JP2017119600A - Reinforcing fiber for cellulose nanofiber-carrying hydraulic molding, and hydraulic composition and hydraulic molding containing the same - Google Patents

Reinforcing fiber for cellulose nanofiber-carrying hydraulic molding, and hydraulic composition and hydraulic molding containing the same Download PDF

Info

Publication number
JP2017119600A
JP2017119600A JP2015257153A JP2015257153A JP2017119600A JP 2017119600 A JP2017119600 A JP 2017119600A JP 2015257153 A JP2015257153 A JP 2015257153A JP 2015257153 A JP2015257153 A JP 2015257153A JP 2017119600 A JP2017119600 A JP 2017119600A
Authority
JP
Japan
Prior art keywords
hydraulic
cnf
fiber
reinforcing fiber
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015257153A
Other languages
Japanese (ja)
Other versions
JP6644546B2 (en
Inventor
慎一 竹本
Shinichi Takemoto
慎一 竹本
利章 小林
Toshiaki Kobayashi
利章 小林
真也 稲田
Shinya Inada
真也 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2015257153A priority Critical patent/JP6644546B2/en
Publication of JP2017119600A publication Critical patent/JP2017119600A/en
Application granted granted Critical
Publication of JP6644546B2 publication Critical patent/JP6644546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing fiber for CNF (cellulose nanofiber)-carrying hydraulic molding which can uniformly disperse CNF into a hydraulic composition; a hydraulic composition containing the reinforcing fiber; and a hydraulic molding having excellent strength formed from the hydraulic composition.SOLUTION: In a reinforcing fiber for hydraulic molding, a reinforcing fiber for hydraulic molding carrying 0.1 wt.% or more CNF with respect to the weight of the fiber on the surface of the fiber is added to a hydraulic material, the substances are mixed, and thereby the CNF is gradually separated from the surface of the reinforcing fiber and is diffused into the hydraulic material, and accordingly good dispersibility of the CNF is easily achieved. The fiber is a polyvinyl alcohol fiber.SELECTED DRAWING: None

Description

本発明は、セメントペースト、モルタル、コンクリートなどの水硬性成形体を補強するために用いられる、セルロースナノファイバー(CNF)を担持する補強繊維、およびそれを含む水硬性組成物、ならびに水硬性成形体に関する。   The present invention relates to a reinforcing fiber carrying cellulose nanofiber (CNF), a hydraulic composition containing the same, and a hydraulic molded body, which are used for reinforcing hydraulic molded bodies such as cement paste, mortar, and concrete. About.

セメント等の水硬性無機物質は、例えば、セメントペースト、モルタル、コンクリート等の水硬性材料の形成に広く用いられている。これらの水硬性材料から形成される水硬性成形体は、土木資材、建築資材として、広く使用されている。これらの成形体の曲げ強度、靭性等の性能の改善やひび割れ抑制を目的として、コンクリート、セメントモルタルなどの水硬性材料のマトリックスに補強繊維を配合することが従来知られている。   Hydraulic inorganic substances such as cement are widely used for forming hydraulic materials such as cement paste, mortar, concrete and the like. Hydraulic molded bodies formed from these hydraulic materials are widely used as civil engineering materials and building materials. For the purpose of improving the performance such as bending strength and toughness of these molded products and suppressing cracks, it is conventionally known to add reinforcing fibers to a matrix of a hydraulic material such as concrete or cement mortar.

また近年では水硬性成形体にCNFを添加することで強度が増す以外に保水性の向上、断熱性の向上、水分凍結時の膨張圧の吸収、スランプ値の改善など新たな機能を付加する検討がなされており、例えば特許文献1では、ナノ繊維としてCNFを含むモルタルまたはコンクリート組成物が開示されている。しかしCNFを添加する場合、抄造法のように大量の水中で分散させて使用するには問題はないが、高濃度のスラリーを使用する方式や射出成形などの場合、CNFが絡みあい凝集するなどして分散性が低下し、成形体の強度低下を引き起こすなどの問題があった。   In addition, in recent years, adding CNF to hydraulic molded bodies has increased strength, and in addition to improving water retention, improving heat insulation, absorbing expansion pressure when freezing moisture, and improving slump values, etc. For example, Patent Document 1 discloses a mortar or concrete composition containing CNF as nanofibers. However, when CNF is added, there is no problem in using it after being dispersed in a large amount of water as in the papermaking method. However, in the case of a method using high concentration slurry or injection molding, CNF is entangled and aggregated. As a result, the dispersibility is lowered and the strength of the molded body is reduced.

特許文献2ではCNFの分散性を改善するためCNFの低濃度水溶液を担持粉体と混合することでCNF含有組成物を製造する検討がなされているが、CNF水溶液の濃度が低く粉体との混合後に脱水や乾燥、粉砕といった作業が必要で、製造に多大なエネルギーを要す他、粒径や担持量の均一化が困難で品質安定性を欠く問題があった。   In Patent Document 2, in order to improve the dispersibility of CNF, a study has been made to produce a CNF-containing composition by mixing a low-concentration aqueous solution of CNF with a carrier powder. After mixing, operations such as dehydration, drying, and pulverization are required, and a great deal of energy is required for production. In addition, it is difficult to make the particle size and carrying amount uniform, and there is a problem of lack of quality stability.

また特許文献3においてもCNFの分散性を改善するためにポリエステル系樹脂を用いたCNF含有マスターバッチを含むセメント混和剤が検討されているが、既に微細化したCNFを用いることが出来ずポリエステル系樹脂中でセルロースを微細化しマスターバッチを製造する必要があるなど工程が煩雑になり時間を要すほか、製造コストの面でも問題があった。   Also in Patent Document 3, a cement admixture containing a CNF-containing masterbatch using a polyester-based resin has been studied in order to improve the dispersibility of CNF. In addition to the complexity of the process, such as the need to produce a master batch by refining cellulose in the resin, there was also a problem in terms of production cost.

特開2015−48276号公報Japanese Patent Laying-Open No. 2015-48276 特開2013−188864号公報JP 2013-188864 A 特開2015−155357号公報JP2015-155357A

そこで本発明の目的は、CNFを水硬性組成物中に均一に分散性させることができるCNF担持水硬性成形体用補強繊維を提供することにある。
本発明の別の目的は、このような補強繊維を含む水硬性組成物を提供することにある。
本発明のさらに別の目的は、このような水硬性組成物から形成され、優れた強度を有する水硬性成形体を提供することにある。
Accordingly, an object of the present invention is to provide a reinforcing fiber for a CNF-supported hydraulic molded body that can disperse CNF uniformly in a hydraulic composition.
Another object of the present invention is to provide a hydraulic composition comprising such reinforcing fibers.
Still another object of the present invention is to provide a hydraulic molded body formed from such a hydraulic composition and having excellent strength.

本発明には以下の好適な実施態様が含まれる。
[1]繊維の表面に繊維重量に対して0.1重量%以上のCNFが担持されている水硬性成形体用補強繊維。
[2]前記水硬性成形体用補強繊維がポリビニルアルコール系繊維である、[1]に記載の水硬性成形体用補強繊維。
[3][1]または[2]のいずれかに記載の水硬性成形体用補強繊維および水硬性無機物質を含む、水硬性組成物。
[4]前記水硬性無機物質がセメントである、[3]に記載の水硬性組成物。
[5][1]または[2]のいずれかに記載の水硬性成形体用補強繊維、水硬性無機物質、および水を含む混合物を練り混ぜて水硬性組成物を得る工程、および水硬性組成物を成形した後硬化する工程、を含む水硬性成形体の製造方法。
The present invention includes the following preferred embodiments.
[1] A reinforcing fiber for a hydraulic molded body in which 0.1% by weight or more of CNF is supported on the fiber surface with respect to the fiber weight.
[2] The reinforcing fiber for hydraulic molded article according to [1], wherein the reinforcing fiber for hydraulic molded article is a polyvinyl alcohol fiber.
[3] A hydraulic composition comprising the reinforcing fiber for hydraulic molded article according to any one of [1] and [2] and a hydraulic inorganic substance.
[4] The hydraulic composition according to [3], wherein the hydraulic inorganic substance is cement.
[5] A step of obtaining a hydraulic composition by kneading a mixture containing the reinforcing fiber for hydraulic molded body according to any one of [1] or [2], a hydraulic inorganic substance, and water, and a hydraulic composition The manufacturing method of the hydraulic molded object including the process of hardening after shape | molding a thing.

