JP2017119363A - Three-dimensional molding apparatus and three-dimensional molding method - Google Patents

Three-dimensional molding apparatus and three-dimensional molding method Download PDF

Info

Publication number
JP2017119363A
JP2017119363A JP2015255950A JP2015255950A JP2017119363A JP 2017119363 A JP2017119363 A JP 2017119363A JP 2015255950 A JP2015255950 A JP 2015255950A JP 2015255950 A JP2015255950 A JP 2015255950A JP 2017119363 A JP2017119363 A JP 2017119363A
Authority
JP
Japan
Prior art keywords
dimensional
powder
modeling
dimensional structure
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015255950A
Other languages
Japanese (ja)
Other versions
JP6690939B2 (en
Inventor
文良 岩瀬
Fumiyoshi Iwase
文良 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roland DG Corp
Original Assignee
Roland DG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roland DG Corp filed Critical Roland DG Corp
Priority to JP2015255950A priority Critical patent/JP6690939B2/en
Publication of JP2017119363A publication Critical patent/JP2017119363A/en
Application granted granted Critical
Publication of JP6690939B2 publication Critical patent/JP6690939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase initial strength of a manufactured three-dimensional molded object even when such a powder material is used that is a powder prepared by compounding a resin powder with a ceramic material powder such as aluminum oxide that itself is not cured with water as a main component of a binder.SOLUTION: A three-dimensional molding apparatus manufactures a three-dimensional molded object by forming a powder layer of a powder material in a molding tank and discharging a binder through a discharge head to the powder layer, based on the image data relating to a cross-sectional shape of the three-dimensional molded object. The three-dimensional molding apparatus includes electromagnetic wave irradiation means for irradiating the three-dimensionally molded object with electromagnetic waves. The electromagnetic irradiation means has an electromagnetic irradiation source for irradiating the three-dimensional molded object with electromagnetic waves and blocking means for blocking leakage of electromagnetic waves to the outside, the electromagnetic waves radiating from the electromagnetic wave irradiation source to irradiate the three-dimensional molded object.SELECTED DRAWING: Figure 4

Description

本発明は、三次元造形装置および三次元造形方法に関し、さらに詳細には、粉体を原料として三次元造形物を作製する三次元造形装置および三次元造形方法に関する。   The present invention relates to a three-dimensional modeling apparatus and a three-dimensional modeling method, and more particularly to a three-dimensional modeling apparatus and a three-dimensional modeling method for producing a three-dimensional model using powder as a raw material.

従来より、三次元造形物を作製する三次元造形装置として、石膏パウダー(石膏粉末)や樹脂パウダー(樹脂粉末)などの粉体を原料として三次元造形物を作製する粉末固着積層方式(バインダージェッティング方式)の三次元造形装置が知られている。   Conventionally, as a three-dimensional modeling apparatus for producing a three-dimensional structure, a powder fixed lamination method (binder jet) for producing a three-dimensional structure using powder such as gypsum powder (gypsum powder) or resin powder (resin powder) as a raw material. 3D modeling apparatus) is known.

この粉末固着積層方式の三次元造形装置による三次元造形方法とは、吐出ヘッド(インクジェットヘッド)から水を主成分とする液体結合剤であるバインダーを各種の粉末に噴射して当該粉末を一層ずつ固め、当該固めた層たる造形層を積層して三次元造形物を作製するというものである。   The three-dimensional modeling method by the three-dimensional modeling apparatus of this powder fixed lamination method is a method in which a binder, which is a liquid binder mainly composed of water, is sprayed onto various powders from a discharge head (inkjet head) one by one. The three-dimensional structure is produced by laminating and stacking the solidified modeling layers.

より詳細には、粉末固着積層方式の三次元造形装置による三次元造形方法では、まず、三次元造形物を造形する造形槽に粉末材料を敷き詰めて所定の厚さの粉末層を形成する。   More specifically, in the three-dimensional modeling method using the powder fixed lamination type three-dimensional modeling apparatus, first, a powder material is spread in a modeling tank for modeling a three-dimensional modeled object to form a powder layer having a predetermined thickness.

次に、この粉末層に対して、三次元造形物の断面形状の所定の解像度を有する画像データに基づいて、吐出ヘッドから粉末材料を硬化するバインダーを吐出して、粉末層に当該画像データに基づく断面形状の造形層を形成する。   Next, a binder for curing the powder material is discharged from the discharge head to the powder layer based on image data having a predetermined resolution of the cross-sectional shape of the three-dimensional structure, and the image data is converted into the powder layer. A modeling layer having a cross-sectional shape is formed.

その後、断面形状の造形層が形成された粉末層上に所定の厚さの新たな粉末層を形成し、この粉末層に、形成した断面形状の次の断面形状を表す画像データに基づいて、吐出ヘッドからバインダーを吐出し、当該新たな粉末層に当該画像データに基づく断面形状の造形層を形成する。   Thereafter, a new powder layer having a predetermined thickness is formed on the powder layer on which the modeling layer having a cross-sectional shape is formed, and based on the image data representing the next cross-sectional shape of the formed cross-sectional shape on the powder layer, A binder is discharged from the discharge head, and a modeling layer having a cross-sectional shape based on the image data is formed on the new powder layer.

そして、こうした処理を繰り返し行い、全ての断面形状を表す画像データに基づく断面形状の造形層を順次形成することで、三次元造形物を作製することとなる。
Then, such a process is repeatedly performed, and a three-dimensional structure is produced by sequentially forming a modeling layer having a cross-sectional shape based on image data representing all cross-sectional shapes.

ここで、従来の三次元造形装置による三次元造形方法においては、上記のようにして三次元造形物を作製した直後に、当該三次元造形装置の内部に配設された加熱装置や当該三次元造形装置の外部に設置された加熱装置を用いて、当該加熱装置により三次元造形物に向けて温風を吹き出し、当該温風により当該三次元造形物を昇温させることによって当該三次元造形物の乾燥や固化を促進させていた。
Here, in the three-dimensional modeling method by the conventional three-dimensional modeling apparatus, immediately after producing the three-dimensional modeled object as described above, the heating apparatus or the three-dimensional model arranged inside the three-dimensional modeling apparatus Using a heating device installed outside the modeling apparatus, the warming air is blown out toward the three-dimensional structure by the heating apparatus, and the temperature of the three-dimensional structure is increased by the warm air, thereby the three-dimensional structure. It promoted drying and solidification.

ところで、粉末材料として石膏パウダーと樹脂パウダーとを配合した粉体を用いる場合には、作製された三次元造形物の最終強度には主に樹脂パウダーが寄与するものであるが、初期強度には主に石膏パウダーが寄与している。   By the way, when using powder mixed with gypsum powder and resin powder as the powder material, the resin powder mainly contributes to the final strength of the produced three-dimensional structure, but the initial strength is Mainly gypsum powder contributes.

このため、上記した従来の三次元造形方法に示すように、三次元造形物を作製した直後に当該三次元造形物を昇温させると石膏パウダーが素早く乾燥し、その結果、当該三次元造形物の乾燥や固化が促進されるものであった。   For this reason, as shown in the above-described conventional three-dimensional modeling method, when the temperature of the three-dimensional structure is raised immediately after the three-dimensional structure is manufactured, the gypsum powder quickly dries, and as a result, the three-dimensional structure The drying and solidification of the product was promoted.

