JP2017122837A - Light diffusion body and surface light source device - Google Patents

Light diffusion body and surface light source device Download PDF

Info

Publication number
JP2017122837A
JP2017122837A JP2016001771A JP2016001771A JP2017122837A JP 2017122837 A JP2017122837 A JP 2017122837A JP 2016001771 A JP2016001771 A JP 2016001771A JP 2016001771 A JP2016001771 A JP 2016001771A JP 2017122837 A JP2017122837 A JP 2017122837A
Authority
JP
Japan
Prior art keywords
light
particle size
component
diffuser
scattering efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016001771A
Other languages
Japanese (ja)
Inventor
小池 康博
Yasuhiro Koike
康博 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016001771A priority Critical patent/JP2017122837A/en
Publication of JP2017122837A publication Critical patent/JP2017122837A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light diffusion body using a resin matrix formed from PC that obtains output light in which yellowing is suppressed.SOLUTION: Light from a white light source L is introduced into a light diffusion body 3 from a minor surface 1, advances so as to space apart from the light diffusion body, is scattered by light diffusion particles 5 in the advancing step, and is output as diffusion light in which yellowing is suppressed from a major surface 2. The light diffusion particles 5 have a predetermined particle size, and are dispersed in a PC resin matrix with a concentration of 0.01 wt.% to 1 wt.%. The most frequent particle size R1 giving a peak of particle size distribution exists per predetermined particle size. R1 is in a range where scattering efficiency of a blue light component is lower than scattering efficiency of a red light component and a green light component. A number ratio of the light diffusion particles 5 so that a deviation from the most frequent particle size is within 20% is controlled to 60% or more. A refractive index of each of scattering elements is in a range of 1.47-1.58.SELECTED DRAWING: Figure 1

Description

本発明は、光拡散体と同光拡散体を用いた面光源装置に関し、さらに詳しく言えば、ポリカーボネート(以下、「PC」と略称)を樹脂マトリックスとして用いた光拡散体、ならびに同光拡散体と白色光源とを組み合わせて白色の拡散出力光を得るようにした面光源装置に関する。   The present invention relates to a light source and a surface light source device using the same light diffuser. More specifically, the present invention relates to a light diffuser using polycarbonate (hereinafter abbreviated as “PC”) as a resin matrix, and the same light diffuser. The present invention relates to a surface light source device in which white diffused output light is obtained by combining a white light source.

樹脂マトリックス中に光拡散子として所定濃度で前記樹脂マトリックスと異なる屈折率を持つ多数の微粒子を分散させたものは、バックライトと種々の分野で光拡散体として用いられている。マトリックスに用いる樹脂として広く知られているのは、PMMA(ポリメチルメタクリレート)である。このPMMAは、その透明性、耐候性、低価格性のためよく使われている。しかし、PMMAには耐熱性の不足という問題があり、これに代わる樹脂材料としてポリカーボネート(PC)を採用する事が考えられる。   A resin matrix in which a large number of fine particles having a refractive index different from that of the resin matrix are dispersed at a predetermined concentration as a light diffuser is used as a light diffuser in backlights and various fields. PMMA (polymethyl methacrylate) is widely known as a resin used for the matrix. This PMMA is often used because of its transparency, weather resistance, and low cost. However, PMMA has a problem of insufficient heat resistance, and it is conceivable to employ polycarbonate (PC) as an alternative resin material.

このPCは、PMMAに比べて耐熱性に優れ機械的強度も高い。ところが、このPCを光拡散体の樹脂マトリックスに採用した場合、出力光に黄ばみが生じるという問題があった。特に光出力部のうち、光入力部から離れた側(遠い側)で出射される光に黄ばみが生じ易い。なお、このような現象は黄変と呼ばれることもある。   This PC has excellent heat resistance and high mechanical strength compared to PMMA. However, when this PC is employed in the resin matrix of the light diffuser, there is a problem that yellowing occurs in the output light. In particular, yellowing is likely to occur in light emitted from the light output unit on the side away from the light input unit (the far side). Such a phenomenon is sometimes called yellowing.

このような現象が生ずる主たる原因は、PC中に含まれるベンゼン環による青色光成分の吸収にあるものと思われる。即ち、ベンゼン環が存在することにより紫外光の波長領域から可視光中の青色光成分の波長領域にかけてかなりはっきりした吸収特性が認められる。拡散出力光の黄ばみの問題は、PMMAを樹脂マトリックスに用いた光拡散体においても無いわけではなく、その解決策として下記特許文献1がその一例である。同特許文献によれば、2種類の粒径(平均粒径)を持つ光拡散粒子を組み合わせてこの問題を解決している。一方、PCを樹脂マトリックスに用いて光拡散体を構成した場合の上記黄ばみの問題について光拡散粒子に工夫を加えてこれを解決した例は見当たらない。   The main cause of such a phenomenon seems to be the absorption of the blue light component by the benzene ring contained in the PC. That is, due to the presence of the benzene ring, a considerably clear absorption characteristic is recognized from the wavelength region of the ultraviolet light to the wavelength region of the blue light component in the visible light. The problem of yellowing of the diffused output light is not absent even in the light diffuser using PMMA as the resin matrix, and the following Patent Document 1 is an example of the solution. According to the patent document, this problem is solved by combining light diffusing particles having two types of particle sizes (average particle size). On the other hand, there is no example in which the light diffusing particles are devised to solve the above yellowing problem in the case where a light diffuser is formed using PC as a resin matrix.

特開2004−341446号公報JP 2004-341446 A

上述したように、PCを樹脂マトリックスに採用し同マトリックス中に光拡散粒子を所定濃度で一様に分散させて光拡散体を構成した場合、優れた耐熱性や機械的強度は得られるが、出力として得られる拡散光の黄ばみの問題はこれまでのところ未解決となっていた。本発明の目的は、この出力光の黄ばみの問題を解決した光拡散体及び同光拡散体を板状の光散乱導光体として用いた改良された面光源装置を提供することにある。   As described above, when PC is used as a resin matrix and light diffusing particles are uniformly dispersed in the matrix to form a light diffuser, excellent heat resistance and mechanical strength can be obtained. The problem of yellowing of diffused light obtained as output has so far been unsolved. An object of the present invention is to provide a light diffuser that solves the yellowing problem of the output light and an improved surface light source device that uses the light diffuser as a plate-like light scattering light guide.

請求項1に係る発明は、上記課題を解決するための基本的な手段を提供している。即ち、同発明によれば、ポリカーボネートからなる樹脂マトリックス中に所定の屈折率を有する光拡散粒子を所定の濃度で分散させた光拡散体が提供される。ここで、この光拡散体には白色光を入力するための光入力部と、前記光入力部から前記光拡散体内に入力された光が前記光入力部から離れるように前記光拡散体中を伝播する過程で拡散光を出力する面状の光出力部が設けられており、前記所定の屈折率は1.47〜1.58の範囲の値を持つ。なおこの屈折率値の上限値1.58は、PCの屈折率(1.59)を僅かに下回る値を意味する。一方下限値1.47は、後述する例で述べるPMMA系粒子の屈折率1.49を僅かに下回ると共に後述する参考例で取り上げるシリコーン系粒子の屈折率1.44を上回る値である。   The invention according to claim 1 provides basic means for solving the above-mentioned problems. That is, according to the invention, there is provided a light diffuser in which light diffusion particles having a predetermined refractive index are dispersed at a predetermined concentration in a resin matrix made of polycarbonate. Here, the light diffuser has a light input unit for inputting white light, and the light diffused from the light input unit into the light diffuser is separated from the light input unit. A planar light output unit that outputs diffused light in the process of propagating is provided, and the predetermined refractive index has a value in the range of 1.47 to 1.58. The upper limit value 1.58 of the refractive index value means a value slightly lower than the refractive index of PC (1.59). On the other hand, the lower limit value 1.47 is a value slightly lower than the refractive index 1.49 of PMMA-based particles described in an example described later and exceeding the refractive index 1.44 of silicone-based particles taken up in a reference example described later.

