JP2017123911A - Motion measuring device, method and program - Google Patents

Motion measuring device, method and program Download PDF

Info

Publication number
JP2017123911A
JP2017123911A JP2016003533A JP2016003533A JP2017123911A JP 2017123911 A JP2017123911 A JP 2017123911A JP 2016003533 A JP2016003533 A JP 2016003533A JP 2016003533 A JP2016003533 A JP 2016003533A JP 2017123911 A JP2017123911 A JP 2017123911A
Authority
JP
Japan
Prior art keywords
sheet material
wearer
motion
deformation
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016003533A
Other languages
Japanese (ja)
Other versions
JP6673582B2 (en
Inventor
康彦 小玉
Yasuhiko Kodama
康彦 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Embedded Products Ltd
Original Assignee
NEC Embedded Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Embedded Products Ltd filed Critical NEC Embedded Products Ltd
Priority to JP2016003533A priority Critical patent/JP6673582B2/en
Publication of JP2017123911A publication Critical patent/JP2017123911A/en
Application granted granted Critical
Publication of JP6673582B2 publication Critical patent/JP6673582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motion measuring device that removes influence such as breathing magnitude (depth) or periodic variation, and accurately detects wearer's posture and motion such as stooping.SOLUTION: A motion measuring device 10 is provided in a sheet material 2 attached to a human body and measures wearer's motion. The motion measuring device has: calculation means 13 having a conductive stretchable material 12 comprising multiple linear members 11 (11A, 11B) along the deformation direction of the sheet material 2, incorporated in the sheet material 2 so that the linear members 11 may become parallel to each other, and calculating a difference of an electric resistance value from the linear members 11 where each electric resistance changes by deformation to the surface direction of the sheet material 2; and measuring means 14 for measuring the wearer's motion from calculation results of this calculation means 13.SELECTED DRAWING: Figure 1

Description

本発明は、人体に装着される衣服の変形に伴う導線性伸縮材の電気抵抗の変化によって装着者の動作や姿勢を認識する動作測定装置、方法、およびプログラムに関する。   The present invention relates to a motion measuring device, method, and program for recognizing a wearer's motion and posture based on a change in electrical resistance of a conductive elastic material accompanying deformation of clothes worn on a human body.

衣服の装着者の動作を検出する技術として、特許文献1に示される歪みセンサ付き布帛が知られている。
この歪みセンサ付き布帛は、伸縮可能な布帛本体と、この布帛本体に付設され、布帛本体の伸縮に追従可能な歪みセンサとを有し、前記歪みセンサに、前記布帛本体に一体的に設けられ、かつ布帛本体の伸縮に追従して変形する配線部を備えた構成である。
As a technique for detecting the movement of a wearer of a garment, a fabric with a strain sensor shown in Patent Document 1 is known.
The fabric with a strain sensor includes a stretchable fabric body and a strain sensor attached to the fabric body and capable of following the stretch of the fabric body. The strain sensor is provided integrally with the fabric body. And it is the structure provided with the wiring part which deform | transforms following the expansion-contraction of a fabric main body.

ところが、特許文献1に示される歪みセンサ付き布帛の伸縮性能は、合成樹脂、ゴム、 不織布、金属等で構成される基板に依存し、布帛本体の伸縮性能と一致するものではないため、着用者の姿勢により変化する被服の伸縮状態を精度よく検出するのが困難であるという問題があった。
また、特許文献1に示される歪みセンサ付き布帛では、被服に配置されるセンサ面積が大きくなると、基板により通気性が阻害されるという問題もあり、日常的に着用することができないという問題もあった。
However, the stretch performance of the fabric with a strain sensor shown in Patent Document 1 depends on the substrate made of synthetic resin, rubber, nonwoven fabric, metal, etc., and does not match the stretch performance of the fabric body. There is a problem that it is difficult to accurately detect the stretched state of the clothes that changes depending on the posture.
Further, in the fabric with a strain sensor shown in Patent Document 1, there is a problem that if the sensor area arranged on the clothing is increased, the air permeability is hindered by the substrate, and there is a problem that it cannot be worn on a daily basis. It was.

そして、このような問題を解決するため、近年、伸縮生地で構成される衣服に導電性伸縮材を用いる技術が提案されている。
この衣服は、伸縮生地の伸縮状態の変化を電気特性の変化に変換する導電性伸縮材が編込まれた姿勢検出生地が使用されるものであって、該姿勢検出生地で検出される電気特性の変化に基づいて着用者の姿勢の変化を検出可能とする。
And in order to solve such a problem, the technique which uses an electroconductive elastic material for the clothing comprised with elastic fabric in recent years is proposed.
This garment uses a posture detection fabric in which a conductive elastic material that converts a change in the stretched state of the stretch fabric into a change in electrical characteristics is used, and the electrical characteristics detected by the posture detection fabric The change in the posture of the wearer can be detected based on the change in the wearer.

この導電性伸縮材は、衣服に縫い付けられ又は織り込まれており、着用者の姿勢の変化に伴う身体の表面伸縮にともなって、その電気抵抗が追従して変化する。
この電気抵抗の変化は電圧に変換され、AD変換の後マイクロコンピュータによりその値が読み取られる。例えば、図7(A)に領域M1で示されるように、背筋が伸びて姿勢が良いときには、導電性伸縮材の伸びが小さく、そのときの抵抗値は30Ωであるとする。
一方、この図7(A)に領域M2で示されるように、背中が丸まって猫背になったときには、導電性伸縮材の伸びが大きく70Ωであるとする。
ここで、呼吸による導電性伸縮材の伸び縮みが無いと仮定した場合は、抵抗値の差はそのまま40Ωとなり、この変化を検出することで、猫背の姿勢を検出することができる。この導電性伸縮材で検出される抵抗値の差は、猫背の深さによって変化するため、該抵抗値の差に基づき、猫背の度合いを段階ごとに表すことも可能である。
This conductive elastic material is sewn or woven into clothing, and its electrical resistance changes following the body surface expansion and contraction accompanying changes in the posture of the wearer.
This change in electrical resistance is converted into a voltage, and the value is read by a microcomputer after AD conversion. For example, as shown by a region M1 in FIG. 7A, when the back is stretched and the posture is good, it is assumed that the stretch of the conductive elastic material is small and the resistance value at that time is 30Ω.
On the other hand, as shown by a region M2 in FIG. 7A, when the back is rounded and becomes a dorsum, the stretch of the conductive stretch material is assumed to be 70Ω.
Here, when it is assumed that there is no expansion / contraction of the conductive elastic material due to respiration, the difference in resistance value is 40Ω as it is, and by detecting this change, the position of the stoop can be detected. Since the difference in resistance value detected by the conductive stretchable material changes depending on the depth of the dorsum, the degree of the dorsum can also be expressed for each stage based on the difference in resistance value.

