the host vehicle and the predicted interrupting vehicle Predetermined distance between vehicles A second target acceleration calculating unit that calculates the target acceleration for interruption corresponding to the second set inter-vehicle distance, and a smaller one of the target acceleration for tracking and the target acceleration for interruption is selected as the target acceleration after arbitration A target acceleration arbitration unit; and a travel control unit that controls the driving force and the braking force of the host vehicle so that the acceleration of the host vehicle approaches the target acceleration after the arbitration.

この態様によると、自車両への影響が大きい、自車両に相対的に近い前側方車両に対して減速制御を行い、自車両から相対的に遠い前側方車両に対して減速制御を行わない。よって、不要な減速を行った後、再度加速を行うような、不要な加減速を抑制できる。   According to this aspect, the deceleration control is performed on the front side vehicle that is relatively close to the host vehicle and has a great influence on the host vehicle, and the deceleration control is not performed on the front side vehicle that is relatively far from the host vehicle. Therefore, unnecessary acceleration / deceleration in which acceleration is performed again after unnecessary deceleration can be suppressed.

本発明によれば、不要な加減速を抑制できる。   According to the present invention, unnecessary acceleration / deceleration can be suppressed.

第1の実施形態に係る車両用走行制御装置のブロック図である。1 is a block diagram of a vehicle travel control apparatus according to a first embodiment. 第1の実施形態に係る閾値の設定方法を説明する図である。It is a figure explaining the setting method of the threshold value which concerns on 1st Embodiment. 図1の割り込み車判定部で行われる処理を示すフローチャートである。It is a flowchart which shows the process performed by the interruption vehicle determination part of FIG. 図1の車両用走行制御装置の動作を説明する図である。It is a figure explaining operation | movement of the traveling control apparatus for vehicles of FIG. 第2の実施形態に係る車両用走行制御装置の動作を説明する図である。It is a figure explaining operation | movement of the vehicle travel control apparatus which concerns on 2nd Embodiment.

(第1の実施形態)
図1は、第1の実施形態に係る車両用走行制御装置100のブロック図である。車両用走行制御装置100は、ACC(Adaptive Cruise Control)と称される場合がある。
(First embodiment)
FIG. 1 is a block diagram of a vehicle travel control apparatus 100 according to the first embodiment. The vehicle travel control apparatus 100 may be referred to as ACC (Adaptive Cruise Control).

車両用走行制御装置100は、前方レーダセンサ(検出部)10と、前側方レーダセンサ(検出部)11a,11bと、車間制御ECU(Electronic Control Unit)20と、ブレーキECU80と、エンジンECU81と、走行制御部82と、HMI(Human Machine Interface)出力装置83と、を備える。   The vehicle travel control apparatus 100 includes a front radar sensor (detection unit) 10, front side radar sensors (detection units) 11a and 11b, an inter-vehicle control ECU (Electronic Control Unit) 20, a brake ECU 80, an engine ECU 81, A travel control unit 82 and an HMI (Human Machine Interface) output device 83 are provided.

前方レーダセンサ10は、例えば車両のフロントバンパーやフロントグリルなど車両の前端部の中央に配置され、車両の前方を中心に所定の角度にミリ波を出射し、この範囲に存在する物標により反射した反射波を受信する。   The front radar sensor 10 is arranged at the center of the front end portion of the vehicle such as a front bumper or a front grille of the vehicle, emits a millimeter wave at a predetermined angle around the front of the vehicle, and is reflected by a target existing in this range. Receive reflected waves.

前側方レーダセンサ11a,11bは、例えば車両のフロントバンパーやフロントグリルなど車両の前端部に左右にオフセットして配置される。左側用の前側方レーダセンサ11aは、車両の左斜め前方を中心に所定の角度にミリ波を出射し、この範囲に存在する物標により反射した反射波を受信する。右側用の前側方レーダセンサ11bは、車両の右斜め前方を中心に所定の角度にミリ波を出射し、この範囲に存在する物標により反射した反射波を受信する。   The front side radar sensors 11a and 11b are disposed, for example, offset left and right at the front end of the vehicle such as a front bumper or a front grill of the vehicle. The front side radar sensor 11a for the left side emits a millimeter wave at a predetermined angle around the left front of the vehicle, and receives a reflected wave reflected by a target existing in this range. The front side radar sensor 11b for the right side emits a millimeter wave at a predetermined angle centered on the right front side of the vehicle, and receives a reflected wave reflected by a target existing in this range.

前方レーダセンサ10と前側方レーダセンサ11a,11bは、それぞれ、受信した反射波を解析することにより、物標の位置および相対速度を検出する。具体的には、前方レーダセンサ10等は、自車両を基準として、物標の前後方向の相対速度、横方向の相対速度、前後方向の位置および横方向の位置を検出する。これにより、前方レーダセンサ10と前側方レーダセンサ11a,11bは、自車両の前方を走行する追従対象車両と、自車両の前側方を走行する前側方車両と、を検出できる。追従対象車両は、自車線上の自車前方の車両であって、自車に最も近い車両である。   The front radar sensor 10 and the front side radar sensors 11a and 11b each detect the position and relative velocity of the target by analyzing the received reflected wave. Specifically, the front radar sensor 10 and the like detect the relative speed in the front-rear direction, the relative speed in the horizontal direction, the position in the front-rear direction, and the position in the horizontal direction with respect to the host vehicle. Thereby, the front radar sensor 10 and the front side radar sensors 11a and 11b can detect the tracking target vehicle that travels in front of the host vehicle and the front side vehicle that travels in front of the host vehicle. The tracking target vehicle is a vehicle in front of the own vehicle on the own lane, and is the vehicle closest to the own vehicle.

