JP2017127822A - Knitted fabric for removing volatile organic compound - Google Patents

Knitted fabric for removing volatile organic compound Download PDF

Info

Publication number
JP2017127822A
JP2017127822A JP2016009752A JP2016009752A JP2017127822A JP 2017127822 A JP2017127822 A JP 2017127822A JP 2016009752 A JP2016009752 A JP 2016009752A JP 2016009752 A JP2016009752 A JP 2016009752A JP 2017127822 A JP2017127822 A JP 2017127822A
Authority
JP
Japan
Prior art keywords
voc
knitted fabric
organic compound
volatile organic
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016009752A
Other languages
Japanese (ja)
Inventor
紘樹 恩田
Koki Onda
紘樹 恩田
鈴木 崇
Takashi Suzuki
崇 鈴木
郁雄 下城
Ikuo Shimojo
郁雄 下城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirotex Co Ltd
Gunma Prefecture
Original Assignee
Cirotex Co Ltd
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirotex Co Ltd, Gunma Prefecture filed Critical Cirotex Co Ltd
Priority to JP2016009752A priority Critical patent/JP2017127822A/en
Publication of JP2017127822A publication Critical patent/JP2017127822A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for removing a VOC by catalytic burning that has a low pressure drop and is able to deal with a channel of a complicated shape.SOLUTION: A metal species of high VOC burning ability is carried by a knitted fabric formed by knitting or weaving inorganic fiber yarn to produce a knitted fabric for removing a VOC (hereinafter, VOC removal knitted fabric) that is excellent in heat resistance and flexibility and has low fuzz scattering. Gas permeability of the VOC removal knitted fabric is controlled by adjusting yarn density in knitting and weaving and thus pressure drop in a VOC channel and drift of an exhaust gas containing a VOC are suppressed. Strength and flexibility of the VOC removal knitted fabric are controlled by adjusting fineness and number of twists of the inorganic fiber yarn. Therefore, a catalyst for removing a VOC can be installed in the VOC channel of a complicated shape.SELECTED DRAWING: Figure 5

Description

本発明は、耐熱性が高く、柔軟性に優れた編織物に揮発性有機化合物(以下、VOC)分解除去能を有する金属種を担持したVOC除去編織物およびその製造技術に関する。 The present invention relates to a VOC-removed knitted fabric in which a metal species having the ability to decompose and remove volatile organic compounds (hereinafter referred to as VOC) is supported on a knitted fabric having high heat resistance and excellent flexibility, and a manufacturing technique thereof.

(VOCについて)
VOCは、揮発性を有し、大気中で気体状となる有機化合物の総称であり、エチレン、ブタン、トルエン、キシレン、酢酸エチル、ホルマリンなど多種多様な物質が該当する。これらVOCは、住宅・オフィスの高気密化、新建材の使用等に伴うシックハウス症候群やシックビル症候群と呼ばれる健康被害、印刷、塗装、接着、ドライクリーニングなどの現場における有機溶剤中毒の原因物質とされている。また、2006年の大気汚染防止法改正によりVOCへの規制が強まり、VOC分解除去装置のさらなる高性能化が希求されている。
(About VOC)
VOC is a general term for organic compounds that are volatile and become gaseous in the atmosphere, and include a wide variety of substances such as ethylene, butane, toluene, xylene, ethyl acetate, and formalin. These VOCs are considered as causative substances for organic solvent poisoning in the workplace such as sickness, sickness syndrome and sick building syndrome due to high airtightness of houses and offices, use of new building materials, printing, painting, adhesion and dry cleaning. Yes. In addition, with the revision of the Air Pollution Control Act in 2006, regulations on VOCs have been strengthened, and there is a demand for higher performance of VOC decomposition and removal equipment.

(現状のVOC除去方法について)
現状のVOC除去方法としては、直接燃焼法、蓄熱燃焼法、触媒燃焼法といった「燃焼法」や、活性炭やハイシリカゼオライトなどの吸着材にVOCを吸着させる「吸着法」が挙げられる。
(Current VOC removal method)
Current methods of removing VOCs include “combustion methods” such as direct combustion method, heat storage combustion method and catalytic combustion method, and “adsorption method” in which VOC is adsorbed on adsorbents such as activated carbon and high silica zeolite.

吸着法は、VOCを物理的に吸着材へ吸着させて捕集するため、VOCが単一種類の場合には回収・再利用できるメリットがある。しかし、印刷や塗装現場のように、発生するVOCの種類が多い場合には、吸着後の精製工程が複雑なため、回収・再利用のメリットが少ない。また、吸着材にVOCが十分に吸着すると吸着能力が低下するという課題もある。一方、燃焼法は、VOCを燃焼により分解するため、多種類かつ大量にVOCが発生する工場の排気設備での使用に適している。 The adsorption method has the merit that it can be recovered and reused when there is a single type of VOC, because VOC is physically adsorbed on the adsorbent and collected. However, when there are many types of VOCs generated, such as in printing and painting sites, the purification process after adsorption is complicated, so there are few merits of collection and reuse. In addition, there is a problem that the adsorption capacity is lowered when the VOC is sufficiently adsorbed on the adsorbent. On the other hand, the combustion method decomposes VOCs by combustion, so it is suitable for use in exhaust facilities in factories where VOCs are generated in large quantities and in large quantities.

これらの燃焼法のうち、触媒燃焼法はVOCの燃焼活性を有する触媒(以下、VOC燃焼用触媒)にVOCを接触させ、分解除去する方法である。直接燃焼法や蓄熱燃焼法では処理温度が700〜850℃であるのに対し、触媒燃焼法では処理温度が350〜450℃と低いため補助燃料コストを低減でき、また、燃焼に伴う窒素酸化物や一酸化炭素の副生も少ないため、近年特に実用化が進んでいる。 Among these combustion methods, the catalytic combustion method is a method in which VOC is brought into contact with a catalyst having VOC combustion activity (hereinafter referred to as VOC combustion catalyst) and decomposed and removed. In the direct combustion method and heat storage combustion method, the treatment temperature is 700 to 850 ° C, whereas in the catalytic combustion method, the treatment temperature is as low as 350 to 450 ° C, so the auxiliary fuel cost can be reduced, and the nitrogen oxides accompanying combustion Since carbon monoxide is not produced as a by-product, it has been put into practical use in recent years.

VOCの触媒燃焼には主に白金系触媒が使用されるが、他にもニッケル、コバルト、ルテニウム、パラジウムといった金属触媒や、セリア、チタニア、ジルコニアなどの金属酸化物触媒も用いられる(例えば特許文献1)。 Platinum-based catalysts are mainly used for VOC catalytic combustion, but metal catalysts such as nickel, cobalt, ruthenium, and palladium, and metal oxide catalysts such as ceria, titania, and zirconia are also used (for example, patent documents). 1).

さらに、シリカ・アルミナ系繊維よりなる耐熱性無機繊維シート状基材にVOC燃焼活性を有する金属種やVOC吸着材を添着し、円筒状の金網にロール状に巻きつけたVOC除去フィルターも公知となっている(例えば特許文献2)。この時、上記フィルターのメッシュの大きさや金網への巻き回数を変えることにより、VOCとの接触頻度を調整できる。 Furthermore, a VOC removal filter in which a metal species having VOC combustion activity or a VOC adsorbent is attached to a heat-resistant inorganic fiber sheet-like substrate made of silica / alumina fibers and wound around a cylindrical wire mesh in a roll form is also known. (For example, Patent Document 2). At this time, the frequency of contact with the VOC can be adjusted by changing the size of the filter mesh and the number of windings on the wire mesh.