従って、三次元造形物の作製後に、時間を空けずに直ぐに当該三次元造形物に付着している粉末材料を除去する作業などの次の工程に速やかに移行することができるため、三次元造形物の作製作業を迅速化することができる。
Therefore, since the three-dimensional structure can be quickly transferred to the next step such as the operation of removing the powder material adhering to the three-dimensional structure immediately after making the three-dimensional structure, the three-dimensional structure It is possible to speed up the manufacturing process of objects.

しかしながら、粉末材料として、例えば、酸化アルミニウム(Al)などのセラミック材料のパウダー(セラミック粉末)と樹脂パウダー(樹脂粉末)とを配合した粉体を用いる場合には、作製された三次元造形物の最終強度は優れているが、十分な初期強度を得ることが難しかった。 However, in the case of using, as the powder material, for example, a powder in which a powder of a ceramic material such as aluminum oxide (Al 2 O 3 ) (ceramic powder) and a resin powder (resin powder) are used, the produced three-dimensional Although the final strength of the shaped article is excellent, it is difficult to obtain a sufficient initial strength.

即ち、セラミック材料などのようなそれ自身ではバインダーの主成分である水では硬化しない粉体を用いると、上記した従来の三次元造形方法のように三次元造形物を作製した直後に当該三次元造形物を温風により昇温させても、当該三次元造形物の乾燥や固化の促進を十分には図ることができず、作製された三次元造形物の初期強度は低く脆いものであった。   That is, if a powder such as a ceramic material that is not hardened by water, which is the main component of the binder itself, is used, immediately after the three-dimensional structure is produced as in the conventional three-dimensional modeling method, Even if the modeling object is heated with warm air, the three-dimensional object cannot be sufficiently dried and solidified, and the initial strength of the three-dimensional object is low and brittle. .

このため、三次元造形物の作製後に、時間を空けずに直ぐに当該三次元造形物に付着している粉末材料を除去する作業などの次の工程に速やかに移行することができず、三次元造形物の作製作業が遅延する要因となっていたという問題点があった。
For this reason, after producing the three-dimensional structure, it is not possible to immediately move to the next step such as the operation of removing the powder material adhering to the three-dimensional structure without taking time, There was a problem that the production work of the model was a factor that delayed.

なお、本願出願人が特許出願時に知っている先行技術は、上記において説明したようなものであって文献公知発明に係る発明ではないため、記載すべき先行技術情報はない。   The prior art that the applicant of the present application knows at the time of filing a patent is as described above and is not an invention related to a known literature, so there is no prior art information to be described.

本発明は、上記したような従来の技術に対する問題点に鑑みてなされたものであり、その目的とするところは、それ自身ではバインダーの主成分である水では硬化しない酸化アルミニウムなどのセラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料として用いた場合においても、作製した三次元造形物の初期強度を高めることのできる三次元造形装置および三次元造形方法を提供しようとするものである。   The present invention has been made in view of the above-mentioned problems with the prior art, and the object of the present invention is to provide a ceramic material such as aluminum oxide that does not harden itself with water, which is the main component of the binder. Even when using powder and resin powder blended as a powder material, it is intended to provide a 3D modeling apparatus and 3D modeling method that can increase the initial strength of the produced 3D model. is there.

上記目的を達成するために、本発明による三次元造形装置および三次元造形方法は、それ自身ではバインダーの主成分である水では硬化しない酸化アルミニウムなどのセラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料として用いて形成された三次元造形物を早期に固めるには、当該粉末材料を構成する樹脂パウダーを早期に固める必要があるという、本願発明者の知見に基づいて発明されたものである。   In order to achieve the above object, the three-dimensional modeling apparatus and the three-dimensional modeling method according to the present invention blend a powder of a ceramic material such as aluminum oxide that does not harden with water, which is a main component of the binder itself, and a resin powder. Invented based on the knowledge of the present inventor that the resin powder constituting the powder material needs to be hardened at an early stage in order to harden the three-dimensional structure formed using the powder as a powder material at an early stage. Is.

即ち、本発明による三次元造形装置および三次元造形方法は、上記本願発明者の知見に基づき、三次元造形物の三次元造形後にマイクロ波を用いたマイクロ波加熱などのような電磁波を用いた電磁波加熱によって、当該三次元造形物全体を温めて樹脂パウダーの硬化を促進することにより、当該三次元造形物の初期強度を高めるようにしたものである。   That is, the three-dimensional modeling apparatus and the three-dimensional modeling method according to the present invention use electromagnetic waves such as microwave heating using a microwave after three-dimensional modeling of a three-dimensional modeled object based on the knowledge of the inventors of the present application. The initial strength of the three-dimensional structure is increased by heating the entire three-dimensional structure by electromagnetic wave heating and promoting the curing of the resin powder.

これにより、酸化アルミニウムなどのセラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料を用いた三次元造形物であっても、その作製後に時間を空けずに直ぐに当該三次元造形物に付着している粉末材料を除去する作業などの次の工程に速やかに移行することができ、三次元造形物の作製作業が遅延することはない。
As a result, even if it is a three-dimensional structure using a powder material in which a powder of a ceramic material such as aluminum oxide and a resin powder is blended, it is immediately converted into the three-dimensional structure without taking time after the preparation. It is possible to promptly move to the next step such as an operation of removing the adhering powder material, and the manufacturing operation of the three-dimensional structure is not delayed.

こうした本発明による三次元造形装置は、造形槽に形成された粉末材料よりなる粉末層に、三次元造形物の断面形状についての画像データに基づいて吐出ヘッドからバインダーを吐出することにより上記粉末材料を硬化して三次元造形物を作製する三次元造形装置において、三次元造形した三次元造形物に対して電磁波を照射する電磁波照射手段を備え、上記電磁波照射手段は、上記三次元造形物に電磁波を照射する電磁波照射源と、上記三次元造形物を被覆して、上記電磁波照射源から上記三次元造形物へ照射された電磁波の外部への漏洩を遮蔽する遮蔽手段とを有するようにしたものである。   The three-dimensional modeling apparatus according to the present invention is configured such that the powder material is formed by discharging a binder from a discharge head to a powder layer formed of a powder material formed in a modeling tank based on image data about a cross-sectional shape of the three-dimensional structure. In the three-dimensional modeling apparatus for producing a three-dimensional structure by curing the three-dimensional structure, the three-dimensional structure includes an electromagnetic wave irradiation means for irradiating an electromagnetic wave to the three-dimensional structure, and the electromagnetic wave irradiation means is provided on the three-dimensional structure. An electromagnetic wave irradiation source that irradiates electromagnetic waves, and a shielding means that covers the three-dimensional structure and shields leakage of electromagnetic waves irradiated from the electromagnetic wave irradiation source to the three-dimensional structure. Is.

また、本発明による三次元造形装置は、上記した本発明による三次元造形装置において、上記電磁波照射源は、複数の周波数帯域の電磁波を個別または同時に照射するようにしたものである。   The three-dimensional modeling apparatus according to the present invention is the above-described three-dimensional modeling apparatus according to the present invention, wherein the electromagnetic wave irradiation source radiates electromagnetic waves in a plurality of frequency bands individually or simultaneously.