特開2014−25180号公報JP 2014-25180 A

しかしながら、上記導電性伸縮材を用いた衣服では、図7(B)に示される実際のデータ例を参照して分かるように、着用した人が呼吸している場合は、呼吸の大小(深さ)により、抵抗値も変動し、その周期は、呼吸の速さによって大きく変動する。
このため、上記衣服では、該導電性伸縮材の抵抗値の平均値をとるにしても、平均化するためのサンプリング時間を一定時間確保しなければならず、リアルタイム性に欠けていた。また、上記衣服では、呼吸の大小に周期変動が加わると、正しい抵抗値を検出することができず姿勢の度合いを段階毎に検出するのが難しかった。
However, in the garment using the conductive stretchable material, as can be seen with reference to the actual data example shown in FIG. 7B, when the wearer is breathing, the magnitude of the breathing (depth) ), The resistance value also fluctuates, and the cycle varies greatly depending on the speed of breathing.
For this reason, even if the average value of the resistance value of the conductive stretchable material is taken, the garment has to secure a certain sampling time for averaging, and lacks real-time properties. Further, in the above-described clothes, when a periodic variation is applied to the magnitude of breathing, it is difficult to detect a correct resistance value and it is difficult to detect the degree of posture for each stage.

この発明は、上述した事情に鑑みてなされたものであって、簡易な構成により呼吸の大小(深さ)又は周期変動といった影響を排除して、猫背になる等の装着者の姿勢を正確に検出することが可能な動作測定装置、方法、およびプログラムを提供する。   The present invention has been made in view of the above-described circumstances, and eliminates the influence of respiration magnitude (depth) or periodic fluctuations with a simple configuration, so that the posture of the wearer, such as a stoop, can be accurately determined. An operation measuring apparatus, method, and program capable of being detected are provided.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明は、人体に装着されるシート材の一部に設けられて装着者の動作を測定する動作測定装置であって、前記シート材の変形方向に沿う複数の線状体からなる導電性伸縮材を有し、該線状体が互いに平行となるように前記シート材に組み込まれて、該シート材の面方向への変形によってそれぞれの電気抵抗が変化する該線状体からの電気抵抗値の差を演算する演算手段と、この演算手段での演算結果から前記装着者の動作を測定する測定手段と、を有する。
In order to solve the above problems, the present invention proposes the following means.
The present invention is a motion measuring device that is provided on a part of a sheet material to be worn on a human body and measures a wearer's motion, and is a conductive stretch composed of a plurality of linear bodies along the deformation direction of the sheet material. An electrical resistance value from the linear body that is incorporated in the sheet material so that the linear bodies are parallel to each other and the respective electrical resistances are changed by deformation in the surface direction of the sheet material And calculating means for measuring the wearer's movement from the calculation result of the calculating means.

本発明は、導電性伸縮材を形成している複数の線状体を平行に配置するという簡易な構成により、呼吸の影響を排除した装着者の姿勢検出を可能とする。   The present invention makes it possible to detect the posture of the wearer excluding the influence of respiration by a simple configuration in which a plurality of linear bodies forming a conductive elastic material are arranged in parallel.

本発明に係る動作測定装置を示す概略構成図である。It is a schematic block diagram which shows the motion measuring apparatus which concerns on this invention. 本発明の実施形態に係る動作測定装置を示す概略構成図である。It is a schematic block diagram which shows the motion measurement apparatus which concerns on embodiment of this invention. 図1の導電性伸縮材が設置されるブリッジ回路、該ブリッジ回路に接続された演算手段及び測定手段を示す図である。It is a figure which shows the bridge circuit in which the electroconductive elastic material of FIG. 1 is installed, the calculating means connected to this bridge circuit, and a measurement means. 導電性伸縮材を構成する線状体からの電気抵抗値を示すグラフである。It is a graph which shows the electrical resistance value from the linear body which comprises a conductive elastic material. 本発明の実施形態に係る変形例1を示す図である。It is a figure which shows the modification 1 which concerns on embodiment of this invention. 本発明の実施形態に係る変形例2を示す図である。It is a figure which shows the modification 2 which concerns on embodiment of this invention. 導電性伸縮材を用いた衣服の電気抵抗値を示すグラフであって、(A)は仮定に基づくグラフ、(B)は実際のグラフである。It is a graph which shows the electrical resistance value of the garment using a conductive elastic material, Comprising: (A) is a graph based on assumption, (B) is an actual graph.