特公平8−24819号公報Japanese Patent Publication No. 8-24819 特開2009−61433号公報JP 2009-61433 A

しかし、従来の触媒燃焼によるVOC除去方法では、排気設備などのVOC流路にVOC燃焼触媒を充填するが、充填が密になるほど圧力損失が増大し、処理効率が低下するという課題がある。また、VOC流路が複雑な形状である場合には、充填時に空隙ロスや排気ガスの偏流が発生し、処理効率がさらに低下する懸念がある。 However, in the conventional VOC removal method by catalytic combustion, the VOC combustion catalyst is filled into the VOC flow path of the exhaust equipment or the like, but there is a problem that the pressure loss increases and the processing efficiency decreases as the filling becomes dense. In addition, when the VOC flow path has a complicated shape, there is a concern that void loss and exhaust gas drift may occur during filling, further reducing the processing efficiency.

さらに、前述のVOC除去フィルターについても、VOC燃焼活性を有する金属種や吸着材を添着する無機繊維製シート状基材の多くは不織布である。このため、VOCを含有する排気ガスを導入した場合、風圧により毛羽が飛散し、VOC除去装置の不具合発生原因となる可能性がある。また、VOC燃焼活性を有する金属種あるいは吸着材の添着も、シート状基材に対して直接噴射する、あるいはVOC燃焼活性を有する金属種や吸着材の水分散液中にシート状基材を含浸することによりなされるため、これらVOC燃焼活性を有する金属種や吸着材吸着材がシート状基材より容易に剥落する懸念がある。 Further, with regard to the VOC removal filter described above, most of the inorganic fiber sheet-like base materials to which the metal species having VOC combustion activity and the adsorbent are attached are nonwoven fabrics. For this reason, when exhaust gas containing VOC is introduced, fluff is scattered by wind pressure, which may cause a malfunction of the VOC removal device. In addition, metal species or adsorbents with VOC combustion activity are also injected directly onto the sheet-like substrate, or the sheet-like substrate is impregnated in an aqueous dispersion of metal species or adsorbents with VOC combustion activity. Therefore, there is a concern that the metal species having the VOC combustion activity and the adsorbent adsorbent may be easily peeled off from the sheet-like substrate.

上記事情に鑑み、鋭意研究した結果、耐熱性の高い無機化合物よりなる糸(以下、無機繊維糸)を用いて製織あるいは製編した編織物にVOC燃焼能の高い金属種を担持することで、耐熱性が高く、柔軟性にも優れ、毛羽の飛散も少ないVOC除去編織物(以下、VOC除去編織物)の製造技術を確立した。 In view of the above circumstances, as a result of earnest research, by supporting a metal species having a high VOC combustion ability on a knitted fabric woven or knitted using a yarn made of an inorganic compound having high heat resistance (hereinafter referred to as inorganic fiber yarn), We have established a manufacturing technology for VOC-removed knitted fabrics (hereinafter referred to as VOC-removed knitted fabrics) that have high heat resistance, excellent flexibility, and little fluff scattering.

この時、製織あるいは製編時の糸密度を調整することでVOC除去編織物の通気性を制御できるため、VOC流路の圧力損失やVOCを含有する排気ガスの偏流を抑制できる。また、無機繊維糸の繊度や撚り回数を調整することでVOC除去編織物の強度や柔軟性を制御できるため、複雑な形状のVOC流路にも設置可能である。さらに、上記編織物表面に金属酸化物をコーティングすることにより、金属の担持力や分散性が向上し、なおかつ剥落も抑制できる。 At this time, since the air permeability of the VOC-removed knitted fabric can be controlled by adjusting the yarn density during weaving or knitting, it is possible to suppress the pressure loss of the VOC passage and the drift of exhaust gas containing VOC. Moreover, since the strength and flexibility of the VOC-removed knitted fabric can be controlled by adjusting the fineness and the number of twists of the inorganic fiber yarn, it can be installed in a VOC flow path having a complicated shape. Furthermore, by coating the surface of the knitted fabric with a metal oxide, the metal supporting force and dispersibility are improved, and peeling can be suppressed.

すなわち本発明は、(1)編織物に揮発性有機化合物の燃焼活性を有する金属種を担持したことを特徴とする揮発性有機化合物除去編織物およびその製造方法、あるいは(2)金属酸化物を表面にコーティングした編織物に揮発性有機化合物の燃焼活性を有する金属種を担持したことを特徴とする揮発性有機化合物除去編織物およびその製造方法であり、(3)編織物を構成する糸の材質がバサルト、シリカ、アルミナ、ガラス、炭素繊維、活性炭繊維、含水ケイ酸アルミニウム、チタン酸カリウム、鉄、銅、亜鉛、ニッケル、金、銀、白金の少なくとも1種類以上を含有することを特徴とする(1)および(2)に記載の揮発性有機化合物除去編織物およびその製造方法であり、(4)編織物のメッシュの大きさが0.1mm〜30mmであることを特徴とする(1)および(2)に記載の揮発性有機化合物除去編織物およびその製造方法であり、(5)揮発性有機化合物の燃焼活性を有する金属種がニッケル、コバルト、ルテニウム、白金、パラジウム、セリア、ジルコニア、酸化チタンのうち、すくなくともいずれか1種類以上よりなることを特徴とする(1)および(2)に記載の揮発性有機化合物除去編織物およびその製造方法であり、(6)編織物表面にコーティングされる金属酸化物がシリカ、アルミナ、チタニアの少なくとも1種類以上よりなることを特徴とする(2)に記載の揮発性有機化合物除去編織物およびその製造方法であることを特徴としている。 That is, the present invention relates to (1) a knitted woven fabric carrying a metal species having a volatile organic compound combustion activity and a method for producing the same, or (2) a metal oxide. A volatile organic compound-removed knitted fabric having a volatile organic compound combustion activity supported on a knitted fabric coated on the surface, and a method for producing the knitted fabric, and (3) the yarn constituting the knitted fabric The material is characterized by containing at least one of basalt, silica, alumina, glass, carbon fiber, activated carbon fiber, hydrous aluminum silicate, potassium titanate, iron, copper, zinc, nickel, gold, silver, platinum. The volatile organic compound-removed knitted fabric according to (1) and (2) and a method for producing the same, and (4) the mesh size of the knitted fabric is 0.1 mm to 30 mm. The volatile organic compound-removed knitted fabric according to (1) and (2) and the method for producing the same, and (5) the metal species having the combustion activity of the volatile organic compound is nickel, cobalt, ruthenium, platinum, palladium The volatile organic compound-removed knitted fabric according to (1) and (2) and a method for producing the same, comprising at least one of ceria, zirconia, and titanium oxide (6) The metal oxide coated on the surface of the knitted fabric is composed of at least one of silica, alumina, and titania. The volatile organic compound-removed knitted fabric according to (2) and the method for producing the same It is said.

無機繊維糸よりなる編織物を使用することで、耐熱性が高く、高強度で、毛羽の飛散も抑制できる。また、従来のVOC燃焼触媒の多くは、ペレットや粉末、顆粒状の担体に活性金属種を担持したものであるが、本発明の編織物よりなる編織物にVOC燃焼能を有する活性金属種を担持することにより、形状を自由に変形でき、複雑な形状の工場排気設備等のVOC流路にも設置できる。 By using a knitted fabric made of inorganic fiber yarns, heat resistance is high, the strength is high, and scattering of fluff can be suppressed. In addition, many of the conventional VOC combustion catalysts are those in which active metal species are supported on pellets, powders, and granular carriers, but active metal species having VOC combustion ability are formed on the knitted fabric made of the knitted fabric of the present invention. By supporting it, the shape can be freely changed and it can be installed in VOC flow paths of factory exhaust equipment with complicated shapes.