車間制御ECU20は、前方レーダセンサ10と前側方レーダセンサ11a,11bとによる検出結果に基づいて、車間距離制御を行う。車間制御ECU20は、第1目標加速度演算部30と、周辺環境検出部40と、自車進路推定部50と、割り込み判定部60と、加速度調停部70と、を有する。   The inter-vehicle control ECU 20 performs inter-vehicle distance control based on the detection results of the front radar sensor 10 and the front side radar sensors 11a and 11b. The inter-vehicle control ECU 20 includes a first target acceleration calculation unit 30, a surrounding environment detection unit 40, a host vehicle course estimation unit 50, an interrupt determination unit 60, and an acceleration arbitration unit 70.

第1目標加速度演算部30は、前方レーダセンサ10により検出された追従対象車両の前後方向の相対速度と前後方向の位置に基づいて、自車両と追従対象車両との車間距離が第1設定車間距離になるように、追従用目標加速度を演算する。具体的には、第1目標加速度演算部30は、後述する補正後の追従対象車両の前後方向の相対速度と、補正後の追従対象車両の前後方向の位置とに基づいて、追従用目標加速度を演算する。追従用目標加速度は、正または負の値である。第1設定車間距離は、ドライバーによって設定される。第1目標加速度演算部30は、追従対象車両が存在しない場合、自車両の車速が設定車速になるように、定速走行用目標加速度を演算する。   The first target acceleration calculation unit 30 determines that the inter-vehicle distance between the host vehicle and the tracking target vehicle is based on the relative speed in the front-rear direction of the tracking target vehicle detected by the front radar sensor 10 and the position in the front-rear direction. The tracking target acceleration is calculated so as to be the distance. Specifically, the first target acceleration calculation unit 30 follows the target acceleration for tracking based on the corrected relative speed in the front-rear direction of the vehicle to be followed, which will be described later, and the position in the front-rear direction of the vehicle to be tracked after correction. Is calculated. The target acceleration for tracking is a positive or negative value. The first set inter-vehicle distance is set by the driver. The first target acceleration calculation unit 30 calculates the target acceleration for constant speed travel so that the vehicle speed of the host vehicle becomes the set vehicle speed when there is no tracking target vehicle.

周辺環境検出部40は、前方レーダセンサ10と前側方レーダセンサ11a,11bによる検出結果に基づいて、車両の周辺環境を検出する。周辺環境検出部40は、移動物判定部41と、対向車判定部42と、同一物判定部43と、を有する。   The surrounding environment detection unit 40 detects the surrounding environment of the vehicle based on the detection results of the front radar sensor 10 and the front side radar sensors 11a and 11b. The surrounding environment detection unit 40 includes a moving object determination unit 41, an oncoming vehicle determination unit 42, and an identical object determination unit 43.

移動物判定部41は、物標の相対速度に基づいて、物標が一定時間以上移動を続けているか判定する。対向車判定部42は、物標の相対速度に基づいて、物標が対向車であるか判定する。同一物判定部43は、前方レーダセンサ10により検出された物標と前側方レーダセンサ11a,11bにより検出された物標とが同一物であるか判定し、同一物である場合、それらを統合する。   The moving object determination unit 41 determines whether the target continues to move for a predetermined time or more based on the relative speed of the target. The oncoming vehicle determination unit 42 determines whether the target is an oncoming vehicle based on the relative speed of the target. The same object determination unit 43 determines whether the target detected by the front radar sensor 10 and the targets detected by the front side radar sensors 11a and 11b are the same, and if they are the same, integrates them. To do.

自車進路推定部50は、道路形状に合わせた自車進路を推定する。道路形状は、図示しないナビゲーションシステムに用いられる地図データから抽出できる。自車進路推定部50は、自車進路から、自車両を基準としたカーブ路の曲率半径を算出する。自車進路推定部50に替えて、道路を撮像して自車両が走行している車線を示す一対の白線を検出する白線検出センサ、または、自車両のヨーレートを検出するヨーレートセンサを用いて、カーブ路の曲率半径を算出してもよい。   The own vehicle route estimation unit 50 estimates the own vehicle route according to the road shape. The road shape can be extracted from map data used in a navigation system (not shown). The own vehicle course estimating unit 50 calculates the radius of curvature of the curved road with reference to the own vehicle from the own car course. Instead of the host vehicle course estimation unit 50, using a white line detection sensor that detects a pair of white lines indicating a lane in which the host vehicle is traveling by imaging a road, or a yaw rate sensor that detects the yaw rate of the host vehicle, The curvature radius of the curved road may be calculated.

割り込み判定部60は、補正部61と、割り込み位置判定部62と、割り込み車判定部63と、割り込み確率演算部64と、割り込み判定結果演算部65と、を有する。   The interrupt determination unit 60 includes a correction unit 61, an interrupt position determination unit 62, an interrupt vehicle determination unit 63, an interrupt probability calculation unit 64, and an interrupt determination result calculation unit 65.