本発明について図1を参照して説明する。
図1に符号1で示すものは人体に装着される衣服であって、該衣服1を構成するシート材2には、装着者の動作を測定する動作測定装置10が設けられている。
この動作測定装置10は、複数の線状体11を有し該線状体11の変形によってそれぞれの電気抵抗が変化する導電性伸縮材12と、該導電性伸縮材12の線状体11からの電気抵抗値の差を演算する演算手段13と、演算手段13での演算結果から装着者の動作を測定する測定手段14と、を有する。
なお、本例の導電性伸縮材12では、複数の線状体11として一対の線状体11A・11Bが設置された例が示されている。
また、演算手段13及び測定手段14はマイクロコンピュータC内に配置されるが、このマイクロコンピュータCは衣服1上に設置しても良いし、図示しない通信手段を介して衣服1の外部に設置しても良い。
The present invention will be described with reference to FIG.
What is indicated by reference numeral 1 in FIG. 1 is a garment worn on a human body, and a sheet material 2 constituting the garment 1 is provided with a motion measuring device 10 for measuring the motion of the wearer.
The motion measuring apparatus 10 includes a plurality of linear bodies 11, a conductive stretchable material 12 whose electric resistance is changed by deformation of the linear body 11, and the linear stretched body 11 of the conductive stretchable material 12. Calculation means 13 for calculating the difference between the electrical resistance values, and measurement means 14 for measuring the operation of the wearer from the calculation result of the calculation means 13.
In addition, in the electroconductive elastic material 12 of this example, the example by which a pair of linear body 11A * 11B was installed as the some linear body 11 is shown.
The computing means 13 and the measuring means 14 are arranged in the microcomputer C. However, the microcomputer C may be installed on the clothes 1 or installed outside the clothes 1 through communication means (not shown). May be.

導電性伸縮材12の線状体11A・11Bは、シート材2の変形方向に沿いかつ互いが平行となるように衣服1に組み込まれたものであって、該シート材2の面方向への変形によってそれぞれの電気抵抗が変化する。このとき、これら導電性伸縮材12の線状体11A・11Bの長さを異ならせて、それぞれの線状体11A・11Bの初期状態(外力により変形していない状態)の電気抵抗を異ならせることによって、異なったレベルの電気抵抗を検出することができる。
演算手段13は導電性伸縮材12の線状体11A・11Bからの電気抵抗値の差を演算し、かつ測定手段14は演算手段13での演算結果から装着者の動作を測定する。
The linear bodies 11A and 11B of the conductive stretchable material 12 are incorporated in the garment 1 along the deformation direction of the sheet material 2 so as to be parallel to each other. Each electric resistance changes by deformation. At this time, the lengths of the linear bodies 11A and 11B of the conductive stretchable material 12 are made different, and the electric resistances of the respective linear bodies 11A and 11B in the initial state (the state where they are not deformed by an external force) are made different. Thus, different levels of electrical resistance can be detected.
The calculation means 13 calculates the difference in electrical resistance value from the linear bodies 11A and 11B of the conductive stretchable material 12, and the measurement means 14 measures the wearer's movement from the calculation result of the calculation means 13.

そして、以上のように構成された動作測定装置10では、衣服1のシート材2の変形方向に沿いかつ互いが平行となる一対の線状体11A・11Bを有し、該シート材2の面方向への変形によってそれぞれの電気抵抗が変化する導電性伸縮材12を衣服1に組み込むようにした。
その後、上記動作測定装置10では、導電性伸縮材12の線状体11A・11Bからの電気抵抗値の差を演算するとともに、測定手段14にて、該演算手段13での演算結果から装着者の動作を測定する。
すなわち、上記動作測定装置10では、導電性伸縮材12の一対の線状体11A・11Bからの電気抵抗値の差を演算することにより、呼吸の大小(深さ)又は周期変動いった影響を排除して、猫背になる等の装着者の姿勢を正確に検出することが可能となる。
また、上記動作測定装置10は、導電性伸縮材12に含まれる一対の線状体11A・11Bを平行に配置した状態で、線状体11A・11Bからの電気抵抗値の差を演算する処理を行うという簡易な構成により、呼吸の影響を排除した装着者の姿勢検出が可能となるものである。
And in the motion measuring apparatus 10 comprised as mentioned above, it has a pair of linear body 11A * 11B along the deformation | transformation direction of the sheet | seat material 2 of the clothes 1, and mutually parallel, The surface of this sheet | seat material 2 The conductive elastic material 12 whose electric resistance is changed by deformation in the direction is incorporated into the garment 1.
Thereafter, the motion measuring apparatus 10 calculates the difference in electrical resistance value from the linear bodies 11A and 11B of the conductive stretchable material 12, and the measuring means 14 calculates the wearer from the calculation result of the calculating means 13. Measure the behavior.
In other words, the motion measuring device 10 calculates the difference in the electrical resistance value from the pair of linear bodies 11A and 11B of the conductive stretchable material 12, thereby affecting the influence of the magnitude (depth) or period fluctuation of respiration. This eliminates the possibility of accurately detecting the posture of the wearer, such as a stoop.
In addition, the motion measuring apparatus 10 calculates a difference in electrical resistance value from the linear bodies 11A and 11B in a state where the pair of linear bodies 11A and 11B included in the conductive stretchable material 12 are arranged in parallel. With this simple configuration, it is possible to detect the posture of the wearer excluding the influence of respiration.

(実施形態)
本発明の実施形態について図2〜図6を参照して具体的に説明する。
図2に示されるように、衣服1を構成するシート材2には、装着者の動作を測定する動作測定装置20が設けられている。
この動作測定装置20は、一対の線状体21を有し該線状体21の変形によってそれぞれの電気抵抗が変化する導電性伸縮材22と、該導電性伸縮材22の線状体21からの電気抵抗値の差を演算する演算手段23と、演算手段23での演算結果から装着者の動作を測定する測定手段24と、を有する。
(Embodiment)
An embodiment of the present invention will be specifically described with reference to FIGS.
As shown in FIG. 2, the sheet material 2 constituting the garment 1 is provided with a motion measuring device 20 that measures the motion of the wearer.
The motion measuring device 20 includes a pair of linear bodies 21, a conductive stretchable material 22 whose electric resistance is changed by deformation of the linear bodies 21, and a linear body 21 of the conductive stretchable material 22. Calculation means 23 for calculating the difference between the electrical resistance values, and measurement means 24 for measuring the operation of the wearer based on the calculation result of the calculation means 23.

