JP2017116260A - Powder mass inspection apparatus and inspection method, and manufacturing apparatus of article containing powder and manufacturing method of the same - Google Patents

Powder mass inspection apparatus and inspection method, and manufacturing apparatus of article containing powder and manufacturing method of the same Download PDF

Info

Publication number
JP2017116260A
JP2017116260A JP2015248126A JP2015248126A JP2017116260A JP 2017116260 A JP2017116260 A JP 2017116260A JP 2015248126 A JP2015248126 A JP 2015248126A JP 2015248126 A JP2015248126 A JP 2015248126A JP 2017116260 A JP2017116260 A JP 2017116260A
Authority
JP
Japan
Prior art keywords
granular material
mass
calibration curve
image data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248126A
Other languages
Japanese (ja)
Other versions
JP6619643B2 (en
Inventor
尚大 平
Shodai Taira
尚大 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015248126A priority Critical patent/JP6619643B2/en
Publication of JP2017116260A publication Critical patent/JP2017116260A/en
Application granted granted Critical
Publication of JP6619643B2 publication Critical patent/JP6619643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To accurately grasp mass of scattered powder when continuously detecting mass of the powder during dispersion even when a particle size of a measurement object is different from a particle size at the time of creating an analytical curve.SOLUTION: A powder mass inspection apparatus comprises: an imaging processing unit 10 creating image data of powder; an illumination unit 20 illuminating an imaging area; a concentration-determination processing unit 30 determining abnormality of the illumination on the basis of the concentration of the image data; a binarization processing unit 40 binarizing the image data; a reference analytical curve creation unit 50 which creates a reference analytical curve indicating a correspondence relation between pixels and masses in the reference powder in the form of a linear function; a correction analytical curve creation unit 55 which calculates a particle diameter D of the production powder, and creates a correction analytical curve correcting inclination of the reference analytical curve on the basis of a ratio of the particle diameter D to the particle diameter Dbas of the reference powder; an analytical curve storage unit 60; a mass arithmetic unit 70 calculating mass of the powder; and a mass determination processing unit 80 determining the gross mass of the production powder.SELECTED DRAWING: Figure 1

Description

本発明は、粉粒体の質量検査装置及び検査方法に関する。また本発明は、粉粒体含有物品の製造装置及び製造方法に関する。   The present invention relates to a mass inspection apparatus and inspection method for granular materials. Moreover, this invention relates to the manufacturing apparatus and manufacturing method of a granular material containing article.

粉粒体の検査装置に関し、検査目的に合わせて幾つかの提案がこれまでになされてきた。例えば特許文献1には、100μm以下の粉体試料の粒度分布を測定する装置が記載されている。この装置は、試料を自由落下させ、透過撮像手段で試料を撮像することで粒度分布を知ることを目的としている。散布後の試料は試料回収箱で回収される。またこの装置は、試料のベルトコンベアへの付着や落下中の浮遊防止のため、振動フィーダと筒状の試料落下誘導手段を有している。   Several proposals have been made so far in relation to the inspection purpose with respect to the inspection apparatus for powder particles. For example, Patent Document 1 describes an apparatus for measuring the particle size distribution of a powder sample of 100 μm or less. This apparatus is intended to know the particle size distribution by allowing a sample to fall freely and imaging the sample with transmission imaging means. The sample after spraying is collected in the sample collection box. This apparatus also has a vibration feeder and a cylindrical sample drop guiding means for preventing the sample from adhering to the belt conveyor and floating during dropping.

特許文献2には、赤外線又は近赤外線CCDカメラを用いて、搬送コンベア上の還元鉄ペレット等の高温粒状物集合体の質量等を測定する方法が記載されている。この方法では、温度差による画像濃度の違いをカメラが捉え、前記集合体の面積を求め検量線により質量へ換算している。これにより、粒状物集合体の搬出元であるロータリーキルン内壁の付着物の成長状況を把握するようにしている。   Patent Document 2 describes a method of measuring the mass and the like of an aggregate of high-temperature granular materials such as reduced iron pellets on a conveyor using an infrared or near-infrared CCD camera. In this method, the camera captures the difference in image density due to the temperature difference, obtains the area of the aggregate, and converts it to mass using a calibration curve. Thereby, the growth state of the deposit | attachment of the rotary kiln inner wall which is a carrying-out origin of a granular material aggregate | assembly is grasped | ascertained.

