JP2017116444A - Clamp-on type ultrasonic flow meter - Google Patents

Clamp-on type ultrasonic flow meter Download PDF

Info

Publication number
JP2017116444A
JP2017116444A JP2015253173A JP2015253173A JP2017116444A JP 2017116444 A JP2017116444 A JP 2017116444A JP 2015253173 A JP2015253173 A JP 2015253173A JP 2015253173 A JP2015253173 A JP 2015253173A JP 2017116444 A JP2017116444 A JP 2017116444A
Authority
JP
Japan
Prior art keywords
ultrasonic
pipe
clamp
peripheral surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015253173A
Other languages
Japanese (ja)
Other versions
JP6674252B2 (en
Inventor
裕士 矢倉
Yuji Yakura
裕士 矢倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Original Assignee
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd filed Critical Nitto Seiko Co Ltd
Priority to JP2015253173A priority Critical patent/JP6674252B2/en
Publication of JP2017116444A publication Critical patent/JP2017116444A/en
Application granted granted Critical
Publication of JP6674252B2 publication Critical patent/JP6674252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clam-on type ultrasonic flow meter high in versatility not depending on a shape of piping when mounted on the piping.SOLUTION: A clamp-on type ultrasonic flow meter 1 is constituted so as to mount ultrasonic transceivers 10, 20 on the outer peripheral surface of piping 100 via a mount 30. A bottom face 31 of a mount 100 has a shape recessed along a longitudinal direction, and outer edges 31a, 31b only which extend in the longitudinal direction so as to contact with the outer peripheral surface of the piping 110. According to this flow meter 1, since the bottom face 31 of the mount 30 has a shape recessed in an inverted V-shape, the outer edges 31a, 31b only which extend in the longitudinal direction are grounded when mounted on the outer peripheral surface of the piping 110, and as a result, the mount 30 can be stably mounted even for the piping 100 having any curvature without causing rattling.SELECTED DRAWING: Figure 1

Description

本発明は、配管外部にクランプ方式で取り付け、配管内部を移動する流体の流量を測定するクランプオン形超音波流量計に関する。   The present invention relates to a clamp-on type ultrasonic flowmeter that is attached to the outside of a pipe by a clamp method and measures the flow rate of a fluid that moves inside the pipe.

クランプオン形超音波流量計は、配管の外周面の一部に装着し、その配管の内部を移動する流体の流量を、配管の外側から測定する流量計である。クランプオン形超音波流量計は、主に、伝搬時間差式とドップラー式に分類できる。伝搬時間差式は、超音波を、配管の内部を移動する流体を斜めに横切るような経路で往復させて、超音波が往路と復路のそれぞれを伝搬するのに要する時間の差から、流体の流量を測定する方法である。一方、ドップラー式は、流体中に含まれる浮遊粒子や気泡が、流体と同じ速度で移動すると仮定して、浮遊粒子などの移動速度から流体の流量を測定する方法である。浮遊粒子などの移動速度は、流体中に超音波を送信して、浮遊粒子などに反射された超音波の周波数がドップラー効果により変化することから、超音波の周波数を検出することにより測定する。   The clamp-on type ultrasonic flowmeter is a flowmeter that is attached to a part of the outer peripheral surface of a pipe and measures the flow rate of a fluid that moves inside the pipe from the outside of the pipe. The clamp-on type ultrasonic flowmeter can be mainly classified into a propagation time difference type and a Doppler type. The propagation time difference formula is based on the difference in time required for the ultrasonic wave to travel in the forward and return paths by reciprocating the ultrasonic wave in a path that crosses the fluid moving inside the pipe diagonally. Is a method of measuring. On the other hand, the Doppler method is a method of measuring the flow rate of fluid from the moving speed of suspended particles, etc., assuming that suspended particles and bubbles contained in the fluid move at the same speed as the fluid. The moving speed of the suspended particles or the like is measured by detecting the frequency of the ultrasonic waves by transmitting ultrasonic waves into the fluid and changing the frequency of the ultrasonic waves reflected by the suspended particles or the like due to the Doppler effect.

そこで、クランプオン形超音波流量計を配管に取り付ける構造としては、特許文献1に示すものが知られている。この取付構造は、配管の外周面に取付台をベルトで固定し、その取付台に検出器を装着するように構成されている。配管の外周面と接地する取付台の底面は、配管の外周面と同一曲率に成形されているため、取付台を配管に固定したとき位置ずれが発生しにくくなるので、検出精度に優れるといった効果が期待できる。   Then, what is shown to patent document 1 is known as a structure which attaches a clamp-on type ultrasonic flowmeter to piping. This mounting structure is configured such that a mounting base is fixed to the outer peripheral surface of the pipe with a belt, and a detector is mounted on the mounting base. The bottom surface of the mounting base that is in contact with the outer peripheral surface of the pipe is formed with the same curvature as that of the outer peripheral surface of the pipe, so that displacement is less likely to occur when the mounting base is fixed to the pipe. Can be expected.