なお、本例の導電性伸縮材22では、複数の線状体21として一対の線状体21A・21Bが設置された例が示されている。
また、演算手段23及び測定手段24はマイクロコンピュータC1内に配置されるが、このマイクロコンピュータC1は衣服1上に設置しても良いし、図示しない通信手段を介して衣服1の外部に設置しても良い。
In addition, in the electroconductive elastic material 22 of this example, the example by which a pair of linear body 21A * 21B was installed as the some linear body 21 is shown.
The computing means 23 and the measuring means 24 are arranged in the microcomputer C1, but the microcomputer C1 may be installed on the clothes 1 or installed outside the clothes 1 through communication means (not shown). May be.

導電性伸縮材22は、図2に示されるように、互いに長さが異なる一対の線状体21A・21Bからなり、かつシート材2の変形方向に沿いかつ互いが平行となるように衣服1に組み込まれたものである、具体的には短尺の線状体21A及び長尺の線状体21Bからなっており、装着者が衣服1を着用した場合に、該装着者の背中の中央部分にほぼ水平となるように配置される。
また、導電性伸縮材22の線状体21A・21Bは、衣服1のシート材2の面方向への変形によってそれぞれの電気抵抗が変化するものであって、それぞれの線状体21A・21Bで得られた電気抵抗値は、演算手段23に供給される。
このとき、これら導電性伸縮材22の線状体21A・21Bはそれぞれ長さが異なっているので、異なったレベルの電気抵抗が検出される。
演算手段23は、異なる長さからなる導電性伸縮材22の線状体21A・21Bからの電気抵抗値の差を演算し、また、測定手段24は演算手段23での演算結果から装着者の姿勢あるいは動作を測定する。
As shown in FIG. 2, the conductive stretchable material 22 is composed of a pair of linear bodies 21 </ b> A and 21 </ b> B having different lengths, and along the deformation direction of the sheet material 2 and parallel to each other. Specifically, it is composed of a short linear body 21A and a long linear body 21B, and when the wearer wears the garment 1, the center portion of the wearer's back It is arranged so as to be almost horizontal.
Further, the linear bodies 21A and 21B of the conductive stretchable material 22 change their electric resistances by deformation in the surface direction of the sheet material 2 of the garment 1, and the linear bodies 21A and 21B The obtained electrical resistance value is supplied to the calculation means 23.
At this time, since the linear bodies 21A and 21B of the conductive stretchable material 22 have different lengths, different levels of electrical resistance are detected.
The computing means 23 computes the difference in electrical resistance value from the linear bodies 21A and 21B of the conductive elastic material 22 having different lengths, and the measuring means 24 calculates the wearer's Measure posture or movement.

演算手段23の具体的構成としては、図3に示されるように、導電性伸縮材22を構成する一対の線状体21A・21Bを、2つのブリッジ回路30の一辺にそれぞれ配置する。各ブリッジ回路30内には、線状体21A・21Bが配置されていない三辺に固定抵抗31が設置されており、該線状体21A・21Bが配置される一辺に、他の固定抵抗31とのバランスをとるための調整用抵抗32が接続されている。
また、演算手段23の比較器23Aでは、各ブリッジ回路30の線状体21A・21Bの電気抵抗の変化にともなってブリッジ回路の端部に発生する電圧の差分を演算し、さらに測定手段24にて、該演算手段23での演算結果から装着者の動作を測定する。
すなわち、上記動作測定装置20では、導電性伸縮材22の一対の線状体21A・21Bからの電気抵抗値の変化に伴う電位差を演算することにより、呼吸の大小(深さ)又は周期変動いった影響を排除して、猫背になる等の装着者の姿勢あるいは動作を測定することができる。
なお、演算手段23の別の構成としては、比較器23Aについては、2つのブリッジ回路それぞれに配置されていても良い。それぞれに発生する電圧の差分をマイクロコンピュータC1に取り込み、マイクロコンピュータC1の内部でAD変換が行われた後、デジタルデータをプログラムにて演算して電圧の差分を求める方法としても良い。
As a specific configuration of the calculation means 23, as shown in FIG. 3, a pair of linear bodies 21 </ b> A and 21 </ b> B constituting the conductive stretchable material 22 are respectively arranged on one side of the two bridge circuits 30. In each bridge circuit 30, fixed resistors 31 are installed on three sides where the linear bodies 21A and 21B are not disposed, and other fixed resistors 31 are disposed on one side where the linear bodies 21A and 21B are disposed. An adjustment resistor 32 is connected to balance the above.
Further, the comparator 23A of the calculating means 23 calculates the difference in voltage generated at the end of the bridge circuit in accordance with the change in the electrical resistance of the linear bodies 21A and 21B of each bridge circuit 30, and further adds to the measuring means 24. Then, the operation of the wearer is measured from the calculation result of the calculation means 23.
In other words, the motion measuring device 20 calculates the potential difference associated with the change in the electrical resistance value from the pair of linear bodies 21A and 21B of the conductive stretchable material 22 so that the respiration level (depth) or the period fluctuations can be calculated. Therefore, it is possible to measure the posture or movement of the wearer such as becoming a back of the cat.
As another configuration of the calculation means 23, the comparator 23A may be arranged in each of two bridge circuits. It is also possible to obtain the voltage difference by fetching the voltage difference generated in each into the microcomputer C1, performing AD conversion inside the microcomputer C1, and then calculating digital data by a program.

ここで、図4を参照して導電性伸縮材22の一対の線状体21A・21Bからの電気抵抗値に基づき、呼吸の影響を取り除いて装着者の姿勢を検出するための手法について説明する。
図4では、領域M1で示されるように、背筋が伸びて良い姿勢であることにより導電性伸縮材22の伸びが小さいときの時間領域をM1で表し、背中が丸まって猫背になることにより導電性伸縮材22の伸びが大きなっている時間領域をM2で表している。
Here, referring to FIG. 4, a method for detecting the wearer's posture by removing the influence of respiration based on the electrical resistance values from the pair of linear bodies 21 </ b> A and 21 </ b> B of the conductive stretchable material 22 will be described. .
In FIG. 4, as indicated by the region M1, the time region when the stretch of the conductive elastic material 22 is small due to the posture in which the back muscles may be stretched is represented by M1, and the back is curled to become the back of the cat. A time region where the elongation of the elastic stretch material 22 is large is represented by M2.