補正部61は、自車進路推定部50により算出された曲率半径に基づいて、前方レーダセンサ10等により検出された追従対象車両と前側方車両とを含む物標の前後方向の相対速度、横方向の相対速度、横方向の位置および前後方向の位置を補正する。   Based on the radius of curvature calculated by the host vehicle course estimation unit 50, the correction unit 61 detects the relative speed in the front-rear direction and the lateral direction of the target including the tracking target vehicle and the front side vehicle detected by the front radar sensor 10 or the like. Correct the relative speed in the direction, the position in the horizontal direction and the position in the front-rear direction.

割り込み位置判定部62は、隣接車線の車両が割り込んでくると予想される割り込み位置が自車両の前方であるか判定する。   The interrupt position determination unit 62 determines whether or not the interrupt position where the vehicle in the adjacent lane is expected to come in is ahead of the host vehicle.

割り込み車判定部63は、周辺環境検出部40で検出された車両の周辺環境と、割り込み位置判定部62の判定結果とに基づいて、検出された物標から、移動していない物標と、対向車と、割り込み位置が自車の後方である車両と、先行車とを除外し、残った物標を前側方車両とする。   The interrupting vehicle determination unit 63 is based on the surrounding environment of the vehicle detected by the surrounding environment detection unit 40 and the determination result of the interruption position determination unit 62, and from the detected target, An oncoming vehicle, a vehicle whose interrupt position is behind the host vehicle, and a preceding vehicle are excluded, and the remaining target is a front side vehicle.

割り込み車判定部63は、補正前の自車両と前側方車両との車間距離が所定の第1設定車間距離以下であり、且つ、その車間距離が所定の閾値以下である場合、前側方車両を、自車両と追従対象車両との間に割り込んでくると予想される予想割り込み車両として判定する。補正前の自車両と前側方車両との車間距離は、補正前の前側方車両の前後方向の位置と等しい。閾値は、前方レーダセンサ10と前側方レーダセンサ11a,11bの精度に基づいて予め設定される。閾値の設定方法については後述する。   When the inter-vehicle distance between the host vehicle before correction and the front side vehicle is equal to or less than a predetermined first set inter-vehicle distance and the inter-vehicle distance is equal to or less than a predetermined threshold, Then, it is determined as an expected interruption vehicle that is expected to be interrupted between the own vehicle and the vehicle to be followed. The inter-vehicle distance between the host vehicle before correction and the front side vehicle is equal to the position in the front-rear direction of the front side vehicle before correction. The threshold is set in advance based on the accuracy of the front radar sensor 10 and the front side radar sensors 11a and 11b. A method for setting the threshold will be described later.

割り込み確率演算部64は、前側方車両の横方向の位置および横方向の相対速度に基づいて、予想割り込み車両である前側方車両が自車両と追従対象車両との間に割り込んでくる割り込み確率を所定の周期で定期的に演算する。具体的には、割り込み確率演算部64は、補正後の前側方車両の横方向の位置と、補正後の前側方車両の横方向の相対速度とに基づいて、割り込み確率を演算する。割り込み確率演算部64は、基本的には、補正後の前側方車両の横方向の位置が近いほど、割り込み確率を高く演算し、補正後の前側方車両の横方向の相対速度が高いほど、割り込み確率を高く演算する。補正後の前側方車両の横方向の位置と、補正後の前側方車両の横方向の相対速度とを用いることにより、曲率半径が比較的小さいカーブ路を走行中にも、より正確な割り込み確率を得ることができる。   The interruption probability calculation unit 64 calculates an interruption probability that the front side vehicle, which is an expected interruption vehicle, interrupts between the own vehicle and the tracking target vehicle based on the lateral position and the lateral relative speed of the front side vehicle. It calculates periodically with a predetermined cycle. Specifically, the interrupt probability calculation unit 64 calculates an interrupt probability based on the corrected lateral position of the front side vehicle and the corrected lateral relative speed of the front side vehicle. The interruption probability calculation unit 64 basically calculates the interruption probability higher as the corrected lateral position of the front side vehicle is closer, and as the corrected lateral relative speed of the front side vehicle is higher, High interrupt probability is calculated. By using the corrected lateral position of the front side vehicle and the corrected lateral relative speed of the front side vehicle, a more accurate interrupt probability even when driving on a curved road with a relatively small radius of curvature Can be obtained.

割り込み判定結果演算部65は、算出された割り込み確率に一次遅れフィルタ処理を行い、一次遅れフィルタ処理が行われた割り込み確率から割り込み判定結果を演算する。一次遅れフィルタ処理の時定数は、割り込み確率のふらつきや急変を除去できるよう、実験などによって適宜設定すればよい。割り込み判定結果は、確率として表され、例えば、0%(確率なし)、50%(中確率)、100%(高確率)の何れかである。割り込み判定結果は、0%と100%の何れかであってもよく、4つ以上の値の何れかであってもよい。   The interrupt determination result calculation unit 65 performs a first-order lag filter process on the calculated interrupt probability, and calculates an interrupt determination result from the interrupt probability subjected to the first-order lag filter process. The time constant of the first-order lag filtering process may be set as appropriate through experiments or the like so as to eliminate fluctuations in interrupt probability and sudden changes. The interrupt determination result is expressed as a probability, and is, for example, 0% (no probability), 50% (medium probability), or 100% (high probability). The interrupt determination result may be either 0% or 100%, or any of four or more values.