特開昭61−61422号公報JP 61-61422 A

しかしながら、上記従来のクランプオン形超音波流量計では、外周面の曲率が異なる配管に対して、検出器を取り付けるための取付台を安定して固定することができない問題があった。   However, the conventional clamp-on type ultrasonic flowmeter has a problem that a mounting base for mounting a detector cannot be stably fixed to pipes having different curvatures on the outer peripheral surface.

本発明は、上記問題に鑑みて創成されたものであり、配管への取り付けに際し、配管の形状に依存しない汎用性の高いクランプオン形超音波流量計を提供することを目的とする。   The present invention was created in view of the above problems, and an object of the present invention is to provide a versatile clamp-on type ultrasonic flowmeter that does not depend on the shape of the pipe when attached to the pipe.

配管の外周面に、取付台を介して超音波送受信器を取り付けるように構成したクランプオン形超音波流量計において、取付台の底面は、長手方向に沿って窪んだ形状を成し、かつ長手方向に延びる外縁だけが配管の外周面に接触するように構成したクランプオン形超音波流量計による。   In the clamp-on type ultrasonic flowmeter configured to attach the ultrasonic transmitter / receiver to the outer peripheral surface of the pipe via the mounting base, the bottom surface of the mounting base has a concave shape along the longitudinal direction and is According to the clamp-on type ultrasonic flowmeter configured such that only the outer edge extending in the direction contacts the outer peripheral surface of the pipe.

本発明のクランプオン形超音波流量計によれば、超音波送受信器を取り付けるための取付台の底面は、長手方向に沿って窪んだ形状を成し、かつ長手方向に延びる外縁だけが配管の外周面に接触するように構成されているので、配管の外周面が如何なる曲率であっても安定して超音波送受信器を取り付けられるため、流量の検出精度が高く、かつ汎用性に優れたクランプオン形超音波流量計を提供することができる。   According to the clamp-on type ultrasonic flowmeter of the present invention, the bottom surface of the mounting base for mounting the ultrasonic transceiver has a concave shape along the longitudinal direction, and only the outer edge extending in the longitudinal direction is the pipe. Since it is configured to contact the outer peripheral surface, the ultrasonic transmitter / receiver can be attached stably regardless of the curvature of the outer peripheral surface of the pipe, so the clamp has high flow rate detection accuracy and excellent versatility. An on-type ultrasonic flow meter can be provided.

本発明であるクランプオン形超音波流量計の構成を示す斜視図である。It is a perspective view which shows the structure of the clamp-on type ultrasonic flowmeter which is this invention. 本発明であるクランプオン形超音波流量計の構成を示す正面図である。It is a front view which shows the structure of the clamp-on type ultrasonic flowmeter which is this invention. 本発明であるクランプオン形超音波流量計の構成を示す平面図である。It is a top view which shows the structure of the clamp-on type ultrasonic flowmeter which is this invention. 本発明であるクランプオン形超音波流量計の構成を示す左側面図である。It is a left view which shows the structure of the clamp-on type ultrasonic flowmeter which is this invention. 配管内における超音波の伝搬経路を説明する図である。It is a figure explaining the propagation path of the ultrasonic wave in piping.

以下、本発明のクランプオン形超音波流量計の実施形態を、図面を参照して説明する。図1に示す本発明のクランプオン形超音波流量計1は、超音波送受信器10,20と、取付台30とから構成される。   Hereinafter, embodiments of a clamp-on type ultrasonic flowmeter of the present invention will be described with reference to the drawings. A clamp-on type ultrasonic flowmeter 1 of the present invention shown in FIG. 1 includes ultrasonic transceivers 10 and 20 and a mounting base 30.