また、本発明による三次元造形装置は、上記した本発明による三次元造形装置において、上記粉末材料は、セラミック粉末と樹脂粉末とを配合した粉体であるようにしたものである。   The three-dimensional modeling apparatus according to the present invention is the above-described three-dimensional modeling apparatus according to the present invention, wherein the powder material is a powder obtained by blending ceramic powder and resin powder.

また、本発明による三次元造形方法は、造形槽に形成された粉末材料よりなる粉末層に、三次元造形物の断面形状についての画像データに基づいて吐出ヘッドからバインダーを吐出することにより上記粉末材料を硬化して三次元造形物を作製する三次元造形方法において、三次元造形した三次元造形物に対して電磁波を照射して、電磁波加熱によって上記三次元造形物全体を温めて上記三次元造形物の硬化を促進するようにしたものである。   Further, the three-dimensional modeling method according to the present invention provides the above powder by discharging a binder from a discharge head to a powder layer made of a powder material formed in a modeling tank based on image data about a cross-sectional shape of a three-dimensional structure. In the three-dimensional modeling method for curing a material to produce a three-dimensional model, the three-dimensional model is irradiated with an electromagnetic wave, and the whole three-dimensional model is heated by electromagnetic heating to form the three-dimensional model. It is intended to promote the hardening of the modeled object.

また、本発明による三次元造形方法は、上記した本発明による三次元造形方法において、上記電磁波を照射する際に、複数の周波数帯域の電磁波を個別または同時に照射するようにしたものである。   The three-dimensional modeling method according to the present invention is such that, in the above-described three-dimensional modeling method according to the present invention, electromagnetic waves in a plurality of frequency bands are irradiated individually or simultaneously when the electromagnetic waves are irradiated.

また、本発明による三次元造形方法は、上記した本発明による三次元造形方法において、上記粉末材料は、セラミック粉末と樹脂粉末とを配合した粉体であるようにしたものである。   The three-dimensional modeling method according to the present invention is the above-described three-dimensional modeling method according to the present invention, wherein the powder material is a powder in which ceramic powder and resin powder are blended.

本発明は、以上説明したように構成されているので、それ自身ではバインダーの主成分である水では硬化しない酸化アルミニウムなどのセラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料として用いた場合においても、作製した三次元造形物の初期強度を高めることができるようになるという優れた効果を奏するものである。   Since the present invention is configured as described above, a powder in which a powder of a ceramic material such as aluminum oxide that is not cured by water, which is a main component of the binder itself, and a resin powder is used as a powder material. Even in such a case, there is an excellent effect that the initial strength of the produced three-dimensional structure can be increased.

図1は、本発明による三次元造形装置の実施の形態の一例を示す概略構成斜視説明図である。FIG. 1 is a schematic configuration perspective view showing an example of an embodiment of a three-dimensional modeling apparatus according to the present invention. 図2は、図1に示す三次元造形装置の断面概略構成斜視説明図である。2 is a schematic cross-sectional perspective view of the three-dimensional modeling apparatus shown in FIG. 図3は、図1示す三次元造形装置における三次元造形中の造形槽の位置関係を示す図2に対応する断面概略構成斜視説明図である。3 is a cross-sectional schematic configuration perspective view corresponding to FIG. 2 showing the positional relationship of a modeling tank during three-dimensional modeling in the three-dimensional modeling apparatus shown in FIG. 図4は、図1示す三次元造形装置におけるマイクロ波照射中の造形槽の位置関係を示す図2に対応する断面概略構成斜視説明図である。4 is a cross-sectional schematic configuration perspective view corresponding to FIG. 2 showing the positional relationship of the modeling tank during microwave irradiation in the three-dimensional modeling apparatus shown in FIG. 図5は、図4のA矢視説明図である。FIG. 5 is an explanatory view taken along arrow A in FIG.

以下、添付の図面を参照しながら、本発明による三次元造形装置および三次元造形方法の実施の形態の一例を詳細に説明することとする。
Hereinafter, an example of an embodiment of a 3D modeling apparatus and a 3D modeling method according to the present invention will be described in detail with reference to the accompanying drawings.

図1には本発明の実施の形態の一例による三次元造形装置の概略構成斜視説明図が示されており、図2には図1に示す三次元造形装置の断面概略構成斜視説明図が示されている。   FIG. 1 shows a schematic configuration perspective view of a three-dimensional modeling apparatus according to an example of an embodiment of the present invention, and FIG. 2 shows a cross-sectional schematic configuration perspective view of the three-dimensional modeling apparatus shown in FIG. Has been.

この図1ならびに図2に示す三次元造形装置10は、粉末固着積層方式による造形ステージ前後移動式の三次元造形装置であって、固定系部材である基台部12を備えている。   The three-dimensional modeling apparatus 10 shown in FIGS. 1 and 2 is a three-dimensional modeling apparatus that moves back and forth on a modeling stage by a powder fixing lamination method, and includes a base portion 12 that is a fixed system member.

この基台部12内には、XYZ直交座標系におけるX軸方向に延長する溝部14が形成されている。   A groove portion 14 extending in the X-axis direction in the XYZ orthogonal coordinate system is formed in the base portion 12.

溝部14内には、X軸方向に移動自在かつ底面がZ軸方向に昇降可能に構成された造形槽16と、造形槽16と一体的に連接されて造形槽16とともにX軸方向に移動自在な収容槽18とが配置されている。   In the groove portion 14, a modeling tank 16 configured to be movable in the X-axis direction and capable of moving up and down in the Z-axis direction, and connected integrally with the modeling tank 16, is movable in the X-axis direction together with the modeling tank 16. A storage tank 18 is arranged.

溝部14のX軸方向に延在する領域が、造形槽16と収容槽18とが溝部14内を移動可能な可動域となる。   A region extending in the X-axis direction of the groove portion 14 is a movable region in which the modeling tank 16 and the storage tank 18 can move in the groove portion 14.

基台部12上には、溝部14を挟むようにして溝部14のY軸方向における両側の領域からそれぞれ一対の支持部20が立ち上がり形成されており、この一対の支持部20によって、XYZ直交座標系におけるY軸方向に沿って延長して配置された貯留槽支持レール22が支持されている。   A pair of support portions 20 are formed on the base portion 12 so as to rise from both regions in the Y-axis direction of the groove portion 14 so as to sandwich the groove portion 14, and the pair of support portions 20 in the XYZ orthogonal coordinate system. A storage tank support rail 22 that extends along the Y-axis direction is supported.

貯留槽支持レール22上のY軸方向の中央部位には、下方に開閉自在の開口部24aを備えた貯留槽24が配置されている。開口部24aは、溝部14内に位置する造形槽16と対向可能に配置されている。   A storage tank 24 having an opening 24a that is openable and closable downward is disposed at a central portion in the Y-axis direction on the storage tank support rail 22. The opening 24 a is disposed so as to be able to face the modeling tank 16 located in the groove 14.

さらに、基台部12上には、溝部14を挟むようにしてZ軸方向の下方側が開口した略コ字形状のローラー支持部26が立ち上がり形成されており、このローラー支持部26によって、造形槽16上を相対的にX軸方向の後方側から前方側へ移動することが可能なローラー28が支持されている。   Furthermore, a substantially U-shaped roller support portion 26 having an opening on the lower side in the Z-axis direction is formed on the base portion 12 so as to sandwich the groove portion 14. Is supported by a roller 28 that can relatively move from the rear side to the front side in the X-axis direction.