特許文献3には、製品を構成する粉粒体の質量を散布中に連続検知できる粉粒体の質量検査装置が記載されている。この装置においては、二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方で質量測定部により所定時間に測定される粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す検量線を予め作成している。そして、撮像された各二値化画像データの画素から、検量線に基づいて粉粒体の質量値を算出している。   Patent Document 3 describes a mass inspection apparatus for a granular material that can continuously detect the mass of the granular material constituting a product during spraying. In this apparatus, based on the pixel of the granular material obtained from the binarized image data and the mass of the granular material measured at a predetermined time by the mass measuring unit below the dropping trajectory of the granular material, A calibration curve indicating a correspondence relationship between the mass and the mass by a linear function is created in advance. And the mass value of a granular material is computed based on a calibration curve from the pixel of each imaged binarized image data.

特開2001−74638号公報JP 2001-74638 A 特開2002−5637号公報JP 2002-5637 A 特開2015−111088号公報JP 2015-111088

特許文献1及び2に記載の検査装置や検査方法はいずれも、製品の連続製造工程において、製品に含有させる粉粒体の検査を目的としていない。製品の連続製造工程において粉粒体を散布により製品に含有させる場合、粉粒体の均一散布が、製品の品質や性能の安定性の観点から重要となる。しかし、特許文献1及び2に記載の技術では、製品の連続製造工程において散布される粉粒体の質量を散布状況から正確に把握することはできない。   Neither the inspection apparatus nor the inspection method described in Patent Documents 1 and 2 is intended to inspect the granular material contained in the product in the continuous production process of the product. In the case where the granular material is included in the product by spraying in the continuous production process of the product, uniform spraying of the granular material is important from the viewpoint of product quality and stability of performance. However, with the techniques described in Patent Documents 1 and 2, it is impossible to accurately grasp the mass of the powder particles that are dispersed in the continuous production process of the product from the application state.

特許文献3に記載の技術によれば、粉粒体の質量を散布中に連続検知できるという利点がある。しかし同文献に記載の技術は、粉粒体の二次元形状から取得される画像の面積に基づき作成された検量線を用いて粉粒体の質量を算出しているので、経時変化等の理由によって実際に計測される個々の粒子の大きさが、検量線作成時の粒子の大きさと異なる場合には、検量線に基づく粉粒体の算出質量に誤差が生じるおそれがある。   According to the technique described in Patent Document 3, there is an advantage that the mass of the powder particles can be continuously detected during spraying. However, the technique described in the same document calculates the mass of the granular material using a calibration curve created based on the area of the image acquired from the two-dimensional shape of the granular material, so the reason for the change over time, etc. When the size of each particle actually measured by the above is different from the size of the particle at the time of creating the calibration curve, there is a possibility that an error may occur in the calculated mass of the granular material based on the calibration curve.

したがって本発明の課題は、粉粒体の質量をその散布中に連続検知する技術の改良に関し、更に詳細には、粒子の大きさが検量線作成時の粒子の大きさと異なる場合であっても、散布された粉粒体の質量を正確に把握することにある。   Therefore, the subject of the present invention relates to an improvement in the technology for continuously detecting the mass of the granular material during its spraying, and more specifically, even when the particle size is different from the particle size at the time of preparing the calibration curve. The purpose is to accurately grasp the mass of the dispersed particles.