前記所定の濃度は、0.01wt%〜11wt%の範囲にある。また、前記光拡散粒子の粒径に対する個数分布について該分布のピークを与える最頻径R1を有する。そして、前記第1の最頻径R1に対し、0.8R1〜1.2R1の大きさの範囲内に60%以上の個数を含む光拡散粒子が使用される。更にこの前記R1は、青色光成分の散乱効率が赤色光成分の散乱効率及び緑色光成分の散乱効率の内の少なくとも一方を下回る範囲のうち、最も小粒径側に存在する一つの連続的な粒径範囲内に収まるように選択される。   The predetermined concentration is in the range of 0.01 wt% to 11 wt%. The number distribution of the light diffusing particles with respect to the particle diameter has a mode diameter R1 that gives a peak of the distribution. And the light-diffusion particle | grains which contain 60% or more in the range of the magnitude | size of 0.8R1-1.2R1 with respect to said 1st mode diameter R1 are used. Further, the R1 is one continuous current existing on the smallest particle size side in a range where the scattering efficiency of the blue light component is lower than at least one of the scattering efficiency of the red light component and the scattering efficiency of the green light component. It is selected to be within the particle size range.

ここで上記R1の粒径範囲については、前記青色光成分の散乱効率が、前記赤色光成分の散乱効率及び前記緑色光成分の散乱効率の両方を下回るようにすることがより好ましい(請求項2に係る発明)。   Here, with respect to the particle size range of R1, it is more preferable that the scattering efficiency of the blue light component is lower than both the scattering efficiency of the red light component and the scattering efficiency of the green light component (claim 2). Invention).

本発明に係る光拡散体の典型的形状として板状形状がある。この板状の光拡散体の場合、マイナー面によって光入力部を提供し、メジャー面によって光出力部を提供することができる(請求項3に係る発明)。   A typical shape of the light diffuser according to the present invention is a plate shape. In the case of this plate-like light diffuser, the light input portion can be provided by the minor surface, and the light output portion can be provided by the major surface (invention according to claim 3).

このような、板状の光拡散体の上記マイナー面に対して白色光を供給する一次光源を同光拡散体に組み合わせて配置すれば面光源装置を構成することができる(請求項4に係る発明)。なお、白色光源としては青色、緑色、赤色の発光色を持つLEDを組み合わせた周知のものを採用することができる。また、本明細書に於いて青色光成分、緑色光成分、赤色光成分を代表する各波長として通例にならい435nm、545nm、615nmを採用するものとする。   If a primary light source for supplying white light to the minor surface of the plate-like light diffuser is disposed in combination with the light diffuser, a surface light source device can be configured. invention). As the white light source, a known light source combining LEDs having blue, green, and red emission colors can be used. Further, in the present specification, 435 nm, 545 nm, and 615 nm are generally employed as the wavelengths representing the blue light component, the green light component, and the red light component.

本発明に係る光拡散体によれば、上記最頻粒径R1の粒径値範囲について、青色光成分の散乱効率が、赤色光成分や緑色光成分の散乱効率よりも小さくなるひとつの連続的な粒径範囲内に収まるように選択されているという条件と、±20%以内の粒径ばらつき程度に収まる粒子数割合が、60%を下回らないという粒子径の揃い方に関する条件とを通してベンゼン環による青色光成分の吸収の効果(黄ばみの主因)を相当程度緩和することができる。板状の光拡散体の場合、光出力部を提供するメジャー面から出力される拡散光について光入力部(マイナー面)から離れた位置においても黄ばみが目立たなくなる。このような光拡散体のマイナー面に白色光を供給する一次光源を配置すれば、黄ばみの抑えられた照明光を提供する面光源装置を構成することができる。   According to the light diffuser according to the present invention, in the particle size value range of the mode particle size R1, one continuous light scattering efficiency of the blue light component is smaller than that of the red light component and the green light component. Benzene ring through a condition that the particle size is selected to be within a range of particle sizes and a condition that the number of particles that fall within a variation in particle size within ± 20% does not fall below 60%. The effect of absorption of the blue light component by (a main cause of yellowing) can be moderated to some extent. In the case of a plate-like light diffuser, yellowing is not noticeable even at a position away from the light input portion (minor surface) for diffused light output from the major surface that provides the light output portion. If a primary light source that supplies white light is arranged on the minor surface of such a light diffuser, a surface light source device that provides illumination light with reduced yellowing can be configured.

本発明に従った光拡散体を用いた面光源装置の基本構成図である。1 is a basic configuration diagram of a surface light source device using a light diffuser according to the present invention. PC樹脂に対して屈折率1.49を有するPMMA系粒子を分散させた場合の色別散乱効率の理論値を光拡散粒子の粒径に対してプロットしたグラフである。It is the graph which plotted the theoretical value of the scattering efficiency according to color at the time of disperse | distributing the PMMA type | system | group particle | grains which have a refractive index of 1.49 with respect to PC resin with respect to the particle size of light-diffusion particle. PC樹脂に対して屈折率1.54を有する光拡散粒子を分散させた場合の色別散乱効率の理論値を光拡散粒子の粒径に対してプロットしたグラフである。It is the graph which plotted the theoretical value of the scattering efficiency according to color at the time of dispersing the light-diffusion particle which has a refractive index of 1.54 with respect to PC resin with respect to the particle size of a light-diffusion particle. PC樹脂に対して屈折率1.44を有するシリコーン系粒子を分散させた場合の色別散乱効率の理論値を光拡散粒子の粒径に対してプロットしたグラフである。It is the graph which plotted the theoretical value of the scattering efficiency according to color at the time of disperse | distributing the silicone type particle | grains which have refractive index 1.44 with respect to PC resin with respect to the particle size of light-diffusion particle | grains. PC樹脂マトリックス中に2μm、5μm、10μmの各最頻粒径を持つ光散乱子を1wt%の濃度で一様に分散させたフィルムについて相対分光透過率を実測して得られたグラフである。It is the graph obtained by actually measuring the relative spectral transmittance about the film which disperse | distributed the light scatterer which has each mode particle diameter of 2 micrometers, 5 micrometers, and 10 micrometers uniformly in the concentration of 1 wt% in PC resin matrix. PC樹脂マトリックス中に2μm、5μm、10μmの各最頻粒径を持つ光散乱子を0.5wt%の濃度で一様に分散させたフィルムについて相対分光透過率を実測して得られたグラフである。A graph obtained by actually measuring the relative spectral transmittance of a film in which light scatterers having mode diameters of 2 μm, 5 μm, and 10 μm are uniformly dispersed in a PC resin matrix at a concentration of 0.5 wt%. is there. PC樹脂マトリックス中に2μm、5μm、10μmの各最頻粒径を持つ光散乱子を0.2wt%の濃度で一様に分散させたフィルムについて相対分光透過率を実測して得られたグラフである。A graph obtained by actually measuring the relative spectral transmittance of a film in which light scatterers having mode diameters of 2 μm, 5 μm, and 10 μm are uniformly dispersed in a PC resin matrix at a concentration of 0.2 wt%. is there. 図5から図7のグラフにおいて最頻粒径5μmの光拡散粒子として用いた製品の粒径範囲別個数分布を示すグラフである。It is a graph which shows the particle size range distinct number distribution of the product used as the light-diffusion particle | grains with the mode particle diameter of 5 micrometers in the graph of FIGS. 図8に示した粒径範囲別グラフに対応する粒径分布を持つ製品(最頻粒径=5μm)に加えて、10μm及び15μmの最頻粒径(公称粒子サイズ)を持つ製品について最頻粒径R1±20%の範囲に収まる粒子個数割合を表形式で示したものである。In addition to products having a particle size distribution corresponding to the graph by particle size range shown in FIG. 8 (mode particle size = 5 μm), products having mode particle sizes (nominal particle size) of 10 μm and 15 μm are mode. The ratio of the number of particles falling within the range of the particle size R1 ± 20% is shown in a tabular form.