また、ローラー支持部26にはY軸方向に沿ってレール26aが形成されており、造形槽16に対してバインダーを吐出する吐出ヘッド30が、レール26aに対してY軸方向に沿って往復移動可能に支持されている。
A rail 26a is formed on the roller support portion 26 along the Y-axis direction, and the discharge head 30 that discharges the binder to the modeling tank 16 reciprocates along the Y-axis direction with respect to the rail 26a. Supported as possible.

また、基台部12上における溝部14の造形槽16と収容槽18との可動域のX軸方向後方側、具体的には、ローラー支持部26のX軸方向後方側には、溝部14の上方位置において溝部14を覆うように、電磁波照射手段の一例として電磁波発振装置の一種であるマイクロ波発振装置40が配設されている。このマイクロ波発振装置40については、後に詳述する。
In addition, on the rear side of the groove portion 14 on the base portion 12 in the X-axis direction of the movable area between the modeling tank 16 and the storage tank 18, specifically, on the rear side of the roller support portion 26 in the X-axis direction, A microwave oscillation device 40, which is a type of electromagnetic wave oscillation device, is disposed as an example of the electromagnetic wave irradiation means so as to cover the groove portion 14 at an upper position. The microwave oscillator 40 will be described later in detail.

ここで、造形槽16と収容槽18との位置関係は、造形槽16に対してX軸方向前方側に収容槽18が配置されている。   Here, the positional relationship between the modeling tank 16 and the storage tank 18 is such that the storage tank 18 is disposed on the front side in the X-axis direction with respect to the modeling tank 16.

また、吐出ヘッド30は、X軸方向においてローラー28の後方側に位置するように配置されており、1パスで走査して往路と復路との双方向でバインダーを吐出する。   The ejection head 30 is disposed so as to be located on the rear side of the roller 28 in the X-axis direction, and scans in one pass to eject the binder in both the forward path and the backward path.

なお、符号100は、三次元造形装置10によって作製される三次元造形物の一例を示している。
In addition, the code | symbol 100 has shown an example of the three-dimensional modeling thing produced with the three-dimensional modeling apparatus 10. FIG.

以上の構成において、この三次元造形装置10においては、内部に粉末材料を貯留した貯留槽24の開口部24aと造形槽16とを対向させた初期状態から、貯留槽24の開口部24aを開いて造形槽16へ粉末材料を供給する。   In the above configuration, in the three-dimensional modeling apparatus 10, the opening 24 a of the storage tank 24 is opened from the initial state in which the opening 24 a of the storage tank 24 storing the powder material and the modeling tank 16 are opposed to each other. Then, the powder material is supplied to the modeling tank 16.

次に、溝部14内において造形槽16および収容槽18をX軸方向の前方側から後方側に移動することにより、ローラー28が造形槽16上を相対的にX軸方向の後方側から前方側へ移動することになり、造形槽16へ供給された粉末材料は造形槽16内に敷き詰められて所定の厚さの粉末層が形成される。   Next, by moving the modeling tank 16 and the storage tank 18 from the front side in the X-axis direction to the rear side in the groove portion 14, the roller 28 relatively moves on the modeling tank 16 from the rear side in the X-axis direction to the front side. The powder material supplied to the modeling tank 16 is spread in the modeling tank 16 to form a powder layer having a predetermined thickness.

なお、この際に、造形槽16の底面は、予め設定された位置まで上昇するように制御される。   At this time, the bottom surface of the modeling tank 16 is controlled to rise to a preset position.

また、造形槽16内において粉末層の形成に用いられなかった余分な粉末材料は、ローラー28が造形槽16から収容槽18へと相対的にX軸方向の後方側から前方側に移動することにより、溝部14内において造形槽16とともにX軸方向の前方側から後方側に移動する収容槽18に収容される。   In addition, the excess powder material that has not been used for forming the powder layer in the modeling tank 16 moves from the rear side in the X-axis direction to the front side relative to the roller 28 from the modeling tank 16 to the storage tank 18. Thus, the groove 14 is accommodated in the accommodating tank 18 that moves from the front side in the X-axis direction to the rear side together with the modeling tank 16.

上記のようにして造形槽16内に粉末層を形成した後に、溝部14内において造形槽16をX軸方向に移動して、図3に示すように造形槽16を吐出ヘッド30の下方の所定の位置に配置する。   After forming the powder layer in the modeling tank 16 as described above, the modeling tank 16 is moved in the X-axis direction in the groove portion 14, and the modeling tank 16 is moved to a predetermined position below the discharge head 30 as shown in FIG. Place at the position.

それから、造形槽16に形成された粉末層に対して、作製予定の三次元造形物のZ軸方向における断面形状(即ち、XY平面上での形状である。)についての所定の解像度を有する画像データに基づいて、溝部14内において造形槽16をX軸方向の前方側から後方側に移動するとともに吐出ヘッド30をY軸方向に移動しながら、造形槽16に形成された粉末層に対して吐出ヘッド30から粉末材料を硬化するバインダーを吐出して造形層を形成する。   Then, an image having a predetermined resolution with respect to the cross-sectional shape in the Z-axis direction of the three-dimensional structure to be produced (that is, the shape on the XY plane) with respect to the powder layer formed in the modeling tank 16. Based on the data, while moving the modeling tank 16 from the front side in the X-axis direction to the rear side in the groove portion 14 and moving the discharge head 30 in the Y-axis direction, with respect to the powder layer formed in the modeling tank 16 A binder for curing the powder material is discharged from the discharge head 30 to form a modeling layer.

粉末層へのバインダーの吐出を完了して造形層を形成すると、再度初期状態へ戻って上記した処理を行い、次の粉末層に対してバインダーの吐出を行って次の造形層を形成する。こうした動作を繰り返し行うことによって、三次元造形物100の三次元造形を行う。   When the discharge of the binder to the powder layer is completed and the modeling layer is formed, the process returns to the initial state and the above-described processing is performed, and the binder is discharged to the next powder layer to form the next modeling layer. By repeating these operations, the three-dimensional structure 100 is three-dimensionally formed.

なお、本実施の形態において用いるバインダーは、透明のものでも着色されたものでもよい。
Note that the binder used in the present embodiment may be transparent or colored.

この三次元造形装置10においては、上記した処理により三次元造形物100の三次元造形を完了すると、図4および図5に示すように造形槽16をマイクロ波発振装置40の下方側に移動し、マイクロ波発振装置40により三次元造形した三次元造形物100をマイクロ波加熱する処理を行う。   In the three-dimensional modeling apparatus 10, when the three-dimensional modeling of the three-dimensional modeled object 100 is completed by the above-described processing, the modeling tank 16 is moved to the lower side of the microwave oscillator 40 as shown in FIGS. 4 and 5. The three-dimensional structure 100 three-dimensionally formed by the microwave oscillator 40 is subjected to a microwave heating process.