本発明の水硬性成形体用補強繊維は、水硬性材料に添加し混合することで、補強繊維表面からCNFが徐々に脱離し水硬性材料中に拡散するため、CNFの良好な分散性を簡便に達成することができる。   The reinforcing fiber for a hydraulic molded body of the present invention is added to a hydraulic material and mixed, so that CNF is gradually detached from the surface of the reinforcing fiber and diffuses into the hydraulic material. Can be achieved.

本発明のCNF担持水硬性成形体用補強繊維は、その繊維表面に、繊維重量に対して0.1重量%以上のCNFを担持することを特徴とする。CNFの担持量は、好ましくは0.2〜40質量%であり、より好ましくは、0.3〜35質量%であり、さらに好ましくは0.5〜30質量%である。CNFの担持量が前記範囲内にあると、水硬性成形体の補強効果に優れると同時に、水硬性組成物の流動性低下を抑制可能であり、また、CNF担持補強繊維の生産性の点からも有利である。
またCNFを添加した水硬性成形体は強度が優れるため成形体の薄物化など軽量化が達成でき、原材料の節約にも寄与する。
また一般的に、曲げ強度、靭性等の性能の改善やひび割れ抑制を目的に水硬性材料に補強繊維を添加すると、補強繊維とマトリックス間で摩擦抵抗が生じマトリックスの流動性(スランプ値、またはフロー値)が低下し施工性などに問題を来すことがあるが、本発明のCNF担持繊維を用いることで流動性の低下を抑制する効果も得られる。流動性の低下が抑制される原理は定かでないが、CNFの保水性能により補強繊維界面付近の水分率が増し、マトリックスとの摩擦抵抗を抑制する効果と考えられる。
The reinforcing fiber for a CNF-carrying hydraulic molded body of the present invention is characterized in that 0.1% by weight or more of CNF is supported on the fiber surface with respect to the fiber weight. The supported amount of CNF is preferably 0.2 to 40% by mass, more preferably 0.3 to 35% by mass, and still more preferably 0.5 to 30% by mass. When the loading amount of CNF is within the above range, it is excellent in the reinforcing effect of the hydraulic molded body, and at the same time, it is possible to suppress the decrease in fluidity of the hydraulic composition, and from the viewpoint of the productivity of the CNF-supporting reinforcing fiber. Is also advantageous.
In addition, since the hydraulic molded body to which CNF is added has excellent strength, it is possible to achieve weight reduction such as thinning of the molded body, which contributes to saving of raw materials.
In general, when reinforcing fibers are added to hydraulic materials for the purpose of improving performance such as bending strength and toughness and suppressing cracking, frictional resistance is generated between the reinforcing fibers and the matrix, and the fluidity of the matrix (slump value or flow). Value) may be lowered, causing problems in workability and the like. However, by using the CNF-supporting fiber of the present invention, an effect of suppressing a decrease in fluidity can be obtained. Although the principle of suppressing the decrease in fluidity is not clear, it is considered that the water content near the reinforcing fiber interface increases due to the water retention performance of CNF, and the effect of suppressing the frictional resistance with the matrix.

(CNF)
本発明に用いられるCNFは繊維径が1〜500nm、アスペクト比が50〜200000のセルロース繊維であることが好ましい。繊維径は、より好ましくは直径が1〜300nmであり、さらに好ましくは1〜100nmである。アスペクト比は、より好ましくは60〜180000であり、さらに好ましくは80〜150000であり、特に好ましくは100〜120000である。繊維径は小さい方が単位重量あたりの表面積が大きくなるため好ましいが、特に上記範囲であれば、保水性や接着性の面で好ましい。また、アスペクト比は大きい方が水硬性成形体における強度向上の面で好ましいが、特に上記範囲であれば、強度向上と施工性を両立させることができる点で好ましい。アスペクト比が大きすぎると、CNFが水硬性組成物中で絡まってしまうおそれがある。
(CNF)
The CNF used in the present invention is preferably a cellulose fiber having a fiber diameter of 1 to 500 nm and an aspect ratio of 50 to 200,000. The fiber diameter is more preferably 1 to 300 nm, and further preferably 1 to 100 nm. The aspect ratio is more preferably 60 to 180,000, still more preferably 80 to 150,000, and particularly preferably 100 to 120,000. A smaller fiber diameter is preferable because the surface area per unit weight is larger, but the above range is particularly preferable in terms of water retention and adhesiveness. Moreover, although the one where an aspect ratio is larger is preferable at the surface of the strength improvement in a hydraulic molded object, if it is the said range, it is preferable at the point which can make intensity | strength improvement and workability compatible. If the aspect ratio is too large, CNF may be entangled in the hydraulic composition.

CNFの原料となるセルロースとしては、例えばパルプ、綿、紙、レーヨン・キュプラ・ポリノジックレーヨン等の再生セルロース繊維、バクテリア産出セルロース、ホヤ等の動物由来セルロースなどが挙げられる。またこれらのセルロースは必要に応じて表面を化学修飾処理したものであってもよい。
またセルロースを破砕したセルロース粉末を用いても良い。セルロース粉末としては、例えば日本製紙株式会社製「KCフロック」、旭化成ケミカルズ株式会社製「セオラス」、FMCバイオポリマー社製「アビセル」等の市販品が挙げられる。
Examples of cellulose used as a raw material for CNF include regenerated cellulose fibers such as pulp, cotton, paper, rayon / cupra / polynosic rayon, and cellulose derived from animals such as bacteria-produced cellulose and sea squirt. These celluloses may be obtained by chemically modifying the surface as necessary.
Moreover, you may use the cellulose powder which crushed the cellulose. Examples of the cellulose powder include commercially available products such as “KC Flock” manufactured by Nippon Paper Industries Co., Ltd., “Theolas” manufactured by Asahi Kasei Chemicals Corporation, and “Avicel” manufactured by FMC Biopolymer.

(水硬性成形体用補強繊維)
本発明においてCNFを担持させる水硬性成形体用補強繊維は、有機繊維、無機繊維いずれも制限なく用いることができるが、セメント等がアルカリ性であることから、耐アルカリ性であることが好ましく、例えば、無機繊維としては、耐アルカリ性ガラス繊維、鋼繊維(スチールファイバー)、ステンレスファイバー、炭素繊維などが、また、有機繊維としては、ポリビニルアルコール系繊維(以下、PVA系繊維と称することがある)、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、超高分子量ポリエチレン繊維、ポリアミド系繊維(ポリアミド6、ポリアミド6,6、ポリアミド6,10など)、アラミド繊維(特にパラアラミド繊維)、ポリパラフェニレンベンゾビスオキサゾール系繊維(PBO繊維)、アクリル繊維、レーヨン系繊維(ポリノジック繊維、溶剤紡糸セルロース繊維等)、ポリフェニレンサルファイド繊維(PPS繊維)、ポリエーテルエーテルケトン繊維(PEEK繊維)などが挙げられる。
(Reinforcing fiber for hydraulic molded body)
In the present invention, the reinforcing fiber for a hydraulic molded body that supports CNF can be used without limitation both organic fibers and inorganic fibers, but is preferably alkali-resistant since cement and the like are alkaline. Examples of inorganic fibers include alkali-resistant glass fibers, steel fibers (steel fibers), stainless fibers, and carbon fibers. Examples of organic fibers include polyvinyl alcohol fibers (hereinafter sometimes referred to as PVA fibers), polyolefins. Fiber (polyethylene fiber, polypropylene fiber, etc.), ultra high molecular weight polyethylene fiber, polyamide fiber (polyamide 6, polyamide 6,6, polyamide 6,10 etc.), aramid fiber (especially para-aramid fiber), polyparaphenylenebenzobisoxazole Fiber (PBO fiber), Krill fibers, rayon fibers (polynosic fibers, solvent-spun cellulose fibers, etc.), polyphenylene sulfide fibers (PPS fibers), polyetheretherketone fibers (PEEK fibers) and the like.