先ず、図1を参照すると本発明に従った光拡散体を用いた面光源装置の基本構成が示されている。光拡散体全体は、符号3で示されており板状の形状を有している。光拡散体3の一つのマイナー面(側面)1が光入力部を提供しており、一つのメジャー面(表面)2が光出力部を提供している。但し、メジャー面2についてその一部のみを光出力部として利用する場合もある。例えばメジャー面2の枠状外縁部を除いた矩形領域を面光源装置の光出力部としてもよい。符号Lは、マイナー面1のほぼ全体にわたって一様な白色光を供給するために配置された一次光源を表している。一次光源Lとしては、3色(青、赤、緑)の光を出射するLEDを利用した周知の白色光LEDが利用できる。   First, referring to FIG. 1, there is shown a basic configuration of a surface light source device using a light diffuser according to the present invention. The entire light diffuser is denoted by reference numeral 3 and has a plate shape. One minor surface (side surface) 1 of the light diffuser 3 provides a light input portion, and one major surface (surface) 2 provides a light output portion. However, only a part of the major surface 2 may be used as the light output unit. For example, a rectangular area excluding the frame-shaped outer edge portion of the major surface 2 may be used as the light output portion of the surface light source device. The symbol L represents a primary light source arranged to supply uniform white light over almost the entire minor surface 1. As the primary light source L, a known white light LED using LEDs that emit light of three colors (blue, red, and green) can be used.

光拡散体3は、PCからなる樹脂マトリックス中に所定濃度で光拡散粒子5を一様に分散させたものである。一次光源Lから出射された白色光は、マイナー面1から光拡散体3内に導入される。この光は、光拡散体3内をマイナー面1から離れるように伝播する(以下この光拡散体3内を伝播する光を内部伝播光と呼ぶことにする)。内部伝播光は、その伝播過程で光拡散粒子による散乱作用を繰り返し受ける。この散乱作用によってメジャー面に内部入射する光成分が少しずつ生成され、更にこの内部入射光の内、臨界角未満の内部入射角を持つ成分がメジャー面2から外部に出射され、この光の全部または一部が、面光源装置の照明出力光として利用される。   The light diffusing body 3 is obtained by uniformly dispersing light diffusing particles 5 at a predetermined concentration in a resin matrix made of PC. White light emitted from the primary light source L is introduced into the light diffuser 3 from the minor surface 1. This light propagates in the light diffuser 3 away from the minor surface 1 (hereinafter, the light propagating in the light diffuser 3 will be referred to as internal propagation light). Internally propagated light is repeatedly subjected to the scattering action by the light diffusing particles in the propagation process. Due to this scattering action, a light component internally incident on the major surface is generated little by little, and further, a component having an internal incident angle less than the critical angle is emitted from the major surface 2 to the outside. Or a part is utilized as illumination output light of a surface light source device.

なお、板状の光拡散体3の厚さは、例えば0.3mmであり、幅(マイナー面1の長手方向の長さ)は8cm、奥行き(メジャー面2の長手方向の長さ)は、15cmである。但し、これら諸サイズについては用途(例えばスマートフォンのディスプレイ用バックライト)等に応じて適宜選択することができる。実際的な観点から言えば、光拡散体の厚さは0.1mmから1cm程度、メジャー面サイズは5cm×8cmから50cm×80cm程度とする事が考えらえる。また場合によっては、光出力部を光拡散体3の表裏両面に設けてそれらから出射される光を出力照明光として利用することもあり得る。更に、光拡散体3の裏面に沿って反射体(例えばAl箔)を配置してもよい。また、光拡散体3の裏面にプリズム状の凹凸等を設けることもある。   The thickness of the plate-like light diffuser 3 is, for example, 0.3 mm, the width (length in the longitudinal direction of the minor surface 1) is 8 cm, and the depth (length in the longitudinal direction of the major surface 2) is 15 cm. However, these various sizes can be appropriately selected according to the use (for example, a backlight for a display of a smartphone). From a practical viewpoint, it can be considered that the thickness of the light diffuser is about 0.1 mm to 1 cm, and the major surface size is about 5 cm × 8 cm to 50 cm × 80 cm. In some cases, light output portions may be provided on both the front and back surfaces of the light diffuser 3, and light emitted from them may be used as output illumination light. Furthermore, you may arrange | position a reflector (for example, Al foil) along the back surface of the light diffusing body 3. In addition, prism-like irregularities may be provided on the back surface of the light diffuser 3.

光拡散体3の樹脂マトリックスを構成するPC中に、一様に分散されている光拡散粒子5の含有濃度(以下単に濃度とも言う)は、0.01wt%(重量%)から1wt%(重量%)の範囲とする。光拡散粒子5には屈折率が1.47から1.58の範囲にあるものが採用される。いうまでもなく、光拡散粒子5に内部伝播光を散乱する機能を発揮させるためには、光拡散粒子5の屈折率がマトリックス樹脂を構成するPCの屈折率(1.59)と異なっていることが最低限の条件となる。本発明では、これを前提にしたうえで既述した趣旨に従って光拡散粒子の屈折率の範囲を1.47〜1.58としている。   The concentration of the light diffusing particles 5 uniformly dispersed in the PC constituting the resin matrix of the light diffusing body 3 (hereinafter also simply referred to as the concentration) ranges from 0.01 wt% (wt%) to 1 wt% (weight). %). As the light diffusing particles 5, particles having a refractive index in the range of 1.47 to 1.58 are employed. Needless to say, the refractive index of the light diffusing particles 5 is different from the refractive index (1.59) of the PC constituting the matrix resin in order for the light diffusing particles 5 to exhibit the function of scattering the internal propagation light. Is the minimum requirement. In the present invention, on the assumption of this, the range of the refractive index of the light diffusing particles is set to 1.47 to 1.58 in accordance with the purpose described above.

光拡散粒子の濃度については、過剰に大きいと光入力部から離れた位置まで内部伝播光を充分に送り届ける事が困難になる。逆に、濃度が小さすぎると光拡散能力の不足を生ずる。従って光拡散体3の奥行サイズ(内部伝播光を送り届ける必要のある距離)等を考慮して好ましい値を選べばよい訳であるが、本発明においては現実的な範囲として0.01wt%から1wt%の範囲を選択している。   If the concentration of the light diffusing particles is excessively large, it is difficult to sufficiently deliver the internally propagating light to a position away from the light input portion. On the contrary, if the concentration is too small, the light diffusing ability is insufficient. Accordingly, it is sufficient to select a preferable value in consideration of the depth size of the light diffuser 3 (distance where the internally propagating light needs to be delivered) and the like. However, in the present invention, a practical range is 0.01 wt% to 1 wt%. % Range is selected.