そして、前述したように、本実施形態では、異なる長さの一対の線状体21A・21Bが平行に配置されている。
これら2本の線状体21A・21Bの電気抵抗値は同じではなく、配線する長さに差をつけることにより、電気抵抗値にわずかな差を持たせている。電気抵抗値は電圧に変換して読み取るが、ここで電気抵抗値が低い場合には電圧が低く、また、電気抵抗値が高い場合には電圧が高く変換される。これにより演算手段23にて、電気抵抗値の高い方の電圧値から、電気抵抗値の低い方の電圧値を引き算すると、その電圧値の差分が得られることになる。
And as above-mentioned, in this embodiment, a pair of linear body 21A * 21B of different length is arrange | positioned in parallel.
The electric resistance values of these two linear bodies 21A and 21B are not the same, and a slight difference is given to the electric resistance values by making a difference in wiring length. The electric resistance value is converted into a voltage and read. When the electric resistance value is low, the voltage is low, and when the electric resistance value is high, the voltage is converted high. As a result, when the calculation means 23 subtracts the voltage value having the lower electric resistance value from the voltage value having the higher electric resistance value, a difference between the voltage values is obtained.

また、導電性伸縮材22の一対の線状体21A・21Bは互いに平行に配置されているので、呼吸による伸縮がこれら2本の線状体21A・21Bにそれぞれ等しく反映される。このため、一方の導電性伸縮材22の線状体21B(例えば、電気抵抗値が高い方)の電圧値から、他方の電気抵抗値が低い線状体21Aの電圧値を引き算すると、元々の電圧値の差分Sだけが取り出されて、呼吸の影響部分を排除することができる。   Further, since the pair of linear bodies 21A and 21B of the conductive stretchable material 22 are arranged in parallel to each other, the expansion and contraction due to respiration is equally reflected in these two linear bodies 21A and 21B. For this reason, when the voltage value of the linear body 21A having the lower electrical resistance value is subtracted from the voltage value of the linear body 21B (for example, the one having the higher electrical resistance value) of one conductive stretchable material 22, the original Only the difference S between the voltage values is taken out and the affected part of the breath can be eliminated.

上述した導電性伸縮材22を備えた衣服1を着用した装着者が、背筋を伸ばしたときと、猫背になったときの電気抵抗値の変化について以下に説明する。
図2を参照して述べたように、導電性伸縮材22の線状体21A・21Bは互いに長さが異なっており、シート材2の変形方向に沿いかつ互いが平行となるように衣服1に組み込まれたものであって、装着者が衣服1を着用した場合に、該装着者の背中の中央部分にほぼ水平となるように配置される。
このため、背筋を伸ばした真っ直ぐな姿勢から猫背になって、時間領域M1から時間領域M2に移行した場合には、導電性伸縮材22において短尺な線状体21Aよりも長尺な線状体21Bの方が、伸びが大きくなる。これは、猫背になった場合に、線状体21A及び線状体21Bの電気抵抗値の差が、背筋を伸ばしていた場合の電気抵抗値の差よりも広がるためである。その結果として、猫背になった場合には、電圧値に変換して引き算した差分Sが生じる、すなわち、背筋を伸ばしているときの電圧差と猫背のときの電圧差とでは一定の差分S(電気抵抗値の差分S)が生じることになる。
A change in the electrical resistance value when the wearer who wears the garment 1 including the conductive stretch material 22 described above stretches his back and becomes a dorsum is described below.
As described with reference to FIG. 2, the linear bodies 21 </ b> A and 21 </ b> B of the conductive stretchable material 22 have different lengths, and the clothes 1 so as to be parallel to each other along the deformation direction of the sheet material 2. When the wearer wears the garment 1, the wearer wears the garment 1 and is arranged so as to be substantially horizontal at the central portion of the wearer's back.
For this reason, when going straight from the straight posture with the back straight and moving from the time region M1 to the time region M2, the linear member that is longer than the short linear member 21A in the conductive elastic member 22 is used. 21B has a larger elongation. This is because the difference in electrical resistance value between the linear body 21A and the linear body 21B is wider than the difference in electrical resistance value when the back muscles are stretched when lying on the back. As a result, when the dorsum is stooped, a difference S that is converted into a voltage value and subtracted is generated. That is, a constant difference S () between the voltage difference when the spine is extended and the voltage difference when the stoop is stretched. A difference S) of the electric resistance value is generated.

そして、測定手段24において、上述した電圧の差分Sを予め設定しておいた基準値(猫背になったことを示す基準差分値)と比較することにより、呼吸の影響を排除しながら、姿勢(背筋を伸ばしているとき、又は猫背になったとき)の測定が可能になる。   Then, the measuring means 24 compares the above-described voltage difference S with a preset reference value (reference difference value indicating that the dog is lying behind), thereby eliminating the influence of respiration and posture ( Measurements can be taken when the back is stretched or when the back is stooped.

