JP2017127083A - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
JP2017127083A
JP2017127083A JP2016004019A JP2016004019A JP2017127083A JP 2017127083 A JP2017127083 A JP 2017127083A JP 2016004019 A JP2016004019 A JP 2016004019A JP 2016004019 A JP2016004019 A JP 2016004019A JP 2017127083 A JP2017127083 A JP 2017127083A
Authority
JP
Japan
Prior art keywords
rotor
bar
slot
width
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016004019A
Other languages
Japanese (ja)
Other versions
JP6609482B2 (en
Inventor
公則 澤畠
Kiminori Sawahata
公則 澤畠
和雄 西濱
Kazuo Nishihama
和雄 西濱
大祐 郡
Daisuke Koori
大祐 郡
元信 飯塚
Motonobu Iizuka
元信 飯塚
健一 杉本
Kenichi Sugimoto
健一 杉本
小山 貴之
Takayuki Koyama
貴之 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016004019A priority Critical patent/JP6609482B2/en
Publication of JP2017127083A publication Critical patent/JP2017127083A/en
Application granted granted Critical
Publication of JP6609482B2 publication Critical patent/JP6609482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable dynamo-electric machine of low loss.SOLUTION: In a dynamo-electric machine including a stator applied with a winding and a rotor, the rotor includes a rotor core, rotor bars housed in multiple rotor slots provided in the rotor core and cage conductors constituted to include an end ring joined to the ends of the rotor bars. The rotor slot has the shape of an open slot, and the height in the radial direction thereof is larger than that of the rotor bar. The rotor core is constituted in a bulk form, and the width of the rotor slot at the outermost periphery in the radial direction is larger than that of the rotor bar.SELECTED DRAWING: Figure 2

Description

本発明は,かご形二次巻線を有する回転電機に係わり,特に回転子の塊状鉄心のスロット形状に関する。   The present invention relates to a rotating electrical machine having a cage secondary winding, and more particularly to a slot shape of a massive iron core of a rotor.

近年インバータを用いて電動機を高速運転することによって,駆動システム全体の省スペース化する需要が高まっている。高速運転する電動機として,回転子コアのスロットに設けられた複数の回転子導体が回転子コアの端面においてエンドリング(短絡環)で連結された回転子を備える誘導電動機がある。誘導電動機を高速化した場合,回転子コアや回転子導体に働く遠心力が従来の回転子よりも大きくなるため,回転子コアを従来の積層型から高強度な塊状型に変更することや,回転子コアと回転子導体とを溶接または接合により回転子構造を高強度化する必要がある。また,回転子に発生する電気的な損失を低減することで回転子導体に働く熱応力を低減する必要がある。これらの課題に対して,本技術分野の背景技術として,特許文献1や非特許文献1,2などがあげられる。特許文献1には塊状回転子コアを備え,回転子導体の最外周部分を切削して回転子導体に発生する損失の低減を図っている誘導電動機がある。また,非特許文献1および非特許文献2には回転子導体が塊状回転子コアに挿入または接合している誘導電動機がある。   In recent years, there has been an increasing demand for space saving of the entire drive system by operating an electric motor at high speed using an inverter. As an electric motor that operates at high speed, there is an induction motor including a rotor in which a plurality of rotor conductors provided in a slot of a rotor core are connected by end rings (short-circuit rings) at end faces of the rotor core. When the speed of the induction motor is increased, the centrifugal force acting on the rotor core and the rotor conductor becomes larger than that of the conventional rotor, so the rotor core can be changed from the conventional laminated type to a high-strength massive type, It is necessary to increase the strength of the rotor structure by welding or joining the rotor core and the rotor conductor. Moreover, it is necessary to reduce the thermal stress acting on the rotor conductor by reducing the electrical loss generated in the rotor. In order to solve these problems, Patent Document 1, Non-Patent Documents 1 and 2, and the like are listed as background technologies in this technical field. Patent Document 1 discloses an induction motor that includes a massive rotor core and cuts the outermost peripheral portion of the rotor conductor to reduce loss generated in the rotor conductor. Non-Patent Document 1 and Non-Patent Document 2 include an induction motor in which a rotor conductor is inserted or joined to a massive rotor core.

特開2012−157134号JP 2012-157134 A

R.Lateb, J.Enon, L.Durantay; High speed, High power electrical induction motor technologies for integrated compressors, Electrical Machines and Systems, 2009. ICEMS 2009R. Lateb, J. Enon, L. Durantay; High speed, High power electrical induction motor technologies for integrated compressors, Electrical Machines and Systems, 2009. ICEMS 2009 Hartmut Walter, Axel Moehle, Maria Bade; Asynchronous solid rotors as high-speed drives in the megawatt range, Petroleum and Chemical Industry Technical Conference, 2007. PCIC '07. IEEEHartmut Walter, Axel Moehle, Maria Bade; Asynchronous solid rotors as high-speed drives in the megawatt range, Petroleum and Chemical Industry Technical Conference, 2007. PCIC '07. IEEE