本発明における好適な実施の形態について説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。 A preferred embodiment of the present invention will be described. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

(無機繊維糸の材質)
編織物よりなる編織物に用いられる糸の材質は、バサルト、シリカ、アルミナ、ガラス、炭素繊維、活性炭繊維、含水ケイ酸アルミニウム、チタン酸カリウム、鉄、銅、亜鉛、ニッケル、金、銀、白金のうち、少なくとも1種類以上を含有することが好ましく、バサルト、シリカ、アルミナ、ガラス、鉄、銅、亜鉛、ニッケルのうち、少なくとも1種類以上を含有することがより好ましく、バサルト、シリカ、アルミナの少なくとも1種類以上を含有することが最も好ましい。これは、バサルト、シリカ、アルミナは耐熱性が高く、発火などの懸念が無く、さらにこれらよりなる糸が実用化され、入手しやすいためである。
(Material of inorganic fiber yarn)
The yarn materials used for knitted fabrics made of knitted fabric are basalt, silica, alumina, glass, carbon fiber, activated carbon fiber, hydrous aluminum silicate, potassium titanate, iron, copper, zinc, nickel, gold, silver, platinum Of these, it is preferable to contain at least one or more, more preferably at least one of basalt, silica, alumina, glass, iron, copper, zinc, nickel, basalt, silica, alumina Most preferably, at least one kind is contained. This is because basalt, silica, and alumina have high heat resistance, there is no concern about ignition, and yarns composed of these are put into practical use and easily available.

(無機繊維糸の繊度)
無機繊維糸の繊度は20〜2000d(デニール)であることが好ましく、50〜500dであることがより好ましく、100〜300dであることが最も好ましい。20d未満では強度が低く、製織、製編時および活性金属担持時に糸切れしやすく、また、2000dより太い場合には強度が高く、製織、製編時に織機あるいは編機部品を破損する懸念があるためである。
(Fineness of inorganic fiber yarn)
The fineness of the inorganic fiber yarn is preferably 20 to 2000 d (denier), more preferably 50 to 500 d, and most preferably 100 to 300 d. If it is less than 20d, the strength is low, and yarn breaks easily during weaving, knitting and active metal loading, and if it is thicker than 2000d, the strength is high, and there is a concern that the loom or knitting machine parts may be damaged during weaving or knitting. Because.

(無機繊維糸の種類)
無機繊維糸の種類は長繊維、短繊維いずれもVOC除去編織物に利用できるが、長繊維の方がより好ましい。これは短繊維と比較して長繊維の方は毛羽が飛散しにくいためである。
(Type of inorganic fiber yarn)
As the types of inorganic fiber yarns, both long fibers and short fibers can be used for VOC-removed knitted fabric, but long fibers are more preferable. This is because fluff is less likely to scatter in the case of long fibers compared to short fibers.

(無機繊維糸の撚り回数)
無機繊維糸の撚り回数は20T/m〜500T/mであることが好ましく、100T/m〜300T/mであることがより好ましく、150T/m〜200T/mであることが最も好ましい。より回数が20T/m未満の場合では撚りがほどけやすく、十分な強度を維持できない懸念があり、また、500T/mより多い場合には、糸のよじれ(ビリ)が生じやすく、製織、製編が困難となるだけでなく、織機あるいは編機部品を破損しやすいためである。
(Number of twists of inorganic fiber yarn)
The number of twists of the inorganic fiber yarn is preferably 20 T / m to 500 T / m, more preferably 100 T / m to 300 T / m, and most preferably 150 T / m to 200 T / m. If the number is less than 20 T / m, twisting is easy to unwind and there is a concern that sufficient strength cannot be maintained. If it is more than 500 T / m, twisting of the yarn is likely to occur, and weaving and knitting This is because not only is difficult, but the loom or knitting machine parts are easily damaged.

(無機繊維糸よりなる編織物のメッシュの大きさ)
無機繊維糸よりなる編織物のメッシュの大きさは0.1mm〜10mmであることが好ましく、0.3mm〜1mmであることがより好ましく、0.4mm〜0.6mmであることが最も好ましい。これは、メッシュの大きさが0.1mm未満の場合には、十分な通気性が確保できないために、VOC流路の圧力損失が大きくなり、また、10mmよりも大きい場合にはVOCを含有する排気ガスをVOC除去編織物に導入しても、VOCとVOC除去編織物との接触頻度が低く、VOC除去効果が低いためである。
(Mesh size of knitted fabric made of inorganic fiber yarn)
The mesh size of the knitted fabric made of inorganic fiber yarns is preferably 0.1 mm to 10 mm, more preferably 0.3 mm to 1 mm, and most preferably 0.4 mm to 0.6 mm. This is because when the mesh size is less than 0.1 mm, sufficient air permeability cannot be secured, so the pressure loss of the VOC flow path becomes large, and when it is larger than 10 mm, the exhaust gas containing VOC is exhausted. This is because even when gas is introduced into the VOC-removed knitted fabric, the contact frequency between the VOC and the VOC-removed knitted fabric is low, and the VOC removal effect is low.

(無機繊維糸へカバーリングする糸の材質)
無機繊維糸を製織あるいは製編する際、あらかじめ無機繊維糸を有機高分子材料よりなる糸でカバーリングすることで、テンション調節が容易となり、製織あるいは製編時の糸切れも抑制できる。この時、カバーリングに用いる糸の種類はポリエチレンテレフタレート、ナイロン、ポリエチレン、ポリプロピレン、アクリル、綿、絹、羊毛、レーヨン、アセテートが好ましく、ポリエチレンテレフタレート、ナイロン、ポリエチレン、ポリプロピレン、アクリルがより好ましく、ポリエチレンテレフタレートおよびナイロンが最も好ましい。これは、様々な繊度の糸が安価で汎用的に流通しており入手しやすいためである。
(Material of the yarn to cover the inorganic fiber yarn)
When weaving or knitting the inorganic fiber yarn, covering the inorganic fiber yarn with a yarn made of an organic polymer material in advance makes it easier to adjust the tension, and also prevents yarn breakage during weaving or knitting. At this time, the type of yarn used for the cover ring is preferably polyethylene terephthalate, nylon, polyethylene, polypropylene, acrylic, cotton, silk, wool, rayon or acetate, more preferably polyethylene terephthalate, nylon, polyethylene, polypropylene or acrylic, polyethylene terephthalate. And nylon are most preferred. This is because yarns of various finenesses are inexpensive and widely distributed and are easily available.

(カバーリングに用いる糸の繊度)
カバーリングに用いる糸の繊度は20〜500dであることが好ましく、50〜200dであることがより好ましく、75〜150dであることが最も好ましい。20d未満では強度が低く、カバーリング時および製織あるいは製編時に糸切れしやすく、また、500dより太い場合にはカバーリング糸の太さが不均一となり、製織あるいは製編の際、カバーリング糸のテンション調整が困難になるためである。
(Fineness of yarn used for covering)
The fineness of the yarn used for the covering is preferably 20 to 500d, more preferably 50 to 200d, and most preferably 75 to 150d. If it is less than 20d, the strength is low, and yarn breaks easily during covering, weaving or knitting. Also, if it is thicker than 500d, the thickness of the covering yarn is uneven, and the covering yarn is used during weaving or knitting. This is because it is difficult to adjust the tension.

(カバーリングに用いる糸の無機繊維糸への巻回数)
カバーリングに用いる糸の無機繊維糸への巻回数は20回/m〜300回/mであることが好ましく、50回/m〜250回/mであることがより好ましく、120回/m〜150回/mであることが最も好ましい。巻回数が20回/m未満ではカバーリングによる効果がほとんど期待できず、また300回/mより多い場合にはカバーリング糸が太くなり、製織あるいは製編の際、カバーリング糸のテンション調整が困難になるためである。
(Number of windings of yarn used for covering onto inorganic fiber yarn)
The number of windings of the yarn used for the cover ring onto the inorganic fiber yarn is preferably 20 times / m to 300 times / m, more preferably 50 times / m to 250 times / m, 120 times / m to Most preferably, it is 150 times / m. When the number of windings is less than 20 turns / m, the effect of covering is hardly expected, and when it is more than 300 turns / m, the covering thread becomes thick, and the tension of the covering thread can be adjusted during weaving or knitting. This is because it becomes difficult.

