JP2017125684A - Geological survey method in front of working face - Google Patents

Geological survey method in front of working face Download PDF

Info

Publication number
JP2017125684A
JP2017125684A JP2016003187A JP2016003187A JP2017125684A JP 2017125684 A JP2017125684 A JP 2017125684A JP 2016003187 A JP2016003187 A JP 2016003187A JP 2016003187 A JP2016003187 A JP 2016003187A JP 2017125684 A JP2017125684 A JP 2017125684A
Authority
JP
Japan
Prior art keywords
rod
drilling
face
elastic wave
geological exploration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016003187A
Other languages
Japanese (ja)
Other versions
JP6602675B2 (en
Inventor
関根 一郎
Ichiro Sekine
一郎 関根
和明 石垣
Kazuaki Ishigaki
和明 石垣
亮 法橋
Akira Norihashi
亮 法橋
政男 宮内
Masao Miyauchi
政男 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2016003187A priority Critical patent/JP6602675B2/en
Publication of JP2017125684A publication Critical patent/JP2017125684A/en
Application granted granted Critical
Publication of JP6602675B2 publication Critical patent/JP6602675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To survey even an inferior natural ground having a hole wall prone to collapse and acquire a favorable observation waveform of an elastic wave.SOLUTION: A geological survey method includes: drilling a natural ground in front of a working face S from the inside of a tunnel space by a drilling machine 2 with a drilling bit 4 at a tip of a rod 3; at an arbitrary drilling length position, attaching a hammering tool 6 that has a hammering face projecting in a radial direction of the rod 3, to the rod 3 in the tunnel space and installing a geophone 8 at the working face S; in a state of stopping to drive the drilling machine 2, hammering the hammering face 7 in the axial direction of the rod 3 by a hammer 10 to generate an elastic wave from the tip of the drilling bit 4 to the natural ground; and measuring the elastic wave by the geophone 8 to acquire a velocity of the elastic wave.SELECTED DRAWING: Figure 1

Description

本発明は、トンネル等の掘削に当たり、事前に切羽前方の地質を探査する方法に関する。   The present invention relates to a method for exploring geology in front of a face beforehand when excavating a tunnel or the like.

トンネル掘削に当たっては、切羽崩落災害等のトラブル防止或いはトンネル掘削時の支保パターンの妥当性を事前に評価する観点から、切羽前方の地山調査に係るニーズが高まっている。   In tunnel excavation, there is an increasing need for ground surveys in front of the face from the viewpoint of preventing troubles such as face collapse disasters and evaluating the validity of the support pattern during tunnel excavation in advance.

トンネル坑内から行われる切羽前方の地質探査方法の一つとして、ドリルジャンボによって切羽前方に穿孔を形成し、この穿孔を用いて地盤内を伝播する弾性波の速度を測定する速度検層が確立されている。   As one of the geological exploration methods in front of the face done from the tunnel pit, a drilling hole is formed in front of the face by a drill jumbo, and velocity logging is established to measure the velocity of elastic waves propagating in the ground using this hole. ing.

前記速度検層には起振位置及び受振位置によって各種の方法があり、図13に示されるように、穿孔50内に受振器51を設置し、切羽面Sをハンマー52で打撃することによって起振したときの弾性波の速度を測定するダウンホール法(下記特許文献1など)、図14に示されるように、切羽面Sに受振器51を設置し、ドリルジャンボ53に搭載されたドリフタ54を作動して穿孔用ビット55が穿孔50の先端面を起振したときの弾性波の速度を測定するアップホール法(下記特許文献2など)などが知られている。   There are various methods for the speed logging depending on the vibration generating position and the vibration receiving position. As shown in FIG. 13, a vibration receiver 51 is installed in the bore 50 and the face surface S is struck with a hammer 52. Downhole method for measuring the velocity of elastic waves when oscillated (Patent Document 1 below), as shown in FIG. 14, a geophone 51 is installed on the face S, and a drifter 54 mounted on a drill jumbo 53. There is known an uphaul method (such as Patent Document 2 below) that measures the velocity of an elastic wave when the drilling bit 55 vibrates the tip end surface of the drilling 50 by operating.

特開平11−182171号公報JP-A-11-182171 特開2011−102706号公報JP 2011-102706 A

前記ダウンホール法は、切羽前方の地質探査方法として一般的であるが、地山が悪く孔荒れしている場合、受振器の挿入・回収が不能になるため適用できない、などの問題があった。   The downhole method is generally used as a geological exploration method in front of the face, but there are problems such as being unable to apply because the geophone is bad and the hole is rough and the geophone cannot be inserted / recovered. .

一方、前記アップホール法は、前記ダウンホール法の問題が解消できる技術として実用化が期待される方法であるが、ドリルジャンボに搭載されたドリフタを作動させることによって地山を起振するため、(1)油圧ユニットの稼働に伴う振動(ノイズ)が発生する、(2)打撃の制御が難しく連続打撃となってしまう、などの問題があり、良好な弾性波の観測波形を得るのが非常に難しかった。   On the other hand, the uphole method is a method expected to be put into practical use as a technology that can solve the problem of the downhole method, but to excite the natural ground by operating a drifter mounted on a drill jumbo, There are problems such as (1) vibration (noise) due to the operation of the hydraulic unit, (2) difficult to control the hit, and continuous hitting. It was difficult.

そこで本発明の主たる課題は、孔壁が崩壊しやすい不良地山でも実施でき、良好な弾性波の観測波形が得られる切羽前方の地質探査方法を提供することにある。   Therefore, a main object of the present invention is to provide a geological exploration method in front of a face which can be carried out even on a bad ground where the hole wall is easy to collapse and can obtain a good observation waveform of elastic waves.