上記特許文献3には回転子の塊状回転子コアと回転子バーの形成方法に関する技術が記載されているが,回転子バーの最外周部分が回転子コアの最外周部分と同一面に配置されているため,回転子バー表面に大きな損失が発生し,回転子バーの発熱による熱応力が過大となり,回転子バーが破損する可能性がある。非特許文献1には塊状回転子コアに回転子バーを埋め込む構造の回転子,回転子バーが遠心力によって回転時に飛び出さないように回転子ティースによって回転子バーを支えている構造の回転子,積層形の回転子コアに回転子バーを埋め込む構造の回転子が記載されている。回転子コアは塊状,積層形いずれの場合も回転子コアに適用する材質の透磁率が空気よりも高いため,回転子バー最外周部分に高調波磁束が入りやすい構造となる。したがって非特許文献1に記載の回転子形状はいずれも回転子バーの最外周部分に高調波磁束に起因した損失が発生しやすく,回転子バーに大きな損失および熱応力が発生する。非特許文献2に記載される回転子形状は特許文献1と同様に,回転子バーの最外周部分が回転子コアの最外周部分と同一面に配置されているため,回転子バー表面に発生する損失および熱を低減することができず,回転子バーが熱応力によって破損する可能性がある。   Patent Document 3 describes a technique related to a method for forming a rotor core and a rotor bar of a rotor, and the outermost peripheral portion of the rotor bar is arranged on the same plane as the outermost peripheral portion of the rotor core. Therefore, a large loss occurs on the surface of the rotor bar, the thermal stress due to the heat generated by the rotor bar becomes excessive, and the rotor bar may be damaged. Non-Patent Document 1 discloses a rotor having a structure in which a rotor bar is embedded in a bulky rotor core, and a rotor having a structure in which the rotor bar is supported by rotor teeth so that the rotor bar does not pop out when rotating due to centrifugal force. , A rotor having a structure in which a rotor bar is embedded in a laminated rotor core is described. The rotor core has a structure in which harmonic magnetic flux easily enters the outermost peripheral portion of the rotor bar because the magnetic permeability of the material applied to the rotor core is higher than that of air in both the bulk and laminated types. Therefore, in any of the rotor shapes described in Non-Patent Document 1, loss due to harmonic magnetic flux tends to occur in the outermost peripheral portion of the rotor bar, and large loss and thermal stress are generated in the rotor bar. The rotor shape described in Non-Patent Document 2 is generated on the rotor bar surface because the outermost peripheral part of the rotor bar is arranged on the same plane as the outermost peripheral part of the rotor core, as in Patent Document 1. Loss and heat cannot be reduced, and the rotor bar may be damaged by thermal stress.

上記課題を解決するため,本発明の一実施例に係る回転電機は,巻線を巻装した固定子と回転子とを備えた回転電機であって,前記回転子は,回転子鉄心と,前記回転子鉄心に複数設けられた回転子スロットに収容された回転子バー及び前記回転子バーの端部に接合されたエンドリングを含んで構成されるかご形導体とを備え,前記回転子スロットは,オープンスロットの形状を有すると共に,その径方向の高さが前記回転子バーの径方向の高さよりも大きく,前記回転子鉄心は,塊状に構成されると共に,前記回転子スロットの径方向最外周部分の幅が前記回転子バーの径方向最外周部分の幅よりも大きい構成を有する。   In order to solve the above problems, a rotating electrical machine according to an embodiment of the present invention is a rotating electrical machine including a stator and a rotor wound with windings, the rotor including a rotor core, A rotor bar housed in a plurality of rotor slots provided on the rotor core, and a cage conductor comprising an end ring joined to an end of the rotor bar, Has a shape of an open slot, and its radial height is larger than the radial height of the rotor bar, and the rotor core is formed in a lump shape, and the radial direction of the rotor slot The width of the outermost peripheral portion is larger than the width of the outermost peripheral portion in the radial direction of the rotor bar.

本発明によるかご形誘導電動機によれば,信頼性の高い,損失の小さい回転電機を提供できる。 According to the squirrel-cage induction motor according to the present invention, it is possible to provide a rotary electric machine with high reliability and low loss.

本発明の一実施例によるかご形誘導電動機を回転軸方向から見た部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view which looked at the cage induction motor by one Example of this invention from the rotating shaft direction. 本発明の一実施例によるかご形誘導電動機を回転軸方向から見た部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view which looked at the cage induction motor by one Example of this invention from the rotating shaft direction. 実施例1における回転子の回転子バーに発生する損失の計算結果。The calculation result of the loss which generate | occur | produces in the rotor bar | burr of the rotor in Example 1. FIG. 実施例1における回転子の回転子ティースに発生する損失の計算結果。The calculation result of the loss which generate | occur | produces in the rotor teeth of the rotor in Example 1. FIG. 実施例1における回転子の総損失の計算結果。The calculation result of the total loss of the rotor in Example 1. FIG. 実施例1におけるギャップの風の流れ。The flow of the wind of the gap in Example 1. 本発明の一実施例によるかご形誘導電動機を回転軸方向から見た部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view which looked at the cage induction motor by one Example of this invention from the rotating shaft direction. 本発明の一実施例によるかご形誘導電動機を回転軸方向から見た部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view which looked at the cage induction motor by one Example of this invention from the rotating shaft direction. 本発明の一実施例によるかご形誘導電動機を回転軸方向から見た部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view which looked at the cage induction motor by one Example of this invention from the rotating shaft direction. 本発明の一実施例によるかご形誘導電動機を回転軸方向から見た部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view which looked at the cage induction motor by one Example of this invention from the rotating shaft direction.