前記超音波送受信器10,20は、金属製の取付台30を介して配管100に取り付けられる。取付台30は、図2および図3に示すように、ベルト40を巻き付けることにより配管100に固定されており、配管100の外周面に接地される底面31と超音波送受信器10,20をガイドする側面32とを備えている。取付台30の底面31は、図4に示すように、縦断面視において、逆V字形を成しており、換言すれば、長手方向に沿って窪んだ形状を成し、かつ長手方向に延びる外縁31a,31bだけが配管100の外周面に接地するように成形されている。また、取付台30の側面32には、切り欠き部32aが形成されており、一方、超音波送受信器10,20の側面にはマグネット11,21が設けてあり、超音波送受信器10,20を取付台30の上方から挿入すると、マグネット11,21と切り欠き部32aが係合するとともに、この状態でベルト50,60を巻き付けることにより取付台30には超音波送受信器10,20が装着される。   The ultrasonic transceivers 10 and 20 are attached to the pipe 100 via a metal mounting base 30. As shown in FIGS. 2 and 3, the mounting base 30 is fixed to the pipe 100 by winding the belt 40, and guides the bottom face 31 grounded to the outer peripheral surface of the pipe 100 and the ultrasonic transceivers 10 and 20. And a side surface 32. As shown in FIG. 4, the bottom surface 31 of the mounting base 30 has an inverted V shape in a longitudinal sectional view. In other words, the bottom surface 31 has a concave shape along the longitudinal direction and extends in the longitudinal direction. Only the outer edges 31 a and 31 b are formed so as to contact the outer peripheral surface of the pipe 100. Further, a cutout portion 32 a is formed on the side surface 32 of the mounting base 30, while the magnets 11 and 21 are provided on the side surfaces of the ultrasonic transceivers 10 and 20. Is inserted from above the mounting base 30, the magnets 11, 21 and the notch 32 a are engaged, and the ultrasonic transceivers 10, 20 are attached to the mounting base 30 by winding the belts 50, 60 in this state. Is done.

超音送受信器10,20を形成する材料としては、配管100を形成する材料の音波伝搬速度を考慮して、適切な音波伝搬速度を示す材料が選定される。さらに、超音波送受信器10,20には、内蔵された超音波振動子10a,20aに電圧を印加するために電極(図示せず)とリード線(図示せず)が備えられている。   As a material for forming the ultrasonic transceivers 10 and 20, a material having an appropriate sound wave propagation speed is selected in consideration of the sound wave propagation speed of the material forming the pipe 100. Further, the ultrasonic transceivers 10 and 20 are provided with electrodes (not shown) and lead wires (not shown) for applying a voltage to the built-in ultrasonic transducers 10a and 20a.

前記取付台30の底面31には、超音波送受信器10,20の底面と対向する範囲がくり抜かれて開口部33,34が形成されている。また、超音波送受信器10,20の底面と配管100の外周面との間に空気(隙間)が存在すると、空気の音響インピーダンスが小さいために、超音波が配管100の外周面と空気の界面で反射してしまうため、超音波送受信器10,20と配管100との隙間には、接触媒質110を充填することが好ましい。配管100の外周面上に接触媒質110を塗布してから超音波送受信器10,20を配管100に押し付けることで、前記の隙間に接触媒質110を充填することができる。このような、超音波の伝搬経路から空気を排除するために用いる接触媒質110としては、公知の材料を用いることができる。接触媒質110としては、気泡が残りにくい液体またはペースト状の材料が用いられ、一般には、水、油、水ガラス、グリース、ワセリンなどが用いられる。   On the bottom surface 31 of the mounting base 30, openings 33 and 34 are formed by hollowing out a range facing the bottom surfaces of the ultrasonic transceivers 10 and 20. In addition, when air (gap) exists between the bottom surfaces of the ultrasonic transceivers 10 and 20 and the outer peripheral surface of the pipe 100, since the acoustic impedance of air is small, the ultrasonic wave is an interface between the outer peripheral surface of the pipe 100 and the air. The contact medium 110 is preferably filled in the gap between the ultrasonic transceivers 10 and 20 and the pipe 100. By applying the contact medium 110 on the outer peripheral surface of the pipe 100 and then pressing the ultrasonic transceivers 10 and 20 against the pipe 100, the gap 110 can be filled with the contact medium 110. As the contact medium 110 used to exclude air from the ultrasonic wave propagation path, a known material can be used. As the contact medium 110, a liquid or paste-like material in which bubbles do not easily remain is used. Generally, water, oil, water glass, grease, petroleum jelly, or the like is used.