上記課題を解決するために請求項1に係る本発明として、トンネル空間内から、ロッドの先端に穿孔用ビットが備えられた穿孔機によって切羽前方の地山に穿孔を行い、任意の穿孔長さ位置において、トンネル空間内で前記ロッドに対して、前記ロッドの半径方向に突出する打撃面を有する打撃用治具を取り付けるとともに、切羽面に受振器を設置し、
前記穿孔機の運転を停止した状態で、ハンマーによって前記打撃面を前記ロッドの軸方向に打撃して前記穿孔用ビットの先端から地山に弾性波を発生させ、前記受振器により弾性波を計測して地山の弾性波速度を求めることを特徴とする切羽前方の地質探査方法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, a drilling machine provided with a drilling bit at the tip of a rod is drilled from a tunnel space to a natural ground in front of the face, and an arbitrary drilling length is achieved. At the position, mounting a striking jig having a striking surface protruding in the radial direction of the rod with respect to the rod in the tunnel space, and installing a geophone on the face surface,
With the drilling machine stopped, the hammer hits the striking surface in the axial direction of the rod to generate an elastic wave from the tip of the drilling bit to the ground, and the elastic wave is measured by the geophone. Thus, a geological exploration method in front of the face is provided, characterized in that the elastic wave velocity of the natural ground is obtained.

上記請求項1記載の発明は、切羽面に受振器を設置し、穿孔の先端面で地山に弾性波を発生させるアップホール法による速度検層であるため、ダウンホール法で問題となっていた、地山が悪く孔荒れしている場合に受振器の挿入・回収が不能になる問題が解決できるようになる。   Since the invention according to claim 1 is speed logging by the uphole method in which a geophone is installed on the face surface and an elastic wave is generated in the ground at the tip surface of the drilling, there is a problem in the downhole method. In addition, it is possible to solve the problem that the geophone cannot be inserted and collected when the ground is bad and the hole is rough.

特に、本方法では、トンネル空間内で前記ロッドに対して、前記ロッドの半径方向に突出する打撃面を有する打撃用治具を取り付け、この打撃用治具の打撃面をハンマーで打撃することによって、ロッドの軸方向に打撃力を加える点に特徴を有している。ここで、ロッドの軸方向に打撃力を加える方法としては、トンネル空間内でロッドの連結部分を分解し、露出したロッドの端面をハンマーで直接打撃する方法も考えられるが、この方法では、ロッドを分解する作業と、再度ロッドを組み立てる作業とが必要となり、余計な手間及び時間がかかる問題がある。これに対して、本発明に係る地質探査方法では、前述の通り、ロッドに前記打撃用治具を取り付け、この打撃用治具の打撃面をハンマーで打撃しているため、穿孔内に穿孔用ビット及びロッドを挿入した穿孔作業中のそのままの状態で、ロッドの分解・組立てを行うことなく速度検層が可能となるため、測定作業の手間が大幅に軽減できるようになる。   Particularly, in this method, by attaching a striking jig having a striking surface protruding in the radial direction of the rod to the rod in the tunnel space, and striking the striking surface of the striking jig with a hammer. It is characterized in that a striking force is applied in the axial direction of the rod. Here, as a method of applying a striking force in the axial direction of the rod, a method of disassembling the connecting portion of the rod in the tunnel space and directly striking the exposed end surface of the rod with a hammer can be considered. The work of disassembling the work and the work of assembling the rod again are required, and there is a problem that extra labor and time are required. On the other hand, in the geological exploration method according to the present invention, as described above, the impact jig is attached to the rod, and the impact surface of the impact jig is hit with a hammer. Since it is possible to perform speed logging without disassembling / assembling the rod in the state in which the bit and the rod are being drilled, the labor of the measurement work can be greatly reduced.

また、穿孔内に受振器を設置する必要がないため、地山が悪く孔荒れしている場合でも測定が可能である。   Moreover, since it is not necessary to install a geophone in the perforation, measurement is possible even when the ground is bad and the hole is rough.

更に、本地質探査方法では、前記穿孔機の運転を停止した静穏な環境下で、前記受振器により弾性波を計測して地山の弾性波速度を求めているため、ノイズが少なく、良好な弾性波の観測波形を得ることができるようになる。また、地山に弾性波を発生させる際、前記打撃面を制御容易な人力でハンマー打撃することにより行っているため、連続打撃が容易に回避でき、良好な弾性波の観測波形を得ることができるようになる。   Furthermore, in this geological exploration method, since the elastic wave is measured by the geophone in a quiet environment in which the operation of the drilling machine is stopped, the elastic wave velocity of the natural ground is obtained. An observation waveform of an elastic wave can be obtained. In addition, when generating elastic waves in the natural ground, since the hitting surface is hit with a hammer that is easy to control, continuous hitting can be easily avoided, and a good elastic wave observation waveform can be obtained. become able to.

請求項2に係る本発明として、前記穿孔機のドリフタにより前記穿孔用ビットを前記穿孔の先端面に押し付けた状態で前記打撃面をハンマーによって打撃する請求項1記載の切羽前方の地質探査方法が提供される。   According to a second aspect of the present invention, there is provided the geological exploration method in front of the working face according to the first aspect, wherein the striking surface is struck by a hammer in a state where the bit for piercing is pressed against the tip end surface of the perforation by a drifter of the perforator. Provided.

上記請求項2記載の発明では、前記穿孔機のドリフタにより前記穿孔用ビットを前記穿孔の先端面に押し付けた状態で前記打撃面をハンマーによって打撃しているため、ロッドと孔壁との接触に伴うノイズが低減でき、穿孔の先端面に確実に弾性波を発生させることができるようになる。   In the invention according to the second aspect, the striking surface is struck by a hammer while the perforating bit is pressed against the tip end surface of the perforation by the drifter of the perforator, so that the rod and the hole wall are brought into contact with each other. The accompanying noise can be reduced, and an elastic wave can be reliably generated on the tip surface of the perforation.

請求項3に係る本発明として、前記ロッドは、少なくとも前記打撃用治具が取り付けられる部分に、外周面の対向する両側面が切り欠かれ、平行な平坦面が形成されている請求項1、2いずれかに記載の切羽前方の地質探査方法が提供される。   According to a third aspect of the present invention, in the rod according to the first aspect of the present invention, at least a portion of the outer peripheral surface facing away from the outer peripheral surface is cut out at a portion where the hammering jig is attached, and a parallel flat surface is formed. 2. A geological exploration method in front of the face according to any one of 2 is provided.