(製織、製編速度)
編織物の製織、製編速度は10〜500本/minであることが好ましく、50〜300本/minであることがより好ましく、100〜150本/minが最も好ましい。10本/minよりも遅い場合には緯糸の張力が不均一となり、編織物が波打った状態(パッカリング)となりやすい。また、500本/minよりも早い場合には緯糸にかかる張力が大きく、糸切れしやすい。あるいは高強度糸であれば、糸切れせず、織機、製編部品が破損する懸念があるためである。
(Weaving and knitting speed)
The weaving and knitting speed of the knitted fabric is preferably 10 to 500 pieces / min, more preferably 50 to 300 pieces / min, and most preferably 100 to 150 pieces / min. When the speed is slower than 10 yarns / min, the weft yarn tension becomes uneven and the knitted fabric is likely to wave (puckering). In addition, when it is faster than 500 yarns / min, the tension applied to the weft is large and the thread is easily broken. Alternatively, if the yarn is high strength, the yarn does not break and there is a concern that the loom and the knitted part may be damaged.

(カバーリングに用いる糸の除去温度)
製織あるいは製編後、カバーリングに用いる糸は熱分解により除去する。この時の除去温度は350〜700℃であることが好ましく、400〜600℃がより好ましく、450〜550℃が最も好ましい。350℃未満では十分にカバーリングに用いた糸が熱分解されない懸念があり、また、700℃より高い温度ではカバーリングに用いた糸の熱分解除去効果に変化は見られないばかりか、無機繊維糸が劣化しやすくなるためである。
(Thread removal temperature for covering)
After weaving or knitting, the yarn used for the covering is removed by thermal decomposition. The removal temperature at this time is preferably 350 to 700 ° C, more preferably 400 to 600 ° C, and most preferably 450 to 550 ° C. If the temperature is lower than 350 ° C, there is a concern that the yarn used for the covering will not be thermally decomposed sufficiently, and if the temperature is higher than 700 ° C, there is no change in the thermal decomposition removal effect of the yarn used for the covering. This is because the yarn is likely to deteriorate.

(金属酸化物コーティングの種類)
無機繊維糸よりなる編織物表面への金属酸化物コーティングはゾル-ゲル法により行うのが好ましい。この時、使用する金属有機化合物は、テトラエトキシシラン、テトラエトキシチタン、アルミニウムイソプロポキシド、亜鉛アセチルアセトネート、酢酸鉛、シュウ酸バリウムからなる群のうち、いずれか1種類以上を含有したものである。中でも、テトラエトキシシランおよびアルミニウムイソプロポキシドは加水分解によってそれぞれ工業用触媒担体として汎用的に利用されるケイ酸およびアルミナとなるため、より好ましい。
(Type of metal oxide coating)
The metal oxide coating on the surface of the knitted fabric made of inorganic fiber yarn is preferably performed by a sol-gel method. At this time, the metal organic compound used contains at least one of the group consisting of tetraethoxysilane, tetraethoxytitanium, aluminum isopropoxide, zinc acetylacetonate, lead acetate, and barium oxalate. is there. Among them, tetraethoxysilane and aluminum isopropoxide are more preferable because they are converted to silicic acid and alumina which are generally used as industrial catalyst carriers by hydrolysis.

(VOC除去編織物表面をコーティングする金属酸化物の重量割合)
VOC除去編織物表面をコーティングする金属酸化物の重量割合はVOC除去編織物に対して0.1〜30wt.%が好ましく、1〜10wt.%がより好ましく、2〜4wt.%が最も好ましい。VOC除去編織物に対する金属酸化物の割合が0.1wt.%未満の場合は、活性金属が剥落しやすく、均一な担持も困難になるためVOC除去能が低下する懸念がある。一方、30wt.%より多いと編織物の通気性、柔軟性が損なわれ、圧力損失が大きくなることが懸念されるためである。
(Weight ratio of metal oxide coating the VOC-removed knitted fabric surface)
The weight ratio of the metal oxide coating the surface of the VOC-removed knitted fabric is preferably 0.1 to 30 wt.%, More preferably 1 to 10 wt.%, And most preferably 2 to 4 wt.% With respect to the VOC-removed knitted fabric. When the ratio of the metal oxide to the VOC-removed knitted fabric is less than 0.1 wt.%, The active metal tends to peel off and uniform loading becomes difficult, so there is a concern that the VOC removal ability may be reduced. On the other hand, if it exceeds 30 wt.%, The air permeability and flexibility of the knitted fabric are impaired, and there is a concern that the pressure loss will increase.

(VOC燃焼活性を有する金属種)
VOC燃焼活性を有する金属種は、ニッケル、コバルト、ルテニウム、白金、パラジウム、セリア、ジルコニア、酸化チタンのうち、すくなくともいずれか1種類以上を含有することが好ましく、ニッケル、コバルト、ルテニウム、白金、パラジウムのうち、すくなくともいずれか1種類以上を含有することがより好ましく、ニッケル、白金、パラジウムのうち、すくなくともいずれか1種類以上を含有することが最も好ましい。これらの金属は、VOC分解能が特に高い金属種であるためである。
(Metal species with VOC combustion activity)
The metal species having VOC combustion activity preferably contains at least one of nickel, cobalt, ruthenium, platinum, palladium, ceria, zirconia, and titanium oxide. Nickel, cobalt, ruthenium, platinum, palladium Of these, it is more preferable to contain at least one of them, and it is most preferred to contain at least one of nickel, platinum, and palladium. This is because these metals are metal species with particularly high VOC resolution.

なお、VOC燃焼活性を有する金属には、上記に挙げたもののうち、単一種類を使用してもよいし、2種類以上混合して用いてもよい。 In addition, the metal which has VOC combustion activity may use single type among the above-mentioned thing, and may use it in mixture of 2 or more types.

以下に、詳細な実施例を開示する。これは本発明の主旨を正確に示すことを目的とするものであり、本発明を限定的に捉えることがあってはならない。 Detailed examples are disclosed below. This is for the purpose of accurately showing the gist of the present invention, and the present invention should not be limited.

(ポリエステル糸をカバーリングした無機繊維糸の調製)
本実施例では天然に存在する玄武岩を射出して細い繊維にしたバサルト繊維糸(日本バサルトファイバー製、総合繊度:300d)を使用した。また、バサルト繊維糸に対し、ポリエステル(PET)糸(帝人フロンティア製、スーパーエクスターTW 繊度:150d フィラメント数:72本)を135回/mの条件でカバーリングした(以下、バサルト繊維-PET糸)。なお、マックサイエンス製熱重量分析装置(TG-DTA 2000S)を用い、空気雰囲気下、10oC/minの温度上昇速度で、バサルト繊維-PET糸を室温から900oCまで温度上昇させたところ、図1に示すように、500℃までにPET糸の熱分解により40%の重量低下が見られた。その後は900℃まで重量変化はほとんど見られなかった。
(Preparation of inorganic fiber yarn covered with polyester yarn)
In this example, basalt fiber yarn (made by Nippon Basalt Fiber, total fineness: 300d) obtained by injecting naturally occurring basalt into fine fibers was used. Moreover, polyester (PET) yarn (manufactured by Teijin Frontier, Superextor TW fineness: 150d, number of filaments: 72) was covered at 135 times / m on the basalt fiber yarn (hereinafter referred to as basalt fiber-PET yarn). . In addition, when using a thermogravimetric analyzer (TG-DTA 2000S) manufactured by Mac Science, the temperature of the basalt fiber-PET yarn was raised from room temperature to 900 o C at a temperature rise rate of 10 o C / min in an air atmosphere. As shown in FIG. 1, a 40% weight loss was observed by thermal decomposition of the PET yarn up to 500 ° C. After that, there was almost no change in weight up to 900 ° C.