本発明は、製品を構成する散布対象物へ散布された粉粒体の質量を該粉粒体の散布中に検査する粉粒体質量検査装置であって、
前記散布対象物へ向けて自由落下する粉粒体を撮像し画像データとして保存する撮像処理部と、
前記撮像処理部で撮像される撮像領域を照らす照明部と、
前記撮像処理部が保存する前記画像データにおける、粉粒体が映り込まない領域の濃度を検出し、照明の異常を判定する濃度判定処理部と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成し、前記撮像処理部に保存させる二値化処理部と、
検査初期段階において、前記撮像処理部で所定時間に蓄積された前記二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方に位置する質量測定部によって前記所定時間に測定された粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す基準検量線を作成する基準検量線作成部と、
前記所定時間に蓄積される検査初期段階の前記二値化画像データから、検査初期段階の粉粒体の粒径Dbasを作成し、記憶する基準粒径作成・記憶領域部と、
前記基準検量線と検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する補正検量線作成部と、
前記基準検量線及び前記補正検量線を記憶する検量線記憶領域部と、
前記補正検量線の存在下で、撮像され二値化処理された検査対象となる粉粒体の各二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算部と、
前記質量演算部における演算結果に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理部と、
を有する粉粒体質量検査装置を提供するものである。
The present invention is a granular mass inspection device for inspecting the mass of the granular material sprayed on the spray target constituting the product during the spraying of the granular material,
An imaging processing unit that captures and stores powder particles that freely fall toward the object to be sprayed, and stores it as image data;
An illumination unit for illuminating an imaging region imaged by the imaging processing unit;
In the image data stored by the imaging processing unit, a concentration determination processing unit that detects a concentration of a region where the powder and granular materials are not reflected, and determines abnormality of illumination,
A binarization processing unit that binarizes the image data based on a predetermined threshold value to generate binarized image data, and stores the binarized image data in the imaging processing unit;
In the initial stage of inspection, the predetermined time is determined by the pixel of the granular material obtained from the binarized image data accumulated in the predetermined time by the imaging processing unit and the mass measuring unit located below the dropping trajectory of the granular material. Based on the measured mass of the granular material, a standard calibration curve creating unit that creates a standard calibration curve indicating a correspondence relationship between the pixel and the mass by a linear function,
From the binarized image data at the initial stage of inspection accumulated at the predetermined time, the particle diameter Dbas of the granular body at the initial stage of inspection is created and stored, and a reference particle diameter creation / storage area unit,
In the presence of the standard calibration curve and the particle size Dbas of the granular material at the initial stage of inspection, the particle diameter D of the granular material to be inspected is calculated, and the particle diameter D of the granular material to be inspected and the initial stage of inspection Based on the value of D / Dbas, which is the ratio to the particle size Dbas of the granular material at the stage, a corrected calibration curve creation unit that creates a corrected calibration curve that corrects the slope of the reference calibration curve;
A calibration curve storage area for storing the reference calibration curve and the corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of each binarized image data of the granular material to be inspected and binarized, the granular material to be inspected based on the corrected calibration curve A mass calculation unit for calculating the mass of
Based on the calculation result in the mass calculation unit, a mass determination processing unit that makes a determination on the total mass of the granular material to be inspected, which falls freely in a predetermined time,
The granular material mass inspection apparatus which has this.