光拡散粒子の具体的な例として、JX日鉱日石エネルギー株式会社製の「ユニパウダー(登録商標)」があり、公称粒径公称粒子サイズとしては、例えば2μm、3μm、5μm、10μm、及び15μm等多様なものがある。これらの製品のうち5μmのものは本実施例において採用可能な例となっている。   As a specific example of the light diffusing particles, there is “Unipowder (registered trademark)” manufactured by JX Nippon Oil & Energy Corporation, and the nominal particle size is, for example, 2 μm, 3 μm, 5 μm, 10 μm, and 15 μm. And so on. Of these products, 5 μm is an example that can be used in this embodiment.

ところで、実際の製品における公称粒径は、最頻粒径を実質的に意味していると考えられる。即ち、実際の製品においては全粒が公称粒径に正確に一致する粒径を持っているわけではなく最頻粒径(公称粒径)をピークとしてある程度の粒子径のばらつきを持って分布している。例えば上記した製品のうち5μm、10μm、及び15μmの粒子について、その仕様書に基づいて最頻粒径とその周辺±20%の粒径の範囲に収まる粒子個数の割合(個数分率)を示せば図9に記した表のとおりである。   By the way, it is considered that the nominal particle size in an actual product substantially means the mode particle size. In other words, in an actual product, not all grains have a particle size that exactly matches the nominal particle size, but are distributed with a certain degree of particle size variation with the mode particle size (nominal particle size) as a peak. ing. For example, for 5 μm, 10 μm, and 15 μm particles in the above products, indicate the ratio of the number of particles (number fraction) that falls within the range of the mode particle size and the surrounding ± 20% particle size based on the specifications. As shown in the table of FIG.

同表から判るように、粒径の揃い方として最頻粒径(以下記号R1で表記)から±20%の範囲内の粒径ばらつきに収まる個数の割合が60%以上であるような光拡散粒子を入手することは一般に困難でない。ちなみに、図9の表中に挙げた最頻粒径5μmの光拡散粒子について1μmきざみで個数分布を棒グラフで図8に示した。なお、本明細書において最頻粒径とは図8の例に描かれているように1μm、2μm、3μm、・・・・・・・・という具合に1μm刻みで粒径目盛りを取った時に各目盛り1μm、2μm、3μm、・・・・・・・・のそれぞれを中心として±0.5μmの粒子径領域に収まる粒子の数ごとに棒グラフを考え最も大きな個数割合を与えるマイクロメーター刻みの目盛値を最頻粒径と言う事にする。この定義に照らして図8に示した例は正に最頻粒径5μmにあてはまるものとなっている。   As can be seen from the table, as a method of aligning the particle size, the light diffusion is such that the ratio of the number within the range of ± 20% from the mode particle size (hereinafter referred to as R1) is 60% or more. Obtaining particles is generally not difficult. Incidentally, the number distribution of the light diffusing particles having a mode particle diameter of 5 μm listed in the table of FIG. 9 in units of 1 μm is shown as a bar graph in FIG. In the present specification, the mode particle size is 1 μm, 2 μm, 3 μm,..., As depicted in the example of FIG. Each scale 1μm, 2μm, 3μm, …………………………………………………………………………………………………………………………………………………. The value is referred to as the mode particle size. In light of this definition, the example shown in FIG. 8 is exactly applicable to the mode particle size of 5 μm.

さて、光拡散粒子5は前述した通り内部伝播光を散乱し方向転換させるものであるがこの散乱は、粒子径が本発明で想定しているような大きさの範囲においては、ミー散乱と呼ばれる現象として扱うことができる。このミー散乱理論によれば各散乱における散乱効率は、光拡散粒子の粒径に応じて変化する。またその変化の仕方は、散乱される光の波長及び光拡散粒子と樹脂マトリックスの屈折率の関係によっても異なったものとなる。   The light diffusing particle 5 scatters and redirects the internally propagating light as described above. This scattering is called Mie scattering in the range where the particle diameter is assumed in the present invention. Can be treated as a phenomenon. According to the Mie scattering theory, the scattering efficiency in each scattering changes according to the particle size of the light diffusing particles. The method of the change varies depending on the wavelength of scattered light and the relationship between the refractive index of the light diffusing particles and the resin matrix.

粒子径に応じた散乱効率(ミー散乱)の効率の変化の例を図2から図4に示した。まず、図2に示した例は、PC樹脂マトリックス(屈折率=1.59)中に分散された屈折率1.49の光拡散粒子について青色光成分(435nm)、緑色光成分(545nm)、赤色光成分(615nm)の散乱効率の理論値を光散乱子の粒径に対してプロットしたグラフである。このグラフから明らかなように、3色それぞれの散乱効率推移を表す曲線はいずれも粒径の増大に従って繰り返し波うつ形をしており、短波長のものほど粒径変化に対する立上り及び立下りが急になっている。   Examples of changes in the efficiency of the scattering efficiency (Mie scattering) according to the particle diameter are shown in FIGS. First, the example shown in FIG. 2 shows a blue light component (435 nm), a green light component (545 nm), and a light diffusion particle having a refractive index of 1.49 dispersed in a PC resin matrix (refractive index = 1.59), It is the graph which plotted the theoretical value of the scattering efficiency of a red light component (615 nm) with respect to the particle size of a light scatterer. As can be seen from this graph, the curves representing the transition of the scattering efficiency of each of the three colors all have a repeated wave-depressing shape as the particle size increases. The shorter the wavelength, the faster the rise and fall with respect to the particle size change. It has become.

本発明では、青色光成分のグラフについて最初の立上りピーク(粒径2.5μm付近に対応)に続いて到来する最初の立下りからその下限ピーク(粒径5μm付近に対応)を経て2回目の立上りのピーク(粒径7μm付近に対応)の範囲に注目する。この範囲(粒径2.5μm〜7μm)において、残りの2色の光のグラフとの関係を考察してみると、まず粒径3μm付近で緑色光成分の曲線と交差し更に同じく緑色光成分の曲線と粒子径5.7μm付近で再度交差する。つまり粒径3μm〜5.7μmの連続的範囲については青色光成分の散乱効率が緑色光成分の散乱効率を下回っている。このような緑色光成分の散乱が青色光成分の散乱に比べて優勢であってかつ最も小粒子径側にある連続粒子径領域を便宜上「緑優勢区間」と呼ぶことにする。したがって本例では緑優勢区間は3μm〜5.7μmの範囲となるわけである。   In the present invention, for the blue light component graph, the first rising peak (corresponding to a particle size of around 2.5 μm) followed by the lower limit peak (corresponding to a particle size of around 5 μm) after the first falling peak, the second time. Note the range of the rising peak (corresponding to a particle size of around 7 μm). In this range (particle size 2.5 μm to 7 μm), when considering the relationship with the remaining two colors of light graphs, first the green light component intersects with the green light component curve near the particle size of 3 μm. Crosses with the curve again at around the particle size of 5.7 μm. That is, in the continuous range of the particle diameter of 3 μm to 5.7 μm, the scattering efficiency of the blue light component is lower than the scattering efficiency of the green light component. Such a continuous particle diameter region in which the scattering of the green light component is more dominant than the scattering of the blue light component and is on the smallest particle diameter side is referred to as a “green dominant section” for convenience. Therefore, in this example, the green dominant section is in the range of 3 μm to 5.7 μm.