上記請求項3記載の発明では、前記ロッドの少なくとも前記打撃用治具が取り付けられる部分に、外周面の対向する両側面が切り欠かれ、平行な平坦面を形成することによって、この平坦面に前記打撃用治具が固定しやすくなり、ハンマーによる打撃時の打撃用治具のずれが確実に防止できるようになる。   According to the third aspect of the present invention, the opposite side surfaces of the outer peripheral surface are notched in the portion of the rod to which the striking jig is attached, thereby forming a parallel flat surface. The hitting jig can be easily fixed, and the hitting jig can be reliably prevented from being displaced when hitting with a hammer.

請求項4に係る本発明として、前記受振器は、前記切羽面に対し間隔をあけて複数設置されている請求項1〜3いずれかに記載の切羽前方の地質探査方法が提供される。   According to a fourth aspect of the present invention, there is provided a geological exploration method in front of the face according to any one of the first to third aspects, wherein a plurality of the geophones are installed at intervals with respect to the face.

上記請求項4記載の発明では、前記受振器を切羽面に対して間隔をあけて複数設置してあるため、各受振器で観測した観測データの相互補完を行うことによって、ある程度のノイズが除去でき、初動波の読み取り精度が向上できるようになる。   In the invention described in claim 4, since a plurality of the geophones are installed at intervals with respect to the face, a certain amount of noise is eliminated by performing mutual complementation of observation data observed by each geophone. It is possible to improve the accuracy of reading the initial wave.

以上詳説のとおり本発明によれば、孔壁が崩壊しやすい不良地山において受振器の挿入・回収が不能になる課題が解決でき、良好な弾性波の観測波形が得られるようになる。   As described above in detail, according to the present invention, it is possible to solve the problem that it becomes impossible to insert and recover the geophone in a defective ground where the hole wall easily collapses, and a good observation waveform of the elastic wave can be obtained.

地質探査システム1の縦断面図である。1 is a longitudinal sectional view of a geological exploration system 1. FIG. 打撃用治具6を示す、(A)は正面図、(B)は側面図である。The striking jig 6 is shown, (A) is a front view and (B) is a side view. ロッド3の変形例を示す、打撃用治具6の正面図である。It is a front view of the jig | tool 6 for impact which shows the modification of the rod 3. FIG. 穿孔5及び受振器8の設置位置を示すトンネル切羽面Sの正面図である。It is a front view of the tunnel face surface S which shows the installation position of the perforation 5 and the geophone 8. 従来の方法による時系列波形図(その1)である。It is a time series waveform figure by the conventional method (the 1). 本地質探査方法による時系列波形図(その1)である。It is a time-sequential waveform figure (the 1) by this geological exploration method. 従来の地質探査方法による時系列波形図(その2)である。It is a time series waveform figure by the conventional geological exploration method (the 2). 本地質探査方法による時系列波形図(その2)である。It is a time series waveform figure (the 2) by this geological exploration method. 本地質探査方法による走時曲線である。It is a travel time curve by this geological exploration method. 従来の地質探査方法(ダウンホール法)による走時曲線である。It is a travel time curve by a conventional geological exploration method (downhole method). 本地質探査方法による弾性波速度を示す図である。It is a figure which shows the elastic wave velocity by this geological exploration method. 従来の地質探査方法(ダウンホール法)による弾性波速度を示す図である。It is a figure which shows the elastic wave velocity by the conventional geological exploration method (downhole method). 従来のダウンホール法による地質探査システムを示す縦断面図である。It is a longitudinal cross-sectional view which shows the geological exploration system by the conventional downhole method. 従来のアップホール法による地質探査システムを示す縦断面図である。It is a longitudinal cross-sectional view which shows the geological exploration system by the conventional uphaul method.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示されるように、本発明に係る地質探査システム1は、トンネル空間内から切羽S前方の地山に穿孔5を形成する穿孔作業を行う、ロッド3の先端に穿孔用ビット4が備えられた穿孔機2と、任意の穿孔長さ位置において、トンネル空間内で前記ロッド3に対して取り付けられ、ロッド3の半径方向に突出する打撃面7を有する打撃用治具6と、切羽面Sに設置された受振器8と、前記打撃用治具6を打撃するハンマー10に取り付けられた起振信号発生用センサ(図示せず)と、前記受振器8及び起振信号発生用センサがケーブルを介して接続され、前記受振器8及び起振信号発生用センサによって計測されたデータが電送され記録される計測器9とから構成されている。   As shown in FIG. 1, a geological exploration system 1 according to the present invention includes a drilling bit 4 at the tip of a rod 3 that performs a drilling operation to form a drilling 5 in a natural mountain in front of a face S from inside a tunnel space. A drilling machine 6 having a striking surface 7 attached to the rod 3 in the tunnel space and projecting in the radial direction of the rod 3, and a face surface. The vibration receiving device 8 installed in S, the vibration signal generating sensor (not shown) attached to the hammer 10 for striking the striking jig 6, the vibration receiving device 8 and the vibration signal generating sensor It is connected via a cable, and is composed of a measuring device 9 that transmits and records data measured by the vibration receiving device 8 and the vibration generating signal generating sensor.

前記穿孔機2は、走行可能な台車(図示せず)に対して、ガイドセル11に前後進可能に搭載されたドリフタ12と、このドリフタ12にシャンクロッド13を介して接続され、先端に穿孔用ビット4を備えた穿孔ロッド3とが搭載された、ドリルジャンボなどの穿孔用重機である。   The punching machine 2 is connected to a travelable carriage (not shown) so that it can be moved forward and backward in a guide cell 11 and connected to the drifter 12 via a shank rod 13 and drilled at the tip. This is a heavy machine for drilling such as a drill jumbo equipped with a drilling rod 3 provided with a working bit 4.