ここで、三次元造形装置10は、三次元造形を完了した三次元造形物100をマイクロ波発振装置40によりマイクロ波加熱する点が従来の技術とは異なり、その他の構成および制御方法については、従来より公知の技術を適用することができる。   Here, the three-dimensional modeling apparatus 10 is different from the conventional technique in that the three-dimensional modeling object 100 that has completed the three-dimensional modeling is heated by the microwave oscillator 40, and other configurations and control methods are as follows. Conventionally known techniques can be applied.

従って、以下の説明においては、マイクロ波発振装置40により三次元造形を完了した三次元造形物100をマイクロ波加熱する点について詳細に説明するものとして、従来より公知の技術を適用できるその他の構成ならびに制御に関する詳細な説明は省略する。
Therefore, in the following description, other configurations to which a conventionally known technique can be applied are described in detail with respect to the point of microwave heating the three-dimensional structure 100 that has been three-dimensionally formed by the microwave oscillator 40. In addition, detailed description regarding control will be omitted.

マイクロ波発振装置40は、電磁波放射源であるマグネトロンなどにより構成されるマイクロ波発振器42と、マイクロ波発振器42から溝部14内の造形槽16に向けて照射されたマイクロ波が造形槽16の外部へ伝播することを防止するための金属製などの材料よりなる電磁波遮蔽手段としてのカバー44とを備えている。   The microwave oscillator 40 includes a microwave oscillator 42 configured by a magnetron or the like as an electromagnetic wave radiation source, and a microwave irradiated from the microwave oscillator 42 toward the modeling tank 16 in the groove 14 outside the modeling tank 16. And a cover 44 as an electromagnetic wave shielding means made of a material such as a metal for preventing propagation to the outside.

このマイクロ発振器42は、周波数300MHz〜300GHz帯域のマイクロ波を照射する。   The micro-oscillator 42 irradiates microwaves having a frequency of 300 MHz to 300 GHz.

また、カバー44はその全体の形状が、下方側が末広がりに開口した矩形形状の開口部44aを備えた漏斗型に形成されている。開口部44aは、造形槽16がマイクロ波発振装置40の下方に移動した際に、造形槽16の上面の開口部16aを完全に遮蔽することができるように寸法設定されている。   Further, the cover 44 is formed in a funnel shape having a rectangular opening 44a whose lower side is open toward the end. The opening 44 a is dimensioned so that the opening 16 a on the upper surface of the modeling tank 16 can be completely shielded when the modeling tank 16 moves below the microwave oscillator 40.

なお、カバー44の開口部44aにおけるX軸方向の前方側と後方側との下端部には、造形槽16がマイクロ波発振装置40の下方側へ移動する際の障碍とならないように、切り欠き部44cが設けられている。   Note that the lower end portions of the opening 44 a of the cover 44 on the front side and the rear side in the X-axis direction are notched so as not to hinder the modeling tank 16 from moving to the lower side of the microwave oscillator 40. A portion 44c is provided.

切り欠き部44cの大きさは、造形槽16がマイクロ波発振装置40の下方に移動した際に、切り欠き部44cと造形槽16の上面16bとが摺動自在に当接するように寸法設定されている。   The size of the notch 44c is set so that the notch 44c and the upper surface 16b of the modeling tank 16 are slidably contacted when the modeling tank 16 is moved below the microwave oscillator 40. ing.

また、カバー44の開口部44aにおけるY軸方向の右方側と左方側との下端部44dは、基台部12の上面12aと当接するように固定されている。   Further, lower end portions 44 d on the right and left sides in the Y-axis direction of the opening 44 a of the cover 44 are fixed so as to come into contact with the upper surface 12 a of the base portion 12.

従って、造形槽16がマイクロ波発振装置40の下方に移動した際には、カバー44により造形槽16が外部とは遮蔽されることになり、マイクロ波発振器42から造形槽16に向けて発振されたマイクロ波が外部へ伝播することが防止される。
Therefore, when the modeling tank 16 moves below the microwave oscillator 40, the modeling tank 16 is shielded from the outside by the cover 44, and is oscillated from the microwave oscillator 42 toward the modeling tank 16. Microwaves are prevented from propagating outside.

上記したように三次元造形装置10においては、造形槽16における三次元造形物100の三次元造形を完了すると、造形槽16をマイクロ波発振装置40の下方側に移動して、マイクロ波発振装置40のマイクロ発振器42を駆動する。これにより、造形槽16内の三次元造形物100をマイクロ波加熱する処理を行う。   As described above, in the three-dimensional modeling apparatus 10, when the three-dimensional modeling of the three-dimensional model 100 in the modeling tank 16 is completed, the modeling tank 16 is moved to the lower side of the microwave oscillation device 40, and the microwave oscillation device is obtained. Forty micro-oscillators 42 are driven. Thereby, the process which microwave-heats the three-dimensional structure 100 in the modeling tank 16 is performed.

この際に、造形槽16はカバー44により外部とは遮蔽されているため、マイクロ発振器42から照射されたマイクロ波が外部へ漏れることない。   At this time, since the modeling tank 16 is shielded from the outside by the cover 44, the microwave irradiated from the micro oscillator 42 does not leak to the outside.

なお、マイクロ波発振装置40による三次元造形物100のマイクロ波加熱処理は、三次元造形物100の三次元造形の完了後に自動的に開始されるようにしてもよいし、あるいは、作業者が操作パネル(図示せず。)などを操作することにより任意のタイミングで開始するようにしてもよい。   Note that the microwave heating process of the three-dimensional structure 100 by the microwave oscillator 40 may be automatically started after the three-dimensional structure of the three-dimensional structure 100 is completed, or an operator may You may make it start at arbitrary timings by operating an operation panel (not shown).

また、マイクロ波発振装置40により発振されるマイクロ波の強度や照射時間は、作業者が操作パネル(図示せず。)などを操作することにより任意の強度や照射時間を設定するうようにしてもよいし、あるいは、作製する三次元造形物の各種データから当該三次元造形物の大きさや使用されるバインダーの量などを算出して、こうした算出結果に基づいて自動的に適切な強度や照射時間を設定するようにしてもよい。
The intensity and irradiation time of the microwave oscillated by the microwave oscillator 40 are set so that the operator can set an arbitrary intensity and irradiation time by operating an operation panel (not shown). It is also possible to calculate the size of the three-dimensional structure and the amount of binder used from various data of the three-dimensional structure to be manufactured, and automatically calculate the appropriate intensity and irradiation based on these calculation results. You may make it set time.

マイクロ波発振装置40による三次元造形物100のマイクロ波加熱が終了すると、造形槽16をX軸方向の前方側に移動して、造形層16を図1に示す位置に配置する。   When the microwave heating of the three-dimensional structure 100 by the microwave oscillator 40 is completed, the modeling tank 16 is moved to the front side in the X-axis direction, and the modeling layer 16 is arranged at the position shown in FIG.

作業者は、造形層16からマイクロ波加熱された三次元造形物100を取り出して、三次元造形物100に付着している粉末材料を除去する作業などの次の工程を行う。
An operator takes out the three-dimensional structure 100 heated by the microwave from the modeling layer 16 and performs the next process such as an operation of removing the powder material adhering to the three-dimensional structure 100.