次に同様の考察から、粒径3.2μmから6.3μmの連続的範囲おいて青色光成分の散乱効率が、赤色光成分の散乱効率を下回っている。そこで、このような最も小粒子径側で赤色光成分の散乱が青色光成分の散乱に比べて優勢となる連続粒子径領域を「赤優勢区間」と呼ぶことにする。したがってこの場合の赤優勢区間は3.2μm〜6.3μmとなる。   Next, from the same consideration, the scattering efficiency of the blue light component is lower than the scattering efficiency of the red light component in the continuous range of the particle size of 3.2 μm to 6.3 μm. Therefore, such a continuous particle size region in which the scattering of the red light component becomes more dominant than the scattering of the blue light component on the smallest particle diameter side will be referred to as a “red dominant section”. Therefore, the red dominant section in this case is 3.2 μm to 6.3 μm.

次に、別の例としてPC樹脂マトリックス(屈折率=1.59)中に屈折率1.54の光拡散粒子が分散されている場合について青色光成分(435nm)、緑色光成分(545nm)、赤色光成分(615nm)の散乱効率の理論値を光拡散粒子の粒径に対してプロットしたグラフを図3として示した。図2のグラフの場合と同様に、3色それぞれの散乱効率推移を表す曲線はいずれも波型であり、短波長のものほど粒径変化に対する立上り及び立下りが急になっている。この例においても、図2のグラフと同様の考察を行い上記の便宜的呼称を用いてこのグラフの特徴を記せば次のようになる。すなわち、本例においては緑優勢区間は粒径5.5μm〜10.5μmの粒子径範囲となる。そして、赤優勢区間については、粒径6.0μm〜11.8μmの粒子径範囲となる。   Next, as another example, when light diffusion particles having a refractive index of 1.54 are dispersed in a PC resin matrix (refractive index = 1.59), a blue light component (435 nm), a green light component (545 nm), A graph in which the theoretical value of the scattering efficiency of the red light component (615 nm) is plotted against the particle size of the light diffusing particles is shown in FIG. As in the case of the graph of FIG. 2, the curves representing the transition of the scattering efficiency of each of the three colors are all wave-shaped, and the rise and fall with respect to the particle size change become steeper as the wavelength becomes shorter. In this example as well, the same consideration as in the graph of FIG. 2 is performed, and the characteristics of this graph are described using the above-mentioned convenient names. That is, in this example, the green dominant section has a particle size range of 5.5 μm to 10.5 μm. And about a red dominant area, it becomes a particle diameter range with a particle size of 6.0 micrometers-11.8 micrometers.

本発明では、上記2つの例で示したような緑優勢区間及び赤優勢区間の合併区間(集合論的な意味における和)、あるいは両優勢区間の共通区間(集合論的な意味で積)内に最頻粒径R1を持つ光拡散粒子を使用することを基本的コンセプトとして採用する。このコンセプトの採用により、青色光成分の散乱が、光拡散体3の光入力部(図1の例ではマイナー面1)から近い位置で過剰に生じて光出力部(図1の例ではメジャー面2)から出力されてしまうことが抑制される。言い換えれば、光入力部から遠い位置まで青色光成分を伝播させた後に、光拡散粒子による散乱作用を通して光出力部から出射されるようにすることが容易になる。このことは、PC特有の事情であるベンゼン環による青色光成分の吸収の効果を考慮すると非常に意義のある事である。   In the present invention, within the merged section (sum in the set theory sense) of the green dominant section and the red dominant section as shown in the above two examples, or in the common section (product in the set theory sense) of both dominant sections. The basic concept is to use light diffusing particles having the most frequent particle size R1. By adopting this concept, the scattering of the blue light component occurs excessively at a position near the light input portion (minor surface 1 in the example of FIG. 1) of the light diffuser 3, and the light output portion (major surface in the example of FIG. 1). 2) is suppressed from being output. In other words, after the blue light component is propagated to a position far from the light input part, it is easy to be emitted from the light output part through the scattering action by the light diffusing particles. This is very significant in consideration of the effect of absorption of the blue light component by the benzene ring, which is a situation peculiar to PC.

ちなみに図2の両優勢区間の合併区間は3μm〜6.3μmの区間となり、共通区間はそれよりも短波長側、長波長側双方で若干絞られた区間、3.2μm〜5.7μmの区間となる。また、図3の例では合併区間は5.5μm〜11.8μmの区間となり、共通区間は6.0μm〜10.5μmの区間となる。   Incidentally, the merged section of both dominant sections in FIG. 2 is a section of 3 μm to 6.3 μm, and the common section is a section slightly narrowed on both the short wavelength side and the long wavelength side, and a section of 3.2 μm to 5.7 μm. It becomes. In the example of FIG. 3, the merged section is a section of 5.5 μm to 11.8 μm, and the common section is a section of 6.0 μm to 10.5 μm.

本発明では、このような合併区間内、更に好ましくは共通区間内に最頻粒径R1をもつ光拡散粒子を使用する訳である。ところが実際に使用される光拡散粒子においては既述したような粒子径バラつきがある。したがって一見したところでは合併区間あるいは共通区間の各両端付近にR1が存在するケースにおいては、本発明の上述した基本コンセプトに疑義を生ずるようにも思われる。   In the present invention, the light diffusing particles having the mode diameter R1 are used in such a merged section, more preferably in the common section. However, the light diffusion particles that are actually used have a variation in particle diameter as described above. Therefore, at first glance, in the case where R1 exists near both ends of the merged section or the common section, it seems that the above-described basic concept of the present invention is questioned.

然るに図2、図3の両図において合併区間及び共通区間の各両端付近における各曲線の挙動を詳細にみてみると、各区間の中央付近(図2においては5μm付近、図3においては9μm付近)側に向かって青色光成分の散乱効率と緑色光成分および赤色光成分の各散乱効率との差異が急激に大きくなっている。一方、合併区間あるいは共通区間の各両端付近の外側の粒径領域における3色成分の曲線の挙動をみてみると、そのような大きな差異はみられない(青色光成分の散乱効率と緑赤各光成分の散乱効率との大小関係は逆転していることに注意)。   2 and 3 show the behavior of each curve in the vicinity of both ends of the merged section and the common section. In the vicinity of the center of each section (in the vicinity of 5 μm in FIG. 2 and in the vicinity of 9 μm in FIG. 3). The difference between the scattering efficiency of the blue light component and the scattering efficiency of the green light component and the red light component suddenly increases toward the) side. On the other hand, when looking at the behavior of the curve of the three color components in the outer particle size region near both ends of the merged section or the common section, such a large difference is not seen (blue light component scattering efficiency and green-red each Note that the magnitude relationship with the light component scattering efficiency is reversed.

このことから最頻粒径R1が合併区間あるいは共通区間のいずれの端部付近にあっても青色光成分の散乱効率の相対的な落ち込みの効果が勝り本発明の基本コンセプトは保たれる。もちろん図2、図3の各例において各区間の中央付近すなわち5μm付近(図2のケース)や9μm(図3のケース)に最頻粒径を持つ光拡散粒子を使用することは非常に好ましいことである。   From this, even if the mode particle size R1 is in the vicinity of either end of the merged section or the common section, the effect of the relative drop in the scattering efficiency of the blue light component is excellent and the basic concept of the present invention is maintained. Of course, in each of the examples of FIGS. 2 and 3, it is very preferable to use light diffusing particles having a mode diameter near the center of each section, that is, around 5 μm (the case in FIG. 2) or 9 μm (the case in FIG. 3). That is.