また本発明は、製品を構成する散布対象物へ散布された粉粒体の質量を該粉粒体の散布中に検査する粉粒体質量検査方法であって、
照明部により照らされ、前記散布対象物へ向けて自由落下する粉粒体を撮像手段で撮像する撮像処理工程と、
前記撮像手段が撮像した画像データにおける、前記粉粒体が映り込まない撮像領域の濃度を検出し、前記照明部の照明の異常を判定する濃度判定処理工程と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成する二値化処理工程と、
検査初期段階に生成された二値化画像データから得られる粉粒体の画素と、検査初期段階に質量測定部によって測定された粉粒体の質量と、により作成される画素と質量との対応関係を一次関数で示す基準検量線、及び検査初期段階において二値化画像データから算出される検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する基準検量線補正処理工程と、
前記補正検量線の存在下で、前記二値化処理工程で二値化処理された検査対象となる粉粒体の前記二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算処理工程と、
前記質量演算処理工程で演算された質量に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理工程と、
を有する粉粒体質量検査方法を提供するものである。
Further, the present invention is a granular mass inspection method for inspecting the mass of the granular material sprayed on the spraying object constituting the product during the spraying of the granular material,
An imaging process step of capturing an image of the granular material that is illuminated by the illuminating unit and freely falls toward the object to be dispersed;
In the image data captured by the imaging means, a density determination process step of detecting a density of an imaging region in which the granular material is not reflected and determining an abnormality in illumination of the illumination unit;
A binarization process for generating binarized image data by binarizing the image data based on a predetermined threshold;
Correspondence between the pixel and mass created by the pixel of the granular material obtained from the binarized image data generated in the initial stage of inspection and the mass of the granular body measured by the mass measuring unit in the initial stage of inspection The particle size of the granular material to be inspected in the presence of the standard calibration curve indicating the relationship as a linear function and the particle size Dbas of the granular material in the initial stage of inspection calculated from the binarized image data in the initial stage of inspection D was calculated, and the slope of the standard calibration curve was corrected based on the value of D / Dbas, which is the ratio of the particle size D of the granular material to be inspected and the particle size Dbas of the initial granularity of the inspection. A reference calibration curve correction process for creating a corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of the binarized image data of the granular material to be inspected binarized in the binarization processing step, based on the corrected calibration curve, the inspection target A mass calculation processing step for calculating the mass of the granular material,
Based on the mass calculated in the mass calculation processing step, a mass determination processing step for making a determination on the total mass of the granular material to be inspected, which freely falls in a predetermined time;
The granular material mass inspection method which has this is provided.

更に本発明は、粉粒体を散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造装置であって、
前記散布対象物に向けて粉粒体を散布する粉粒体散布部と、
前記散布対象物へ向けて自由落下する粉粒体を撮像し画像データとして保存する撮像処理部と、
前記撮像処理部で撮像される撮像領域を照らす照明部と、
前記撮像処理部が保存する前記画像データにおける、粉粒体が映り込まない領域の濃度を検出し、照明の異常を判定する濃度判定処理部と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成し、前記撮像処理部に保存させる二値化処理部と、
検査初期段階において、前記撮像処理部で所定時間に蓄積された前記二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方に位置する質量測定部によって前記所定時間に測定された粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す基準検量線を作成する基準検量線作成部と、
前記所定時間に蓄積される検査初期段階の前記二値化画像データから、検査初期段階の粉粒体の粒径Dbasを作成し、記憶する基準粒径作成・記憶領域部と、
前記基準検量線と検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する補正検量線作成部と、
前記基準検量線及び前記補正検量線を記憶する検量線記憶領域部と、
前記補正検量線の存在下で、撮像され二値化処理された検査対象となる粉粒体の各二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算部と、
前記質量演算部における演算結果に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理部と、
前記質量判定処理部が粉粒体の質量異常と判定した場合に、質量異常に対応する散布対象物を特定し、製造ラインから前記質量異常に対応する散布対象物を排出する不良品排出処理部と、
を有する粉粒体含有物品の製造装置を提供するものである。
Furthermore, the present invention is an apparatus for manufacturing a granular material-containing article, which manufactures an article including the granular material by spraying the granular material on an object to be sprayed,
A granular material spraying unit for spraying the granular material toward the object to be sprayed;
An imaging processing unit that captures and stores powder particles that freely fall toward the object to be sprayed, and stores it as image data;
An illumination unit for illuminating an imaging region imaged by the imaging processing unit;
In the image data stored by the imaging processing unit, a concentration determination processing unit that detects a concentration of a region where the powder and granular materials are not reflected, and determines abnormality of illumination,
A binarization processing unit that binarizes the image data based on a predetermined threshold value to generate binarized image data, and stores the binarized image data in the imaging processing unit;
In the initial stage of inspection, the predetermined time is determined by the pixel of the granular material obtained from the binarized image data accumulated in the predetermined time by the imaging processing unit and the mass measuring unit located below the dropping trajectory of the granular material. Based on the measured mass of the granular material, a standard calibration curve creating unit that creates a standard calibration curve indicating a correspondence relationship between the pixel and the mass by a linear function,
From the binarized image data at the initial stage of inspection accumulated at the predetermined time, the particle diameter Dbas of the granular body at the initial stage of inspection is created and stored, and a reference particle diameter creation / storage area unit,
In the presence of the standard calibration curve and the particle size Dbas of the granular material at the initial stage of inspection, the particle diameter D of the granular material to be inspected is calculated, and the particle diameter D of the granular material to be inspected and the initial stage of inspection Based on the value of D / Dbas, which is the ratio to the particle size Dbas of the granular material at the stage, a corrected calibration curve creation unit that creates a corrected calibration curve that corrects the slope of the reference calibration curve;
A calibration curve storage area for storing the reference calibration curve and the corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of each binarized image data of the granular material to be inspected and binarized, the granular material to be inspected based on the corrected calibration curve A mass calculation unit for calculating the mass of
Based on the calculation result in the mass calculation unit, a mass determination processing unit that makes a determination on the total mass of the granular material to be inspected, which falls freely in a predetermined time,
When the mass determination processing unit determines that the mass of the granular material is abnormal, the defective product discharge processing unit that identifies the scattering object corresponding to the mass abnormality and discharges the scattering object corresponding to the mass abnormality from the production line. When,
The manufacturing apparatus of the granular material containing article which has this.