一次遅れフィルタ処理が行われた割り込み確率から割り込み判定結果を演算する方法は特に限定されない。例えば、第1閾値と第2閾値を設定し、一次遅れフィルタ処理が行われた割り込み確率が第1閾値未満の場合に割り込み判定結果を0%とし、第1閾値以上かつ第2閾値未満の場合に割り込み判定結果を50%とし、第2閾値以上の場合に割り込み判定結果を100%としてもよい。また、割り込み判定結果演算部65は、直前の割り込み判定結果に応じて第1閾値と第2閾値を変更し、ヒステリシスを持たせてもよい。これにより、一次遅れフィルタ処理が行われた割り込み確率が第1閾値または第2閾値付近で小さくふらついても、割り込み判定結果が変化し難いようにできる。   There is no particular limitation on the method of calculating the interrupt determination result from the interrupt probability in which the first-order lag filter processing has been performed. For example, when the first threshold value and the second threshold value are set, and the interrupt probability for which the first-order lag filter processing has been performed is less than the first threshold value, the interrupt determination result is 0%, and the first threshold value and the second threshold value are less than the second threshold value The interrupt determination result may be set to 50%, and the interrupt determination result may be set to 100% when the second threshold value is exceeded. Further, the interrupt determination result calculation unit 65 may change the first threshold value and the second threshold value according to the immediately previous interrupt determination result to provide hysteresis. As a result, even if the interrupt probability for which the first-order lag filter processing has been performed fluctuates small in the vicinity of the first threshold value or the second threshold value, it is possible to prevent the interrupt determination result from changing.

加速度調停部70は、第2目標加速度演算部71と、目標加速度調停部72と、を有する。第2目標加速度演算部71は、割り込み判定結果が所定値以上の場合、予想割り込み車両の前後方向の相対速度と前後方向の位置に基づいて、自車両と予想割り込み車両との車間距離が所定の第2設定車間距離になるように、割り込み判定結果に応じて割り込み対応用目標加速度を演算する。具体的には、第2目標加速度演算部71は、補正後の予想割り込み車両の前後方向の相対速度と、補正後の予想割り込み車両の前後方向の位置に基づいて、割り込み対応用目標加速度を演算する。これにより、曲率半径が比較的小さいカーブ路を走行中にも、より正確に車間距離制御を行うことができる。割り込み対応用目標加速度は、正または負の値である。
第2目標加速度演算部71は、割り込み判定結果が所定値未満の場合、割り込み対応用目標加速度を演算しない。
The acceleration mediation unit 70 includes a second target acceleration calculation unit 71 and a target acceleration mediation unit 72. When the interruption determination result is equal to or greater than a predetermined value, the second target acceleration calculation unit 71 determines that the inter-vehicle distance between the own vehicle and the predicted interruption vehicle is predetermined based on the relative speed in the front-rear direction of the predicted interruption vehicle and the position in the front-rear direction. The target acceleration for interruption is calculated according to the interruption determination result so as to be the second set inter-vehicle distance. Specifically, the second target acceleration calculation unit 71 calculates the target acceleration for interruption based on the corrected relative speed in the front-rear direction of the predicted interrupting vehicle and the corrected position of the predicted interrupting vehicle in the front-rear direction. To do. Accordingly, the inter-vehicle distance control can be performed more accurately even while traveling on a curved road having a relatively small radius of curvature. The target acceleration for interrupt handling is a positive or negative value.
When the interruption determination result is less than the predetermined value, the second target acceleration calculation unit 71 does not calculate the target acceleration for interruption.

所定値は、例えば、中確率に対応する値である50%である。割り込み判定結果が50%の場合、加速抑制を表し、第2目標加速度演算部71は、スロットルを閉じることにより得られる範囲で割り込み対応用目標加速度を演算する。割り込み判定結果が100%の場合、制動許可を表し、第2目標加速度演算部71は、スロットルを閉じると共にブレーキをかけることにより得られる範囲で割り込み対応用目標加速度を演算する。これにより、割り込み判定結果が50%の場合では、100%の場合と比較して、減速度が小さくなる。よって、割り込み判定結果が50%の場合、急激に減速され難いので、ドライバーの違和感を抑制できる。   The predetermined value is, for example, 50%, which is a value corresponding to the medium probability. When the interruption determination result is 50%, acceleration suppression is indicated, and the second target acceleration calculation unit 71 calculates the target acceleration for interruption within a range obtained by closing the throttle. When the interruption determination result is 100%, it represents braking permission, and the second target acceleration calculation unit 71 calculates the target acceleration for interruption within a range obtained by closing the throttle and applying the brake. Thereby, when the interruption determination result is 50%, the deceleration is smaller than when the interruption determination result is 100%. Therefore, when the interruption determination result is 50%, it is difficult to decelerate rapidly, so that the driver's uncomfortable feeling can be suppressed.

第2設定車間距離は、ドライバーによって設定されてもよく、予め定められていてもよい。第2設定車間距離は、第1設定車間距離と等しくてもよく、異なってもよい。   The second set inter-vehicle distance may be set by a driver or may be determined in advance. The second set inter-vehicle distance may be equal to or different from the first set inter-vehicle distance.

目標加速度調停部72は、追従用目標加速度と割り込み対応用目標加速度のうち小さいものを調停後目標加速度として選択する。   The target acceleration arbitration unit 72 selects a smaller one of the tracking target acceleration and the interrupt-response target acceleration as the post-arbitration target acceleration.