前記打撃用治具6は、詳細には図2に示されるように、ロッド3に対して半径方向の外側に突出するとともに、ロッド3の軸方向に直交するドリフタ12側に面した打撃面7が備えられたブロック状の打撃部14と、前記打撃部14の下端両側にそれぞれ下方に向けて延出し、ロッド3の両側を挟み込むようにしてロッド3に固定される一対の脚部15、15とから構成されたものである。前記打撃用治具6は、トンネル空間内で、ロッド3を分解することなく、穿孔機2による穿孔作業を行っている状態のロッド3に対して、後付けで着脱可能に取り付けられるものである。   As shown in detail in FIG. 2, the striking jig 6 projects outward in the radial direction with respect to the rod 3 and strikes the striking surface 7 facing the drifter 12 side perpendicular to the axial direction of the rod 3. And a pair of leg portions 15 and 15 which are fixed to the rod 3 so as to sandwich both sides of the rod 3 and extend downward on both sides of the lower end of the striking portion 14. It is comprised from. The hitting jig 6 is detachably attached to the rod 3 in a state where the drilling operation is performed by the drilling machine 2 without disassembling the rod 3 in the tunnel space.

前記打撃用治具6のロッド3に対する固定は、前記一対の脚部15、15のうち、少なくとも一方側の前記脚部15に1又は複数のねじ孔16が設けられ、このねじ孔16に対し外側から螺合された締付けボルト17の先端と、他方側の脚部15の内側との間でロッド3を締め付けることにより行われる。   The striking jig 6 is fixed to the rod 3 by providing one or a plurality of screw holes 16 in at least one of the pair of leg portions 15, 15. This is done by tightening the rod 3 between the front end of the fastening bolt 17 screwed from the outside and the inside of the leg 15 on the other side.

前記締付けボルト17は、ハンマー打撃時の打撃用治具6のずれを防止し、打撃力をロッド3に伝達しやすくするため、ロッド3の軸方向に離間して2箇所以上、図示例では2箇所設けるのが好ましい。これに伴い、前記脚部15は、図2(B)に示されるように、ロッド3の軸方向に沿う部材長さが、打撃部14の部材長さより前後に長く突出して形成するのが好ましい。   The tightening bolts 17 are separated from each other in the axial direction of the rod 3 in order to prevent displacement of the striking jig 6 during hammering and to easily transmit the striking force to the rod 3. It is preferable to provide a location. Accordingly, as shown in FIG. 2B, the leg portion 15 is preferably formed so that the member length along the axial direction of the rod 3 protrudes longer than the member length of the striking portion 14. .

また、前記締付けボルト17の先端面にローレット加工などを施して細かい凹凸状に形成することにより、ロッド3との滑り防止を図るのが好ましい。   In addition, it is preferable to prevent slipping with the rod 3 by applying a knurling process or the like to the tip surface of the tightening bolt 17 to form a fine unevenness.

前記ロッド3は、少なくとも前記打撃用治具6が取り付けられる部分に、外周面の対向する両側面が切り欠かれ、平行な平坦面が形成されるようにするのが好ましい。これにより、この平行な平坦面を、締付けボルト17の先端と脚部15の内側とで挟持することにより、前記打撃用治具6が固定しやすくなり、ハンマーによる打撃時の打撃用治具6のずれが確実に防止できるようになる。図2に示される例では、ロッド3として、断面六角形状のものを用いることにより、外周面の対向する両側面が前記平坦面となっている。また、図3に示されるように、ロッド3として、断面円形状のものを用い、前記打撃用治具6を取り付ける部分の外周面の対向する両側面が前記平坦面となるように切欠き加工を施してもよい。当然ながら、ロッド3が全長に亘って、図3に示される断面形状を有していてもよい。   It is preferable that the rod 3 is formed such that a parallel flat surface is formed by cutting away both opposing side surfaces of the outer peripheral surface at least in a portion where the hammering jig 6 is attached. Accordingly, the hitting jig 6 can be easily fixed by sandwiching the parallel flat surface between the tip of the tightening bolt 17 and the inside of the leg portion 15, and the hitting jig 6 at the time of hitting with a hammer. It is possible to reliably prevent the deviation. In the example shown in FIG. 2, the rod 3 having a hexagonal cross section is used, so that both opposite side surfaces of the outer peripheral surface are the flat surfaces. Also, as shown in FIG. 3, a rod 3 having a circular cross section is used, and notching is performed so that both opposing side surfaces of the outer peripheral surface of the portion to which the hitting jig 6 is attached become the flat surface. May be applied. Of course, the rod 3 may have the cross-sectional shape shown in FIG.

前記ロッド3に対する打撃用治具6の固定をより強固にするため、打撃部14の上端面とロッド3の下端面との間を、例えばブルマン(登録商標)などの挟持金具によって固定してもよい。   In order to fix the hitting jig 6 to the rod 3 more firmly, the upper end surface of the hitting portion 14 and the lower end surface of the rod 3 may be fixed by a clamp such as a Bullman (registered trademark). Good.

前記受振器8は、切羽Sの所定位置に設置され、ハンマー10によって打撃用治具6の打撃面7を打撃して穿孔用ビット4の先端から地山に発生された弾性波を受振する機器である。   The geophone 8 is installed at a predetermined position of the face S, and strikes the striking surface 7 of the striking jig 6 with a hammer 10 to receive elastic waves generated in the ground from the tip of the drilling bit 4. It is.

前記受振器8は、図4に示されるように、穿孔5の設置位置を基準として、切羽Sの一定方向に所定の間隔で複数設置するのが好ましい。前記受振器8を複数設置することによって、各受振器8で観測した観測データの相互補完を行うことで、ある程度のノイズが除去でき、初動波の読み取り精度が向上できるようになる。図示例では、穿孔5の近傍及び、そこから水平方向に8箇所設置されている。より詳細には、穿孔5の近傍に、切羽Sに垂直な成分の弾性波を受振する受振器8(1チャンネル(ch))及び切羽Sに平行な成分の弾性波を受振する受振器8(2ch)を設置するとともに、穿孔5から2m間隔で切羽Sと垂直な成分の弾性波を受振する2つの受振器8(3ch、4ch)を設置し、更に2つ目の受振器8(4ch)から1m間隔で切羽Sと垂直な成分の弾性波を受振する6つの受振器8及び、4つ目と6つ目にそれぞれ切羽Sと平行な成分の弾性波を受振する受振器8(5ch〜12ch)を設置している。   As shown in FIG. 4, it is preferable that a plurality of the geophones 8 are installed at predetermined intervals in a certain direction of the face S with reference to the installation position of the perforations 5. By installing a plurality of the geophones 8, the observation data observed by the geophones 8 are mutually complemented, so that a certain amount of noise can be removed and the accuracy of reading the initial motion wave can be improved. In the illustrated example, eight are installed in the vicinity of the perforation 5 and in the horizontal direction therefrom. More specifically, in the vicinity of the perforation 5, a geophone 8 (1 channel (ch)) that receives an elastic wave having a component perpendicular to the face S and a geophone 8 that receives an elastic wave having a component parallel to the face S ( 2ch) and two geophones 8 (3ch, 4ch) that receive elastic waves of components perpendicular to the face S at intervals of 2m from the bore 5, and a second geophone 8 (4ch) 6 geophones 8 that receive elastic waves of a component perpendicular to the face S at intervals of 1 m from each other, and geophones 8 that receive elastic waves of components parallel to the face S at the fourth and sixth points (5ch to 12ch) is installed.