更にまた本発明は、粉粒体を散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、
前記散布対象物に向けて粉粒体を散布する粉粒体散布工程と、
照明部により照らされ、前記散布対象物へ向けて自由落下する粉粒体を撮像手段で撮像する撮像処理工程と、
前記撮像手段が撮像した画像データにおける、前記粉粒体が映り込まない撮像領域の濃度を検出し、前記照明部の照明の異常を判定する濃度判定処理工程と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成する二値化処理工程と、
初期段階に生成された二値化画像データから得られる粉粒体の画素と、初期段階に質量測定部によって測定された粉粒体の質量と、により作成される画素と質量との対応関係を一次関数で示す基準検量線、及び初期段階において前記二値化画像データから算出される初期段階の粉粒体の粒径Dbasの存在下で、対象となる粉粒体の粒径Dを算出し、対象となる粉粒体の粒径Dと初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する基準検量線補正処理工程と、
前記補正検量線の存在下で、前記二値化処理工程で二値化処理された対象となる粉粒体の前記二値化画像データの画素から、前記補正検量線に基づいて、対象となる粉粒体の質量を算出する質量演算処理工程と、
前記質量演算処理工程で演算された質量に基づいて、所定時間に自由落下する、対象となる粉粒体の総質量に対する判定を下す質量判定処理工程と、
粉粒体の質量異常と判定した場合に、質量異常に対応する散布対象物を特定し、製造ラインから前記質量異常に対応する散布対象物を排出する不良品排出処理工程と、
を有する粉粒体含有物品の製造方法を提供するものである。
Furthermore, the present invention provides a method for producing a granular material-containing article, in which an article containing the granular material is produced by dispersing the granular material on a dispersion object,
A powder particle dispersion step of spraying powder particles toward the object to be sprayed;
An imaging process step of capturing an image of the granular material that is illuminated by the illuminating unit and freely falls toward the object to be dispersed;
In the image data captured by the imaging means, a density determination process step of detecting a density of an imaging region in which the granular material is not reflected and determining an abnormality in illumination of the illumination unit;
A binarization process for generating binarized image data by binarizing the image data based on a predetermined threshold;
The correspondence between the pixel and mass created by the pixel of the granular material obtained from the binarized image data generated in the initial stage and the mass of the granular material measured by the mass measurement unit in the initial stage In the presence of the standard calibration curve indicated by a linear function and the particle size Dbas of the initial stage powder particle calculated from the binarized image data in the initial stage, the particle diameter D of the target powder body is calculated. Based on the value of D / Dbas, which is the ratio of the particle size D of the target granular material to the particle size Dbas of the initial stage granular material, a corrected calibration curve is created by correcting the slope of the reference calibration curve. A standard calibration curve correction process;
In the presence of the correction calibration curve, from the pixels of the binarized image data of the target granular material subjected to binarization processing in the binarization processing step, the target is based on the correction calibration curve. A mass calculation processing step for calculating the mass of the granular material,
Based on the mass calculated in the mass calculation processing step, a mass determination processing step for making a determination on the total mass of the target granular material that falls freely in a predetermined time;
When it is determined that the mass of the granular material is abnormal, the object to be dispersed corresponding to the mass abnormality is identified, and the defective product discharge processing step of discharging the object to be dispersed corresponding to the mass abnormality from the production line;
The manufacturing method of the granular material containing article which has this is provided.