以下,図面に基づいて,本発明に係わる実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1,2に実施例1による誘導電動機の回転子を回転軸方向から見た部分断面を示す。誘導電動機1は固定子10と回転子20,シャフト25によって構成され,固定子10は固定子コア11,固定子スロット12,電機子巻線13によって構成される。回転子20には塊状回転子コア21がシャフト25に連結されており,塊状回転子コア21には回転子スロット22および回転子ティース24が設けられ,回転子スロット22内には回転子バー23が収納され,回転子20の軸方向端面でエンドリングによって回転子バー23が短絡されているかご形導体が配置される。回転子スロット22はオープンスロットであり,回転子スロット22の径方向高さh1が回転子バー23の径方向高さh2よりも大きく,回転子スロット22の最外周部分の幅b1が回転子バー23の最外周部分の幅b2よりも大きくなるように構成される。回転子スロット22の高さh1と回転子バー23の高さh2の差h1−h2となる領域は空気となる。回転子バー23の材料は無酸素銅(OF-Cu)またはCr-Cu,Sn-Cu,Mo-Cuなどの銅合金が適用される。回転子スロット22と回転子バー23は摩擦攪拌接合や熱間等方圧加圧加工,アーク溶接,レーザ溶接,コールドスプレー,ロウ付けなどで高い強度で接合される。誘導電動機1を運転したとき,回転子スロット22と回転子バー23の接合面には回転子20の回転数に応じて,遠心力が発生する。これに対して前述の接合により,回転子20を高速回転させたときに発生する遠心力に対する強度を確保できる。
誘導電動機1を運転するとき,電機子巻線13からは基本波電流による磁束に加え,巻線配置やスロット数に起因して高調波磁束が発生する。この高調波磁束が固定子10と回転子20との間のギャップを通じて回転子バー23に入り込むことによって回転子バー23の最外周部分には高調波損失が発生する。また,この高調波磁束は回転子ティース24の最外周部分にも渦電流損を発生させる。さらに,インバータによって誘導電動機を駆動する場合,固定子巻線13からはインバータのキャリア高調波による高調波磁束も発生するため,回転子バー23および回転子ティース24にはインバータの高調波磁束に起因した損失も発生する。回転子バー23および回転子ティース24の最外周部分に発生するこれらの損失は回転子20の発熱の原因となり,回転子スロット22と回転子バー23の接合面に熱応力を発生させるとともに,誘導電動機1の効率を悪化させる原因となる。回転子スロット22と回転子バー23の接合面に発生する熱応力は回転子コア21と回転子バー23との熱膨張率の差によって決定されるが,回転子バー23に適用される銅または前述の銅合金は回転子コア21に適用されるS45Cなどの鉄材よりも熱膨張率が大きいため,回転子バー23に発生する熱,つまり損失を低減させることが重要となる。
ここで,本発明では,回転子スロットの高さh1を回転子バー23の径方向高さh2よりも高くすることで回転子バー23の最外周部分の径方向外側には空気層が形成される。空気層が設けられることにより,回転子バー23の最外周部分外側の磁気抵抗が高くなり,高調波磁束が回転子バー23の最外周部分に入りにくくなる。また,回転子スロットの径方向最外周部分の幅b1を回転子バーの最外周部分の幅b2よりも大きくすることにより,回転子バー23の最外周部分の径方向外側の磁気抵抗がさらに高くなり,高調波磁束が回転子バー23の最外周部分にさらに入りにくくなる。これにより回転子バー23の最外周部分に発生する高調波損失を低減できるため,回転子バー23に発生する熱が低減される。回転子バー23に発生する熱が小さくなることにより,回転子バー23に発生する熱延びが小さくなり,回転子スロット22と回転子バー23の接合面に発生する熱応力が低減され,接合面の強度信頼性が向上する。図3〜5に回転子バー23の断面積を一定にしたまま(h1−h2)/h1を変更したときの損失の変化を示す。図3は回転子バー23に発生する損失,図4は回転子ティース24に発生する損失,図5は本発明を適用したときの回転子の総損失である。図3より,回転子スロット22の径方向高さh1に対する(h1−h2)の比率,つまり回転子バー23の最外周部分の外側にある空気層の高さが大きくなるにつれて,回転子バー23に発生する損失が低減されることがわかる。図4より,回転子ティース24に発生する損失は(h1−h2)/h1の比率が小さい時は上昇するものの,(h1―h2)/h1の比率が大きくなるにつれて低下していることがわかる。これにより,図5より(h1―h2)/h1の比率に反比例して誘導電動機に発生する総損失も小さくなることがわかる。したがって,本発明によって回転子バー23の表面に発生する損失が低下する効果が得られ,回転子スロット22と回転子バー23の接合面に発生する熱応力を低減できる効果が得られる。また,総損失の低減,つまり誘導電動機の効率を向上させる効果も得ることができる。さらに,本実施例における回転子構造とした場合,回転子バー23の径方向最外周部分の外側に高さ(h1−h2)の空気層が形成されることにより,回転子10の表面は凹凸がある形状となる。これにより,回転子20はファン効果を持つことなるため,誘導電動機1の冷却性能が向上する。さらに,回転子表面に凹凸があるため,固定子10と回転子20の間のギャップに流れる風が急激に曲げられることとなり,回転子バー23の最外周部分に風があたることとなる(図6)。これにより,回転子バー23の表面を冷やす効果も得られるため,回転子バー23の最外周部分は効率よく冷やされるようになり,回転子バー23の温度上昇低減,つまり回転子スロット22と回転子バー23の接合面の熱応力を低減させることができる。
1 and 2 show partial cross sections of the rotor of the induction motor according to the first embodiment when viewed from the direction of the rotation axis. The induction motor 1 includes a stator 10, a rotor 20, and a shaft 25. The stator 10 includes a stator core 11, a stator slot 12, and an armature winding 13. The rotor 20 has a massive rotor core 21 connected to a shaft 25, and the massive rotor core 21 is provided with a rotor slot 22 and a rotor tooth 24, and a rotor bar 23 is provided in the rotor slot 22. And a cage conductor in which the rotor bar 23 is short-circuited by an end ring on the axial end surface of the rotor 20 is disposed. The rotor slot 22 is an open slot, the radial height h1 of the rotor slot 22 is larger than the radial height h2 of the rotor bar 23, and the width b1 of the outermost peripheral portion of the rotor slot 22 is the rotor bar. It is comprised so that it may become larger than the width | variety b2 of 23 outermost periphery parts. The region where the difference h1-h2 between the height h1 of the rotor slot 22 and the height h2 of the rotor bar 23 is air is air. The rotor bar 23 is made of oxygen-free copper (OF-Cu) or a copper alloy such as Cr-Cu, Sn-Cu, or Mo-Cu. The rotor slot 22 and the rotor bar 23 are joined with high strength by friction stir welding, hot isostatic pressing, arc welding, laser welding, cold spray, brazing, or the like. When the induction motor 1 is operated, a centrifugal force is generated at the joint surface between the rotor slot 22 and the rotor bar 23 in accordance with the rotational speed of the rotor 20. On the other hand, the strength against the centrifugal force generated when the rotor 20 is rotated at a high speed can be secured by the above-described joining.
When the induction motor 1 is operated, a harmonic magnetic flux is generated from the armature winding 13 due to the winding arrangement and the number of slots in addition to the magnetic flux due to the fundamental wave current. When this harmonic magnetic flux enters the rotor bar 23 through the gap between the stator 10 and the rotor 20, harmonic loss is generated in the outermost peripheral portion of the rotor bar 23. The harmonic magnetic flux also causes eddy current loss in the outermost peripheral portion of the rotor tooth 24. Further, when the induction motor is driven by the inverter, the stator winding 13 also generates a harmonic magnetic flux due to the carrier harmonics of the inverter, so that the rotor bar 23 and the rotor teeth 24 are caused by the harmonic magnetic flux of the inverter. Loss will also occur. These losses occurring in the outermost peripheral portion of the rotor bar 23 and the rotor tooth 24 cause the heat generation of the rotor 20, generate thermal stress on the joint surface between the rotor slot 22 and the rotor bar 23, and induce induction. This causes the efficiency of the electric motor 1 to deteriorate. The thermal stress generated at the joint surface between the rotor slot 22 and the rotor bar 23 is determined by the difference in the thermal expansion coefficient between the rotor core 21 and the rotor bar 23. Since the aforementioned copper alloy has a higher coefficient of thermal expansion than iron materials such as S45C applied to the rotor core 21, it is important to reduce heat generated in the rotor bar 23, that is, loss.
Here, in the present invention, the height h1 of the rotor slot is made higher than the radial height h2 of the rotor bar 23, so that an air layer is formed on the radially outer side of the outermost peripheral portion of the rotor bar 23. The By providing the air layer, the magnetic resistance outside the outermost peripheral portion of the rotor bar 23 is increased, and the harmonic magnetic flux is less likely to enter the outermost peripheral portion of the rotor bar 23. Further, by making the width b1 of the radially outermost peripheral portion of the rotor slot larger than the width b2 of the outermost peripheral portion of the rotor bar, the magnetic resistance on the radially outer side of the outermost peripheral portion of the rotor bar 23 is further increased. Thus, the harmonic magnetic flux is more difficult to enter the outermost peripheral portion of the rotor bar 23. As a result, the harmonic loss generated in the outermost peripheral portion of the rotor bar 23 can be reduced, so that the heat generated in the rotor bar 23 is reduced. Since the heat generated in the rotor bar 23 is reduced, the thermal extension generated in the rotor bar 23 is reduced, the thermal stress generated in the joint surface between the rotor slot 22 and the rotor bar 23 is reduced, and the joint surface is reduced. Strength reliability is improved. 3 to 5 show changes in loss when (h1-h2) / h1 is changed while the cross-sectional area of the rotor bar 23 is kept constant. FIG. 3 shows the loss generated in the rotor bar 23, FIG. 4 shows the loss generated in the rotor teeth 24, and FIG. 5 shows the total loss of the rotor when the present invention is applied. From FIG. 3, as the ratio of (h1-h2) to the radial height h1 of the rotor slot 22, that is, the height of the air layer outside the outermost peripheral portion of the rotor bar 23, the rotor bar 23 increases. It can be seen that the loss generated in is reduced. FIG. 4 shows that the loss generated in the rotor teeth 24 increases when the ratio (h1-h2) / h1 is small, but decreases as the ratio (h1-h2) / h1 increases. . Accordingly, FIG. 5 shows that the total loss generated in the induction motor is also reduced in inverse proportion to the ratio of (h1−h2) / h1. Therefore, according to the present invention, the effect of reducing the loss generated on the surface of the rotor bar 23 is obtained, and the effect of reducing the thermal stress generated at the joint surface between the rotor slot 22 and the rotor bar 23 is obtained. Moreover, the effect of reducing the total loss, that is, improving the efficiency of the induction motor can be obtained. Furthermore, in the case of the rotor structure in the present embodiment, an air layer having a height (h1-h2) is formed outside the radially outermost peripheral portion of the rotor bar 23, so that the surface of the rotor 10 is uneven. There is a certain shape. Thereby, since the rotor 20 has a fan effect, the cooling performance of the induction motor 1 is improved. Furthermore, since the rotor surface has irregularities, the wind flowing in the gap between the stator 10 and the rotor 20 is suddenly bent, and the wind is applied to the outermost peripheral portion of the rotor bar 23 (see FIG. 6). As a result, the effect of cooling the surface of the rotor bar 23 can be obtained, so that the outermost peripheral portion of the rotor bar 23 can be efficiently cooled, and the temperature rise of the rotor bar 23 can be reduced, that is, the rotor slot 22 The thermal stress of the joint surface of the child bar 23 can be reduced.