一方、前記ハンマー10に設置される起振信号発生用センサは、前記ハンマー10によって打撃用治具6の打撃面7を打撃した際の起振データを測定する機器である。   On the other hand, the vibration signal generating sensor installed on the hammer 10 is a device for measuring vibration data when the hammer 10 strikes the striking surface 7 of the striking jig 6.

打撃に用いる前記ハンマー10としては、金属製、プラスチック製、木製、ゴム製などいずれでもよいが、鉄製の大型ハンマーを用いるのが好ましい。   The hammer 10 used for hitting may be any of metal, plastic, wood, rubber, etc., but it is preferable to use a large iron hammer.

以上の構成からなる地質探査システム1を用いて地質探査を行うには、次の手順による。先ず第1に、前記穿孔機2によって、トンネル空間内から切羽Sの前方の地山に穿孔5を形成する穿孔作業を行う。そして、任意の穿孔長さ位置において、トンネル空間内で前記ロッド3に対して前記打撃用治具6を取り付ける。前記穿孔作業は、短尺ロッドを順次継ぎ足して延伸する継ぎノミ方式により行われる。なお、切羽面Sには前記受振器8、8…が設置されるとともに、前記ハンマー10には前記起振信号発生用センサが設置されている。   In order to perform geological exploration using the geological exploration system 1 having the above configuration, the following procedure is used. First, a perforating operation is performed by the perforator 2 to form a perforation 5 in the ground in front of the face S from the tunnel space. Then, the hitting jig 6 is attached to the rod 3 in the tunnel space at an arbitrary drilling length position. The perforating operation is performed by a joint flea method in which short rods are sequentially added and extended. The face receiving surface S is provided with the geophones 8, 8... And the hammer 10 is provided with the vibration signal generating sensor.

次いで、前記穿孔機2の運転を停止した状態で、前記ハンマー10によって、前記打撃用治具6の打撃面7を、ロッド3の軸方向の穿孔用ビット4側に向けて打撃し、穿孔用ビット4の先端から地山に弾性波を発生させ、前記受振器8、8…により弾性波を計測して地山の弾性波速度を求める。   Next, with the operation of the punching machine 2 stopped, the hammer 10 strikes the striking surface 7 of the striking jig 6 toward the drilling bit 4 side in the axial direction of the rod 3 for drilling. An elastic wave is generated from the tip of the bit 4 to the natural ground, and the elastic wave is measured by the geophones 8 to obtain the elastic wave velocity of the natural ground.

このように、本地質探査方法は、切羽面Sに受振器8を設置し、穿孔5の先端面で地山に弾性波を発生させるアップホール法による速度検層であるため、ダウンホール法で問題となっていた、地山が悪く孔荒れしている場合に受振器の挿入・回収が不能になる問題が解決でき、測定作業の手間が大幅に軽減できるようになる。   As described above, this geological exploration method is the speed logging by the uphole method in which the geophone 8 is installed on the face S and the elastic wave is generated in the natural ground at the tip surface of the bore 5, so the downhole method is used. This solves the problem that the geophone cannot be inserted and collected when the ground is bad and the hole is rough, and the labor of measurement can be greatly reduced.

特に、本地質探査方法では、トンネル空間内で前記ロッド3に対して打撃用治具6を取り付け、この打撃用治具6の打撃面7をハンマー10で打撃することによって、ロッド3の軸方向に打撃力を加える点に特徴を有している。ここで、ロッドの軸方向に打撃力を加える方法としては、トンネル空間内でロッドの連結部分を分解し、露出したロッドの端面をハンマーで直接打撃する方法も考えられるが、この方法では、ロッドを分解する作業と、再度ロッドを組み立てる作業とが必要となり、余計な手間及び時間がかかる問題がある。これに対して、本地質探査方法では、前述の通り、穿孔5内に穿孔用ビット4及びロッド3を挿入した穿孔作業中のそのままの状態で、ロッド3の分解・組立てを行うことなく速度検層が可能となるため、測定作業の手間が大幅に軽減できるようになる。   In particular, in this geological exploration method, a striking jig 6 is attached to the rod 3 in a tunnel space, and a striking surface 7 of the striking jig 6 is hit with a hammer 10 so that the axial direction of the rod 3 is increased. It has a feature in that a striking force is applied. Here, as a method of applying a striking force in the axial direction of the rod, a method of disassembling the connecting portion of the rod in the tunnel space and directly striking the exposed end surface of the rod with a hammer can be considered. The work of disassembling the work and the work of assembling the rod again are required, and there is a problem that extra labor and time are required. On the other hand, in the geological exploration method, as described above, the speed detection is performed without disassembling / assembling the rod 3 in the state where the drilling bit 4 and the rod 3 are inserted into the drilling 5 as they are. Since layers are possible, the labor of measurement can be greatly reduced.

また、穿孔5内に受振器を設置する必要がないため、地山が悪く孔荒れしている場合でも測定が可能である。   Further, since it is not necessary to install a geophone in the perforation 5, measurement is possible even when the ground is bad and the hole is rough.