本発明によれば、粉粒体の質量を散布中に連続検知するときに、計測対象の粒子の大きさが検量線作成時の粒子の大きさと異なる場合であっても、散布された粉粒体の質量を正確に把握することができる。   According to the present invention, when continuously detecting the mass of the granular material during spraying, even if the size of the particles to be measured is different from the size of the particles at the time of creating the calibration curve, The body mass can be accurately grasped.

図1は、本発明の粉粒体質量検査装置の好ましい一実施形態の概要を示した構成図である。FIG. 1 is a configuration diagram showing an outline of a preferred embodiment of the granular material mass inspection apparatus of the present invention. 図2は、本発明の粉粒体質量検査方法の好ましい一実施形態における検査初期工程(検量線作成工程)A1を示したフローチャートである。FIG. 2 is a flowchart showing an initial inspection step (calibration curve creation step) A1 in a preferred embodiment of the granular mass inspection method of the present invention. 図3は、本発明の粉粒体質量検査方法の好ましい一実施形態における検量線作成後の検査工程B1を示したフローチャートである。FIG. 3 is a flowchart showing the inspection process B1 after creating a calibration curve in a preferred embodiment of the granular material mass inspection method of the present invention. 図4は、本実施形態の粉粒体含有物品の製造方法において用いられる粉粒体含有物品の製造装置を示す模式図である。FIG. 4 is a schematic diagram showing an apparatus for producing a granular material-containing article used in the method for producing a granular material-containing article of the present embodiment. 図5は、粉粒体の粒子の粒径を測定する方法を示す模式図である。FIG. 5 is a schematic diagram showing a method for measuring the particle size of particles of a granular material. 図6は、粒子を撮像した画像の一例である。FIG. 6 is an example of an image obtained by capturing particles. 図7は、図6に示す画像を二値化した画像である。FIG. 7 is an image obtained by binarizing the image shown in FIG. 図8は、二値化閾値と測定される画素との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the binarization threshold and the measured pixel. 図9は、粉粒体の粒度分布を示すグラフである。FIG. 9 is a graph showing the particle size distribution of the granular material. 図10は、粉粒体の粒径を計測する際の撮像領域を示す図である。FIG. 10 is a diagram illustrating an imaging region when measuring the particle size of the granular material. 図11(a)は、落下方向に沿う長さを変更したときの、粉粒体の粒径の計測値を示すグラフであり、図11(b)は、落下方向に沿う長さLを変更したときの、粉粒体の最大値正規化粒径を示すグラフである。Fig.11 (a) is a graph which shows the measured value of the particle size of a granular material when the length along a dropping direction is changed, FIG.11 (b) changes the length L along a dropping direction. It is a graph which shows the maximum value normalization particle size of a granular material when doing. 図12は、撮像領域の落下方向に沿う長さを変化させたときの粒径の測定時間を示すグラフである。FIG. 12 is a graph showing the measurement time of the particle size when the length along the falling direction of the imaging region is changed. 図13は、実施例1で得られた基準検量線を示すグラフである。FIG. 13 is a graph showing a reference calibration curve obtained in Example 1. 図14(a)は、実施例1及び比較例1における製品粉粒体の粒径の経時変化を示すグラフであり、図14(b)は、実施例1及び比較例1におけるロードセルの実測質量の経時変化を示すグラフであり、図14(c)は、実施例1及び比較例1におけるラインカメラを用いた計測量の経時変化を示すグラフである。