超音波送受信器10,20の超音波振動子10a,20aのそれぞれは、電極に電圧が印加されると超音波を超音波受信器の内部に付与(送信)し、逆に超音波が付与(受信)されると電極に電圧を生じる。従って、超音波振動子10a,20aが備えられた超音波送受信器10,20のそれぞれは、超音波の送信器10でもあり、受信器20でもある。そして、超音波送受信器10,20は、配管100の内部を移動する流体の移動方向に対して斜めに超音波を送受信するように、配管100の外周面上に配置される。図5に記入した一点鎖線は、超音波の伝搬経路の例を意味する。   Each of the ultrasonic transducers 10a and 20a of the ultrasonic transceivers 10 and 20 applies (transmits) ultrasonic waves to the inside of the ultrasonic receiver when a voltage is applied to the electrodes, and conversely, applies ultrasonic waves ( When received, a voltage is generated at the electrode. Therefore, each of the ultrasonic transceivers 10 and 20 provided with the ultrasonic transducers 10 a and 20 a is both an ultrasonic transmitter 10 and a receiver 20. The ultrasonic transceivers 10 and 20 are disposed on the outer peripheral surface of the pipe 100 so as to transmit and receive ultrasonic waves obliquely with respect to the moving direction of the fluid moving inside the pipe 100. The alternate long and short dash line in FIG. 5 means an example of an ultrasonic wave propagation path.

配管100の内部を移動する流体120の流量は、次のようにして測定される。まず、超音波送受信器10の超音波振動子10aに電圧パルスを印加して、超音波を送信する。超音波は、図5に示す一点鎖線の方向に沿って、超音波送受信器10の内部、配管100、流体120、配管100、そして超音波送受信器20の順に伝搬して、超音波送受信器20の超音波振動子20aにより受信されて電圧信号が出力される。超音波送受信器10が超音波の送信を開始してから、超音波送受信器20が超音波を受信するまでの時間(T1 )を検出する。次に、超音波送受信器20の超音波振動子20aに電圧パルスを印加して、前記とは逆の伝搬経路で超音波を伝搬させ、超音波送受信器10の超音波振動子10aにより超音波を受信する。超音波送受信器20が超音波の送信を開始してから、超音波送受信器10が超音波を受信するまでの時間(T2 )を検出する。   The flow rate of the fluid 120 moving inside the pipe 100 is measured as follows. First, a voltage pulse is applied to the ultrasonic transducer 10a of the ultrasonic transmitter / receiver 10 to transmit ultrasonic waves. The ultrasonic wave propagates in the order of the inside of the ultrasonic transmitter / receiver 10, the pipe 100, the fluid 120, the pipe 100, and the ultrasonic transmitter / receiver 20 in the order of the dashed line shown in FIG. 5. Is received by the ultrasonic transducer 20a and a voltage signal is output. A time (T1) from when the ultrasonic transmitter / receiver 10 starts transmitting ultrasonic waves until the ultrasonic transmitter / receiver 20 receives ultrasonic waves is detected. Next, a voltage pulse is applied to the ultrasonic transducer 20 a of the ultrasonic transmitter / receiver 20 to propagate the ultrasonic wave through the reverse propagation path, and the ultrasonic wave is transmitted by the ultrasonic transducer 10 a of the ultrasonic transmitter / receiver 10. Receive. The time (T2) from when the ultrasonic transmitter / receiver 20 starts transmitting ultrasonic waves until the ultrasonic transmitter / receiver 10 receives ultrasonic waves is detected.

超音波が、超音波送受信器10,20の間を伝搬するのに要する時間(T1及びT2 )は、超音波の伝搬する方向(図5に示す矢印A及びBの示す方向)により異なる値となる。超音波送受信器10から超音波送受信器20に(矢印Aが示す方向に)向かう超音波は、いわば流体120の流れに乗って流体中を伝搬するので、伝搬時間(T1)は、流体120が静止している場合と比べると短い値となる。一方、超音波送受信器20から超音波送受信器10に(矢印Bが示す方向に)向かう超音波は、流体120の流れに逆らって流体中を伝搬するので、伝搬時間(T2 )は、流体120が静止している場合と比べると長い値となる。これらの伝搬時間の差(T2 −T1 )は、流体120の移動速度と相関があり、この伝搬時間の差から流体120の移動速度が算出される。そして、得られた流体120の移動速度、配管100の流水断面積などから流体120の流量を算出することができる。   The time required for the ultrasonic wave to propagate between the ultrasonic transceivers 10 and 20 (T1 and T2) differs depending on the direction of propagation of the ultrasonic wave (the direction indicated by arrows A and B in FIG. 5). Become. Since the ultrasonic wave that travels from the ultrasonic transceiver 10 to the ultrasonic transceiver 20 (in the direction indicated by the arrow A) travels in the fluid 120 and travels in the fluid, the propagation time (T1) is determined by the fluid 120. The value is shorter than when it is stationary. On the other hand, since the ultrasonic wave directed from the ultrasonic transmitter / receiver 20 to the ultrasonic transmitter / receiver 10 (in the direction indicated by the arrow B) propagates in the fluid against the flow of the fluid 120, the propagation time (T 2) is the fluid 120. This is a long value compared to when the is stationary. The difference in propagation time (T2-T1) is correlated with the moving speed of the fluid 120, and the moving speed of the fluid 120 is calculated from the difference in propagation time. Then, the flow rate of the fluid 120 can be calculated from the moving speed of the obtained fluid 120, the flowing water cross-sectional area of the pipe 100, and the like.