(製織)
バサルト繊維-PET糸をレピア織機(イテマウェ−ビング製、型番:セラミック特殊型)を用いて、打ち込み本数が経方向29本/inch、緯方向28本/inchとなるように製織してバサルト繊維-PET織物を得た。なお、この時のメッシュの大きさは1mm四方だった。
(Weaving)
Basalt fiber-Weaving PET yarn using rapier loom (made by Itema Webbing, model number: ceramic special type) so that the number of driven yarns is 29 warp / inch and 28 weft / inch in the weft direction. A PET fabric was obtained. At this time, the mesh size was 1 mm square.

(熱分解によるPET繊維の除去)
バサルト繊維-PET織物を空気存在下にて500℃で加熱処理してPET糸を除去し、バサルト繊維織物を得た。
(Removal of PET fiber by pyrolysis)
The basalt fiber-PET fabric was heat-treated at 500 ° C. in the presence of air to remove the PET yarn to obtain a basalt fiber fabric.

(ゾル-ゲル法によるバサルト繊維織物のシリカコーティング)
オルトケイ酸テトラエチル(試薬特級、和光純薬製)25g、エタノール37.6g、蒸留水23.5gおよび塩酸0.3gの混合溶液中にバサルト繊維織物5gを浸漬し、室温にて48時間自然乾燥した。その後、電気炉を用いて500oCで1時間熱処理を行い、SiO2-バサルト繊維織物を得た。
(Silica coating of basalt fiber fabric by sol-gel method)
5 g of basalt fiber fabric was immersed in a mixed solution of 25 g of tetraethyl orthosilicate (special grade reagent, Wako Pure Chemical Industries, Ltd.), 37.6 g of ethanol, 23.5 g of distilled water and 0.3 g of hydrochloric acid, and air-dried at room temperature for 48 hours. Thereafter, heat treatment was performed at 500 ° C. for 1 hour using an electric furnace to obtain a SiO 2 -basalt fiber fabric.

(VOC燃焼活性を有する金属の担持)
純水とメタノールを体積比2:1の割合で混合した溶液30mlにNi(NO3)2・6H2O(試薬特級、和光純薬製)2.7gを溶解させた後、SiO2-バサルト繊維織物5g を常温・常圧で30分間浸漬した。乾燥後、空気中、500℃の温度条件で2時間加熱し、ニッケルが10wt%の割合で担持されたSiO2-バサルト繊維織物(以下、Ni(10)/SiO2-バサルト繊維織物)の前駆体を得た。
(Supporting metals with VOC combustion activity)
After dissolving 2.7 g of Ni (NO 3 ) 2 · 6H 2 O (special grade reagent, Wako Pure Chemical Industries) in 30 ml of a mixture of pure water and methanol in a volume ratio of 2: 1, SiO 2 -basalt fiber 5 g of the woven fabric was immersed for 30 minutes at room temperature and normal pressure. After drying, it is heated in air at 500 ° C for 2 hours, and the precursor of SiO 2 -basalt fiber fabric (hereinafter referred to as Ni (10) / SiO 2 -basalt fiber fabric) in which nickel is supported at a rate of 10wt% Got the body.

(VOC分解実験)
図2に示すような循環反応装置(総容積312ml)を用いてNi(10)/SiO2-バサルト繊維織物5.0gを反応床1に充填し、そこへ電気炉2を、反応床1を覆うように設置した。バルブ3、バルブ4、バルブ5を開けた後、バルブ6を開け、真空ポンプ7により、系内を真空排気した。バルブ6を閉じたのち、圧力調整弁8およびバルブ9を開いて水素ボンベ10よりを系内に水素を250Torr導入した。バルブ3を閉じた後、電気炉2を用いて反応床1を500℃に昇温し、循環ポンプ11を稼働させて1時間水素還元した。バルブ3を開け、循環ポンプ11を停止した後、バルブ6を開け、真空ポンプ7により、系内を真空排気した後、再度バルブ6を閉じ、圧力調整弁12およびバルブ13を開いて系内にn-C4H10(以下、ブタン)ボンベ14よりを系内にブタンを30Torr導入した。さらに、バルブ13を閉じたのち、圧力調整弁15およびバルブ16を開いてN2とO2が4:1の割合で混合されたガス(クリーンガス)ボンベ17よりクリーンガスを600Torr導入(系内の酸素/炭素(O/C)比=1、ブタン由来炭素濃度=50000ppmC)した。バルブ16を閉じた後、バルブ3を開け、循環ポンプ11を稼働させて反応床温度を400℃に昇温した。
(VOC decomposition experiment)
The reaction bed 1 is filled with 5.0 g of Ni (10) / SiO 2 -basalt fiber fabric using a circulation reaction apparatus (total volume 312 ml) as shown in FIG. Was installed. After opening the valve 3, the valve 4 and the valve 5, the valve 6 was opened and the system was evacuated by the vacuum pump 7. After the valve 6 was closed, the pressure regulating valve 8 and the valve 9 were opened, and 250 Torr of hydrogen was introduced from the hydrogen cylinder 10 into the system. After closing the valve 3, the temperature of the reaction bed 1 was raised to 500 ° C. using the electric furnace 2, and the circulation pump 11 was operated to perform hydrogen reduction for 1 hour. After the valve 3 is opened and the circulation pump 11 is stopped, the valve 6 is opened, the inside of the system is evacuated by the vacuum pump 7, the valve 6 is closed again, and the pressure regulating valve 12 and the valve 13 are opened to enter the system. 30 torr of butane was introduced from the nC 4 H 10 (hereinafter referred to as butane) cylinder 14 into the system. Further, after closing the valve 13, the pressure regulating valve 15 and the valve 16 are opened, and 600 Torr of clean gas is introduced from a gas (clean gas) cylinder 17 in which N 2 and O 2 are mixed at a ratio of 4: 1 (inside the system) Oxygen / carbon (O / C) ratio = 1, butane-derived carbon concentration = 50000 ppmC). After the valve 16 was closed, the valve 3 was opened and the circulation pump 11 was operated to raise the reaction bed temperature to 400 ° C.

系内ガスのサンプリングおよび分析を行う場合は、圧力調整弁18を開け、バルブ19を開けて、アルゴンガスボンベ20からアルゴンガスを、四方コック21を経由して水素イオン化ガスクロマトグラフ検出器22へ導入した。次に、バルブ23を開けて真空ポンプ24によりガス溜め部25を真空にした。バルブ23を閉じたのち、バルブ26を開け、ガス溜め部25に系内のガスを導入した。その後、バルブ26を閉じ、四方コック21を90℃回転させ、ガス溜め部25に導入された系内ガスをアルゴンガスボンベ20から供給されるアルゴンガスとともに水素イオン化ガスクロマトグラフ検出器22へ導入した。このような操作により、所定の時間ごとに系内のガスをサンプリングし、循環反応系内のC濃度に基づく炭化水素求め、以下の計算式によって燃焼率を求めた。 When sampling and analyzing the gas in the system, the pressure regulating valve 18 is opened, the valve 19 is opened, and argon gas is introduced from the argon gas cylinder 20 into the hydrogen ionization gas chromatograph detector 22 via the four-way cock 21. . Next, the valve 23 was opened and the gas reservoir 25 was evacuated by the vacuum pump 24. After the valve 23 was closed, the valve 26 was opened, and the gas in the system was introduced into the gas reservoir 25. Thereafter, the valve 26 was closed, the four-way cock 21 was rotated by 90 ° C., and the system gas introduced into the gas reservoir 25 was introduced into the hydrogen ionization gas chromatograph detector 22 together with the argon gas supplied from the argon gas cylinder 20. By such an operation, the gas in the system was sampled every predetermined time, the hydrocarbon was determined based on the C concentration in the circulation reaction system, and the combustion rate was determined by the following formula.