なお、上述した導電性伸縮材22の線状体21A・21Bは、弾性糸に導電糸が編み込まれた一定幅の編地であり、例えば、導電糸のループに、弾性糸を一定幅でジグザグにインレイ編みして絡ませることにより構成される。
この導電性伸縮材22に関する技術として、例えば、特開2010-209481号公報に示される芯部をヨウ素の含浸しにくい繊維としかつ鞘部をヨウ素の含浸し易い繊維とした伸縮性導電繊維、又は特開2010-31423号公報に示される繊維の表面側内部近傍にヨウ化銅からなる導電層を有する導電繊維、又は特開2011-74538号公報に示される伸縮可能な弾性糸に炭素繊維及び鞘糸が撚り合わされた導電線材等、が使用される。
そして、これら導電性伸縮材が編み込まれた編地を引っ張る又は曲げた場合に、その断面積が減少して電気抵抗が増加するという特性を利用して、上述した姿勢の測定を行うものである。
なお、上述した公報は一例であって、上記以外の構成の導電性伸縮材、例えば、編地に編み込まれた複数の導電性伸縮材相互間の接触抵抗が変化する電気的特性を有する性質を利用するものを用いることもできる。
The above-described linear bodies 21A and 21B of the conductive elastic material 22 are knitted fabrics having a constant width in which conductive yarns are knitted into elastic yarns. For example, the elastic yarns are zigzag with a constant width in the loops of the conductive yarns. It is composed by inlaying and entwining.
As a technique relating to the conductive stretch material 22, for example, a stretchable conductive fiber in which a core portion disclosed in Japanese Patent Application Laid-Open No. 2010-209482 is a fiber that is not easily impregnated with iodine and a sheath portion is a fiber that is easily impregnated with iodine, or A conductive fiber having a conductive layer made of copper iodide in the vicinity of the inside of the surface side of the fiber shown in JP 2010-31423 A, or a carbon fiber and a sheath on a stretchable elastic yarn shown in JP 2011-74538 A A conductive wire in which yarns are twisted together is used.
Then, when the knitted fabric in which these conductive stretch materials are knitted is pulled or bent, the above-described posture is measured by utilizing the characteristic that the cross-sectional area decreases and the electrical resistance increases. .
In addition, the above-mentioned publication is an example, and has a property of having an electrical characteristic that a contact resistance between a plurality of conductive stretch materials knitted in a knitted fabric is changed. What is used can also be used.

また、導電性伸縮材22の線状体21A・21Bを構成する編地は、衣服1のシート材2に編み込んでも良いし、又は該衣服1のシート材2に貼り付けても良く、その設置形態は限定されるものではない。   Further, the knitted fabric constituting the linear bodies 21A and 21B of the conductive elastic material 22 may be knitted into the sheet material 2 of the garment 1 or may be attached to the sheet material 2 of the garment 1, and its installation The form is not limited.

そして、以上のように構成された動作測定装置20では、衣服1のシート材2の変形方向に沿いかつ互いが平行であって長さの異なる一対の線状体21A・21Bを有し、該シート材2の面方向への変形によってそれぞれの電気抵抗が変化する導電性伸縮材22を衣服1に組み込むようにした。
その後、上記動作測定装置20では、これら線状体21A・21Bからの電気抵抗値の差を演算するとともに、測定手段24にて、該演算手段23での演算結果から装着者の動作を測定するようにした。
すなわち、上記動作測定装置20では、導電性伸縮材22の一対の線状体21A・21Bからの電気抵抗値の差を演算することにより、呼吸の大小(深さ)又は周期変動といった影響を排除して、猫背になる等の装着者の姿勢を正確に検出することが可能となる。
また、上記動作測定装置20は、導電性伸縮材22を形成する、異なる長さの線状体21A・21Bを平行に配置した状態で、線状体21A・21Bからの電気抵抗値の差を演算する処理を行うという簡易な構成により、呼吸の影響を排除した装着者の姿勢検出を可能とする。
The motion measuring device 20 configured as described above has a pair of linear bodies 21A and 21B having different lengths along the deformation direction of the sheet material 2 of the garment 1 and being parallel to each other. The conductive elastic material 22 whose electric resistance is changed by deformation in the surface direction of the sheet material 2 is incorporated in the garment 1.
Thereafter, the motion measuring device 20 calculates the difference in electrical resistance value from the linear bodies 21A and 21B, and the measuring means 24 measures the wearer's motion from the calculation result of the calculating means 23. I did it.
In other words, the motion measuring device 20 calculates the difference in electrical resistance value between the pair of linear bodies 21A and 21B of the conductive elastic material 22, thereby eliminating the influence of the magnitude (depth) of breathing or periodic fluctuations. Thus, it is possible to accurately detect the posture of the wearer such as the back of the cat.
In addition, the motion measuring device 20 calculates the difference in electrical resistance value from the linear bodies 21A and 21B in a state where the linear bodies 21A and 21B of different lengths forming the conductive stretchable material 22 are arranged in parallel. With a simple configuration of performing the calculation process, it is possible to detect the posture of the wearer excluding the influence of respiration.

《変形例1》
上記実施形態では、導電性伸縮材22の長さが異なる平行な線状体21A・21Bを、衣服1に組み込むようにし、装着者が衣服1を着用した場合に、該装着者の背中の中央部分に水平となるように配置した。
しかし、これに限定されず、図5に示されるように、導電性伸縮材22の長さが異なる線状体21C・21Dを、衣服1の腕の部分であり、かつ装着者が着用した場合に該装着者の腕の付け根部分に配置するようにしても良い。
これにより、演算手段23及び測定手段24において、装着者の腕の上げ下げといった姿勢変化を検出することができる。
また、このような図5に示される導電性伸縮材22の線状体21C・21Dを衣服1の腕部分に設けるという構成を、図2に示される、導電性伸縮材22の線状体21A・21Bを衣服1の背面部分に平行に設けるという構成と併用しても良い。
<< Modification 1 >>
In the above embodiment, the parallel linear bodies 21A and 21B having different lengths of the conductive elastic material 22 are incorporated into the garment 1, and when the wearer wears the garment 1, the center of the back of the wearer. It arrange | positioned so that it might become horizontal in a part.
However, the present invention is not limited to this, and as shown in FIG. 5, when the linear members 21 </ b> C and 21 </ b> D having different lengths of the conductive elastic material 22 are the arms of the clothes 1 and worn by the wearer It may be arranged at the base of the wearer's arm.
Thereby, the calculation means 23 and the measurement means 24 can detect a posture change such as raising and lowering of the wearer's arm.
Further, the configuration in which the linear bodies 21C and 21D of the conductive stretchable material 22 shown in FIG. 5 are provided on the arm portion of the garment 1 is the linear body 21A of the conductive stretchable material 22 shown in FIG. -You may use together with the structure which provides 21B in parallel with the back part of the clothes 1. FIG.