これらのうち、耐アルカリ性ガラス繊維、炭素繊維、PVA系繊維、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、アクリル繊維、アラミド繊維などが、コンクリート補強性を有しつつ、低コストで製造できる観点から有利に使用できる。   Among these, alkali resistant glass fiber, carbon fiber, PVA fiber, polyolefin fiber (polyethylene fiber, polypropylene fiber, etc.), acrylic fiber, aramid fiber, etc. can be manufactured at low cost while having concrete reinforcement. Can be advantageously used.

また、硬化後のセメントと良好に接着し水硬性成形体における補強性をより一層向上させる観点から、PVA系繊維が特に好ましい。PVA系繊維を用いた場合、CNFの有する水酸基とPVAの有する水酸基との間に水素結合が生じるため、繊維表面にCNFを担持しやすくなる。   In addition, PVA fibers are particularly preferable from the viewpoint of better adhesion to the cement after curing and further improving the reinforcement in the hydraulic molded body. When a PVA fiber is used, a hydrogen bond is generated between the hydroxyl group of CNF and the hydroxyl group of PVA, so that CNF is easily supported on the fiber surface.

本発明に用いられるPVA系繊維を構成するPVA系ポリマーの重合度は、目的に応じて適宜選択でき特に限定されるものではないが、得られる繊維の機械的特性等を考慮すると30℃水溶液の粘度から求めた平均重合度が500〜20000であることが好ましく、800〜15000であることがより好ましく、1000〜10000であることがさらに好ましい。特に強度の観点から1000以上であることが好ましく、1200以上であることがより好ましく、1500以上であることがさらに好ましく、1750以上であることが特に好ましい。   The degree of polymerization of the PVA polymer constituting the PVA fiber used in the present invention can be appropriately selected according to the purpose and is not particularly limited. However, considering the mechanical properties of the resulting fiber and the like, The average degree of polymerization determined from the viscosity is preferably 500 to 20000, more preferably 800 to 15000, and still more preferably 1000 to 10,000. Particularly, from the viewpoint of strength, it is preferably 1000 or more, more preferably 1200 or more, further preferably 1500 or more, and particularly preferably 1750 or more.

本発明に用いられるPVA系繊維を構成するPVA系ポリマーのけん化度は、目的に応じて適宜選択でき特に限定されるものではないが、得られる繊維の力学物性の点から、好ましくは95モル%以上であり、より好ましくは98モル%以上であり、さらに好ましくは99モル%以上であり、特に好ましくは99.8モル%以上である。PVA系ポリマーのけん化度が低すぎると、得られる繊維の機械的特性や工程通過性、製造コストなどの面で好ましくない場合が多い。また、本発明に用いられるPVA系繊維を構成するPVA系ポリマーのけん化度の上限は、通常100モル%である。   The saponification degree of the PVA-based polymer constituting the PVA-based fiber used in the present invention can be appropriately selected according to the purpose and is not particularly limited, but is preferably 95 mol% from the viewpoint of the mechanical properties of the resulting fiber. It is above, More preferably, it is 98 mol% or more, More preferably, it is 99 mol% or more, Most preferably, it is 99.8 mol% or more. If the saponification degree of the PVA polymer is too low, it is often not preferable in terms of mechanical properties, process passability, production cost, and the like of the obtained fiber. Moreover, the upper limit of the saponification degree of the PVA-type polymer which comprises the PVA-type fiber used for this invention is 100 mol% normally.

補強繊維の繊維径は水硬性材料として使用される砂や砂利など骨材のサイズによって適宜選択でき特に限定されるものではない。PVA系繊維を用いる場合は、強度、生産性等の点から、例えば100〜700μmのものを用いることができる。   The fiber diameter of the reinforcing fiber can be appropriately selected depending on the size of the aggregate such as sand or gravel used as the hydraulic material, and is not particularly limited. When using a PVA-type fiber, a thing of 100-700 micrometers can be used from points, such as intensity | strength and productivity.

補強繊維のアスペクト比は、水硬性組成物中の繊維の分散性と硬化後の補強性を両立させる観点から、好ましくは30〜500であり、より好ましくは35〜470であり、さらに好ましくは40〜450である。アスペクト比が500より大きい場合には繊維同士が絡むなどして繊維の分散性が著しく悪化することがある。アスペクト比が30より小さい場合には、繊維が抜けやすくなり十分な補強性を発揮できないおそれがある。なお、アスペクト比とは、繊維長(L)と繊維径(D)との比(L/D)を意味している。   The aspect ratio of the reinforcing fiber is preferably 30 to 500, more preferably 35 to 470, and still more preferably 40 from the viewpoint of achieving both the dispersibility of the fiber in the hydraulic composition and the reinforcing property after curing. ~ 450. When the aspect ratio is larger than 500, the dispersibility of the fibers may be remarkably deteriorated due to entanglement of the fibers. When the aspect ratio is smaller than 30, the fibers are easily removed and there is a possibility that sufficient reinforcement cannot be exhibited. The aspect ratio means the ratio (L / D) between the fiber length (L) and the fiber diameter (D).

補強繊維の繊維強度 は、好ましくは6cN/dtex以上であり、より好ましくは7cN/dtex以上であり、さらに好ましくは8cN/dtex以上である。繊維強度の上限は、繊維に応じて適宜設定することができ、特に限定されないが、30cN/dtex程度であってもよい。なお、繊維強度は、JIS L1015「化学繊維ステープル試験方法(8.5.1)」の破断強伸度により測定可能である。   The fiber strength of the reinforcing fiber is preferably 6 cN / dtex or more, more preferably 7 cN / dtex or more, and further preferably 8 cN / dtex or more. The upper limit of the fiber strength can be appropriately set according to the fiber and is not particularly limited, but may be about 30 cN / dtex. The fiber strength can be measured by the tensile strength at break according to JIS L1015 “Testing method for chemical fiber staples (8.5.1)”.

(製造方法)
本発明のCNF担持水硬性成形体用補強繊維は、例えば、CNF分散液を調整する工程と、CNF分散液を用いて水硬性成形体用補強繊維にCNFを担持させる工程、を含む方法によって得ることができる。
(Production method)
The reinforcing fiber for CNF-supported hydraulic molded body of the present invention is obtained by a method including, for example, a step of adjusting a CNF dispersion and a step of supporting CNF on the reinforcing fiber for a hydraulic molded body using the CNF dispersion. be able to.