式1Formula 1

その結果、図3に示す様に、実験開始60分後の燃焼率は70.2%であり、系内のブタン由来炭素濃度は15000ppmCに低減された。 As a result, as shown in FIG. 3, the burning rate 60 minutes after the start of the experiment was 70.2%, and the butane-derived carbon concentration in the system was reduced to 15000 ppmC.

(Ni/SiO2-バサルト繊維織物のVOC分解能評価)
以上の結果から、本実施例で作製したNi/SiO2-バサルト繊維織物のVOC分解能評価は適であった。
(VOC resolution evaluation of Ni / SiO 2 -basalt fiber fabric)
From the above results, the VOC resolution evaluation of the Ni / SiO 2 -basalt fiber fabric produced in this example was appropriate.

ポリエステル糸をカバーリングしたバサルト繊維糸の作製、バサルト繊維織物の作製およびゾル-ゲル法によるバサルト繊維織物のシリカコーティングは実施例1に記載した方法と同様の方法で行った。 Preparation of a basalt fiber yarn covered with a polyester yarn, preparation of a basalt fiber fabric, and silica coating of a basalt fiber fabric by a sol-gel method were performed in the same manner as described in Example 1.

(VOC燃焼活性を有する金属の担持)
純水とメタノールを体積比2:1の割合で混合した溶液30mlにNi(NO3)2・6H2O(試薬特級、和光純薬製)4.1gを溶解した以外は、実施例1に記載した方法と同様の方法でニッケルが15wt%の割合で担持されたSiO2-バサルト繊維織物(以下、Ni(15)/SiO2-バサルト繊維織物)の前駆体を得た。
(Supporting metals with VOC combustion activity)
As described in Example 1, except that 4.1 g of Ni (NO 3 ) 2 · 6H 2 O (special grade reagent, manufactured by Wako Pure Chemical Industries) was dissolved in 30 ml of a mixture of pure water and methanol in a volume ratio of 2: 1. A precursor of SiO 2 -basalt fiber woven fabric (hereinafter referred to as Ni (15) / SiO 2 -basalt fiber woven fabric) carrying nickel at a ratio of 15 wt% was obtained by the same method as described above.

(VOC分解実験)
図2に示す循環反応装置を用いてNi(15)/SiO2-バサルト繊維織物5.0gを反応床に充填した以外は、実施例1に記載した方法と同様の方法で実験を行った。また、燃焼率は式1により求めた。
(VOC decomposition experiment)
Experiments were performed in the same manner as described in Example 1 except that the reaction bed was filled with 5.0 g of Ni (15) / SiO 2 -basalt fiber fabric using the circulating reaction apparatus shown in FIG. Further, the combustion rate was obtained by Equation 1.

その結果、図4に示す様に実験開始60分後の燃焼率は92.4%であり、系内のブタン由来炭素濃度は3800ppmCに低減された。 As a result, as shown in FIG. 4, the combustion rate 60 minutes after the start of the experiment was 92.4%, and the butane-derived carbon concentration in the system was reduced to 3800 ppmC.

(Ni(15)/SiO2-バサルト繊維織物のVOC分解能評価)
以上の結果から、本実施例で作製したNi/SiO2-バサルト繊維織物のVOC分解能評価は適であった。
(VOC resolution evaluation of Ni (15) / SiO 2 -basalt fiber fabric)
From the above results, the VOC resolution evaluation of the Ni / SiO 2 -basalt fiber fabric produced in this example was appropriate.

ポリエステル糸をカバーリングしたバサルト繊維糸の作製、バサルト繊維織物の作製およびゾル-ゲル法によるバサルト繊維織物のシリカコーティングは実施例1に記載した方法と同様の方法で行った。 Preparation of a basalt fiber yarn covered with a polyester yarn, preparation of a basalt fiber fabric, and silica coating of a basalt fiber fabric by a sol-gel method were performed in the same manner as described in Example 1.

(VOC燃焼活性を有する金属の担持)
純水とメタノールを体積比2:1の割合で混合した溶液30mlにNi(NO3)2・6H2O(試薬特級、和光純薬製)5.4gを溶解した以外は、実施例1に記載した方法と同様の方法でニッケルが20wt%の割合で担持されたSiO2-バサルト繊維織物(以下、Ni(20)/SiO2-バサルト繊維織物)の前駆体を得た。
(Supporting metals with VOC combustion activity)
As described in Example 1, except that 5.4 g of Ni (NO 3 ) 2 · 6H 2 O (special grade reagent, manufactured by Wako Pure Chemical Industries) was dissolved in 30 ml of a solution in which pure water and methanol were mixed at a volume ratio of 2: 1. A precursor of SiO 2 -basalt fiber woven fabric (hereinafter referred to as Ni (20) / SiO 2 -basalt fiber woven fabric) carrying nickel at a ratio of 20 wt% was obtained by the same method as described above.

(VOC分解実験)
図2に示す循環反応装置を用いてNi(20)/SiO2-バサルト繊維織物5.0gを反応床に充填した以外は、実施例1に記載した方法と同様の方法で実験を行った。また、燃焼率は式1により求めた。
(VOC decomposition experiment)
The experiment was conducted in the same manner as described in Example 1 except that the reaction bed was filled with 5.0 g of Ni (20) / SiO 2 -basalt fiber fabric using the circulating reaction apparatus shown in FIG. Further, the combustion rate was obtained by Equation 1.

その結果、図5に示す様に実験開始60分後の燃焼率は99.2%であり、系内のブタン由来炭素濃度は400ppmCに低減された。 As a result, as shown in FIG. 5, the burning rate 60 minutes after the start of the experiment was 99.2%, and the butane-derived carbon concentration in the system was reduced to 400 ppmC.

(Ni(20)/SiO2-バサルト繊維織物のVOC分解能評価)
以上の結果から、本実施例で作製したNi/SiO2-バサルト繊維織物のVOC分解能評価は適であった。
(VOC resolution evaluation of Ni (20) / SiO 2 -basalt fiber fabric)
From the above results, the VOC resolution evaluation of the Ni / SiO 2 -basalt fiber fabric produced in this example was appropriate.

ポリエステル糸をカバーリングしたバサルト繊維糸の作製、バサルト繊維織物の作製およびゾル-ゲル法によるバサルト繊維織物のシリカコーティングは実施例1に記載した方法と同様の方法で行った。 Preparation of a basalt fiber yarn covered with a polyester yarn, preparation of a basalt fiber fabric, and silica coating of a basalt fiber fabric by a sol-gel method were performed in the same manner as described in Example 1.

(VOC燃焼活性を有する金属の担持)
純水とメタノールを体積比2:1の割合で混合した溶液30mlにヘキサクロロ白金(IV)酸六水和物(和光純薬製)0.13gを溶解し、SiO2-バサルト繊維織物5gを浸漬した。50℃の温度条件下で1M NaOH水溶液を滴下してpHを7.0に調整しながら1時間撹拌し、真空乾燥した。その後、蒸留水250mlを添加し、30分撹拌する操作を3回繰り返し、再度真空乾燥した。次に空気中、500℃の温度条件で2時間焼成し、白金が1wt%の割合で担持されたSiO2-バサルト繊維織物(以下、Pt(1)/SiO2-バサルト繊維織物)の前駆体を得た。
(Supporting metals with VOC combustion activity)
Hexachloroplatinum (IV) acid hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.13 g was dissolved in 30 ml of a mixture of pure water and methanol at a volume ratio of 2: 1 and 5 g of SiO 2 -basalt fiber fabric was immersed. . A 1M NaOH aqueous solution was added dropwise under a temperature condition of 50 ° C., and the mixture was stirred for 1 hour while adjusting the pH to 7.0, followed by vacuum drying. Thereafter, 250 ml of distilled water was added and the operation of stirring for 30 minutes was repeated three times, followed by vacuum drying again. Next, a precursor of SiO 2 -basalt fiber woven fabric (hereinafter referred to as Pt (1) / SiO 2 -basalt fiber woven fabric) baked in air at 500 ° C for 2 hours and loaded with platinum at a rate of 1wt% Got.