更に、本地質探査方法では、前記穿孔機2の運転を停止した静穏な環境下で、前記受振器8により弾性波を計測して地山の弾性波速度を求めているため、ノイズが少なく、良好な弾性波の観測波形を得ることができるようになる。また、前記打撃面7を打撃する際、制御容易な人力でのハンマー打撃を行っているため、連続打撃が回避でき、良好な弾性波の観測波形を得ることができるようになる。   Furthermore, in this geological exploration method, since the elastic wave is measured by the geophone 8 in a quiet environment in which the operation of the drilling machine 2 is stopped, the elastic wave velocity of the natural ground is obtained, so there is little noise, It is possible to obtain a good observation waveform of elastic waves. Further, when hitting the striking surface 7, hammering is performed with human power that is easy to control, so that continuous striking can be avoided and a good elastic wave observation waveform can be obtained.

前記ハンマー10によって打撃面7を打撃する際、穿孔機2のドリフター12により前記穿孔用ビット4を穿孔5の先端面(孔底面)に押し付けた状態で行うようにするのが好ましい。これにより、ロッド3が孔壁に接触しにくくなり、これらの接触に伴うノイズが低減できるとともに、ハンマー10による打撃によってロッド3及び穿孔用ビット4を介して穿孔5の先端面に確実に弾性波を発生させることができるようになる。   When striking the striking surface 7 with the hammer 10, it is preferable that the perforating bit 4 is pressed against the tip end surface (bottom surface) of the perforation 5 by the drifter 12 of the perforating machine 2. This makes it difficult for the rod 3 to come into contact with the hole wall, and noise associated with the contact can be reduced, and the elastic wave is surely applied to the tip surface of the drilling 5 via the rod 3 and the drilling bit 4 by the hammer 10. Can be generated.

以下、実際のトンネル工事現場において、本発明に係る地質探査方法と従来の地質探査方法とを用いて観測したデータを比較調査した概要について説明する。   Hereinafter, an outline of a comparative survey of data observed using the geological exploration method according to the present invention and the conventional geological exploration method at an actual tunnel construction site will be described.

第1の比較調査としては、図5及び図6に示されるように、弾性波測定中の穿孔機の運転が観測データに与える影響を調べた。図5は、従来の地質探査方法として、図14に示されるように、切羽面に受振器を設置し、ドリルジャンボに搭載されたドリフタを作動して穿孔用ビットによって穿孔の先端面を起振したときの弾性波を測定する従来のアップホール法を用いて観測した弾性波の時系列波形である。また、図6は、本地質探査方法を用いて観測した弾性波の時系列波形である。図5及び図6中、1ch〜12chは、図4に示される各番号の受振器8により観測されたデータであり、13chは起振データである。   As a first comparative investigation, as shown in FIGS. 5 and 6, the influence of the operation of the drilling machine during the elastic wave measurement on the observation data was examined. FIG. 5 shows a conventional geological exploration method. As shown in FIG. 14, a geophone is installed on the face and a drifter mounted on a drill jumbo is operated to excite the tip surface of the drill with a drill bit. It is the time series waveform of the elastic wave observed using the conventional uphaul method which measures the elastic wave at the time. FIG. 6 shows time-series waveforms of elastic waves observed using this geological exploration method. In FIGS. 5 and 6, 1ch to 12ch are data observed by the respective number of the geophones 8 shown in FIG. 4, and 13ch is excitation data.

図5に示されるように、従来の地質探査方法では、穿孔機の運転によるノイズが多く、打撃による初動波の立ち上がり位置の判読が難しくなっていた。これに対して、本地質探査方法では、図6に示されるように、穿孔機2の運転を停止した状態で弾性波の計測が行われているため、ノイズが少なく、各測定ポイントで弾性波の立ち上がり位置が明瞭となる。このように、穿孔機2の運転を停止した静穏な環境下で計測することによって、ノイズが低減でき、良好な弾性波の観測波形が得られるようになる。   As shown in FIG. 5, in the conventional geological exploration method, there was a lot of noise due to the operation of the drilling machine, and it was difficult to interpret the rising position of the initial wave due to the impact. On the other hand, in this geological exploration method, as shown in FIG. 6, since elastic waves are measured in a state where the operation of the drilling machine 2 is stopped, there is little noise, and elastic waves are measured at each measurement point. The rising position of becomes clear. Thus, by measuring in a quiet environment in which the operation of the drilling machine 2 is stopped, noise can be reduced and a good observation waveform of elastic waves can be obtained.

次に第2の比較調査として、図7及び図8に示されるように、起振方法が観測データに与える影響を調べた。図7は、上記と同様に図14に示される従来のアップホール法を用いて観測した弾性波の時系列波形である。また、図8は、本地質探査方法を用いて観測した弾性波の時系列波形である。図7に示されるように、従来の地質探査方法では、ドリフタを作動して穿孔用ビットによって穿孔の先端面を起振しているため、13chの起振波形に示されるように、打撃を制御するのが難しく、ショットマークが複数現れる連続打撃となってしまい、初動波の立ち上がり位置の特定が容易ではない。これに対して、図8に示されるように、本地質探査方法では、ハンマー10により打撃用治具6の打撃面7を打撃することによってロッド3及び穿孔用ビット4を介して穿孔5の先端面を起振しているため、13chの起振波形に示されるように、1回の打撃に対応した観測波形のみが得られ、初動波の立ち上がり位置が特定しやすい。それでも避けられない小さなノイズについては、複数の受振器8、8…を用いた相互補完により除去することが可能である。具体的には、図8に示されるように、比較的初動波の立ち上がり位置が明瞭な11ch及び12chの22ms付近を初動波到達時間を基準とし、その他の受振器を見てみると、多少のノイズは認められるものの、初動波到達時間が概ね同一時間上に並んでいることがわかる(6ch〜12ch)。このように、穿孔5に近い受振器(1ch〜5ch)のみでは、初動波到達時間の読み取りが難しく、弾性波速度値の解析が困難であるが、他の比較的ノイズが少ないと思われる受振器のデータを補完することにより初動波の立ち上がり位置が特定できるようになる。   Next, as a second comparative investigation, as shown in FIGS. 7 and 8, the influence of the vibration method on the observation data was examined. FIG. 7 shows time series waveforms of elastic waves observed using the conventional uphole method shown in FIG. 14 in the same manner as described above. FIG. 8 shows time-series waveforms of elastic waves observed using this geological exploration method. As shown in FIG. 7, in the conventional geological exploration method, since the tip end surface of the drilling is vibrated by the drilling bit by operating the drifter, the hitting is controlled as shown in the 13ch vibration waveform. It is difficult to do so and it becomes a continuous hit in which a plurality of shot marks appear, and it is not easy to specify the rising position of the initial wave. On the other hand, as shown in FIG. 8, in this geological exploration method, the tip of the piercing 5 is passed through the rod 3 and the piercing bit 4 by hitting the striking surface 7 of the striking jig 6 with the hammer 10. Since the surface is oscillated, only the observed waveform corresponding to one hit is obtained as shown in the 13ch oscillating waveform, and the rising position of the initial motion wave is easily specified. Nevertheless, small noise that cannot be avoided can be removed by mutual complementation using a plurality of geophones 8, 8. Specifically, as shown in FIG. 8, when the other receivers are seen with reference to the arrival time of the initial wave in the vicinity of 22 ms of 11ch and 12ch where the rising position of the initial wave is relatively clear, Although noise is recognized, it can be seen that the initial wave arrival times are aligned on the same time (6 ch to 12 ch). Thus, it is difficult to read the initial wave arrival time and the analysis of the elastic wave velocity value with only the geophones (1ch to 5ch) close to the perforation 5, but other vibrations that are considered to have relatively little noise. The rising position of the initial wave can be specified by complementing the vessel data.