[(1)CNF分散液の調製]
セルロース繊維のナノファイバー化は、前記セルロースより得られたセルロース繊維に機械的にせん断力を与えることによって行うことができる。せん断力を与える方法としては、例えば、ビーズミル、超音波ホモジナイザー、一軸押出機、二軸押出機等の押出機、バンバリーミキサー、グラインダー、加圧ニーダー、2本ロール等の混練機などを用いる方法が挙げられる。
CNF分散液はCNFを分散媒に分散させたものであり、分散媒としてはCNFが分散する溶媒であれば、特に制限なく使用することができ、例えば水、メタノールやエタノール等のアルコール等の有機溶媒、又はこれらの混合物を用いることができる。
[(1) Preparation of CNF dispersion]
The cellulose fibers can be made into nanofibers by mechanically applying shearing force to the cellulose fibers obtained from the cellulose. Examples of the method for imparting the shearing force include a method using an extruder such as a bead mill, an ultrasonic homogenizer, a single screw extruder, a twin screw extruder, a Banbury mixer, a grinder, a pressure kneader, a two-roll kneader, or the like. Can be mentioned.
The CNF dispersion is obtained by dispersing CNF in a dispersion medium. As the dispersion medium, any solvent that can disperse CNF can be used without any particular limitation. For example, organic solvents such as water, alcohols such as methanol and ethanol, etc. A solvent or a mixture thereof can be used.

CNF分散液中のCNF濃度は特に限定されないが、好ましくは0.5重量%〜40重量%であり、より好ましくは1重量%〜35重量%であり、さらに好ましくは2重量%〜30重量%である。濃度が高すぎると分散液の粘度が高くなり補強繊維への均一担持が困難になる場合がある。また濃度が低すぎると補強繊維に担持させた後の分散媒の乾燥に要するエネルギーや時間が大きくなるほか、補強繊維に対するCNFの担持量が相対的に低下しやすく、最終的に得られる水硬性成形体で強度向上などの効果が得られにくくなる場合がある。
CNFは水等に分散させた液状物でも入手可能であり、例えば、ダイセル化学工業株式会社製「セリッシュ」等の市販品を用いることができる。
The CNF concentration in the CNF dispersion is not particularly limited, but is preferably 0.5% to 40% by weight, more preferably 1% to 35% by weight, and further preferably 2% to 30% by weight. It is. If the concentration is too high, the viscosity of the dispersion becomes high, and it may be difficult to uniformly support the reinforcing fiber. In addition, if the concentration is too low, the energy and time required for drying the dispersion medium after being supported on the reinforcing fiber is increased, and the amount of CNF supported on the reinforcing fiber is likely to be relatively reduced, resulting in a hydraulic property that is finally obtained. In some cases, it is difficult to obtain an effect such as strength improvement in the molded body.
CNF can also be obtained as a liquid material dispersed in water or the like, and for example, commercially available products such as “Cerish” manufactured by Daicel Chemical Industries, Ltd. can be used.

本発明のCNF担持水硬性成形体用補強繊維の製造工程において、CNFの担持量や脱離性を調整するなどの目的で、バインダー樹脂をCNF分散液に添加することができる。バインダー樹脂としてはポリビニアルアルコール系、アクリル系、ポリエチレングルコール系などの水溶性樹脂を用いることができる。CNFの担持量や脱離性を調整することによって、水硬性成形体の強度を一層向上させることができるだけでなく、補強繊維と水硬性組成物中のマトリックスとの界面の状態を調節することによって、水硬性組成物の流動性の低下を抑制することも可能となる。   In the production process of the reinforcing fiber for a CNF-supported hydraulic molded body of the present invention, a binder resin can be added to the CNF dispersion for the purpose of adjusting the amount of CNF supported and the detachability. As the binder resin, water-soluble resins such as polyvinyl alcohol, acrylic, and polyethylene glycol can be used. By adjusting the loading amount and detachability of CNF, not only can the strength of the hydraulic molded body be further improved, but also by adjusting the state of the interface between the reinforcing fibers and the matrix in the hydraulic composition Moreover, it becomes possible to suppress the fall of the fluidity | liquidity of a hydraulic composition.

また本発明の効果を損なわない範囲であれば、CNFの分散液中の分散安定性や粘度安定性を高めるなど、目的に応じて、界面活性剤、酸化防止剤、分解抑制剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤などの添加剤などを用いてもよい。   Moreover, as long as the effects of the present invention are not impaired, surfactants, antioxidants, decomposition inhibitors, antifreeze agents, and the like, depending on the purpose, such as enhancing dispersion stability and viscosity stability in CNF dispersions. Further, additives such as a pH adjuster, a masking agent, a coloring agent, and an oil agent may be used.

[(2)水硬性成形体用補強繊維へのCNFの担持]
水硬性成形体用補強繊維を紡糸あるいは紡糸乾燥した後、例えば上述した方法によって得られたCNF分散液を用いて水硬性成形体用補強繊維の表面にCNFを担持させる。CNFを担持させる方法としては、例えば、CNF分散液に繊維を浸漬してCNF分散液を繊維表面に付着させる方法、CNF分散液をローラーなどを用いて繊維表面に塗布する方法、スプレーなどを用いて繊維表面に噴霧する方法、などが挙げられる。このような処理は、複数の繊維からなる繊維トウに対して行ってもよい。水硬性成形体用補強繊維は、紡糸後、CNF分散液を適応する前に、必要に応じ、延伸および/または切断してもよい。なお、炭素繊維の場合は、紡糸乾燥後、さらに焼成工程を経た繊維トウに対して、CNF分散液を適応してもよい。
水硬性成形体用補強繊維は、CNF分散液を適応した後、乾燥工程前に、必要に応じ、切断してもよい。
[(2) CNF loading on reinforcing fibers for hydraulic molded body]
After spinning or spinning-drying the reinforcing fiber for hydraulic molded body, for example, CNF is supported on the surface of the reinforcing fiber for hydraulic molded body by using the CNF dispersion obtained by the above-described method. As a method for supporting CNF, for example, a method in which fibers are immersed in a CNF dispersion and the CNF dispersion is adhered to the fiber surface, a method in which the CNF dispersion is applied to the fiber surface using a roller, or the like is used. And spraying the fiber surface. Such treatment may be performed on a fiber tow composed of a plurality of fibers. The reinforcing fiber for hydraulic molded body may be stretched and / or cut as necessary after spinning and before applying the CNF dispersion. In the case of carbon fiber, the CNF dispersion may be applied to the fiber tow that has undergone the firing process after spinning and drying.
If necessary, the reinforcing fiber for hydraulic molded body may be cut after applying the CNF dispersion and before the drying step.

続いて、水硬性成形体用補強繊維の表面から分散媒を乾燥除去する。
乾燥温度は水硬性成形体用補強繊維が有機繊維の場合、水硬性成形体用補強繊維を構成するポリマーの軟化点未満の温度であって、分散媒が蒸発し得る温度であれば特に限定されない。
Subsequently, the dispersion medium is dried and removed from the surface of the reinforcing fiber for hydraulic molded body.
The drying temperature is not particularly limited as long as the temperature is lower than the softening point of the polymer constituting the reinforcing fiber for hydraulic molded body when the reinforcing fiber for hydraulic molded body is organic fiber, and the dispersion medium can evaporate. .

CNFは少なくとも水硬性成形体用補強繊維の表面の一部に担持されていればよく、特に繊維の長さ方向に対する側面の一部に担持されていればよいが、側面全体に担持されていることが好ましい。繊維端面には必ずしも担持されている必要はない。   CNF only needs to be supported on at least a part of the surface of the reinforcing fiber for hydraulic molded body, and in particular, it may be supported on a part of the side surface with respect to the length direction of the fiber, but is supported on the entire side surface. It is preferable. The fiber end face does not necessarily have to be supported.