図7に実施例2による誘導電動機の回転子を回転軸方向から見た部分断面を示す。図7に示すように実施例1の回転子形状において,回転子ティース24の周方向幅は回転子バー23が入る位置において,回転子バー23の底部以外を除いて常に一定となっている。誘導電動機1の力率は回転子ティース24の周方向の幅が最も狭くなる部分の磁束密度によって決定されるため,回転子ティース24の周方向の幅は最も狭くなる部分に合わせて一定値とすることができる。これにより,回転子ティース24の周方向幅を狭くすることにより,回転子バー23の断面積を大きくすることができるため,回転子バー23における基本波電流による損失が低減される。一方,高調波磁束による影響は回転子バー23の最外周部分の磁気抵抗によって決定されるが,実施例2による形状において,回転子バー23の最外周部分の空気層の高さは実施例1と同等とすることができるため,回転子バー23の最外周部分における高調波損失は実施例1と同等となる。したがって,実施例2による形状とすることで誘導電動機1の効率向上や,回転子バー23に発生する熱の軽減,つまり熱応力低減の効果を得ることができる。 FIG. 7 shows a partial cross section of the rotor of the induction motor according to the second embodiment when viewed from the direction of the rotation axis. As shown in FIG. 7, in the rotor shape of the first embodiment, the circumferential width of the rotor teeth 24 is always constant except for the bottom of the rotor bar 23 at the position where the rotor bar 23 enters. Since the power factor of the induction motor 1 is determined by the magnetic flux density of the portion where the circumferential width of the rotor teeth 24 is the narrowest, the circumferential width of the rotor teeth 24 is a constant value according to the narrowest portion. can do. Thereby, since the cross-sectional area of the rotor bar 23 can be increased by narrowing the circumferential width of the rotor teeth 24, the loss due to the fundamental wave current in the rotor bar 23 is reduced. On the other hand, the influence of the harmonic magnetic flux is determined by the magnetic resistance of the outermost peripheral portion of the rotor bar 23. In the shape according to the second embodiment, the height of the air layer in the outermost peripheral portion of the rotor bar 23 is the same as that of the first embodiment. Therefore, the harmonic loss in the outermost peripheral portion of the rotor bar 23 is equivalent to that in the first embodiment. Therefore, by adopting the shape according to the second embodiment, the efficiency of the induction motor 1 can be improved, and the heat generated in the rotor bar 23 can be reduced, that is, the thermal stress can be reduced.