(VOC分解実験)
図2に示す循環反応装置を用いてPt(1)/SiO2-バサルト繊維織物前駆体5.0gを反応床に充填した以外は、実施例1に記載した方法と同様の方法で実験を行った。また、燃焼率は式1により求めた。
(VOC decomposition experiment)
Experiments were conducted in the same manner as described in Example 1, except that 5.0 g of Pt (1) / SiO 2 -basalt fiber woven fabric precursor was charged into the reaction bed using the circulation reactor shown in FIG. . Further, the combustion rate was obtained by Equation 1.

その結果、図6に示す様に実験開始60分後の燃焼率は99.9%であり、系内のブタン由来炭素濃度は50ppmCに低減された。 As a result, as shown in FIG. 6, the burning rate 60 minutes after the start of the experiment was 99.9%, and the butane-derived carbon concentration in the system was reduced to 50 ppmC.

(Pt(1)/SiO2-バサルト繊維織物のVOC分解能評価)
以上の結果から、本実施例で作製したPt(1)/SiO2-バサルト繊維織物のVOC分解能評価は適であった。
(VOC resolution evaluation of Pt (1) / SiO 2 -basalt fiber fabric)
From the above results, the VOC resolution evaluation of the Pt (1) / SiO 2 -basalt fiber fabric produced in this example was appropriate.

比較例1Comparative Example 1

ポリエステル糸をカバーリングしたバサルト繊維糸の作製、バサルト繊維織物の作製およびゾル-ゲル法によるバサルト繊維織物のシリカコーティングは実施例1に記載した方法と同様の方法で行った。 Preparation of a basalt fiber yarn covered with a polyester yarn, preparation of a basalt fiber fabric, and silica coating of a basalt fiber fabric by a sol-gel method were performed in the same manner as described in Example 1.

(VOC分解実験)
図2に示す循環反応装置を用いてバサルト繊維織物5.0gを反応床に充填した以外は、実施例1に記載した方法と同様の方法で実験を行った。また、燃焼率は実施例1に記載した式1により求めた。
(VOC decomposition experiment)
Experiments were conducted in the same manner as described in Example 1 except that 5.0 g of basalt fiber fabric was charged into the reaction bed using the circulation reaction apparatus shown in FIG. Further, the combustion rate was obtained by Equation 1 described in Example 1.

その結果、図7に示す様に実験開始60分後の燃焼率は0.0%であり、系内のブタン由来炭素濃度に変化は見られなかった。 As a result, as shown in FIG. 7, the combustion rate 60 minutes after the start of the experiment was 0.0%, and no change was observed in the butane-derived carbon concentration in the system.

(バサルト繊維織物の総合評価)
以上の結果から、本比較例で用いたバサルト繊維織物のVOC分解能評価は不適であった。
(Comprehensive evaluation of basalt fiber fabric)
From the above results, the VOC resolution evaluation of the basalt fiber fabric used in this comparative example was inappropriate.

比較例2Comparative Example 2

ポリエステル糸をカバーリングしたバサルト繊維糸の作製、バサルト繊維織物の作製およびゾル-ゲル法によるバサルト繊維織物のシリカコーティングは実施例1に記載した方法と同様の方法で行った。 Preparation of a basalt fiber yarn covered with a polyester yarn, preparation of a basalt fiber fabric, and silica coating of a basalt fiber fabric by a sol-gel method were performed in the same manner as described in Example 1.

(VOC分解実験)
図2に示す循環反応装置を用いてSiO2-バサルト繊維織物5.0gを反応床に充填した以外は、実施例1に記載した方法と同様の方法で実験を行った。また、燃焼率は式1により求めた。
(VOC decomposition experiment)
Experiments were performed in the same manner as described in Example 1 except that 5.0 g of SiO 2 -basalt fiber fabric was charged into the reaction bed using the circulating reaction apparatus shown in FIG. Further, the combustion rate was obtained by Equation 1.

その結果、図8に示す様に実験開始60分後の燃焼率は0.0%であり、系内のブタン由来炭素濃度に変化は見られなかった。 As a result, as shown in FIG. 8, the combustion rate 60 minutes after the start of the experiment was 0.0%, and no change was observed in the butane-derived carbon concentration in the system.

(SiO2-バサルト繊維織物のVOC分解能評価)
以上の結果から、本比較例で用いたSiO2-バサルト繊維織物のVOC分解能評価は不適であった。
(VOC resolution evaluation of SiO 2 -basalt fiber fabric)
From the above results, the VOC resolution evaluation of the SiO 2 -basalt fiber fabric used in this comparative example was inappropriate.

実施例1〜4および比較例1〜2で行ったVOC分解能評価の結果を表1にまとめて示す。 The results of VOC resolution evaluation performed in Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1.

本発明のVOC除去編織物は、印刷・塗装・接着・ドライクリーニング等のVOCが発生する現場において、排気設備内に設置することにより、VOCを除去するためのフィルターとして利用される。 The VOC-removed knitted fabric of the present invention is used as a filter for removing VOC by installing it in an exhaust facility at a site where VOC is generated such as printing, painting, adhesion, and dry cleaning.

バサルト繊維-PET糸の熱重量曲線を表す図である。It is a figure showing the thermogravimetric curve of a basalt fiber-PET yarn. VOC分解実験で使用した循環反応装置を模式的に表す図である。It is a figure which represents typically the circulating reaction apparatus used in VOC decomposition | disassembly experiment. Ni(10)/SiO2-バサルト繊維織物のVOC分解能を経時的に示す図である。Ni (10) / SiO 2 - is a diagram showing over time the VOC resolution of basalt fiber fabric. Ni(15)/SiO2-バサルト繊維織物のVOC分解能を経時的に示す図である。Ni (15) / SiO 2 - is a diagram showing over time the VOC resolution of basalt fiber fabric. Ni(20)/SiO2-バサルト繊維織物のVOC分解能を経時的に示す図である。Ni (20) / SiO 2 - is a diagram showing over time the VOC resolution of basalt fiber fabric. Pt(1)/SiO2-バサルト繊維織物のVOC分解能を経時的に示す図である。Pt (1) / SiO 2 - is a diagram showing over time the VOC resolution of basalt fiber fabric. バサルト繊維織物のVOC分解能を経時的に示す図である。It is a figure which shows the VOC resolution | decomposability of a basalt fiber fabric over time. SiO2-バサルト繊維織物のVOC分解能を経時的に示す図である。SiO 2 - is a diagram showing over time the VOC resolution of basalt fiber fabric.