《変形例2》
また、変形例1に限定されず、図6に示されるように、導電性伸縮材22の長さが異なる線状体21E・21Fを互いが平行となるように衣服1の背面に縦方向に組み込むようにし、装着者が衣服1を着用した場合に、該装着者の衣服1の背面部分にほぼ垂直となるように配置しても良い。
これにより、演算手段23及び測定手段24において、装着者の身体のねじれといった姿勢変化を検出しても良い。
また、このような図6に示される導電性伸縮材22の線状体21E・21Fの配置を、上述した図2及び/又は図5に示される構成と併用しても良い。
また、本発明の技術は、単に装着者の姿勢や動作を測定するのみならず、測定された動作や姿勢によってスマートフォンやコンピュータを操作する入力手段として利用することができる。
<< Modification 2 >>
Moreover, it is not limited to the modification 1, As shown in FIG. 6, the linear bodies 21E and 21F having different lengths of the conductive stretch material 22 are arranged vertically on the back surface of the garment 1 so that they are parallel to each other. It may be incorporated so that when the wearer wears the garment 1, it may be arranged so as to be substantially perpendicular to the back surface portion of the garment 1 of the wearer.
Thereby, the calculation means 23 and the measurement means 24 may detect a posture change such as a twist of the wearer's body.
Further, the arrangement of the linear bodies 21E and 21F of the conductive stretchable material 22 shown in FIG. 6 may be used in combination with the configuration shown in FIG. 2 and / or FIG.
Further, the technology of the present invention can be used not only to measure the posture and movement of the wearer but also as input means for operating a smartphone or a computer according to the measured movement or posture.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本発明は、人体に装着される衣服の変形によって電気抵抗が変化する導電性伸縮材を用いて装着者の姿勢を認識する動作測定装置に関する。   The present invention relates to a motion measurement device that recognizes the posture of a wearer using a conductive elastic material whose electrical resistance changes due to deformation of clothes worn on a human body.

1 衣服
2 シート材
10 動作測定装置
11(11A・11B) 線状体
12 導電性伸縮材
13 演算手段
14 測定手段
20 動作測定装置
21(21A〜21F) 線状体
22 導電性伸縮材
23 演算手段
24 測定手段
30 ブリッジ回路
31 固定抵抗
32 調整用抵抗
DESCRIPTION OF SYMBOLS 1 Clothes 2 Sheet material 10 Motion measuring apparatus 11 (11A * 11B) Linear body 12 Conductive elastic material 13 Calculation means 14 Measurement means
DESCRIPTION OF SYMBOLS 20 Operation | movement measuring apparatus 21 (21A-21F) Linear body 22 Conductive elastic material 23 Calculation means 24 Measuring means 30 Bridge circuit 31 Fixed resistance 32 Resistance for adjustment

Claims (6)

人体に装着されるシート材の一部に設けられて装着者の動作を測定する動作測定装置であって、
前記シート材の変形方向に沿う複数の線状体からなる導電性伸縮材を有し、該線状体が互いに平行となるように前記シート材に組み込まれて、該シート材の面方向への変形によってそれぞれの電気抵抗が変化する該線状体からの電気抵抗値の差を演算する演算手段と、
この演算手段での演算結果から前記装着者の動作を測定する測定手段と、を有することを特徴とする動作測定装置。
An operation measuring device that is provided on a part of a sheet material to be worn on a human body and measures the movement of the wearer
It has a conductive stretchable material composed of a plurality of linear bodies along the deformation direction of the sheet material, and is incorporated into the sheet material so that the linear bodies are parallel to each other, in the surface direction of the sheet material A computing means for computing a difference in electrical resistance value from the linear body in which each electrical resistance changes due to deformation;
And a measuring means for measuring the motion of the wearer from the calculation result of the calculating means.
前記導電性伸縮材は、互いに長さが異なりかつ平行となるように配置された一対の線状体により構成されることを特徴とする請求項1に記載の動作測定装置。   The motion measuring apparatus according to claim 1, wherein the conductive stretchable material is configured by a pair of linear bodies that are arranged to be different in length and parallel to each other. 前記導電性伸縮材を構成する一対の線状体は、それぞれブリッジ回路の一辺にそれぞれ配置されており、
前記演算手段は、前記各ブリッジ回路の端部からそれぞれ出力される電気抵抗値を取り込み、該電気抵抗値の差分を演算することを特徴とする請求項1又は2のいずれか1項に記載の動作測定装置。
A pair of linear bodies constituting the conductive stretch material are respectively disposed on one side of the bridge circuit,
The said calculating means takes in the electrical resistance value each output from the edge part of each said bridge circuit, and calculates the difference of this electrical resistance value, Either of Claim 1 or 2 characterized by the above-mentioned. Motion measuring device.
前記ブリッジ回路の一辺には、他の固定抵抗とのバランスをとるために調整用抵抗が設置されていることを特徴とする請求項3に記載の動作測定装置。   4. The motion measuring apparatus according to claim 3, wherein an adjustment resistor is installed on one side of the bridge circuit to balance with another fixed resistor. 人体に装着されるシート材の変形により装着者の動作を測定する動作測定方法であって、
互いに長さが異なり、前記シート材の変形方向に沿ってかつ互いに平行となるように該シート材に組み込まれて、該シート材の面方向への変形によってそれぞれの電気抵抗が変化する複数の線状体からなる導電性伸縮材の電気抵抗値の差を演算する工程と、
この演算結果から前記装着者の動作を測定する工程と、を有することを特徴とする動作測定方法。
An operation measurement method for measuring the operation of a wearer by deformation of a sheet material attached to a human body,
A plurality of lines whose lengths are different from each other and are incorporated in the sheet material so as to be parallel to each other along the deformation direction of the sheet material, and the respective electric resistances change by deformation in the surface direction of the sheet material. A step of calculating a difference in electrical resistance value of the conductive stretch material made of a state body;
And a step of measuring the operation of the wearer from the calculation result.
人体に装着されるシート材の変形により装着者の動作を測定する動作測定プログラムであって、
互いに長さが異なり、前記シート材の変形方向に沿ってかつ互いに平行となるように該シート材に組み込まれて、該シート材の面方向への変形によってそれぞれの電気抵抗が変化する複数の線状体からなる導電性伸縮材の電気抵抗値の差を演算するステップと、
この演算結果から前記装着者の動作を測定するステップと、を有することを特徴とする動作測定プログラム。
A motion measurement program for measuring a wearer's motion by deformation of a sheet material worn on a human body,
A plurality of lines whose lengths are different from each other and are incorporated in the sheet material so as to be parallel to each other along the deformation direction of the sheet material, and the respective electric resistances change by deformation in the surface direction of the sheet material. A step of calculating a difference in electrical resistance value of the conductive stretch material made of a state body;
And a step of measuring the operation of the wearer from the calculation result.
JP2016003533A 2016-01-12 2016-01-12 Motion measuring device, method, and program Active JP6673582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016003533A JP6673582B2 (en) 2016-01-12 2016-01-12 Motion measuring device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003533A JP6673582B2 (en) 2016-01-12 2016-01-12 Motion measuring device, method, and program