即ち、三次元造形物100に対するマイクロ波加熱によって、三次元造形物100全体を温めることができ、樹脂パウダーなどの粉末材料の硬化を促進することが可能となって、三次元造形物100の初期強度を確実に高めることができる。   That is, the entire three-dimensional structure 100 can be warmed by microwave heating on the three-dimensional structure 100, and hardening of a powder material such as resin powder can be promoted. The strength can be reliably increased.

従って、酸化アルミニウムなどのセラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料を用いた三次元造形物100であっても、マイクロ波加熱後は造形層16から取り出して、時間を空けずに直ぐに三次元造形物100に付着している粉末材料を除去する作業などの次の工程に速やかに移行することができるようになる。
Therefore, even if the three-dimensional structure 100 using the powder material is a powder in which a ceramic material powder such as aluminum oxide and a resin powder are blended, it is taken out from the modeling layer 16 after microwave heating, and time is taken. It becomes possible to immediately shift to the next process such as an operation of removing the powder material adhering to the three-dimensional structure 100 immediately.

なお、三次元造形物の造形の途中で温風を吹き出して加温などを行うと、乾燥によって形成された造形層が反り上がって変形するなどして不具合の原因となる。   In addition, if warm air is blown out during the modeling of the three-dimensional structure, the modeling layer formed by drying warps and deforms, causing a problem.

しかしながら、三次元造形の完了後にマイクロ波加熱を行う本発明による三次元造形装置10においては、三次元造形物の造形の途中での変形などによる不具合を生ずる恐れがなく、三次元造形物の外側と内部とを含めた全体をマイクロ波加熱することによって、短時間で強度を高めることができる。   However, in the three-dimensional modeling apparatus 10 according to the present invention that performs microwave heating after the completion of the three-dimensional modeling, there is no possibility of causing problems due to deformation during the modeling of the three-dimensional modeled object, and the outside of the three-dimensional modeled object. By heating the whole including the inside and the microwave, the strength can be increased in a short time.

例えば、本願発明者による実験結果によれば、セラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料を用いた三次元造形完了直後の三次元造形物に周波数300MHz、出力200Wのマイクロ波を1分間照射した場合には、三次元造形完了直後の三次元造形物を数時間放置した場合以上に強度を高めることができた。
For example, according to an experiment result by the present inventor, a microwave having a frequency of 300 MHz and an output of 200 W is applied to a three-dimensional structure immediately after the completion of the three-dimensional modeling using a powder material by mixing a powder of ceramic material and a resin powder. Was irradiated for 1 minute, the strength could be increased more than when the three-dimensional structure immediately after the completion of the three-dimensional structure was left for several hours.

以上において説明したように、上記した実施の形態による三次元造形装置および三次元造形方法においては、三次元造形物の造形後にマイクロ波を用いたマイクロ波加熱によって当該三次元造形物全体を温めて当該三次元造形物の硬化を促進することにより、当該三次元造形物の初期強度を高めるようにした。   As described above, in the three-dimensional modeling apparatus and the three-dimensional modeling method according to the above-described embodiment, the whole three-dimensional structure is warmed by microwave heating using a microwave after the three-dimensional structure is formed. By promoting the curing of the three-dimensional structure, the initial strength of the three-dimensional structure is increased.

これにより、酸化アルミニウムなどのセラミック材料のパウダーと樹脂パウダーとを配合した粉体を粉末材料を用いた三次元造形物であっても、その作製後に時間を空けずに直ぐに当該三次元造形物に付着している粉末材料を除去する作業などの次の工程に速やかに移行することができ、三次元造形物の作製作業が遅延することはない。
As a result, even if it is a three-dimensional structure using a powder material in which a powder of a ceramic material such as aluminum oxide and a resin powder is blended, it is immediately converted into the three-dimensional structure without taking time after the preparation. It is possible to promptly move to the next step such as an operation of removing the adhering powder material, and the manufacturing operation of the three-dimensional structure is not delayed.

なお、上記した実施の形態は、以下の(1)乃至(5)に示すように変形するようにしてもよい。   The embodiment described above may be modified as shown in the following (1) to (5).

(1)本発明は、上記した実施の形態に示した構成の三次元造形装置や三次元造形方法に限らず、粉末固着積層方式(バインダージェッティング方式)の三次元造形装置や三次元造形方法であるならば、どのような構成の三次元造形装置や三次元造形方法にも適用することができる。   (1) The present invention is not limited to the three-dimensional modeling apparatus and the three-dimensional modeling method having the configuration shown in the above-described embodiment, but is also a three-dimensional modeling apparatus and a three-dimensional modeling method using a powder fixing lamination method (binder jetting method). If it is, it can apply to the 3D modeling apparatus and 3D modeling method of what kind of composition.

(2)上記した実施の形態においては、マイクロ波発振装置40は基台部12の上面12aに固定するものとしたが、これに限られるものではないことは勿論である。   (2) In the above-described embodiment, the microwave oscillating device 40 is fixed to the upper surface 12a of the base portion 12. However, the present invention is not limited to this.

例えば、マイクロ波発振装置40が昇降機構を備えるようにしてもよい。マイクロ波発振装置40が昇降機構を備えるようにすると、造形層16内の三次元造形物100にマイクロ波を照射した後に、昇降機構によりマイクロ波発振装置40を上昇させることにより、その場で三次元造形物100を造形層16から取り出すことができるようになる。   For example, the microwave oscillation device 40 may be provided with a lifting mechanism. When the microwave oscillating device 40 is provided with an elevating mechanism, the microwave oscillating device 40 is raised by the elevating mechanism after irradiating the three-dimensional structure 100 in the modeling layer 16 with microwaves, so that the third order can be obtained. The original model 100 can be taken out from the modeling layer 16.

また、カバー44の開口部16aにおけるY軸方向の右方側と左方側とのいずれか一方の下端部44dと基台部12の上面12aとの固定を解除するとともに、他方の下端部44dと基台部12aの上面12aとをヒンジで連結することにより、ヒンジを支点としてカバー44が開閉自在となるようにしてもよい。このようにすると、造形層16内の三次元造形物100にマイクロ波を照射した後に、ヒンジを支点としてカバー44を開くことにより、その場で三次元造形物100を造形層16から取り出すことができるようになる。   In addition, the lower end 44d on either the right side or the left side in the Y-axis direction of the opening portion 16a of the cover 44 and the upper surface 12a of the base portion 12 are released, and the other lower end portion 44d. And the upper surface 12a of the base portion 12a may be connected by a hinge so that the cover 44 can be opened and closed with the hinge as a fulcrum. If it does in this way, after irradiating the three-dimensional structure 100 in the modeling layer 16 with a microwave, the cover 44 is opened with the hinge as a fulcrum, so that the three-dimensional structure 100 can be taken out from the modeling layer 16 on the spot. become able to.

(3)上記した実施の形態においては、マイクロ波発振装置40により照射するマイクロ波の強度や照射時間などについて、三次元造形する三次元造形物の大きさや使用されるバインダーの量などに基づいて決定してよい旨について説明したが、これに限られるものではないことは勿論である。   (3) In the above-described embodiment, the intensity and irradiation time of the microwave irradiated by the microwave oscillator 40 are based on the size of the three-dimensional structure to be three-dimensionally formed and the amount of binder used. Although it has been described that it may be determined, it is needless to say that the present invention is not limited to this.