次に、光散乱粒子の屈折率と樹脂マトリックスであるPCの屈折率(1.59)の関係について考えてみる。上記説明した図2の例では光拡散粒子の屈折率は1.49であり、図3の例では光拡散粒子の屈折率は1.54である。つまり図3のケースの方が図2のケースよりも光拡散粒子−樹脂マトリックス間の屈折率差は小さい。   Next, consider the relationship between the refractive index of the light scattering particles and the refractive index (1.59) of the resin matrix PC. In the example of FIG. 2 described above, the refractive index of the light diffusing particles is 1.49, and in the example of FIG. 3, the refractive index of the light diffusing particles is 1.54. That is, the refractive index difference between the light diffusion particle and the resin matrix is smaller in the case of FIG. 3 than in the case of FIG.

ここで図2、図3の各曲線群の波打ち挙動を比較してみると明らかに図2における曲線群の波打ちの方が図3における曲線群の波打ちよりも短い粒子径間隔で起こっている。そして、これに対応した結果として上記した合併区間及び共通区間が図3の方が大きくなっている。これらのことは次のことを示唆している。すなわち樹脂マトリックスと光拡散粒子の屈折率差が大きいほど散乱効率推移を表す曲線の波打ちが短周期的に起こると推測される。   Here, when comparing the undulation behavior of each curve group in FIG. 2 and FIG. 3, the undulation of the curve group in FIG. 2 occurs with a shorter particle diameter interval than the undulation of the curve group in FIG. As a result corresponding to this, the merged section and the common section described above are larger in FIG. These things suggest the following. That is, it is presumed that the larger the difference in refractive index between the resin matrix and the light diffusing particles, the shorter the period of the undulation of the curve representing the scattering efficiency transition.

この推測はここでは省略するが、ミー散乱理論の詳細から得られる結論に適合しているところでもある。この事実の一つの証左といえる例としてPC樹脂マトリックス中に屈折率1.44を有するシリコーン系粒子を光拡散粒子として分散させた場合の色別散乱効率を図2及び図3と同じ形式で図4に示した。このケースにおける3色光成分の各曲線の挙動の様子をみればただちにわかるように波打ちの頻度が図2のケースより更に激しくなっている。その結果上述した合併区間及び共通区間に相当する区間がいずれも非常に狭いものとなっている。数値でいえば、合併区間に相当しているのは2.0μm〜4.2μmであり、共通区間に相当しているのは2.2μm〜3.7μmである。つまりこのようにPC樹脂マトリックスとの屈折率差が大きくなると急速に合併区間や共通区間が狭くなってしまう。そのため上述した最頻粒径のまわりの粒子径のバラつきの効果によって最頻粒径R1をそのような区間内のどこにとっても本発明の先述した基本コンセプトを保つことが難しくなる。   This guess is omitted here, but it also fits the conclusions obtained from the details of the Mie scattering theory. As an example of this fact, the scattering efficiency by color in the case where silicone particles having a refractive index of 1.44 are dispersed as light diffusing particles in a PC resin matrix in the same form as in FIGS. This is shown in FIG. As can be seen immediately from the behavior of the curves of the three color light components in this case, the frequency of undulations is even more intense than in the case of FIG. As a result, both the merged section and the section corresponding to the common section described above are very narrow. Speaking numerically, those corresponding to the merged section are 2.0 μm to 4.2 μm, and those corresponding to the common section are 2.2 μm to 3.7 μm. That is, when the refractive index difference from the PC resin matrix becomes large in this way, the merged section and the common section are rapidly narrowed. For this reason, the above-described basic concept of the present invention is difficult to maintain for the mode particle size R1 anywhere in such a section due to the effect of the particle size variation around the mode particle size described above.

以上図2から図4のグラフについての議論を踏まえて本発明で採用できる光拡散粒子の屈折率の下限を1.49と1.44の中央値よりも若干高めの1.47とすることにした。   Based on the discussion about the graphs of FIGS. 2 to 4, the lower limit of the refractive index of the light diffusing particles that can be employed in the present invention is 1.47, which is slightly higher than the median of 1.49 and 1.44. did.

ここで、これまで説明してきた青色光成分の散乱効率が相対的に低い粒子径区間に最頻粒径R1を持ってくることによって黄ばみの抑制の効果が得られることの確認のために行った簡単な分光透過率測定について図5〜図7を参照して説明しておく。図5〜図7はいずれも3種の最頻粒径R1(2μm、5μm、10μm)を持つ光拡散粒子を順に1wt%、0.5wt%、0.2wt%の濃度で一様にPC樹脂マトリックス中に分散させた光拡散体フィルム(板状の光拡散体の一つの形態)をそれぞれ用意し(9種類のフィルム)について周知の手法にしたがって分光透過率スペクトルを得たものである。光拡散粒子としては屈折率1.49を持つPMMA系粒子(先述したユニパウダー(登録商標))を使用した。なお、図5〜図7のいずれにおいても縦軸は相対分光透過率を表している。ここで相対分光透過率とは500nmにおける分光透過率を1とする規格化を行った場合の各光波長における透過率を表したものである。   Here, it was performed to confirm that the effect of suppressing yellowing can be obtained by bringing the mode particle size R1 to the particle size section in which the scattering efficiency of the blue light component described so far is relatively low. Simple spectral transmittance measurement will be described with reference to FIGS. 5 to 7 all show uniform diffusion of light diffusion particles having the three most frequent particle diameters R1 (2 μm, 5 μm, and 10 μm) in the order of 1 wt%, 0.5 wt%, and 0.2 wt%. Each of the light diffuser films (one form of plate-like light diffuser) dispersed in the matrix is prepared (9 types of films), and the spectral transmittance spectrum is obtained according to a known method. As the light diffusing particles, PMMA-based particles (Unipowder (registered trademark) described above) having a refractive index of 1.49 were used. In any of FIGS. 5 to 7, the vertical axis represents the relative spectral transmittance. Here, the relative spectral transmittance represents the transmittance at each light wavelength when the spectral transmittance at 500 nm is normalized to 1.

図5〜図7のいずれのケースにおいても、最頻粒径R1=2μmとしたフィルムに対する測定で得られた相対分光透過率のスペクトルは明瞭な右肩上がりの推移を示している。換言すれば長波長側(赤色光側)ほど透過率が高くなっている傾向を表している。このことは、赤色光成分に比べて青色光成分を内部伝播させることが相対的に困難であることを明瞭に示している。さらに、詳しくみてみると濃度が高い順に右肩上がりの傾向が強いことがわかる。これは2μmという最頻粒径を持つ光拡散粒子による散乱効果により青色光成分の相対的な伝播能力の低下を招いている一つの証左と考えられる。   In any case of FIGS. 5 to 7, the spectrum of the relative spectral transmittance obtained by the measurement with respect to the film having the mode diameter R1 = 2 μm shows a clear upward trend. In other words, the transmittance tends to be higher as the wavelength is longer (red light side). This clearly shows that it is relatively difficult to internally propagate the blue light component compared to the red light component. Furthermore, if you take a closer look, you can see that there is a strong upward trend in order of increasing density. This is considered to be one proof that the relative propagation ability of the blue light component is reduced due to the scattering effect of the light diffusing particles having the mode diameter of 2 μm.