ブレーキECU80とエンジンECU81は、調停後目標加速度に基づいて、走行制御部82を制御する。走行制御部82は、自車両の加速度が調停後目標加速度に近づくように自車両の駆動力および制動力を制御する。   The brake ECU 80 and the engine ECU 81 control the travel control unit 82 based on the post-arbitration target acceleration. The traveling control unit 82 controls the driving force and the braking force of the host vehicle so that the acceleration of the host vehicle approaches the target acceleration after the arbitration.

HMI出力装置83は、車室内に設けられ、割り込み判定結果が50%と100%の場合に表示や音声などによりドライバーに通知する。   The HMI output device 83 is provided in the passenger compartment, and notifies the driver by display or voice when the interrupt determination result is 50% or 100%.

図2は、第1の実施形態に係る閾値の設定方法を説明する図である。図2は、自車両Caと、自車両Caの前方を走行する先行車Cbとを示す。例えば、前方レーダセンサ10の検出精度は、前側方レーダセンサ11a,11bの検出精度より高いとする。前方レーダセンサ10により検出された先行車Cbの位置PAと、実際の先行車Cbの位置PBとの横方向の誤差は、x1(m)である。前側方レーダセンサ11bにより検出された先行車Cbの位置PCと、実際の先行車Cbの位置PBとの横方向の誤差は、x2(m)である。x2はx1より長い。そこで、許容できる最大の誤差x2が得られる距離Lを、閾値とする。例えば、許容できる最大の誤差x2が一般的な車両の幅に基づく1.3m程度となる距離Lを、閾値としてもよい。   FIG. 2 is a diagram for explaining a threshold setting method according to the first embodiment. FIG. 2 shows the host vehicle Ca and a preceding vehicle Cb traveling in front of the host vehicle Ca. For example, it is assumed that the detection accuracy of the front radar sensor 10 is higher than the detection accuracy of the front side radar sensors 11a and 11b. The error in the lateral direction between the position PA of the preceding vehicle Cb detected by the front radar sensor 10 and the actual position PB of the preceding vehicle Cb is x1 (m). The lateral error between the position PC of the preceding vehicle Cb detected by the front side radar sensor 11b and the actual position PB of the preceding vehicle Cb is x2 (m). x2 is longer than x1. Therefore, the distance L at which the maximum allowable error x2 is obtained is set as a threshold value. For example, the threshold L may be a distance L at which the maximum allowable error x2 is about 1.3 m based on a general vehicle width.

図3は、図1の割り込み車判定部63で行われる処理を示すフローチャートである。図3の処理は、所定の周期で定期的に行われる。まず、前側方車両が存在するか判定し(S1)、存在しない場合(S1のN)、今回の処理を終了する。前側方車両が存在する場合(S1のY)、自車両と前側方車両との車間距離dが、閾値Dth1および第1設定車間距離Dfw以下であるか判定する(S2)。S2の条件を満たさない場合(S2のN)、今回の処理を終了する。S2の条件を満たす場合(S2のY)、前側方車両を予想割り込み車両として判定する(S3)。   FIG. 3 is a flowchart showing processing performed by the interrupted vehicle determination unit 63 of FIG. The processing in FIG. 3 is periodically performed at a predetermined cycle. First, it is determined whether or not a front side vehicle is present (S1). If it does not exist (N in S1), the current process is terminated. When the front side vehicle exists (Y in S1), it is determined whether the inter-vehicle distance d between the host vehicle and the front side vehicle is equal to or smaller than the threshold value Dth1 and the first set inter-vehicle distance Dfw (S2). When the condition of S2 is not satisfied (N of S2), the current process is terminated. When the condition of S2 is satisfied (Y of S2), the front side vehicle is determined as the predicted interruption vehicle (S3).

図4は、図1の車両用走行制御装置100の動作を説明する図である。図4に示すように、自車両Caは、第1設定車間距離Dfwを保ち、追従対象車両Cbに追従走行している。前側方車両C1〜C3の何れかが、隣接車線を走行しているとする。   FIG. 4 is a diagram for explaining the operation of the vehicle travel control apparatus 100 of FIG. As shown in FIG. 4, the host vehicle Ca keeps the first set inter-vehicle distance Dfw and follows the tracking target vehicle Cb. It is assumed that any of the front side vehicles C1 to C3 is traveling in the adjacent lane.

車間距離d1の前側方車両C1が存在する場合、車間距離d1>第1設定車間距離Dfwであるため、前側方車両C1は予想割り込み車両として判定されない。車間距離d2の前側方車両C2が存在する場合、車間距離d2>閾値Dth1であるため、前側方車両C2は予想割り込み車両として判定されない。したがって、前側方車両C1,C2に対しては、割り込み対応用目標加速度が演算されず、減速制御が行われない。   When the front side vehicle C1 having the inter-vehicle distance d1 exists, the front side vehicle C1 is not determined as the predicted interrupt vehicle because the inter-vehicle distance d1> the first set inter-vehicle distance Dfw. When the front side vehicle C2 having the inter-vehicle distance d2 exists, the front side vehicle C2 is not determined as the predicted interruption vehicle because the inter-vehicle distance d2> the threshold value Dth1. Therefore, the target acceleration for interruption is not calculated for the front side vehicles C1 and C2, and the deceleration control is not performed.