図8に実施例3による誘導電動機の回転子を回転軸方向から見た部分断面を示す。図8に示すように実施例1の回転子形状において,回転子ティース24の最外周部分を段落とし形状としている。段落とし部分は回転子バー23の最外周部分から始まるものとする。このような形状とすることで,回転子スロットの径方向最外周部分の幅b1と回転子バーの最外周部分の幅b2の差が実施例1および実施例2よりもさらに大きくなり,回転子ティース24の最外周部分の磁気抵抗が大きくなることとなり,回転子バー23の最外周部分で発生する高調波損失をさらに低減することができる(図3)。これにより,回転子バー23に発生する熱も低減でき,回転子スロット22と回転子バー23の接合面に生じる熱応力も低減することができる。また,図5より,実施例1と同様に,回転子バー23の最外周部分の外側にある空気層の高さ(h1−h2)に反比例して誘導電動機1における総損失が小さくなることがわかる。回転子スロット22と回転子バー23の接合面積は実施例1と同様であるため,回転子スロット22と回転子バー23の接合面の強度を維持しつつ,高効率化も可能となる。さらに,回転子ティース24の最外周部分を段落とし形状とすることで,固定子10と回転子20の間のギャップ部分での空気がスムーズに流れるようになり,ギャップ部分での通風抵抗が小さくなるため,風損の増加も抑制できる。加えて,固定子10と回転子20の間のギャップ部分の面積が大きくなることから,誘導電動機1の全体の通風量が増加し,誘導電動機1全体の冷却性能も向上させることができる。 FIG. 8 shows a partial cross section of the rotor of the induction motor according to the third embodiment when viewed from the rotation axis direction. As shown in FIG. 8, in the rotor shape of the first embodiment, the outermost peripheral portion of the rotor tooth 24 is shaped as a paragraph. The paragraph is assumed to start from the outermost peripheral portion of the rotor bar 23. By adopting such a shape, the difference between the width b1 of the outermost circumferential portion of the rotor slot in the radial direction and the width b2 of the outermost circumferential portion of the rotor bar becomes larger than in the first and second embodiments, and the rotor The magnetic resistance at the outermost peripheral portion of the tooth 24 is increased, and the harmonic loss generated at the outermost peripheral portion of the rotor bar 23 can be further reduced (FIG. 3). Thereby, the heat generated in the rotor bar 23 can also be reduced, and the thermal stress generated on the joint surface between the rotor slot 22 and the rotor bar 23 can also be reduced. Further, as shown in FIG. 5, as in the first embodiment, the total loss in the induction motor 1 decreases in inverse proportion to the height (h1-h2) of the air layer outside the outermost peripheral portion of the rotor bar 23. Recognize. Since the joint area between the rotor slot 22 and the rotor bar 23 is the same as that of the first embodiment, it is possible to increase the efficiency while maintaining the strength of the joint surface between the rotor slot 22 and the rotor bar 23. Furthermore, by forming the outermost peripheral portion of the rotor teeth 24 as a paragraph, the air in the gap portion between the stator 10 and the rotor 20 flows smoothly, and the ventilation resistance in the gap portion is small. Therefore, increase in windage can be suppressed. In addition, since the area of the gap portion between the stator 10 and the rotor 20 is increased, the overall ventilation amount of the induction motor 1 is increased, and the cooling performance of the entire induction motor 1 can be improved.