ただし、樹脂マトリックスであるPC中に含まれるベンゼン環の青色光成分吸収効果が図5〜図7のいずれのケースにおいてもほぼ等しくベースとして乗っていることはいうまでもない。このようにR1=2μmの光拡散粒子を使用した場合では、本発明が目指している光拡散体が得られ難いことは明白である。またこのことは図2〜図4を参照して明らかにした本発明の基本コンセプトに照らして当然のことでもある。   However, it goes without saying that the blue light component absorption effect of the benzene ring contained in the PC which is the resin matrix is almost the same as the base in any case of FIGS. Thus, it is obvious that the light diffusing body aimed by the present invention is difficult to obtain when the light diffusing particles of R1 = 2 μm are used. This is also natural in light of the basic concept of the present invention clarified with reference to FIGS.

次にR1=5μmの光拡散粒子を使用したケースでは、図5〜図7のいずれの濃度においても相対分光透過率のカーブは概ねフラットとなっている。ただし、より詳しくみてみると図5のケース(濃度1.0wt%)においては青色光成分の代表波長435nmに近い410nm付近から緑色光成分及び赤色光成分の全体にわたる波長領域においてゆるい右肩下がりの推移を示している。つまり、青色光成分が緑色光成分や赤色光成分よりもむしろやや伝播し易くなっていることを示している。   Next, in the case of using light diffusion particles with R1 = 5 μm, the relative spectral transmittance curve is almost flat at any of the concentrations in FIGS. However, in more detail, in the case of FIG. 5 (concentration: 1.0 wt%), the trend of a gradual downward slope in the wavelength range from 410 nm near the representative wavelength of 435 nm of the blue light component to the whole of the green light component and the red light component. Is shown. That is, it is shown that the blue light component is somewhat easier to propagate than the green light component and the red light component.

また、図6及び図7のケースでは右肩下がりとはいえないが、はっきりした右肩上がりでもなくほぼ平坦といえる。したがって、図6及び図7のケースにおいても青色光成分の内部伝播の能力が緑色光成分や赤色光成分の内部伝播能力に比べて特に劣っているとはいえない。これらの事実は先述したとおり5μmという最頻粒径が、図2を参照して説明した合併区間及び共通区間のほぼ中央値に相当していることと符合する。   In addition, in the cases of FIGS. 6 and 7, it cannot be said that the right shoulder is lowered, but it can be said that it is not flat but is almost flat. Therefore, even in the cases of FIGS. 6 and 7, it cannot be said that the internal propagation ability of the blue light component is particularly inferior to the internal propagation ability of the green light component and the red light component. These facts coincide with the fact that the mode particle diameter of 5 μm corresponds to the approximately median value of the merged section and the common section described with reference to FIG. 2 as described above.

次にR1=10μmの光拡散粒子を使用したケースについて考察してみる。まず、図5〜図7いずれのケースについてもいえることはR1=5μmの分光透過率を表す曲線と比較的類似しているとはいえ、より詳しくみてみると青色光成分の波長領域において10μmの曲線の方が5μmの曲線よりも下側にある。つまり、青色光成分について若干ではあるが5μmのケースに比して10μmの方が内部伝播能力が劣ると解釈できる。そして、緑色光成分及び赤色光成分の波長領域まで含めて考察してみると、特に図5のグラフにおいてR1=10μmの曲線は右肩上がりの傾向を示している。さらに、図6、図7のケースにおいても勾配はやや小さくなるが、やはり右肩上がりの推移をR1=10μmの曲線は表している。   Next, consider the case where R1 = 10 μm light diffusing particles are used. First, what can be said about any of the cases shown in FIGS. 5 to 7 is relatively similar to the curve representing the spectral transmittance of R1 = 5 μm, but in more detail, it is 10 μm in the wavelength region of the blue light component. The curve is below the 5 μm curve. That is, it can be interpreted that 10 μm is inferior in the internal propagation ability compared to the case of 5 μm, although it is slightly for the blue light component. When considering the wavelength regions of the green light component and the red light component, in particular, the curve of R1 = 10 μm in the graph of FIG. Further, in the cases of FIG. 6 and FIG. 7, the gradient is slightly reduced, but the curve of R1 = 10 μm also represents the upward transition.

これらを総合的に解釈すると、上記図2に関連した説明においてR1=10μmという値が合併区間及び共通区間の域外に相当することと矛盾しない。更にいえば、濃度が比較的高い図5のケースにおいて青色光成分の相対分光透過率がR1=5μmの曲線よりもはっきり下回っているという傾向があり、この傾向は図6、図7のケースのように濃度が低くなるにしたがって弱まっていることが読み取れる。この傾向の強弱がみられる原因は光拡散粒子の濃度が薄くなるほど単位光路距離あたりの散乱機会が比例的に低下するためであると推測される。   Comprehensively interpreting these, it is consistent with the fact that the value of R1 = 10 μm corresponds to outside the merged section and the common section in the description related to FIG. Further, in the case of FIG. 5 where the density is relatively high, the relative spectral transmittance of the blue light component tends to be clearly lower than the curve of R1 = 5 μm, and this tendency is similar to the case of FIGS. As can be seen, the density decreases as the density decreases. The reason why this tendency is observed is presumed to be that the scattering opportunity per unit optical path distance decreases proportionally as the concentration of the light diffusing particles decreases.

最後に、光拡散体製造方法についてごく簡単に説明する。本発明にしたがった光拡散体を製造するにあたり特に新しい製造手法は必要とされない。すなわち従来より一般的に用いられている手法がほぼそのまま適用できる。典型的な手法においては、まず市販のPCペレットあるいはPC粉末と希望する最頻粒子径(例えば上述した例にあるR1=5μmの光拡散粒子)を用意する。そして、PCペレットまたはPC粉末と光拡散粒子とを二軸押出成形機のホッパー中に投入し所定温度(例えば280℃)まで昇温する。この加熱状態を数十分保ちながら両者を混練により均等に混ぜ合わせる。この混練は二軸押出成形機が有している混練機能を作動させて行う。次いで、同成形機の押出機能を作動させて光拡散体の原材料となるペレットを作成する。このようにして作成された原材料ペレットを射出成形機の原材料投入ホッパー内に投入し、この射出成形機により所望の形状(例えば板状)の光拡散体を得る。   Finally, a method for manufacturing a light diffuser will be briefly described. No new manufacturing technique is required for manufacturing the light diffuser according to the present invention. That is, the methods generally used conventionally can be applied almost as they are. In a typical method, first, commercially available PC pellets or PC powder and a desired mode particle diameter (for example, R1 = 5 μm light diffusing particles in the above example) are prepared. Then, the PC pellets or PC powder and the light diffusing particles are put into a hopper of a biaxial extruder, and the temperature is raised to a predetermined temperature (for example, 280 ° C.). While maintaining this heating state for several tens of minutes, both are mixed evenly by kneading. This kneading is performed by operating the kneading function of the twin screw extruder. Next, the extrusion function of the molding machine is activated to produce pellets that are the raw material of the light diffuser. The raw material pellets thus produced are put into a raw material charging hopper of an injection molding machine, and a light diffuser having a desired shape (for example, a plate shape) is obtained by this injection molding machine.

いうまでもないことであるが、上記混練時に添加する光拡散粒子の量は希望する重量%の光拡散体が得られるように選択すれば良い。   Needless to say, the amount of the light diffusing particles to be added at the time of the kneading may be selected so as to obtain a light diffuser of a desired weight%.