車間距離d3の前側方車両C3が存在する場合、車間距離d3≦閾値Dth1、且つ、車間距離d3≦第1設定車間距離Dfwであるため、前側方車両C3は予想割り込み車両として判定される。したがって、前側方車両C3に対しては、割り込み対応用目標加速度が演算され、減速制御が行われ得る。   When the front side vehicle C3 having the inter-vehicle distance d3 exists, the inter-vehicle distance d3 ≦ the threshold value Dth1 and the inter-vehicle distance d3 ≦ the first set inter-vehicle distance Dfw are determined, so that the front side vehicle C3 is determined as the predicted interrupt vehicle. Therefore, for the front side vehicle C3, the target acceleration for interruption is calculated, and deceleration control can be performed.

また、例えば、第1設定車間距離Dfwが閾値Dth1より短く設定された場合にも、追従対象車両Cbより遠い前側方車両は予想割り込み車両として判定されない。   For example, even when the first set inter-vehicle distance Dfw is set to be shorter than the threshold value Dth1, the front side vehicle far from the tracking target vehicle Cb is not determined as the predicted interruption vehicle.

このように、本実施形態によれば、自車両への影響が大きい、自車両に相対的に近い前側方車両に対して減速制御を行い、自車両から相対的に遠い前側方車両に対して減速制御を行わない。これにより、相対的に遠い前側方車両に対して減速制御を行った後、その前側方車両が遠ざかり、再度、追従対象車両に近づくために加速を行うような、不要な加減速を抑制できる。したがって、ドライバーの違和感を抑制できる。   Thus, according to the present embodiment, the deceleration control is performed on the front side vehicle that is relatively close to the own vehicle and has a great influence on the own vehicle, and the front side vehicle that is relatively far from the own vehicle. Does not perform deceleration control. Thereby, after performing deceleration control with respect to the relatively far front side vehicle, it is possible to suppress unnecessary acceleration / deceleration in which the front side vehicle moves away and accelerates again to approach the tracking target vehicle. Therefore, the driver's uncomfortable feeling can be suppressed.

(第2の実施形態)
第2の実施形態では、自車両と前側方車両との直線距離を用いて予想割り込み車両を判定する。以下では、第1の実施形態との相違点を中心に説明する。
(Second Embodiment)
In the second embodiment, the predicted interrupt vehicle is determined using the linear distance between the host vehicle and the front side vehicle. Below, it demonstrates centering around difference with 1st Embodiment.

図5は、第2の実施形態に係る車両用走行制御装置100の動作を説明する図である。図5に示すように、前側方車両C1,C2の何れかが、隣接車線を走行しているとする。自車両Caの前端部の中央と前側方車両C1の後端部との直線距離をds1とし、自車両Caの前端部の中央と前側方車両C2の後端部との直線距離をds2とする。前側方車両C1の方位角をθ1とし、前側方車両C2の方位角をθ2として、ds1=d1/sinθ1であり、ds2=d2/sinθ2である。   FIG. 5 is a diagram for explaining the operation of the vehicle travel control apparatus 100 according to the second embodiment. As shown in FIG. 5, it is assumed that one of the front side vehicles C1 and C2 is traveling in an adjacent lane. The linear distance between the center of the front end of the host vehicle Ca and the rear end of the front side vehicle C1 is ds1, and the linear distance between the center of the front end of the host vehicle Ca and the rear end of the front side vehicle C2 is ds2. . When the azimuth angle of the front side vehicle C1 is θ1, the azimuth angle of the front side vehicle C2 is θ2, ds1 = d1 / sin θ1 and ds2 = d2 / sin θ2.

割り込み車判定部63は、自車両と前側方車両との車間距離が第1設定車間距離Dfw以下であり、且つ、自車両と前側方車両との直線距離が所定の閾値Dth2以下である場合、前側方車両を予想割り込み車両として判定する。   When the inter-vehicle distance between the host vehicle and the front side vehicle is equal to or less than the first set inter-vehicle distance Dfw and the linear distance between the host vehicle and the front side vehicle is equal to or less than a predetermined threshold Dth2, The front side vehicle is determined as the predicted interruption vehicle.

本実施形態は、物標を検出可能な角度範囲がより広い前側方レーダセンサ11a,11bに適用することが好ましい。閾値Dth2は、前側方レーダセンサ11a,11bの精度に基づいて予め設定される。前側方レーダセンサ11a,11bの精度は、前側方レーダセンサ11a,11bと物標との直線距離が遠ざかるほど低下するため、許容可能な精度が得られる距離を閾値Dth2として設定する。   This embodiment is preferably applied to the front side radar sensors 11a and 11b having a wider angle range in which a target can be detected. The threshold value Dth2 is set in advance based on the accuracy of the front side radar sensors 11a and 11b. Since the accuracy of the front side radar sensors 11a and 11b decreases as the linear distance between the front side radar sensors 11a and 11b and the target increases, a distance at which acceptable accuracy can be obtained is set as the threshold value Dth2.

車間距離d1の前側方車両C1が存在する場合、直線距離ds1>閾値Dth2であるため、前側方車両C1は予想割り込み車両として判定されない。車間距離d2の前側方車両C2が存在する場合、車間距離d2≦第1設定車間距離Dfw、且つ、直線距離ds2≦閾値Dth2であるため、前側方車両C2は予想割り込み車両として判定される。   When the front side vehicle C1 having the inter-vehicle distance d1 exists, the front side vehicle C1 is not determined as the predicted interruption vehicle because the linear distance ds1> the threshold value Dth2. When the front side vehicle C2 having the inter-vehicle distance d2 exists, the front side vehicle C2 is determined as the predicted interruption vehicle because the inter-vehicle distance d2 ≦ the first set inter-vehicle distance Dfw and the linear distance ds2 ≦ the threshold value Dth2.