上記クランプオン形超音波流量計1によれば、取付台30の底面31は、逆V字形に窪んだ形状をしているので、配管110の外周面に装着する際に、長手方向に延びる外縁31a,31bだけが接地する。このため、取付台30は、如何なる曲率の配管100に対してもがたつきが生じることなく安定して装着されるので、超音波送受信器10,20による流量の検出精度が高められる。   According to the clamp-on type ultrasonic flowmeter 1, the bottom surface 31 of the mounting base 30 has a concave shape in an inverted V shape, so that the outer edge extending in the longitudinal direction when mounted on the outer peripheral surface of the pipe 110. Only 31a and 31b are grounded. For this reason, since the mounting base 30 is stably attached to the pipe 100 having any curvature without wobbling, the detection accuracy of the flow rate by the ultrasonic transceivers 10 and 20 is improved.

なお、本発明は以上に説明した実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the present invention.

1 クランプオン形超音波流量計
10,20 超音波送受信器
30 取付台
100 配管
110 接触媒質
DESCRIPTION OF SYMBOLS 1 Clamp-on type ultrasonic flowmeter 10, 20 Ultrasonic transmitter / receiver 30 Mounting base 100 Piping 110 Contact medium

Claims (1)

配管の外周面に、取付台を介して超音波送受信器を取り付けるように構成したクランプオン形超音波流量計において、
取付台の底面は、長手方向に沿って窪んだ形状を成し、かつ長手方向に延びる外縁だけが配管の外周面に接触するように構成したことを特徴とするクランプオン形超音波流量計。
In the clamp-on type ultrasonic flowmeter configured to attach the ultrasonic transceiver to the outer peripheral surface of the pipe via the mounting base,
A clamp-on type ultrasonic flowmeter, wherein the bottom surface of the mounting base has a shape that is recessed along the longitudinal direction, and only the outer edge extending in the longitudinal direction is in contact with the outer peripheral surface of the pipe.
JP2015253173A 2015-12-25 2015-12-25 Clamp-on ultrasonic flowmeter Active JP6674252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015253173A JP6674252B2 (en) 2015-12-25 2015-12-25 Clamp-on ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015253173A JP6674252B2 (en) 2015-12-25 2015-12-25 Clamp-on ultrasonic flowmeter

Publications (2)

Publication Number Publication Date
JP2017116444A true JP2017116444A (en) 2017-06-29
JP6674252B2 JP6674252B2 (en) 2020-04-01

Family

ID=59232050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015253173A Active JP6674252B2 (en) 2015-12-25 2015-12-25 Clamp-on ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP6674252B2 (en)

Also Published As

Publication number Publication date
JP6674252B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
US9297681B2 (en) Ultrasonic measurement apparatus having transducers arranged within a bulge of the channel wall protruding into the flow channel
JP2003075219A (en) Clamp-on ultrasonic flowmeter
JP2008134267A (en) Ultrasonic flow measurement method
JP2002520584A (en) Induction mode flow measurement system
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
KR20150141876A (en) Clamp-on type ultrasonic flowmeter and method for measuring flow rate
JP2002318144A (en) Clamp-on type ultrasonic flow meter
CA2890192C (en) Ultrasonic waveguide
JP4535065B2 (en) Doppler ultrasonic flow meter
JPH0783715A (en) Percolation-capacity measuring device
KR20100079462A (en) Ultrasonic flowmeter and method of measuring flux by ultrasonic waves
JP2017075834A (en) Flow rate measurement device and flow rate measurement method
JP2017116444A (en) Clamp-on type ultrasonic flow meter
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
JP2017187310A (en) Ultrasonic flowmeter
KR101476534B1 (en) Ultra sonic Flow measuring Device
US11221244B2 (en) Clamp-on circumferential resonance ultrasonic flowmeter for collectively exciting and receiving circumferential modes of a pipe
JP2010181321A (en) Ultrasonic flowmeter
JP4368591B2 (en) Ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP4296947B2 (en) Ultrasonic transceiver unit of Doppler type ultrasonic flow velocity distribution meter
JP4325922B2 (en) Ultrasonic flow meter
JP6305209B2 (en) Ultrasonic gas measuring device
JP2014182004A (en) Ultrasonic flow meter
JP2005351753A (en) Method and instrument for measuring concentration of ice water by ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200306

R150 Certificate of patent or registration of utility model

Ref document number: 6674252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250