1 光入力部(マイナー面)
2 光出力部(メジャー面)
3 光拡散体(光散乱導光体)
4 樹脂マトリックス
5 光拡散粒子
L 一次光源
1 Light input part (minor side)
2 Light output section (major surface)
3 Light diffuser (light scattering light guide)
4 Resin matrix 5 Light diffusion particle L Primary light source

Claims (4)

ポリカーボネートからなる樹脂マトリックス中に所定の屈折率を有する光拡散粒子を所定の濃度で分散させた光拡散体であって、
白色光を入力するための光入力部と、前記光入力部から前記光拡散体内に入力された光が前記光入力部から離れるように前記光拡散体中を伝播する過程で拡散光を出力する面状の光出力部を有し、
前記所定の屈折率は1.47〜1.58の範囲の値を持ち、
前記所定の濃度は0.01wt%〜1wt%の範囲にあり、
前記光拡散粒子の粒径に対する個数分布について該分布のピークを与える最頻粒径R1を有するとともに、前記第1の最頻粒径R1に対し、0.8R1〜1.2R1の大きさの範囲内に60%以上の個数を含み更に前記R1は、青色光成分の散乱効率が赤色光成分の散乱効率及び緑色光成分の散乱効率の内の少なくとも一方を下回る範囲のうち、最も小粒径側に存在する一つの連続的な粒径範囲内にあることを特徴とする前記光拡散体。
A light diffusing material in which light diffusing particles having a predetermined refractive index are dispersed at a predetermined concentration in a resin matrix made of polycarbonate,
A light input unit for inputting white light; and diffused light is output in the process of propagating through the light diffuser so that light input from the light input unit into the light diffuser is separated from the light input unit Having a planar light output,
The predetermined refractive index has a value ranging from 1.47 to 1.58;
The predetermined concentration is in the range of 0.01 wt% to 1 wt%;
The number distribution with respect to the particle size of the light diffusing particles has a mode particle size R1 that gives a peak of the distribution, and ranges from 0.8R1 to 1.2R1 with respect to the first mode particle size R1. The R1 is the smallest particle size in the range in which the scattering efficiency of the blue light component is lower than at least one of the scattering efficiency of the red light component and the scattering efficiency of the green light component. The light diffuser is in one continuous particle size range existing in
前記青色光成分の散乱効率は、前記赤色光成分の散乱効率及び前記緑色光成分の散乱効率の両方を下回ることを特徴とする、請求項1に記載の光拡散体。   The light diffuser according to claim 1, wherein the scattering efficiency of the blue light component is lower than both the scattering efficiency of the red light component and the scattering efficiency of the green light component. 板状の形状を有し、前記光出力部を提供するメジャー面と前記光入力部を提供するマイナー面を備えることを特徴とする請求項1または2に記載された光拡散体。   3. The light diffuser according to claim 1, wherein the light diffuser has a plate shape and includes a major surface that provides the light output unit and a minor surface that provides the light input unit. 請求項3に記載された光拡散体と、該光拡散体の前記マイナー面に白色光を供給する一次光源を備えたことを特徴とする面光源装置。   A surface light source device comprising: the light diffuser according to claim 3; and a primary light source that supplies white light to the minor surface of the light diffuser.
JP2016001771A 2016-01-07 2016-01-07 Light diffusion body and surface light source device Pending JP2017122837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016001771A JP2017122837A (en) 2016-01-07 2016-01-07 Light diffusion body and surface light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016001771A JP2017122837A (en) 2016-01-07 2016-01-07 Light diffusion body and surface light source device

Publications (1)

Publication Number Publication Date
JP2017122837A true JP2017122837A (en) 2017-07-13

Family

ID=59305459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001771A Pending JP2017122837A (en) 2016-01-07 2016-01-07 Light diffusion body and surface light source device

Country Status (1)

Country Link
JP (1) JP2017122837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225463A1 (en) * 2017-06-06 2018-12-13 恵和株式会社 Upper-side light diffuser sheet and backlight unit equipped with same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324215A (en) * 1993-05-11 1994-11-25 Sumitomo Chem Co Ltd Light source device
JPH0790167A (en) * 1993-09-22 1995-04-04 Teijin Ltd Light-diffusing resin composition
JPH11153963A (en) * 1997-11-19 1999-06-08 Enplas Corp Light source device
JP2001250410A (en) * 2000-03-02 2001-09-14 Nichia Chem Ind Ltd Surface luminous device
JP2005347010A (en) * 2004-06-01 2005-12-15 Minebea Co Ltd Planar lighting device
JP2006502442A (en) * 2002-10-03 2006-01-19 ゼネラル・エレクトリック・カンパニイ Bulk diffuser for flat panel displays
JP2011029006A (en) * 2009-07-27 2011-02-10 Kuraray Co Ltd Luminous body
JP2011134620A (en) * 2009-12-25 2011-07-07 Hitachi Consumer Electronics Co Ltd Backlight device, and liquid crystal display using this
JP2013114876A (en) * 2011-11-28 2013-06-10 Sharp Corp Lighting device and liquid crystal display device equipped with this

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324215A (en) * 1993-05-11 1994-11-25 Sumitomo Chem Co Ltd Light source device
JPH0790167A (en) * 1993-09-22 1995-04-04 Teijin Ltd Light-diffusing resin composition
JPH11153963A (en) * 1997-11-19 1999-06-08 Enplas Corp Light source device
JP2001250410A (en) * 2000-03-02 2001-09-14 Nichia Chem Ind Ltd Surface luminous device
JP2006502442A (en) * 2002-10-03 2006-01-19 ゼネラル・エレクトリック・カンパニイ Bulk diffuser for flat panel displays
JP2005347010A (en) * 2004-06-01 2005-12-15 Minebea Co Ltd Planar lighting device
JP2011029006A (en) * 2009-07-27 2011-02-10 Kuraray Co Ltd Luminous body
JP2011134620A (en) * 2009-12-25 2011-07-07 Hitachi Consumer Electronics Co Ltd Backlight device, and liquid crystal display using this
JP2013114876A (en) * 2011-11-28 2013-06-10 Sharp Corp Lighting device and liquid crystal display device equipped with this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225463A1 (en) * 2017-06-06 2018-12-13 恵和株式会社 Upper-side light diffuser sheet and backlight unit equipped with same

Similar Documents

Publication Publication Date Title
JP3874222B2 (en) Light source device
CN100349027C (en) Light emitting device
JPH07320514A (en) Corner part light supply type surface light source device
CN101743431A (en) Surface illuminating light source device and surface illuminating device
JP3429384B2 (en) Sidelight type surface light source device
US8408777B2 (en) Planar illumination device
US7954989B2 (en) Backlight module with diffusing particles and prism refractive structure
TWI402571B (en) Backlight module with complementary color zone
JP2013545233A (en) Illumination device having a light guide plate
US8622601B2 (en) Backlight module and display apparatus
JPH07169311A (en) Light scattering photoconductive light source and liquid crystal display
JP2009295501A (en) Light source module and electronic apparatus equipped with the same
JP2010067612A (en) Method for designing and manufacturing light guide plate
KR101731762B1 (en) Manufacturing technique of diffuser plate that use luminous powder
JPH06324330A (en) Light scattering and transmitting light source device
US20210364676A1 (en) Diffuser film and method for manufacturing same
CN111077697A (en) Backlight module containing composite color conversion optical material
JP3830982B2 (en) Surface light source device using wedge-shaped emission direction characteristic adjusting element
JP2017122837A (en) Light diffusion body and surface light source device
US20120212689A1 (en) Display backlight module and method for the same
TWI545296B (en) Backlight module
CN103883930A (en) Backlight module and display device
JP2012146680A (en) Light source module
JP2013246925A (en) Light guide plate
US8858055B2 (en) Backlight module and display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201026

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201218

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210209

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210615

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210706

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210921

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211026

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211026