このように、本実施形態によれば、前側方レーダセンサ11a,11bの検出精度が低い位置の自車両から離れた前側方車両を減速制御の対象から除外できる。よって、不要な加減速を抑制できる。   As described above, according to the present embodiment, the front side vehicle away from the host vehicle at a position where the detection accuracy of the front side radar sensors 11a and 11b is low can be excluded from the deceleration control targets. Therefore, unnecessary acceleration / deceleration can be suppressed.

なお、第2の実施形態と第1の実施形態を組み合わせてもよい。即ち、前方レーダセンサ10で検出された前側方車両に対しては第1の実施形態の判定条件を用い、前側方レーダセンサ11a,11bのみで検出された前側方車両に対しては第2の実施形態の判定条件を用い、予想割り込み車両を判定してもよい。   Note that the second embodiment and the first embodiment may be combined. That is, the determination condition of the first embodiment is used for the front side vehicle detected by the front radar sensor 10, and the second condition is used for the front side vehicle detected only by the front side radar sensors 11 a and 11 b. The prediction interruption vehicle may be determined using the determination condition of the embodiment.

以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. The embodiments are exemplifications, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. .

例えば、曲率半径の比較的小さいカーブを走行する際の制御の精度を向上する必要が無い場合、自車進路推定部50と補正部61を設けなくてもよい。
また、割り込み確率を用いる必要が無い場合、割り込み確率演算部64と割り込み判定結果演算部65を設けなくてもよい。これにより、車間制御ECU20の処理を簡略化できる。
For example, when it is not necessary to improve the accuracy of control when traveling on a curve having a relatively small radius of curvature, the host vehicle course estimation unit 50 and the correction unit 61 may not be provided.
Further, when it is not necessary to use the interrupt probability, the interrupt probability calculation unit 64 and the interrupt determination result calculation unit 65 may not be provided. Thereby, the process of the inter-vehicle control ECU 20 can be simplified.

10…前方レーダセンサ(検出部)、11a,11b…前側方レーダセンサ(検出部)、30…第1目標加速度演算部、63…割り込み車判定部、70…加速度調停部、71…第2目標加速度演算部、72…目標加速度調停部、82…走行制御部、100…車両用走行制御装置。 DESCRIPTION OF SYMBOLS 10 ... Front radar sensor (detection part), 11a, 11b ... Front side radar sensor (detection part), 30 ... 1st target acceleration calculating part, 63 ... Interruption vehicle determination part, 70 ... Acceleration mediation part, 71 ... 2nd target Acceleration calculator, 72... Target acceleration mediator, 82... Travel controller, 100.

Claims (1)

自車両の前方を走行する追従対象車両と、前記自車両の前側方を走行する前側方車両と、を検出する検出部と、
前記自車両と前記前側方車両との車間距離が所定の第1設定車間距離以下であり、且つ、前記車間距離または前記自車両と前記前側方車両との直線距離が前記検出部の精度に基づいて設定された閾値以下である場合、前記前側方車両を、前記自車両と前記追従対象車両との間に割り込んでくると予想される予想割り込み車両として判定する割り込み車判定部と、
前記自車両と前記追従対象車両との車間距離が前記第1設定車間距離になるように、追従用目標加速度を演算する第1目標加速度演算部と、
前記自車両と前記予想割り込み車両との車間距離が所定の第2設定車間距離になるように、割り込み対応用目標加速度を演算する第2目標加速度演算部と、
前記追従用目標加速度と前記割り込み対応用目標加速度のうち小さいものを調停後目標加速度として選択する目標加速度調停部と、
前記自車両の加速度が前記調停後目標加速度に近づくように前記自車両の駆動力および制動力を制御する走行制御部と、
を備えることを特徴とする車両用走行制御装置。
A detection unit for detecting a tracking target vehicle that travels in front of the host vehicle and a front side vehicle that travels in front of the host vehicle;
The inter-vehicle distance between the host vehicle and the front side vehicle is equal to or less than a predetermined first set inter-vehicle distance, and the inter-vehicle distance or the linear distance between the host vehicle and the front side vehicle is based on the accuracy of the detection unit. When the vehicle is less than or equal to the threshold set in the above, an interrupting vehicle determination unit that determines the front side vehicle as an expected interruption vehicle that is expected to interrupt between the own vehicle and the tracking target vehicle;
A first target acceleration calculation unit that calculates a target acceleration for tracking so that an inter-vehicle distance between the host vehicle and the tracking target vehicle is the first set inter-vehicle distance;
A second target acceleration calculation unit that calculates a target acceleration for interruption so that an inter-vehicle distance between the host vehicle and the predicted interruption vehicle becomes a predetermined second set inter-vehicle distance;
A target acceleration mediation unit that selects a smaller one of the target acceleration for tracking and the target acceleration for interrupt as a target acceleration after mediation; and
A travel control unit that controls the driving force and braking force of the host vehicle so that the acceleration of the host vehicle approaches the target acceleration after the arbitration;
A vehicle travel control device comprising:
JP2016007820A 2016-01-19 2016-01-19 Vehicle travel control device Active JP6481627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016007820A JP6481627B2 (en) 2016-01-19 2016-01-19 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007820A JP6481627B2 (en) 2016-01-19 2016-01-19 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2017128178A true JP2017128178A (en) 2017-07-27
JP6481627B2 JP6481627B2 (en) 2019-03-13