このようにして得られたCNF担持水硬性成形体用補強繊維は、その繊維表面に、繊維重量に対して0.1重量%以上のCNFを担持することを特徴とする。
また、本発明によるCNF担持水硬性成形体用補強繊維は、水硬性材料中に添加され混合されることでCNFの一部が補強繊維から脱離しマトリックス中に徐々に分散するため、CNFによる水硬性成形体の補強効果が得られることから、成形体の薄物化など軽量化が達成でき、原材料の節約にも寄与する。
また一般的に、曲げ強度、靭性等の性能の改善やひび割れ抑制を目的に水硬性材料に補強繊維を添加すると、補強繊維とマトリックス間で摩擦抵抗が生じ水硬性組成物の流動性(スランプ値、またはフロー値)が低下し施工性などに問題を来すことがあるが、本発明のCNF担持水硬性成形体用補強繊維は、表面にCNFを担持することによって、水硬性組成物の流動性の低下を抑制する効果も得られる。流動性の低下が抑制される原理は定かでないが、CNFの保水性能により補強繊維界面付近の水分率が増し、マトリックスとの摩擦抵抗を抑制する効果と考えられる。
The thus obtained reinforcing fiber for CNF-carrying hydraulic shaped body is characterized in that 0.1% by weight or more of CNF is supported on the fiber surface with respect to the fiber weight.
In addition, the CNF-supported hydraulic molded body reinforcing fiber according to the present invention is added to and mixed with the hydraulic material, so that part of the CNF is detached from the reinforcing fiber and gradually dispersed in the matrix. Since the reinforcing effect of the rigid molded body can be obtained, the weight of the molded body can be reduced and the material can be saved.
In general, when reinforcing fibers are added to a hydraulic material for the purpose of improving performance such as bending strength and toughness and suppressing cracking, friction resistance occurs between the reinforcing fibers and the matrix, and the fluidity (slump value) of the hydraulic composition However, the CNF-supporting hydraulic molded body reinforcing fiber of the present invention has a flow of hydraulic composition by supporting CNF on the surface. The effect which suppresses a fall of property is also acquired. Although the principle of suppressing the decrease in fluidity is not clear, it is considered that the water content near the reinforcing fiber interface increases due to the water retention performance of CNF, and the effect of suppressing the frictional resistance with the matrix.

水硬性成形体用補強繊維がCNFを担持する力は、水素結合やイオン結合などの化学的相互作用、ファンデルワールス力などの物理的相互作用、補強繊維表面の凹凸へのアンカー効果などによる機械的結合などがあるが、水硬性マトリックスに添加した際、マトリックス中の水分により担持力が低下するものが好ましく、具体的には水素結合によるものがより好ましい。   The force that the reinforcing fiber for hydraulic compact supports CNF is a mechanical interaction such as hydrogen bond or ionic bond, physical interaction such as van der Waals force, or anchor effect on the unevenness of the reinforcing fiber surface. However, when added to a hydraulic matrix, those having a lower supporting force due to moisture in the matrix are preferable, and more specifically, hydrogen bonds are more preferable.

また、前述のとおり、本発明のCNF担持水硬性成形体用補強繊維の製造工程において、CNFの担持量や脱離性を調整するなどの目的で、CNF分散液にバインダー樹脂を添加することができるが、バインダー樹脂を用いたり、繊維の表面状態を工夫するなどして、CNFの担持量や脱離性を調整することによって、水硬性成形体の強度を一層向上させることができるだけでなく、補強繊維と水硬性組成物中のマトリックスとの界面の状態を調節することも可能となり、水硬性組成物の流動性の低下を抑制することができる。   Further, as described above, a binder resin may be added to the CNF dispersion for the purpose of adjusting the amount of CNF supported and the detachability in the production process of the CNF-supported hydraulic molded body reinforcing fiber of the present invention. However, not only can the strength of the hydraulic molded body be further improved by adjusting the amount of CNF supported and the detachability by using a binder resin or devising the surface state of the fiber, It is also possible to adjust the state of the interface between the reinforcing fiber and the matrix in the hydraulic composition, and it is possible to suppress a decrease in fluidity of the hydraulic composition.

CNFによる水硬性成形体の補強性向上と水硬性組成物の流動性低下抑制の効果を両立させるためには、CNF担持水硬性成形体用補強繊維を水中で撹拌した後の補強繊維表面上でのCNF残存率が0.1〜50重量%であることが好ましく、0.5〜40重量%であることがより好ましい。CNF残存率が50重量%を超える場合には担持したCNFが水硬性組成物中へ拡散しにくくなり、CNFによる補強効果が得られにくい場合がある。またCNF残存率が0.1重量%に満たない場合には水硬性材料に添加後の撹拌初期にCNFが塊状に剥離しCNFの良好な分散が得られない場合があるほか流動性低下抑制の効果が得られにくい場合がある。   In order to achieve both the reinforcement of the hydraulic molded body by CNF and the effect of suppressing the decrease in fluidity of the hydraulic composition, on the surface of the reinforcing fiber after stirring the reinforcing fiber for CNF-supported hydraulic molded body in water The residual CNF ratio is preferably 0.1 to 50% by weight, more preferably 0.5 to 40% by weight. When the CNF residual ratio exceeds 50% by weight, the supported CNF is difficult to diffuse into the hydraulic composition, and the reinforcing effect by CNF may be difficult to obtain. In addition, when the residual ratio of CNF is less than 0.1% by weight, CNF may be peeled off in a lump at the beginning of stirring after being added to the hydraulic material, and good dispersion of CNF may not be obtained. The effect may be difficult to obtain.

[水硬性組成物]
本発明の水硬性組成物は少なくとも水硬性無機物質および上記のCNF担持水硬性成形体用補強繊維を含む。本発明の水硬性組成物を硬化させることによって、繊維で補強された水硬性成形体を得ることができる。
[Hydraulic composition]
The hydraulic composition of the present invention includes at least a hydraulic inorganic substance and the reinforcing fiber for a CNF-supported hydraulic molded body. By hardening the hydraulic composition of the present invention, a hydraulic molded body reinforced with fibers can be obtained.

本発明の水硬性組成物に用いられる水硬性材料としては、セメントを含むものや石膏を含むものなどが挙げられる。セメントを含む水硬性材料として、セメントペースト、モルタル、コンクリートなどを挙げることができる。セメントペーストは、セメントと水を含み、モルタルは、セメントと水と細骨材を含み、コンクリート(フレッシュコンクリート)は、通常、セメントと水と細骨材と粗骨材を含む。これらの材料には、必要に応じ、各種の混和材料(混和材・混和剤)が含まれてもよく、本発明においては、CNF担持水硬性成形体用補強繊維が含まれ、これが本発明の水硬性組成物である。また水添加前の固形分の混合物からなるセメント組成物、モルタル用組成物、コンクリート用組成物も本発明に係る水硬性材料として挙げることができる。これらの組成物に水を添加して練り混ぜることにより、セメントペースト、モルタル、コンクリートなど、水を含有する状態の水硬性材料を形成することができる。   Examples of the hydraulic material used in the hydraulic composition of the present invention include those containing cement and those containing gypsum. Examples of the hydraulic material containing cement include cement paste, mortar, and concrete. The cement paste contains cement and water, the mortar contains cement, water and fine aggregate, and the concrete (fresh concrete) usually contains cement, water, fine aggregate and coarse aggregate. These materials may contain various admixtures (admixtures / admixtures) as necessary. In the present invention, CNF-supported hydraulic molded body reinforcing fibers are included, and this is the present invention. It is a hydraulic composition. Further, a cement composition, a mortar composition, and a concrete composition composed of a mixture of solids before the addition of water can also be cited as the hydraulic material according to the present invention. By adding water to these compositions and kneading, a hydraulic material containing water such as cement paste, mortar, concrete, or the like can be formed.