Publications (2)

Publication Number Publication Date
JP2017123911A true JP2017123911A (en) 2017-07-20
JP6673582B2 JP6673582B2 (en) 2020-03-25

Family

ID=59364643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003533A Active JP6673582B2 (en) 2016-01-12 2016-01-12 Motion measuring device, method, and program

Country Status (1)

Country Link
JP (1) JP6673582B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016916A (en) * 2016-07-29 2018-02-01 グンゼ株式会社 Posture detecting garment
JP2018169375A (en) * 2017-03-30 2018-11-01 セイコーエプソン株式会社 sensor
KR20190098635A (en) * 2018-02-14 2019-08-22 한국전자통신연구원 Abnormal behavior detection method
WO2021075812A3 (en) * 2019-10-14 2021-06-10 서울대학교병원 Lumbar posture correction assisting apparatus using fiber sensor
JP2022547943A (en) * 2019-09-09 2022-11-16 クロノライフ Stretch sensors and wearable articles containing stretch sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579436A (en) * 1980-05-31 1982-01-18 Uni Sutorasukuraido Za Method and apparatus for measuring joint motion
WO2005089645A1 (en) * 2004-03-24 2005-09-29 Dainippon Sumitomo Pharma Co., Ltd. Biological information measuring garment having sensor, biological information measuring system and equipment, and control method of equipment
JP2014025180A (en) * 2012-07-27 2014-02-06 Yamaha Corp Fabric and clothing with distortion sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579436A (en) * 1980-05-31 1982-01-18 Uni Sutorasukuraido Za Method and apparatus for measuring joint motion
WO2005089645A1 (en) * 2004-03-24 2005-09-29 Dainippon Sumitomo Pharma Co., Ltd. Biological information measuring garment having sensor, biological information measuring system and equipment, and control method of equipment
JP2014025180A (en) * 2012-07-27 2014-02-06 Yamaha Corp Fabric and clothing with distortion sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016916A (en) * 2016-07-29 2018-02-01 グンゼ株式会社 Posture detecting garment
JP2018169375A (en) * 2017-03-30 2018-11-01 セイコーエプソン株式会社 sensor
KR20190098635A (en) * 2018-02-14 2019-08-22 한국전자통신연구원 Abnormal behavior detection method
KR102550249B1 (en) 2018-02-14 2023-07-03 한국전자통신연구원 Abnormal behavior detection method
JP2022547943A (en) * 2019-09-09 2022-11-16 クロノライフ Stretch sensors and wearable articles containing stretch sensors
JP7405961B2 (en) 2019-09-09 2023-12-26 クロノライフ Articles worn and their use
WO2021075812A3 (en) * 2019-10-14 2021-06-10 서울대학교병원 Lumbar posture correction assisting apparatus using fiber sensor

Also Published As

Publication number Publication date
JP6673582B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6673582B2 (en) Motion measuring device, method, and program
Atalay et al. Comparative study of the weft-knitted strain sensors
Zhang et al. Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension
Huang et al. A wearable yarn-based piezo-resistive sensor
Zhang et al. Conductive knitted fabric as large-strain gauge under high temperature
JP5536943B2 (en) Motion detection system
JP7100982B2 (en) Capacitive telescopic touchpad
Huang et al. Parametric design of yarn-based piezoresistive sensors for smart textiles
KR20070029220A (en) A fabric sensor and a garment incorporting the sensor
WO2009001108A1 (en) Temperature sensor
Jiyong et al. Electrical properties of PPy-coated conductive fabrics for human joint motion monitoring
JP2017211985A (en) Wearable step counter system
Zhang Flexible textile-based strain sensor induced by contacts
Raji et al. Influence of rib structure and elastic yarn type variations on textile piezoresistive strain sensor characteristics
KR20180083220A (en) Pressure-measurable fabric and pressure detecting apparatus using the same
Xu et al. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles
Xie et al. Equivalent resistance calculation of knitting sensor under strip biaxial elongation
JP3782951B2 (en) Sensor and sensor output treatment device
CN111183613A (en) Method for sensing biological data and use thereof in bidirectional communication with a networked device
JP2017125291A (en) Conductive stretchable yarn, conductive stretchable fabric, and conductive stretchable knitted fabric
JP2012177565A (en) Tensile deformation detection fabric
Zhang et al. From wearable to aware: Intrinsically conductive electrotextiles for human strain/stress sensing
JP4345489B2 (en) Respiration monitor device
CN111044083B (en) Wearable sensor, forming method thereof and sensor module
CN112066868B (en) Bending degree detection unit, device and method and wearable equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6673582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250