図8に実施例4による誘導電動機の回転子を回転軸方向から見た部分断面を示す。図8に示すように実施例1の回転子形状において,回転子ティース24の最外周部分を面取り形状としている。面取り部分は回転子バー23の最外周部分から始まるものとする。固定子10と回転子20の間にあるギャップ部分が大きいほど,つまり回転子バー23や回転子ティース24の径方向外周部分の磁気抵抗が大きいほど回転子バー23が受ける電機子巻線13から入り込む高調波磁束の影響が小さくなる。実施例4による回転子形状は回転子ティース24の最外周部分が面取りされているため,回転子スロット22の径方向最外周部分の幅b1と回転子バー23の最外周部分の幅b2の差が実施例1および実施例2よりもさらに大きくなる。したがって,回転子バー23の最外周部分での磁気抵抗が大きくなるため,実施例3と同等の効果が得られることとなる。また,固定子10と回転子20の間のギャップ部分での空気が実施例4よりもスムーズに流れるようになり,ギャップ部分での空気抵抗が低減され,風損をさらに低減できる。これにより,誘導電動機1の冷却性能がさらに向上し,回転子20のみならず,固定子10や固定子巻線13の温度上昇も抑制できる。 FIG. 8 shows a partial cross section of the rotor of the induction motor according to the fourth embodiment when viewed from the rotation axis direction. As shown in FIG. 8, the outermost peripheral portion of the rotor teeth 24 is chamfered in the rotor shape of the first embodiment. The chamfered portion starts from the outermost peripheral portion of the rotor bar 23. From the armature winding 13 received by the rotor bar 23, the larger the gap portion between the stator 10 and the rotor 20, that is, the greater the magnetic resistance of the outer peripheral portion in the radial direction of the rotor bar 23 and the rotor teeth 24. The influence of the incoming harmonic magnetic flux is reduced. In the rotor shape according to the fourth embodiment, since the outermost peripheral portion of the rotor tooth 24 is chamfered, the difference between the width b1 of the outermost peripheral portion in the radial direction of the rotor slot 22 and the width b2 of the outermost peripheral portion of the rotor bar 23 is obtained. However, it becomes larger than Example 1 and Example 2. Therefore, since the magnetic resistance at the outermost peripheral portion of the rotor bar 23 is increased, the same effect as in the third embodiment can be obtained. Further, the air in the gap portion between the stator 10 and the rotor 20 flows more smoothly than in the fourth embodiment, the air resistance in the gap portion is reduced, and the windage loss can be further reduced. As a result, the cooling performance of the induction motor 1 is further improved, and temperature rise not only in the rotor 20 but also in the stator 10 and the stator winding 13 can be suppressed.