第3の比較調査として、本地質探査方法と、穿孔内に受振器を設置し、切羽面をハンマーで打撃するダウンホール法(図13)との比較を行った。図9は本地質探査方法による走時曲線であり、図10はダウンホール法による走時曲線である。走時曲線の傾きは区間速度値に対応しており、これに基づいて得た弾性波平均速度をそれぞれ図11及び図12に示す。図9〜図12に示されるように、走時曲線は、両方法ともに似た形状の曲線が得られている。また、弾性波の平均速度は、本地質探査方法で幾分低い値となっているものの、両方法とも概ね同等の速度値が得られている。従って、本地質探査方法とダウンホール法の速度構造には、概ね整合性が認められ、本地質探査方法は切羽前方の地山探査方法として有効な方法であると言える。   As a third comparative survey, the geological exploration method was compared with the downhole method (Fig. 13) in which a geophone was installed in the borehole and the face was hit with a hammer. FIG. 9 is a travel time curve according to the geological exploration method, and FIG. 10 is a travel time curve according to the downhole method. The slope of the travel time curve corresponds to the section speed value, and the elastic wave average speed obtained based on this is shown in FIGS. 11 and 12, respectively. As shown in FIGS. 9 to 12, the travel time curve has a similar shape for both methods. Moreover, although the average velocity of elastic waves is somewhat low in this geological exploration method, almost the same velocity value is obtained in both methods. Therefore, the consistency between the geological exploration method and the downhole speed structure is generally consistent, and it can be said that this geological exploration method is an effective method for exploring the ground ahead of the face.

1…地質探査システム、2…穿孔機、3…ロッド、4…穿孔用ビット、5…穿孔、6…打撃用治具、7…打撃面、8…受振器、9…計測器、10…ハンマー   DESCRIPTION OF SYMBOLS 1 ... Geological exploration system, 2 ... Drilling machine, 3 ... Rod, 4 ... Drilling bit, 5 ... Drilling, 6 ... Impact tool, 7 ... Impact surface, 8 ... Vibration receiver, 9 ... Measuring instrument, 10 ... Hammer

Claims (4)

トンネル空間内から、ロッドの先端に穿孔用ビットが備えられた穿孔機によって切羽前方の地山に穿孔を行い、任意の穿孔長さ位置において、トンネル空間内で前記ロッドに対して、前記ロッドの半径方向に突出する打撃面を有する打撃用治具を取り付けるとともに、切羽面に受振器を設置し、
前記穿孔機の運転を停止した状態で、ハンマーによって前記打撃面を前記ロッドの軸方向に打撃して前記穿孔用ビットの先端から地山に弾性波を発生させ、前記受振器により弾性波を計測して地山の弾性波速度を求めることを特徴とする切羽前方の地質探査方法。
From inside the tunnel space, a drilling machine equipped with a drilling bit at the tip of the rod is used to drill a natural ground in front of the face, and at any drilling length position, the rod is in the tunnel space with respect to the rod. Attach a striking jig with a striking surface projecting in the radial direction, and install a geophone on the face.
With the drilling machine stopped, the hammer hits the striking surface in the axial direction of the rod to generate an elastic wave from the tip of the drilling bit to the ground, and the elastic wave is measured by the geophone. The geological exploration method ahead of the face is characterized by calculating the elastic wave velocity of the natural ground.
前記穿孔機のドリフタにより前記穿孔用ビットを前記穿孔の先端面に押し付けた状態で前記打撃面をハンマーによって打撃する請求項1記載の切羽前方の地質探査方法。   The geological exploration method in front of the face according to claim 1, wherein the striking surface is hit with a hammer in a state where the drilling bit is pressed against the tip end surface of the drilling by a drifter of the drilling machine. 前記ロッドは、少なくとも前記打撃用治具が取り付けられる部分に、外周面の対向する両側面が切り欠かれ、平行な平坦面が形成されている請求項1、2いずれかに記載の切羽前方の地質探査方法。   The front surface of the face according to any one of claims 1 and 2, wherein the rod is formed with a parallel flat surface by cutting away both opposing side surfaces of the outer peripheral surface at least on a portion to which the hitting jig is attached. Geological exploration method. 前記受振器は、前記切羽面に対し間隔をあけて複数設置されている請求項1〜3いずれかに記載の切羽前方の地質探査方法。   The geological exploration method in front of the face according to any one of claims 1 to 3, wherein a plurality of the geophones are installed at intervals with respect to the face.
JP2016003187A 2016-01-12 2016-01-12 Geological exploration method in front of the face Active JP6602675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016003187A JP6602675B2 (en) 2016-01-12 2016-01-12 Geological exploration method in front of the face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003187A JP6602675B2 (en) 2016-01-12 2016-01-12 Geological exploration method in front of the face