Family

ID=59395955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007820A Active JP6481627B2 (en) 2016-01-19 2016-01-19 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP6481627B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225265A1 (en) * 2018-05-23 2019-11-28 株式会社デンソー Device and method for controlling vehicle
WO2020166433A1 (en) * 2019-02-14 2020-08-20 パナソニック株式会社 Vehicle
CN112009475A (en) * 2019-05-30 2020-12-01 丰田自动车株式会社 Vehicle control device and vehicle control system
JP2021142901A (en) * 2020-03-12 2021-09-24 本田技研工業株式会社 Control device and vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171389A (en) * 1999-12-17 2001-06-26 Nissan Motor Co Ltd Vehicular travel control system
JP2002160547A (en) * 2000-09-14 2002-06-04 Nissan Motor Co Ltd Vehicle controller for follow traveling
JP2002307972A (en) * 2001-04-11 2002-10-23 Nissan Motor Co Ltd Controller for inter-vehicle distance
JP2004114906A (en) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd Follow-up drive control device
JP2006327531A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Automatic cruising device for vehicle
JP2010228753A (en) * 2010-04-12 2010-10-14 Nissan Motor Co Ltd Automatic cruising device for vehicle
JP2011006007A (en) * 2009-06-29 2011-01-13 Nissan Motor Co Ltd Tracking control device and tracking control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171389A (en) * 1999-12-17 2001-06-26 Nissan Motor Co Ltd Vehicular travel control system
JP2002160547A (en) * 2000-09-14 2002-06-04 Nissan Motor Co Ltd Vehicle controller for follow traveling
JP2002307972A (en) * 2001-04-11 2002-10-23 Nissan Motor Co Ltd Controller for inter-vehicle distance
JP2004114906A (en) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd Follow-up drive control device
JP2006327531A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Automatic cruising device for vehicle
JP2011006007A (en) * 2009-06-29 2011-01-13 Nissan Motor Co Ltd Tracking control device and tracking control method
JP2010228753A (en) * 2010-04-12 2010-10-14 Nissan Motor Co Ltd Automatic cruising device for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225265A1 (en) * 2018-05-23 2019-11-28 株式会社デンソー Device and method for controlling vehicle
JP2019202621A (en) * 2018-05-23 2019-11-28 株式会社デンソー Vehicle control device and method
JP7102935B2 (en) 2018-05-23 2022-07-20 株式会社デンソー Vehicle control devices and methods
WO2020166433A1 (en) * 2019-02-14 2020-08-20 パナソニック株式会社 Vehicle
CN113423625A (en) * 2019-02-14 2021-09-21 松下电器产业株式会社 Vehicle with a steering wheel
US12005899B2 (en) 2019-02-14 2024-06-11 Panasonic Holdings Corporation Vehicle with inter-vehicular distance acceleration control
JP7530301B2 (en) 2019-02-14 2024-08-07 パナソニックホールディングス株式会社 vehicle
CN112009475A (en) * 2019-05-30 2020-12-01 丰田自动车株式会社 Vehicle control device and vehicle control system
JP2020194475A (en) * 2019-05-30 2020-12-03 日野自動車株式会社 Vehicle control device and vehicle control system
CN112009475B (en) * 2019-05-30 2024-05-14 丰田自动车株式会社 Vehicle control device and vehicle control system
JP2021142901A (en) * 2020-03-12 2021-09-24 本田技研工業株式会社 Control device and vehicle
JP7383532B2 (en) 2020-03-12 2023-11-20 本田技研工業株式会社 Control device and vehicle

Also Published As

Publication number Publication date
JP6481627B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
KR101883063B1 (en) Driving control apparatus for vehicle
EP3239010B1 (en) Vehicle travel control apparatus
JP5716680B2 (en) Preceding vehicle selection device and inter-vehicle distance control device
JP5977270B2 (en) Vehicle control apparatus and program
US10345443B2 (en) Vehicle cruise control apparatus and vehicle cruise control method
KR101455708B1 (en) Leading vehicle detecting apparatus and inter-vehicular control apparatus using leading vehicle detecting apparatus
EP3372464B1 (en) Vehicle travel assist device
JP6363516B2 (en) Vehicle travel control device
JP5974607B2 (en) Vehicle travel control device
JP6497329B2 (en) Vehicle travel control device
WO2016117602A1 (en) Vehicle control device and vehicle control method
JP6356584B2 (en) Predictive course estimation device
JP6481627B2 (en) Vehicle travel control device
JP2017052319A (en) Travel control device
US10538251B2 (en) Course estimator and method of estimating a state of a course of a vehicle and a non-transitory computer-readable storage medium for the same
WO2019012995A1 (en) Driving support device
JP2015125486A (en) Course estimation device and program
JP2017136897A (en) Vehicle travel control device
JP2007331580A (en) Vehicle speed control system
JP2020029142A (en) Collision avoidance support device
JP2022165542A (en) Vehicle control device
JP4919849B2 (en) Automotive radar equipment
KR102011665B1 (en) Apparatus and method for evalutating adaptive cruise control system for vehicle
CN114084133B (en) Method and related device for determining following target
US11260884B2 (en) Vehicle control apparatus, vehicle, operation method of vehicle control apparatus, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R151 Written notification of patent or utility model registration

Ref document number: 6481627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151