図9に実施例5による誘導電動機の回転子を回転軸方向から見た部分断面を示す。本実施例による誘導電動機は,実施例1乃至4の回転子形状において,回転子20の回転中心から径方向に引いた軸A−aよりも回転子スロット底部221を遅れ側に設置し,軸A−aと回転子20の外周部の基準点aから回転子スロット底部221の中心点Bまで引いた軸B−aとが基準点aにおいて所定の角度θを持つように回転子スロット22を構成した上で,回転子スロット22が回転子20の回転中心から径方向に対する軸A−aに対し周方向に非対称な形状となっている。図9の形状において,回転子ティース24の最外周部分の形状は実施例1乃至2のように段落としや面取りがされていない形状となっているが,実施例3または実施例4のように,段落としや面取りがされている形状でもよい。実施例5の回転子形状とすることで,回転子バー23が回転方向に対して角度を持つこととなり,固定子巻線13から発生する基本波電流による磁束が回転子20にも入りこみやすくなり,回転子ティース24を介して回転子バー23に鎖交しやすくなるため,誘導電動機1の力率が向上する。力率を向上させることにより電機子巻線13に流れる電流を少なくすることができるため,基本波一次銅損を低減することが可能となり,誘導電動機1の効率を向上させることができる。 FIG. 9 shows a partial cross section of the rotor of the induction motor according to the fifth embodiment when viewed from the rotation axis direction. In the induction motor according to the present embodiment, in the rotor shapes of the first to fourth embodiments, the rotor slot bottom 221 is installed on the delay side with respect to the axis A-a drawn from the rotation center of the rotor 20 in the radial direction. The rotor slot 22 is formed such that A-a and the axis Ba drawn from the reference point a on the outer peripheral portion of the rotor 20 to the center point B of the rotor slot bottom 221 have a predetermined angle θ at the reference point a. In addition, the rotor slot 22 has an asymmetric shape in the circumferential direction with respect to the axis Aa in the radial direction from the rotation center of the rotor 20. In the shape of FIG. 9, the shape of the outermost peripheral portion of the rotor tooth 24 is a shape that is not paragraphed or chamfered as in the first and second embodiments, but as in the third or fourth embodiment. , Paragraphs and chamfered shapes may be used. By adopting the rotor shape of the fifth embodiment, the rotor bar 23 has an angle with respect to the rotation direction, and the magnetic flux generated by the fundamental wave current generated from the stator winding 13 can easily enter the rotor 20. The power factor of the induction motor 1 is improved because it is easy to interlink with the rotor bar 23 via the rotor teeth 24. Since the current flowing through the armature winding 13 can be reduced by increasing the power factor, the fundamental primary copper loss can be reduced, and the efficiency of the induction motor 1 can be improved.

1 誘導電動機
10 固定子
11 固定子コア
12 固定子スロット
13 固定子巻線
20 回転子
21 塊状回転子コア
22 回転子スロット
221 回転子スロット底部
23 回転子バー
24 回転子ティース
25 シャフト
DESCRIPTION OF SYMBOLS 1 Induction motor 10 Stator 11 Stator core 12 Stator slot 13 Stator winding 20 Rotor 21 Lumped rotor core 22 Rotor slot 221 Rotor slot bottom 23 Rotor bar 24 Rotor teeth 25 Shaft

Claims (5)

巻線を巻装した固定子と回転子とを備えた回転電機であって,前記回転子は,回転子鉄心と,前記回転子鉄心に複数設けられた回転子スロットに収容された回転子バー及び前記回転子バーの端部に接合されたエンドリングを含んで構成されるかご形導体とを備え,前記回転子スロットは,オープンスロットの形状を有すると共に,その径方向の高さが前記回転子バーの径方向の高さよりも大きく,前記回転子鉄心は,塊状に構成されると共に,前記回転子スロットの径方向最外周部分の幅が前記回転子バーの径方向最外周部分の幅よりも大きい回転電機。   A rotating electrical machine including a stator and a rotor wound with windings, the rotor including a rotor core and a rotor bar accommodated in a plurality of rotor slots provided in the rotor core And a squirrel-cage conductor including an end ring joined to an end of the rotor bar, and the rotor slot has an open slot shape, and its radial height is the rotation The rotor core is larger than the radial height of the rotor bar, and the rotor core is configured in a lump shape, and the width of the radially outermost peripheral portion of the rotor slot is larger than the width of the outermost radial portion of the rotor bar The big rotating electric machine. 請求項1記載の回転電機において,前記回転子バーの収納される位置での前記回転子ティースの幅が,前記回転子スロットの底部部分を除いて一定であることを特徴とする回転電機。   2. The rotating electrical machine according to claim 1, wherein a width of the rotor teeth at a position where the rotor bar is accommodated is constant except for a bottom portion of the rotor slot. 請求項1乃至2記載の回転電機において,前記回転子ティースの径方向最外周部分を段落とし形状とし,前記径方向最外周部分における前記回転子ティースの幅が前記回転子スロットに収容された前記回転子バーの径方向最外周の位置に対応する径方向位置における前記回転子ティース部分の幅よりも小さいことを特徴とする回転電機。   3. The rotating electrical machine according to claim 1, wherein a radially outermost peripheral portion of the rotor teeth is formed into a paragraph, and a width of the rotor teeth in the radially outermost peripheral portion is accommodated in the rotor slot. A rotating electrical machine having a width smaller than a width of the rotor teeth portion at a radial position corresponding to a position of a radially outermost circumference of the rotor bar. 請求項1乃至2記載の回転電機において,前記回転子ティースの径方向最外周部分を面取りした形状とし,径方向最外周部分における前記回転子ティースの幅が前記回転子スロットに収容された前記回転子バーの径方向最外周の位置に対応する径方向位置における前記回転子ティース部分の幅よりも小さいことを特徴とする回転電機。   3. The rotating electrical machine according to claim 1, wherein the radially outermost circumferential portion of the rotor teeth is chamfered, and the width of the rotor teeth in the radially outermost circumferential portion is accommodated in the rotor slot. A rotating electrical machine characterized by being smaller than the width of the rotor teeth portion at a radial position corresponding to the position of the outermost radial direction of the child bar. 請求項1乃至4記載の回転電機において,前記回転子ティースの回転子スロットが前記回転子の回転中心軸から径方向に対する軸に対し周方向に非対称な形状となっていることを特徴とする回転電機。 5. The rotating electrical machine according to claim 1, wherein a rotor slot of the rotor tooth has an asymmetric shape in a circumferential direction with respect to a radial axis from a rotation center axis of the rotor. Electric.
JP2016004019A 2016-01-13 2016-01-13 Rotating electric machine Active JP6609482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004019A JP6609482B2 (en) 2016-01-13 2016-01-13 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004019A JP6609482B2 (en) 2016-01-13 2016-01-13 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2017127083A true JP2017127083A (en) 2017-07-20
JP6609482B2 JP6609482B2 (en) 2019-11-20