1…循環反応装置の反応床、
2…電気炉、
3〜6…バルブ、
7…真空ポンプ、
8…圧力調整弁、
9…バルブ、
10…水素ボンベ、
11…循環反応装置の循環ポンプ、
12…圧力調整弁、
13…バルブ、
14…ブタンボンベ、
15…圧力調整弁、
16…バルブ、
17…クリーンガスボンベ、
18…圧力調整弁、
19…バルブ、
20…アルゴンガスボンベ、
21…四方コック、
22…水素イオン化ガスクロマトグラフ検出器、
23…バルブ、
24…真空ポンプ、
25…ガス溜め部、
26…バルブ
1 ... Reaction bed of a circulating reactor,
2 ... Electric furnace,
3-6 ... Valve,
7 ... Vacuum pump,
8 ... Pressure regulating valve,
9 ... Valve,
10 ... Hydrogen cylinder,
11… Circulating pump of circulating reactor,
12 ... pressure regulating valve,
13… Valve,
14 ... Butanbomb,
15 ... pressure regulating valve,
16 ... Valve,
17 ... Clean gas cylinder,
18 ... pressure regulating valve,
19… Valve,
20… Argon gas cylinder,
21 ... Four-way cock,
22 ... Hydrogen ionization gas chromatograph detector,
23… Valve,
24 ... Vacuum pump,
25 ... Gas reservoir,
26… Valve

Claims (6)

編織物に揮発性有機化合物の燃焼活性を有する金属種を担持したことを特徴とする揮発性有機化合物除去編織物およびその製造方法。 A volatile organic compound-removed knitted fabric characterized by carrying a volatile organic compound combustion activity on the knitted fabric, and a method for producing the same. 金属酸化物を表面にコーティングした編織物に揮発性有機化合物の燃焼活性を有する金属種を担持したことを特徴とする揮発性有機化合物除去編織物およびその製造方法。 A volatile organic compound-removed knitted fabric having a metal oxide having a combustion activity of a volatile organic compound supported on a knitted fabric having a metal oxide coated on the surface, and a method for producing the same. 編織物を構成する糸の材質がバサルト、シリカ、アルミナ、ガラス、炭素繊維、活性炭繊維、含水ケイ酸アルミニウム、チタン酸カリウム、鉄、銅、亜鉛、ニッケル、金、銀、白金の少なくとも1種類以上を含有することを特徴とする請求項1および請求項2に記載の揮発性有機化合物除去編織物およびその製造方法。 The material of the yarn constituting the knitted fabric is at least one of basalt, silica, alumina, glass, carbon fiber, activated carbon fiber, hydrated aluminum silicate, potassium titanate, iron, copper, zinc, nickel, gold, silver, platinum The volatile organic compound-removed knitted fabric according to claim 1 and a method for producing the same. 編織物のメッシュの大きさが0.1mm〜30mmであることを特徴とする請求項1および請求項2に記載の揮発性有機化合物除去編織物およびその製造方法。 3. The volatile organic compound-removed knitted fabric according to claim 1 and a method for producing the knitted fabric, wherein the knitted fabric has a mesh size of 0.1 mm to 30 mm. 揮発性有機化合物の燃焼活性を有する金属種がニッケル、コバルト、ルテニウム、白金、パラジウム、セリア、ジルコニア、酸化チタンのうち、すくなくともいずれか1種類以上よりなることを特徴とする請求項1および請求項2に記載の揮発性有機化合物除去編織物およびその製造方法。 The metal species having a combustion activity of a volatile organic compound is composed of at least one of nickel, cobalt, ruthenium, platinum, palladium, ceria, zirconia, and titanium oxide. 2. The volatile organic compound-removed knitted fabric according to 2, and a production method thereof. 編織物表面にコーティングされる金属酸化物がシリカ、アルミナ、チタニアの少なくとも1種類以上よりなることを特徴とする請求項2に記載の揮発性有機化合物除去編織物およびその製造方法。
3. The volatile organic compound-removed knitted fabric according to claim 2, wherein the metal oxide coated on the surface of the knitted fabric comprises at least one of silica, alumina, and titania.
JP2016009752A 2016-01-21 2016-01-21 Knitted fabric for removing volatile organic compound Pending JP2017127822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009752A JP2017127822A (en) 2016-01-21 2016-01-21 Knitted fabric for removing volatile organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009752A JP2017127822A (en) 2016-01-21 2016-01-21 Knitted fabric for removing volatile organic compound

Publications (1)

Publication Number Publication Date
JP2017127822A true JP2017127822A (en) 2017-07-27

Family

ID=59394190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009752A Pending JP2017127822A (en) 2016-01-21 2016-01-21 Knitted fabric for removing volatile organic compound

Country Status (1)

Country Link
JP (1) JP2017127822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469819A (en) * 2017-08-15 2017-12-15 上海交通大学 A kind of loaded catalyst of preparing cyclohexene from benzene added with hydrogen and preparation method thereof
CN110270341A (en) * 2019-06-19 2019-09-24 福州大学 A kind of catalyst and its preparation method and application
CN111921541A (en) * 2020-09-17 2020-11-13 中南大学 Platinum-iron alloy catalyst, preparation method thereof and application thereof in catalytic oxidation of VOCs (volatile organic compounds)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107469819A (en) * 2017-08-15 2017-12-15 上海交通大学 A kind of loaded catalyst of preparing cyclohexene from benzene added with hydrogen and preparation method thereof
CN107469819B (en) * 2017-08-15 2020-11-10 上海交通大学 Supported catalyst for preparing cyclohexene by benzene hydrogenation and preparation method thereof
CN110270341A (en) * 2019-06-19 2019-09-24 福州大学 A kind of catalyst and its preparation method and application
CN111921541A (en) * 2020-09-17 2020-11-13 中南大学 Platinum-iron alloy catalyst, preparation method thereof and application thereof in catalytic oxidation of VOCs (volatile organic compounds)
CN111921541B (en) * 2020-09-17 2021-06-22 中南大学 Platinum-iron alloy catalyst, preparation method thereof and application thereof in catalytic oxidation of VOCs (volatile organic compounds)

Similar Documents

Publication Publication Date Title
Almaie et al. Volatile organic compounds (VOCs) removal by photocatalysts: A review
EP2643076B1 (en) System for removing organic compounds from air
Wang et al. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal
US9962651B2 (en) Device and method for gas treatment using non-thermal plasma and catalyst medium
US9399208B2 (en) Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
JP2017127822A (en) Knitted fabric for removing volatile organic compound
Kiwi-Minsker et al. Pt and Pd supported on glass fibers as effective combustion catalysts
JP5959383B2 (en) Combustion exhaust gas treatment unit and CO2 supply device
Lee et al. Electrospun tungsten trioxide nanofibers decorated with palladium oxide nanoparticles exhibiting enhanced photocatalytic activity
US10507454B2 (en) Photocatalyst material and method for producing same
CN104226020A (en) Composite nanometer filter material with catalytic function as well as preparation method and application of composite nanometer filter material
Chengjun et al. Synergetic effect of thermo-photocatalytic oxidation of benzene on Pt-TiO2/Ce-MnOx
Kusiak-Nejman et al. Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths
KR102494685B1 (en) Photocatalytic Filters Having Physical Entrapment of Pollutants and Method for Purifying Gaseous Medium Using the Same
Yusuf et al. Opposite effects of Co and Cu dopants on the catalytic activities of birnessite MnO2 catalyst for low-temperature formaldehyde oxidation
KR100682103B1 (en) nano fiber cataltst and method and apparatus for prepering a nano fiber cataltst
JPH1147611A (en) Highly functional base material holding photocatalyst supporting hyper-fine metal particles and its preparation
Lv et al. Deactivation mechanism and anti-deactivation modification of Ru/TiO2 catalysts for CH3Br oxidation
JP2006525216A (en) Ammonia oxidation method
JP5596807B2 (en) Method for producing visible light responsive fibrous photocatalyst
JP6837828B2 (en) Low temperature oxidation catalyst
KR20230088398A (en) Air purifying device and air purifying method
KR20110082749A (en) Active carbon and manufacturing method thereof, and filter with the same
JPH11207149A (en) Metal carrying photocatalyst type air purifier
JP2004255243A (en) Method for manufacturing photocatalyst, photocatalyst and apparatus for purifying gas