マイクロ波発振装置40により照射するマイクロ波の強度や照射時間などは、三次元造形する粉末材料などを考慮して適宜に設定するようにしてもよい。   The intensity and irradiation time of the microwave irradiated by the microwave oscillator 40 may be set as appropriate in consideration of the powder material to be three-dimensionally shaped.

(4)上記した実施の形態においては、電磁波放射源としてマイクロ波発振器42を用い、電磁波として周波数300MHz〜300GHz帯域のマイクロ波を照射する場合について説明したが、これに限られるものではないことは勿論である。   (4) In the above-described embodiment, the case where the microwave oscillator 42 is used as the electromagnetic wave radiation source and the microwave of the frequency of 300 MHz to 300 GHz is irradiated as the electromagnetic wave has been described, but the present invention is not limited to this. Of course.

例えば、電磁波照射源としてラジオ波発振器を用い、電磁波として周波数30MHz〜300MHz帯域のラジオ波を照射するようにしてもよい。   For example, a radio wave oscillator may be used as the electromagnetic wave irradiation source, and a radio wave having a frequency of 30 MHz to 300 MHz may be irradiated as the electromagnetic wave.

また、電磁波照射源として赤外線照射器を用い、電磁波として周波数300GHz〜12THz帯域の超遠赤外線や、電磁波として周波数12THz〜75THz帯域の遠赤外線や、電磁波として周波数75THz〜400THz帯域の遠赤外線を照射するようにしてもよい。   Moreover, an infrared irradiator is used as an electromagnetic wave irradiation source, and an ultra far infrared ray having a frequency of 300 GHz to 12 THz is used as an electromagnetic wave, a far infrared ray having a frequency of 12 THz to 75 THz is used as an electromagnetic wave, and a far infrared ray having a frequency of 75 THz to 400 THz is applied as an electromagnetic wave. You may do it.

さらに、電磁波照射源は、発振周波数が固定であって各周波数帯域の電磁波のうちのいずれか一つの周波数帯域の電磁波を照射するものでもよいし、発振周波数が可変であって適宜の周波数帯域の電磁波を照射するものでもよい。   Further, the electromagnetic wave irradiation source may be one that irradiates an electromagnetic wave in any one of the frequency bands with a fixed oscillation frequency, or has a variable oscillation frequency and an appropriate frequency band. What irradiates electromagnetic waves may be used.

また、それぞれ異なる周波数帯域の電磁波を照射する電磁波照射源を複数設けるようにして、これら複数の電磁波照射源のいずれかを駆動して所望の周波数帯域の電磁波を選択的に照射するようにしてもよいし、複数の電磁波照射源を駆動して複数の周波数帯域の電磁波を同時に照射するようにしてもよい。   Also, a plurality of electromagnetic wave irradiation sources that irradiate electromagnetic waves of different frequency bands are provided, and any one of the plurality of electromagnetic wave irradiation sources is driven to selectively irradiate electromagnetic waves of a desired frequency band. Alternatively, a plurality of electromagnetic wave irradiation sources may be driven to simultaneously irradiate electromagnetic waves in a plurality of frequency bands.

例えば、上記したラジオ波は波長が長いためにエネルギーの集中性は低いが、三次元造形物の深部への加温に適している。   For example, although the above-mentioned radio wave has a long wavelength and has low energy concentration, it is suitable for heating a three-dimensional structure deeply.

一方、マイクロ波は、ラジオ波と比較すると短波長であるため三次元造形物の表面での減衰が大きく、三次元造形物の表面の加温に適している。   On the other hand, since the microwave has a shorter wavelength than the radio wave, the attenuation on the surface of the three-dimensional structure is large, which is suitable for heating the surface of the three-dimensional structure.

上記したラジオ波とマイクロ波との作用の差異に応じて、電磁波照射源は、ラジオ波とマイクロ波とのいずれか一方のみを照射するようにしてもよいし、ラジオ波を照射した後にマイクロ波を照射するなどのように、適宜の周波数帯域の電磁波を適宜のタイミングで照射するようにしてよい。   Depending on the difference in action between the radio wave and the microwave, the electromagnetic wave irradiation source may irradiate only one of the radio wave and the microwave, or after irradiating the radio wave, the microwave For example, an electromagnetic wave in an appropriate frequency band may be applied at an appropriate timing.

(5)上記した実施の形態ならびに上記した(1)乃至(4)に示す変形例は、適宜に組み合わせるようにしてもよい。   (5) You may make it combine suitably the embodiment shown above and the modification shown in said (1) thru | or (4).

本発明は、粉末固着積層方式の三次元造形装置に用いることができる。   The present invention can be used for a powder fixed lamination type three-dimensional modeling apparatus.

10 三次元造形装置、12 基台部、14 溝部、16 造形槽、18 収容槽、20 支持部、22 貯留槽支持レール、24 貯留槽、24a 開口部、26 ローラー支持部、28 ローラー、30 吐出ヘッド、40 マイクロ波発振装置、42 マイクロ波発振器、44 カバー、100 三次元造形物   DESCRIPTION OF SYMBOLS 10 3D modeling apparatus, 12 base part, 14 groove part, 16 modeling tank, 18 storage tank, 20 support part, 22 storage tank support rail, 24 storage tank, 24a opening part, 26 roller support part, 28 roller, 30 discharge Head, 40 Microwave oscillator, 42 Microwave oscillator, 44 Cover, 100 Three-dimensional structure

Claims (6)