Family

ID=59364246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004019A Active JP6609482B2 (en) 2016-01-13 2016-01-13 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP6609482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116438A1 (en) * 2017-12-12 2019-06-20 東芝三菱電機産業システム株式会社 Squirrel-cage induction rotating electric machine, solid rotor, and squirrel-cage induction rotating electric machine design method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110977U (en) * 1989-02-17 1990-09-05
US20030062786A1 (en) * 2001-10-03 2003-04-03 Reiter Frederick B. Manufacturing method and composite powder metal rotor assembly for induction machine
JP2012085477A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Rotary electric machine
JP2012157134A (en) * 2011-01-25 2012-08-16 Toyota Industries Corp Rotor for induction motor, and induction motor
JP2014108006A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Rotor, induction motor including rotor, and manufacturing method of rotor
JP2014195374A (en) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp Rotary electric machine and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110977U (en) * 1989-02-17 1990-09-05
US20030062786A1 (en) * 2001-10-03 2003-04-03 Reiter Frederick B. Manufacturing method and composite powder metal rotor assembly for induction machine
JP2012085477A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Rotary electric machine
JP2012157134A (en) * 2011-01-25 2012-08-16 Toyota Industries Corp Rotor for induction motor, and induction motor
JP2014108006A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Rotor, induction motor including rotor, and manufacturing method of rotor
JP2014195374A (en) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp Rotary electric machine and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116438A1 (en) * 2017-12-12 2019-06-20 東芝三菱電機産業システム株式会社 Squirrel-cage induction rotating electric machine, solid rotor, and squirrel-cage induction rotating electric machine design method
CN111602326A (en) * 2017-12-12 2020-08-28 东芝三菱电机产业系统株式会社 Cage-type induction rotating machine, block rotor, and method for designing cage-type induction rotating machine
JPWO2019116438A1 (en) * 2017-12-12 2020-12-03 東芝三菱電機産業システム株式会社 How to design squirrel-cage induction rotators, massive rotors, and squirrel-cage induction rotators
US11489424B2 (en) 2017-12-12 2022-11-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation Squirrel-cage induction rotating electrical machine, solid rotor, and design method for squirrel-cage induction rotating electrical machine
JP7209638B2 (en) 2017-12-12 2023-01-20 東芝三菱電機産業システム株式会社 Design Method of Squirrel-Cage Induction Rotating Machine

Also Published As

Publication number Publication date
JP6609482B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP5557685B2 (en) Rotating electric machine
JP3707539B2 (en) Electric motor or generator
JP5221966B2 (en) Coil assembly for rotating electrical machine, stator for rotating electrical machine, and rotating electrical machine
EP2045900B1 (en) Flux-switching machine
JP5902639B2 (en) Induction machine
EP2403107B1 (en) Permanent magnet type rotary machine
US6566778B1 (en) Cage-type induction motor for high rotational speeds
JP6165340B2 (en) Rotating electric machine
EP3082224B1 (en) System and method for supporting laminations of synchronous reluctance motors
JP6609482B2 (en) Rotating electric machine
US10727706B2 (en) Electric machine comprising a stator provided with an inner tubular sleeve
Li et al. Assessment of high-speed multi-megawatt electric machines
US1594058A (en) Dynamo-electric machine
TWI708460B (en) Cage rotor and rotary motor
JPH10225034A (en) Rotor for dynamo-electric machine
Kurvinen et al. Comparison of the performance of different asynchronous solid-rotor constructions in a megawatt-range high-speed induction motor
JP5947703B2 (en) Squirrel-cage induction motor
JP2010518801A (en) Turbo generator
Wang et al. Design and develop of a MW direct drive high-speed permanent-magnet machine for compression
JP2016086602A (en) Rotary electric machine
JP2019022257A (en) Rotary electric machine
JP7393759B2 (en) motor
Gieras et al. Selected aspects of design of high-speed permanent magnet brushless machines
WO2020240785A1 (en) Rotor and rotating electric machine
JP2019050698A (en) Rotary electric machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6609482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350