上記水硬性材料に含まれる水硬性無機物質としては、セメント、石膏などが挙げられる。セメント(水硬性セメント)としては、例えば、普通ポルトランドセメント、早強ポルトランドセメント、低熱セメント、中庸熱ポルトランドセメントなどのポルトランドセメント、アルミナセメント、高炉セメント、シリカセメント、フライアッシュセメント、エコセメントなどが挙げられる。また、石膏としては、2水石膏、α型又はβ型半水石膏、無水石膏等が挙げられる。これらの水硬性無機物質は、単独でまたは二種以上組み合わせて使用してもよい。これらの水硬性無機物質は、通常粉末(微粒子)の状態で用いられ、添加された水と反応して凝結し、水硬性材料を硬化させる。   Examples of the hydraulic inorganic substance contained in the hydraulic material include cement and gypsum. Examples of the cement (hydraulic cement) include ordinary Portland cement, early-strength Portland cement, low heat cement, medium temperature heat Portland cement and other Portland cement, alumina cement, blast furnace cement, silica cement, fly ash cement, eco cement, and the like. It is done. Examples of gypsum include dihydrate gypsum, α-type or β-type hemihydrate gypsum, and anhydrous gypsum. These hydraulic inorganic substances may be used alone or in combination of two or more. These hydraulic inorganic substances are usually used in a powder (fine particle) state, and react with the added water to condense and harden the hydraulic material.

上述のとおり、水硬性材料には、必要に応じて、各種の混和材料を混入してもよい。ここで、混和材料は、水硬性無機物質と水と骨材以外に、水硬性材料に混入される物質である。混和材料としては、例えば、シリカフューム、フライアッシュ、高炉スラグ微粉末、石灰石粉末、石英粉末などの混和材、またAE剤、流動化剤、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、増粘剤、保水剤、撥水剤、膨張剤、硬化促進剤、凝結遅延剤などを挙げることができる。これらの混和材料は、単独でまたは二種以上組み合わせて使用してもよい。   As described above, various kinds of admixtures may be mixed in the hydraulic material as necessary. Here, the admixture is a substance mixed in the hydraulic material in addition to the hydraulic inorganic substance, water, and aggregate. Examples of the admixture include admixtures such as silica fume, fly ash, blast furnace slag fine powder, limestone powder, quartz powder, AE agent, fluidizing agent, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE. Examples thereof include a water reducing agent, a thickening agent, a water retention agent, a water repellent, a swelling agent, a curing accelerator and a setting retarder. These admixtures may be used alone or in combination of two or more.

補強繊維、水硬性無機物質、骨材、混和材料等の配合量及び水の添加量は、所望とする成形体に応じて、適宜調整でき、適宜公知の配合量を用いてもよい。本発明のCNF担持水硬性成形体用補強繊維は、CNFの働きにより高い流動性を水硬性材料に対して与えることができるため、減水剤や流動化剤などの使用量を低減し、水硬性成形体の強度を向上することができる。   The amount of the reinforcing fiber, the hydraulic inorganic substance, the aggregate, the admixture, and the like, and the amount of water added can be appropriately adjusted according to the desired molded article, and a known amount may be used as appropriate. The CNF-supported hydraulic molded body reinforcing fiber of the present invention can impart high fluidity to the hydraulic material by the action of CNF, so the amount of water reducing agent, fluidizing agent, etc. used can be reduced. The strength of the molded body can be improved.

以上のとおり、本発明の好適な実施態様を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention, and such modifications are also included in the scope of the present invention. It is.

[CNFの担持量]
CNFを担持させる前の15mあたりの繊維試料の重量を、CNF担持後の15mあたりの繊維試料の重量から引いた値をCNF担持量とした。
[CNF loading]
The value obtained by subtracting the weight of the fiber sample per 15 m before carrying CNF from the weight of the fiber sample per 15 m after carrying CNF was taken as the CNF carrying amount.

[水中撹拌後のCNF残存率]
水中撹拌後のCNF残存率は以下の方法により求めた。15mmに切断したCNF担持補強繊維を、CNF担持補強繊維/水比を10g/1リットルとしTAPPI離解機で1000カウント撹拌した。離解機から取り出し、乾燥した後のCNF担持補強繊維の重量から水中撹拌後のCNF担持量(A)を測定し、(A)と前項で求めたCNF担持量(B)から下記式によりCNFの残存率を求めた。
[CNF remaining rate after stirring in water]
The residual CNF rate after stirring in water was determined by the following method. The CNF-supporting reinforcing fiber cut to 15 mm was stirred at 1000 counts with a TAPPI disintegrator at a CNF-supporting reinforcing fiber / water ratio of 10 g / 1 liter. The amount of CNF supported after stirring in water (A) is measured from the weight of the CNF-supported reinforcing fiber taken out from the disaggregator and dried, and from the amount of CNF supported (B) determined in (A) and the previous item, the following formula is used. The survival rate was determined.

[水硬性組成物の流動性]
水硬性組成物の流動性を表す指標としてフロー値で評価を行った。測定はJISR 5201セメントの物理試験方法に記載の方法に準じて行った。水硬性組成物をフローコーンに充填した。次いでフローコーンを取り去った後120秒後の時点で、広がった水硬性組成物の径を最大と認める方向(ヨコ)と、これに直角な方向(タテ)とで測定し、その平均値をmmを単位とする整数で示した。
[Flowability of hydraulic composition]
The flow value was evaluated as an index representing the fluidity of the hydraulic composition. The measurement was performed according to the method described in the physical test method of JISR 5201 cement. The hydraulic composition was filled into a flow cone. Next, at the time point 120 seconds after removing the flow cone, measurement was performed in the direction (horizontal) in which the diameter of the expanded hydraulic composition was recognized as the maximum, and the direction perpendicular to this (vertical), and the average value was mm. It is shown as an integer with the unit.

[CNFの分散性]
流動性測定の際に、広がった水硬性組成物の表面を観察し、CNFの分散性を目視で判定した。
<判定基準>
○:最大直径が10mm以上の塊状のCNFが認められず、均一に分散している
△:前記塊状のCNFが5個以下認められる
×:前記塊状のCNFが6個以上認められる
なお、CNFが凝集して形成された塊状物と、CNF担持水硬性成形体用補強繊維が凝集して形成された塊状物は、それぞれの繊維径の違いにより目視で判別することができる。
[Dispersibility of CNF]
When measuring the fluidity, the surface of the spread hydraulic composition was observed, and the dispersibility of CNF was visually determined.
<Criteria>
◯: Bulk CNF having a maximum diameter of 10 mm or more is not recognized and uniformly dispersed Δ: 5 or less of the CNF is recognized ×: 6 or more of the CNF is recognized CNF Agglomerates formed by agglomeration and agglomerates formed by agglomeration of reinforcing fibers for CNF-carrying hydraulic shaped bodies can be discriminated visually by the difference in fiber diameter.

[水硬性成形体の強度]
JIS A 1108 コンクリートの圧縮強度試験方法に準じて行った。ミキサーで混練されたモルタルを直径50mm、高さ100mmの型枠に流し込んだ後、20℃の室内で48時間封緘養生し脱型したものを湿布で包み温度90℃・湿度98%の恒温恒湿槽で48時間湿熱養生して強度試験に供した。圧縮強度試験は最大容量2000kNの万能試験機にて行った。
[Strength of hydraulic compact]
It was carried out according to the compressive strength test method of JIS A 1108 concrete. The mortar kneaded with a mixer is poured into a mold with a diameter of 50 mm and a height of 100 mm, sealed and cured in a room at 20 ° C. for 48 hours, wrapped in a compress, and kept at a constant temperature and humidity of 90 ° C. and 98% humidity. It was subjected to wet heat curing in a tank for 48 hours and subjected to a strength test. The compressive strength test was conducted with a universal testing machine having a maximum capacity of 2000 kN.