造形槽に形成された粉末材料よりなる粉末層に、三次元造形物の断面形状についての画像データに基づいて吐出ヘッドからバインダーを吐出することにより前記粉末材料を硬化して三次元造形物を作製する三次元造形装置において、
三次元造形した三次元造形物に対して電磁波を照射する電磁波照射手段を備え、
前記電磁波照射手段は、
前記三次元造形物に電磁波を照射する電磁波照射源と、
前記三次元造形物を被覆して、前記電磁波照射源から前記三次元造形物へ照射された電磁波の外部への漏洩を遮蔽する遮蔽手段と
を有することを特徴とする三次元造形装置。
Based on the image data about the cross-sectional shape of the three-dimensional structure, the powder material is hardened to the powder layer made of the powder material formed in the modeling tank to produce the three-dimensional structure. In the three-dimensional modeling apparatus that
Equipped with electromagnetic wave irradiation means for irradiating electromagnetic waves to the three-dimensional modeled object,
The electromagnetic wave irradiation means includes
An electromagnetic wave irradiation source for irradiating the three-dimensional structure with electromagnetic waves;
A three-dimensional modeling apparatus comprising: a shielding unit that covers the three-dimensional model and shields leakage of electromagnetic waves irradiated from the electromagnetic wave irradiation source to the three-dimensional model.
請求項1に記載の三次元造形装置において、
前記電磁波照射源は、複数の周波数帯域の電磁波を個別または同時に照射する
ことを特徴とする三次元造形装置。
The three-dimensional modeling apparatus according to claim 1,
The electromagnetic wave irradiation source irradiates electromagnetic waves in a plurality of frequency bands individually or simultaneously.
請求項1または2のいずれか1項に記載の三次元造形装置において、
前記粉末材料は、セラミック粉末と樹脂粉末とを配合した粉体である
ことを特徴とする三次元造形装置。
In the three-dimensional modeling apparatus according to any one of claims 1 and 2,
The three-dimensional modeling apparatus, wherein the powder material is a powder in which a ceramic powder and a resin powder are blended.
造形槽に形成された粉末材料よりなる粉末層に、三次元造形物の断面形状についての画像データに基づいて吐出ヘッドからバインダーを吐出することにより前記粉末材料を硬化して三次元造形物を作製する三次元造形方法において、
三次元造形した三次元造形物に対して電磁波を照射して、電磁波加熱によって前記三次元造形物全体を温めて前記三次元造形物の硬化を促進する
ことを特徴とする三次元造形方法。
Based on the image data about the cross-sectional shape of the three-dimensional structure, the powder material is hardened to the powder layer made of the powder material formed in the modeling tank to produce the three-dimensional structure. In the three-dimensional modeling method to
A three-dimensional modeling method characterized by irradiating an electromagnetic wave to a three-dimensional modeled three-dimensional model and heating the whole three-dimensional modeled product by electromagnetic heating to promote curing of the three-dimensional modeled product.
請求項4に記載の三次元造形方法において、
前記電磁波を照射する際に、複数の周波数帯域の電磁波を個別または同時に照射する
ことを特徴とする三次元造形方法。
In the three-dimensional modeling method according to claim 4,
When irradiating the electromagnetic wave, the electromagnetic wave of a plurality of frequency bands is irradiated individually or simultaneously.
請求項4または5のいずれか1項に記載の三次元造形方法において、
前記粉末材料は、セラミック粉末と樹脂粉末とを配合した粉体である
ことを特徴とする三次元造形方法。
In the three-dimensional modeling method according to any one of claims 4 and 5,
The said powder material is the powder which mix | blended ceramic powder and resin powder. The three-dimensional modeling method characterized by the above-mentioned.
JP2015255950A 2015-12-28 2015-12-28 Three-dimensional modeling apparatus and three-dimensional modeling method Active JP6690939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255950A JP6690939B2 (en) 2015-12-28 2015-12-28 Three-dimensional modeling apparatus and three-dimensional modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255950A JP6690939B2 (en) 2015-12-28 2015-12-28 Three-dimensional modeling apparatus and three-dimensional modeling method

Publications (2)

Publication Number Publication Date
JP2017119363A true JP2017119363A (en) 2017-07-06
JP6690939B2 JP6690939B2 (en) 2020-04-28

Family

ID=59271652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255950A Active JP6690939B2 (en) 2015-12-28 2015-12-28 Three-dimensional modeling apparatus and three-dimensional modeling method

Country Status (1)

Country Link
JP (1) JP6690939B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082486A (en) * 2018-11-22 2020-06-04 ローランドディー.ジー.株式会社 Three-dimensional molding device
CN114599626A (en) * 2019-10-09 2022-06-07 库尔特两合股份有限公司 Method and apparatus for producing three-dimensional objects

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264221A (en) * 2001-03-14 2002-09-18 Minolta Co Ltd Three-dimensional shaping apparatus and three- dimensional shaping method
JP2002307562A (en) * 2001-02-07 2002-10-23 Minolta Co Ltd Three-dimensional shaping device and three-dimensional shaping method
JP2004330702A (en) * 2003-05-09 2004-11-25 Fuji Photo Film Co Ltd Method and apparatus for manufacturing three-dimensional shaped article
JP2013151165A (en) * 2007-07-17 2013-08-08 Seiko Epson Corp Three-dimensional shaping apparatus and three-dimensional shaping method
WO2015130401A2 (en) * 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
WO2015165437A1 (en) * 2014-05-02 2015-11-05 Ask Chemicals Gmbh Method for the layer-wise building of bodies comprising refractory mold base material and resoles, and molds or cores manufactured according to said method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307562A (en) * 2001-02-07 2002-10-23 Minolta Co Ltd Three-dimensional shaping device and three-dimensional shaping method
JP2002264221A (en) * 2001-03-14 2002-09-18 Minolta Co Ltd Three-dimensional shaping apparatus and three- dimensional shaping method
JP2004330702A (en) * 2003-05-09 2004-11-25 Fuji Photo Film Co Ltd Method and apparatus for manufacturing three-dimensional shaped article
JP2013151165A (en) * 2007-07-17 2013-08-08 Seiko Epson Corp Three-dimensional shaping apparatus and three-dimensional shaping method
WO2015130401A2 (en) * 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
WO2015165437A1 (en) * 2014-05-02 2015-11-05 Ask Chemicals Gmbh Method for the layer-wise building of bodies comprising refractory mold base material and resoles, and molds or cores manufactured according to said method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082486A (en) * 2018-11-22 2020-06-04 ローランドディー.ジー.株式会社 Three-dimensional molding device
JP7114444B2 (en) 2018-11-22 2022-08-08 ローランドディー.ジー.株式会社 3D printer
CN114599626A (en) * 2019-10-09 2022-06-07 库尔特两合股份有限公司 Method and apparatus for producing three-dimensional objects

Also Published As

Publication number Publication date
JP6690939B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
EP2851180A1 (en) Method and apparatus for forming three-dimensional articles
CN105764673B (en) Equipment for manufacturing three-dimensional body
CN105499564A (en) Three-dimensional forming apparatus and three-dimensional forming method
US10792861B2 (en) Method for manufacturing a three-dimensional object
CN107405688B (en) Method and device for producing three-dimensional objects with improved surface quality
JP6690939B2 (en) Three-dimensional modeling apparatus and three-dimensional modeling method
CA2869168A1 (en) Three-dimensional molding method for manufacturing three-dimensional shaped molding object
US11396175B2 (en) Method and device for producing a three-dimensional object
CN109070454A (en) Method and apparatus for manufacturing three-dimension object
CN110462535B (en) Three-dimensional object manufacturing method and apparatus, control unit thereof, method of providing control data, and storage medium
US20190217534A1 (en) Method and apparatus for generating three-dimensional objects
CN108943699A (en) The method for controlling the warpage in 3D printing
JP2016074132A (en) Lamination molding apparatus
TW201620719A (en) Fabricating a three-dimensional object
WO2020176078A1 (en) Determining fusing energy profiles in 3d printing
WO2016197465A1 (en) Apparatus and method for solidifying artificial stone by utilizing microwave heating
CN106696273B (en) For utilizing system and method for the microwave energy from 3 D-printing object removal supporting structure
JP2019052325A (en) Method for manufacturing a three-dimensional molded object
JP5918441B2 (en) Microwave heating device for uniform heating of an object to be heated based on conditions near the cutoff value
EP3162468A1 (en) Method of manufacturing three-dimensionally formed object and three-dimensionally formed object manufacturing apparatus
US20240100588A1 (en) Method and device for the production of three-dimensional objects
US10292214B2 (en) Device for heat treating products by means of microwaves and heat treatment method implementing such a device
CN108698335A (en) Method and relevant apparatus for being welded to connect the first joint surface of the first moulding part and the second joint surface of the second moulding part
US11904513B2 (en) Mold insert for use in a mold for the manufacture of a cushioning element for sports apparel
CN108778576B (en) Method for manufacturing three-dimensional shaped object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200409

R150 Certificate of patent or registration of utility model

Ref document number: 6690939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250