Publications (2)

Publication Number Publication Date
JP2017125684A true JP2017125684A (en) 2017-07-20
JP6602675B2 JP6602675B2 (en) 2019-11-06

Family

ID=59364011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003187A Active JP6602675B2 (en) 2016-01-12 2016-01-12 Geological exploration method in front of the face

Country Status (1)

Country Link
JP (1) JP6602675B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988984A (en) * 2019-12-23 2020-04-10 山东大学 Wireless detector device capable of being fixed quickly
CN112363204A (en) * 2020-10-20 2021-02-12 山东大学 Pneumatic triggering device and method for shield tunnel geological evaluation
CN112379405A (en) * 2020-10-16 2021-02-19 山东大学 Detector stepping automatic installation device and method for tunneling detection along with TBM
CN116136174A (en) * 2023-04-05 2023-05-19 山东钰镪地质资源勘查开发有限责任公司 Underground soil layer structure exploration equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207619A (en) * 1975-02-24 1980-06-10 Alf Klaveness Seismic well logging system and method
JPH06273533A (en) * 1993-03-19 1994-09-30 Toda Constr Co Ltd Forward probing system at stall
JPH11337649A (en) * 1998-05-22 1999-12-10 Shimizu Corp Elastic-wave probing method
JP2002013381A (en) * 2000-06-27 2002-01-18 Nishimatsu Constr Co Ltd Bedrock probing method
JP2002106290A (en) * 2000-09-29 2002-04-10 Kawasaki Heavy Ind Ltd Tunnel boring machine mounted with forward survey device
JP2003321828A (en) * 2002-04-30 2003-11-14 Oyo Corp Ground investigation method making use of s wave amplitude accompanying percussive penetration
JP2011102706A (en) * 2009-11-10 2011-05-26 Kajima Corp Method and system for performing survey ahead of working face

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207619A (en) * 1975-02-24 1980-06-10 Alf Klaveness Seismic well logging system and method
JPH06273533A (en) * 1993-03-19 1994-09-30 Toda Constr Co Ltd Forward probing system at stall
JPH11337649A (en) * 1998-05-22 1999-12-10 Shimizu Corp Elastic-wave probing method
JP2002013381A (en) * 2000-06-27 2002-01-18 Nishimatsu Constr Co Ltd Bedrock probing method
JP2002106290A (en) * 2000-09-29 2002-04-10 Kawasaki Heavy Ind Ltd Tunnel boring machine mounted with forward survey device
JP2003321828A (en) * 2002-04-30 2003-11-14 Oyo Corp Ground investigation method making use of s wave amplitude accompanying percussive penetration
JP2011102706A (en) * 2009-11-10 2011-05-26 Kajima Corp Method and system for performing survey ahead of working face

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
法橋 亮 外2名: "アップホール法速度検層による切羽前方地山調査の適用について", 土木学会年次学術講演会講演概要集, vol. Vol.70,III-129, JPN6019035952, 1 August 2015 (2015-08-01), pages 257 - 258, ISSN: 0004116645 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988984A (en) * 2019-12-23 2020-04-10 山东大学 Wireless detector device capable of being fixed quickly
CN110988984B (en) * 2019-12-23 2021-08-17 山东大学 Wireless detector device capable of being fixed quickly
CN112379405A (en) * 2020-10-16 2021-02-19 山东大学 Detector stepping automatic installation device and method for tunneling detection along with TBM
CN112363204A (en) * 2020-10-20 2021-02-12 山东大学 Pneumatic triggering device and method for shield tunnel geological evaluation
CN116136174A (en) * 2023-04-05 2023-05-19 山东钰镪地质资源勘查开发有限责任公司 Underground soil layer structure exploration equipment
CN116136174B (en) * 2023-04-05 2023-06-16 山东钰镪地质资源勘查开发有限责任公司 Underground soil layer structure exploration equipment

Also Published As

Publication number Publication date
JP6602675B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6602675B2 (en) Geological exploration method in front of the face
CN110486007B (en) In-situ testing device and method for mechanical parameters of coal mine surrounding rock while drilling
JP6131027B2 (en) Measurement method of natural ground elastic wave velocity
CN103792582A (en) Method for detecting roadway broken rock zone
CN108802193A (en) A kind of detecting devices and detection method of Exploring Loose Rock Country in Tunnels
JP6393100B2 (en) Tunnel face forward exploration method
CN106703795A (en) Roof rock in the lane grade while drilling detection device and method based on laser distance meter
JP6646983B2 (en) Method for exploring the front of the face
CN115390129A (en) In-situ acoustic penetration device with built-in longitudinal and transverse wave transmitting and receiving transducers
CN103775073B (en) A kind of getting working face geostatic stress distribution characteristics detection method
US8688382B2 (en) Detection of downhole vibrations using surface data from drilling rigs
JP5997521B2 (en) Face investigation method using shield machine
JP2016075606A (en) Elastic wave velocity measuring method
JPH06273533A (en) Forward probing system at stall
JP5258734B2 (en) Tunnel front face exploration method and exploration system
KR100745036B1 (en) In-hole seismic method for measuring dynamic stiffness of subsurface materials
JP2001249186A (en) Tunnel working face front geological searching method
JP5319981B2 (en) Elastic wave exploration system
JP6653072B2 (en) Method for evaluating the number of impacts of hydraulic hammer, method for exploring front ground using the same, and system for exploring front ground
JP3072621B2 (en) Ground survey method and device using S-wave generator and cone penetration device mounted on ground survey vehicle
JP2018185150A (en) Geological exploration device for pit face front
CN204098942U (en) The force-measuring anchor stock of high stress tunnel
KR20110076022A (en) Prediction of rock mass strength ahead of tunnel face using hydraulic drilling data
JP2003066155A (en) Method and apparatus for detecting ground and mountain states
JPH04353191A (en) Geologic survey device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250