[実施例1]
[CNF担持繊維の製造]
水硬性成形体用補強繊維として、ポリビニルアルコール繊維(PVA繊維)「RF1000」((株)クラレ製/繊維径:約310μm)を用いた。また、CNF分散液として、「セリッシュKY100S」(ダイセル化学工業(株)製/CNF濃度25重量%、分散媒:水)を使用した。切断前の「RF1000」を「セリッシュKY100S」を入れた処理槽に10秒間浸漬させた後、120℃の熱風下で乾燥を行い分散媒(水)を蒸発させることで、PVA繊維の表面にCNFを担持させた。CNF担持量は、25.5重量%であった。その後このCNF担持PVA繊維を繊維長15mmに切断し、アスペクト比50のCNF担持PVA短繊維を得た。水中撹拌後のCNF残存率は3.2%であった。
[Example 1]
[Manufacture of CNF-supporting fibers]
As reinforcing fibers for hydraulic molded bodies, polyvinyl alcohol fibers (PVA fibers) “RF1000” (manufactured by Kuraray Co., Ltd./fiber diameter: about 310 μm) were used. Moreover, “Cerish KY100S” (manufactured by Daicel Chemical Industries, Ltd./CNF concentration 25% by weight, dispersion medium: water) was used as the CNF dispersion. After immersing “RF1000” before cutting in a treatment tank containing “Serish KY100S” for 10 seconds, drying is performed under hot air at 120 ° C. to evaporate the dispersion medium (water), thereby CNF on the surface of the PVA fiber. Was supported. The amount of CNF supported was 25.5% by weight. Thereafter, the CNF-supporting PVA fiber was cut into a fiber length of 15 mm to obtain a CNF-supporting PVA short fiber having an aspect ratio of 50. The residual CNF rate after stirring in water was 3.2%.

ホバートミキサーに、普通セメント(太平洋セメント(株)製)600重量部、シリカフューム(EFACO社製)400重量部、細骨材(6.5号硅砂:最大径約1mm)900重量部、水150重量部、ポリカルボン酸系高性能AE減水剤(竹本油脂(株)製「SSP−104」)25重量部を約2L容量になる容積で12分間混練し、出来上がったプレーンモルタルに、上記CNF担持PVA繊維を25重量部添加し、2分間の追加混練を行い、水硬性組成物として繊維補強モルタルを作製した。   In Hobart mixer, 600 parts by weight of ordinary cement (manufactured by Taiheiyo Cement Co., Ltd.), 400 parts by weight of silica fume (manufactured by EFACO), 900 parts by weight of fine aggregate (No. 6.5 cinnabar: maximum diameter of about 1 mm), 150 weights of water 25 parts by weight of a polycarboxylic acid-based high-performance AE water reducing agent (“SSP-104” manufactured by Takemoto Yushi Co., Ltd.) in a volume of about 2 L for 12 minutes, and the resulting plain mortar is mixed with the CNF-supported PVA 25 parts by weight of the fiber was added and additional kneading was performed for 2 minutes to prepare a fiber reinforced mortar as a hydraulic composition.

次いでフロー値を測定した後、前記繊維補強モルタルを直径50mm、高さ100mmの型枠に流し込んだ後、20℃の室内で48時間封緘養生し、脱型したものを湿布で包み温度90℃・湿度98%の恒温恒湿槽で48時間湿熱養生し、水硬性成形体を作製した。   Next, after measuring the flow value, the fiber reinforced mortar was poured into a mold having a diameter of 50 mm and a height of 100 mm, and then sealed and cured in a room at 20 ° C. for 48 hours. Wet and heat curing was performed for 48 hours in a constant temperature and humidity chamber with a humidity of 98% to prepare a hydraulic molded body.

[実施例2]
20重量部の「セリッシュKY100S」に分散媒として水を80重量部加え、ミキサーにて室温で約10分撹拌混合することで、CNF濃度5重量%のCNF水分散液を調整した。このCNF分散液を使用したこと以外は実施例1と同様にして、CNF担持PVA繊維を得た。CNF担持量は、4.5重量%であった。水中撹拌後のCNF残存率は8.3%であった。前記CNF担持PVA繊維を用い、実施例1と同様の手順によって水硬性組成物および水硬性成形体を作製した。
[Example 2]
80 parts by weight of water as a dispersion medium was added to 20 parts by weight of “Serisch KY100S”, and the mixture was stirred and mixed at room temperature for about 10 minutes to prepare a CNF aqueous dispersion having a CNF concentration of 5% by weight. A CNF-supporting PVA fiber was obtained in the same manner as in Example 1 except that this CNF dispersion was used. The amount of CNF supported was 4.5% by weight. The residual CNF rate after stirring in water was 8.3%. Using the CNF-supported PVA fiber, a hydraulic composition and a hydraulic molded body were produced by the same procedure as in Example 1.

[実施例3]
水溶性バインダー樹脂として「PVA205」((株)クラレ製/ポリビニルアルコール樹脂)5重量部を予め水80重量部に溶解させたPVA水溶液85重量部を20重量部の「セリッシュKY100S」に加え、ミキサーにて室温で約10分撹拌混合することでCNF水分散液を調整した。
鋼繊維「CW2215」(東京製綱(株)製/直径220μm、繊維長15mm)に前記CNF分散液を塗し、乾燥することでCNF担持鋼繊維を作製した。CNF担持量は、4.5重量%であった。水中撹拌後のCNF残存率は5.3%であった。CNF担持鋼繊維を120重量部添加する以外は実施例1と同様の手順で、水硬性組成物および水硬性成形体を作製した。
[Example 3]
As a water-soluble binder resin, 85 parts by weight of a PVA aqueous solution in which 5 parts by weight of “PVA205” (manufactured by Kuraray Co., Ltd./polyvinyl alcohol resin) was previously dissolved in 80 parts by weight of water was added to 20 parts by weight of “Serisch KY100S”. CNF aqueous dispersion was prepared by stirring and mixing at room temperature for about 10 minutes.
The CNF dispersion was applied to steel fiber “CW2215” (manufactured by Tokyo Steel Corporation / diameter 220 μm, fiber length 15 mm) and dried to prepare CNF-supporting steel fibers. The amount of CNF supported was 4.5% by weight. The residual CNF rate after stirring in water was 5.3%. A hydraulic composition and a hydraulic compact were produced in the same procedure as in Example 1 except that 120 parts by weight of CNF-carrying steel fiber was added.

[比較例1]
CNF分散液を担持させることなく、PVA繊維を得たこと以外は、実施例1と同様にして、PVA繊維、水硬性組成物および水硬性成形体を作製した。
[Comparative Example 1]
A PVA fiber, a hydraulic composition, and a hydraulic molded body were produced in the same manner as in Example 1 except that the PVA fiber was obtained without supporting the CNF dispersion.

[比較例2]
プレーンモルタルにCNF分散液(CNF濃度12.5重量%/分散媒:水)を40重量部(CNF乾燥重量で5重量部)添加してからPVA繊維を添加する以外は実施例1と同様にして、水硬性組成物を調整した。2分の追加混練を行っても塊状のCNFが解れず、さらに5分追加で混練を行ったが塊状のCNFは解消されずCNFが分離した状態であった。
[Comparative Example 2]
Example 1 except that 40 parts by weight of CNF dispersion (CNF concentration 12.5% by weight / dispersion medium: water) was added to plain mortar (5 parts by weight of CNF dry weight) and then PVA fiber was added. The hydraulic composition was prepared. Even when the additional kneading was performed for 2 minutes, the bulk CNF was not released, and further, the kneading was performed for an additional 5 minutes. However, the bulk CNF was not eliminated and the CNF was separated.

CNFは水硬性組成物に均一に分散させることにより成形体の圧縮強度の向上に寄与するとされているが、本発明のCNF担持水硬性成形体用補強繊維を用いることにより、CNFが水硬性組成物中に均一に分散したため、実施例1〜3はいずれも比較例1、2に比べて高い圧縮強度を示し、その効果は、同種の繊維を用いた場合(実施例1と実施例2)、CNF担持量に依存する傾向にあった。   CNF is said to contribute to the improvement of the compression strength of the molded body by being uniformly dispersed in the hydraulic composition. However, by using the reinforcing fiber for CNF-supported hydraulic molded body of the present invention, CNF is a hydraulic composition. Since it was uniformly dispersed in the product, Examples 1 to 3 all showed higher compressive strength than Comparative Examples 1 and 2, and the effect was obtained when the same type of fibers were used (Example 1 and Example 2). There was a tendency to depend on the amount of CNF supported.

本発明の水硬性成形体用補強繊維を配合したセメントペースト、モルタル、コンクリート等の水硬性材料の用途は特に限定されるものではなく、各種建設資材、土木資材として利用することができる。   The use of hydraulic materials such as cement paste, mortar, concrete, etc., in which the reinforcing fibers for hydraulic molded bodies of the present invention are blended is not particularly limited, and can be used as various construction materials and civil engineering materials.

Claims (5)

繊維の表面に、繊維重量に対して0.1重量%以上のCNFが担持されている水硬性成形体用補強繊維。 A reinforcing fiber for a hydraulic molded body in which 0.1% by weight or more of CNF is supported on the surface of the fiber. 前記水硬性成形体用補強繊維がポリビニルアルコール系繊維である、請求項1に記載の水硬性成形体用補強繊維。 The reinforcing fiber for hydraulic molded bodies according to claim 1, wherein the reinforcing fibers for hydraulic molded bodies are polyvinyl alcohol fibers. 請求項1または2のいずれかに記載の水硬性成形体用補強繊維および水硬性無機物質を含む、水硬性組成物。 A hydraulic composition comprising the reinforcing fiber for hydraulic molded body according to claim 1 and a hydraulic inorganic substance. 前記水硬性無機物質がセメントである、請求項3に記載の水硬性組成物。 The hydraulic composition according to claim 3, wherein the hydraulic inorganic substance is cement. 請求項1または2のいずれかに記載の水硬性成形体用補強繊維、水硬性無機物質、および水を含む混合物を練り混ぜて水硬性組成物を形成する工程、および前記水硬性組成物を成形した後硬化する工程、を含む水硬性成形体の製造方法。 A step of kneading a mixture containing the reinforcing fiber for hydraulic molded body according to claim 1 or 2, a hydraulic inorganic substance, and water to form a hydraulic composition, and molding the hydraulic composition The manufacturing method of the hydraulic molded object including the process hardened | cured after carrying out.
JP2015257153A 2015-12-28 2015-12-28 Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article Active JP6644546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015257153A JP6644546B2 (en) 2015-12-28 2015-12-28 Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015257153A JP6644546B2 (en) 2015-12-28 2015-12-28 Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article

Publications (2)

Publication Number Publication Date
JP2017119600A true JP2017119600A (en) 2017-07-06
JP6644546B2 JP6644546B2 (en) 2020-02-12

Family

ID=59271425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015257153A Active JP6644546B2 (en) 2015-12-28 2015-12-28 Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article

Country Status (1)

Country Link
JP (1) JP6644546B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151485A1 (en) * 2018-02-02 2019-08-08 大王製紙株式会社 Cement composition and cured object obtained therefrom
JP2020063162A (en) * 2018-10-15 2020-04-23 丸栄コンクリート工業株式会社 Dispersion of cellulose nanofiber into cement composition
KR102127945B1 (en) * 2020-02-21 2020-06-30 주식회사 에이지 Latex modified ultra rapid harding concrete composition with reinforcing fiber impregnated alginate-aluminate bead and a repairing method of road pavement using the same
JP2020138881A (en) * 2019-02-28 2020-09-03 高知県 Plaster material
CN113583302A (en) * 2021-08-23 2021-11-02 衢州学院 Heat insulating material and preparation method thereof
JP6981698B1 (en) * 2020-11-14 2021-12-17 田中建設株式会社 Cement composition and its cured product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123844A (en) * 1986-11-11 1988-05-27 大阪瓦斯株式会社 Dry-state carbon short fiber raw material treated with aggregation prevention and manufacture
JPH1029844A (en) * 1996-07-16 1998-02-03 Daicel Chem Ind Ltd Inorganic hardenable composition, inorganic formed body and its production
JP2005200263A (en) * 2004-01-15 2005-07-28 Teijin Techno Products Ltd Fiber for reinforcing cement and the like
JP2013188864A (en) * 2012-03-12 2013-09-26 Kmew Co Ltd Method of manufacturing cellulose nanofibers-containing composition and method of manufacturing cement molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123844A (en) * 1986-11-11 1988-05-27 大阪瓦斯株式会社 Dry-state carbon short fiber raw material treated with aggregation prevention and manufacture
JPH1029844A (en) * 1996-07-16 1998-02-03 Daicel Chem Ind Ltd Inorganic hardenable composition, inorganic formed body and its production
JP2005200263A (en) * 2004-01-15 2005-07-28 Teijin Techno Products Ltd Fiber for reinforcing cement and the like
JP2013188864A (en) * 2012-03-12 2013-09-26 Kmew Co Ltd Method of manufacturing cellulose nanofibers-containing composition and method of manufacturing cement molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151485A1 (en) * 2018-02-02 2019-08-08 大王製紙株式会社 Cement composition and cured object obtained therefrom
JP2020063162A (en) * 2018-10-15 2020-04-23 丸栄コンクリート工業株式会社 Dispersion of cellulose nanofiber into cement composition
JP2020138881A (en) * 2019-02-28 2020-09-03 高知県 Plaster material
KR102127945B1 (en) * 2020-02-21 2020-06-30 주식회사 에이지 Latex modified ultra rapid harding concrete composition with reinforcing fiber impregnated alginate-aluminate bead and a repairing method of road pavement using the same
JP6981698B1 (en) * 2020-11-14 2021-12-17 田中建設株式会社 Cement composition and its cured product
JP2022079008A (en) * 2020-11-14 2022-05-26 田中建設株式会社 Cement composition and hardened body thereof
CN113583302A (en) * 2021-08-23 2021-11-02 衢州学院 Heat insulating material and preparation method thereof

Also Published As

Publication number Publication date
JP6644546B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6644546B2 (en) Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article
US9174873B2 (en) Material to be used as a concrete additive
RU2036886C1 (en) Method for preparation of mixture for production of composite material products from composite materials
JP2007534607A (en) Cement-based system using plasticizing / extrusion aid made from raw cotton linter
US4778529A (en) Cementitious compositions comprising a water soluble polymer and a cross-linking agent therefor
CN107043236B (en) Lightweight aggregate concrete and preparation method thereof
JP2007534605A (en) Cement mortar for tiles using moisture retention agent
JP2007534608A (en) Cement system using moisture retention agent made from raw cotton linter
JPH0137345B2 (en)
CN105130335A (en) Low shrinkage anti-cracking C60 grade self-compacting bridge tower concrete based on internal curing, shrinkage compensating and toughening, and preparation method thereof
JP5575728B2 (en) Cellulose ethers suitable for extrusion of cement-bound articles with improved properties
JP6302716B2 (en) Reinforcing fiber for hydraulic molded body and hydraulic material containing the same
JP2017114714A (en) Coating agent for cement-based hardened material
JP6664998B2 (en) Method of manufacturing concrete for preventing frost damage
JP2015536902A (en) Additives for water curable mixtures
JPH0755850B2 (en) Admixture for cement extrusion products
JP3355588B2 (en) Cellulose fiber-containing cement composition
JPH08333152A (en) Cement composition and auxiliary for its extrusion molding
JP2010083698A (en) Method for producing hardened cement body, and hardened cement body
KR20010007672A (en) Method for preparing granulated cellulose fiber
JP2004137119A (en) Cement-based fiber composite material
JP3280636B2 (en) Manufacturing method of molded product
Bilcati et al. Effect of combined fiber-microcrystalline cellulose reinforcement on the rheology and hydration kinetics of cementitious composites
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
CN117550850A (en) Regenerated bare concrete and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150