FIG. 14A is a graph showing the change over time of the particle size of the product granule in Example 1 and Comparative Example 1, and FIG. 14B is the measured mass of the load cell in Example 1 and Comparative Example 1. FIG. 14C is a graph showing the change over time in the measurement amount using the line camera in Example 1 and Comparative Example 1. FIG.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1は、本発明の粉粒体質量検査装置の好ましい一実施形態の概要を示した構成図である。同図に示す粉粒体質量検査装置100(以下単に「検査装置100」ともいう。)は、撮像処理部10、照明部20、濃度判定処理部30、二値化処理部40、基準検量線作成部50、基準粒径作成・記憶領域部90、補正検量線作成部55、検量線記憶領域部60、質量演算部70及び質量判定処理部80を有する。これらの各構成部10から90のうち、照明部20と、撮像処理部10が備える後述の撮像手段11とを除いた部分を画像処理制御部110と総称する。つまり、検査装置100は、画像処理制御部110、照明部20及び撮像手段11を有している。画像処理制御部110としては、構成部ごとに分割された装置の集合体からなるものであってもよく、1つの装置からなるものであってもよい。画像処理制御部110は、例えば、画像処理ソフトウェア等がインストールされたコンピュータや画像コントローラをもとに構築した装置などが挙げられる。   The present invention will be described below based on preferred embodiments with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of a preferred embodiment of the granular material mass inspection apparatus of the present invention. The granular material mass inspection apparatus 100 (hereinafter, also simply referred to as “inspection apparatus 100”) shown in the figure includes an imaging processing unit 10, an illumination unit 20, a concentration determination processing unit 30, a binarization processing unit 40, and a reference calibration curve. A creation unit 50, a reference particle size creation / storage region unit 90, a corrected calibration curve creation unit 55, a calibration curve storage region unit 60, a mass calculation unit 70, and a mass determination processing unit 80 are included. Of these components 10 to 90, a part excluding the illumination unit 20 and an imaging unit 11 described later included in the imaging processing unit 10 is collectively referred to as an image processing control unit 110. That is, the inspection apparatus 100 includes the image processing control unit 110, the illumination unit 20, and the imaging unit 11. The image processing control unit 110 may be composed of an assembly of devices divided for each constituent unit, or may be composed of one device. Examples of the image processing control unit 110 include a computer in which image processing software or the like is installed, a device constructed based on an image controller, and the like.

検査装置100は、基準検量線作成機能A、基準粒径作成機能B、質量判定機能C、濃度判定機能D及び検量線補正機能Eの5つの機能を具備している。   The inspection apparatus 100 has five functions of a reference calibration curve creation function A, a reference particle size creation function B, a mass determination function C, a concentration determination function D, and a calibration curve correction function E.

基準検量線作成機能Aは、撮像手段11により撮像され、二値化処理された二値化画像データが示す粉粒体の画素と、質量測定部130により測定された粉粒体の質量との対応関係を一次関数で示す基準検量線を作成する機能である。基準検量線は、後述する粉粒体散布部300の切り出し量等の散布条件の設定の都度、検査初期段階において作成される。「検査初期段階」とは、製品の生産前の準備段階のことであり、製品製造ライン全体を稼働させる前の段階のことをいう。この基準検量線作成機能Aは、撮像処理部10、照明部20、濃度判定処理部30、二値化処理部40、基準検量線作成部50、検量線記憶領域部60及び質量測定部130の協働により発揮される。
基準粒径作成機能Bは、検査初期段階に撮像され、二値化された粉粒体の二値化画像データから、検査初期段階の粉粒体(以下、基準粉粒体ともいう)の平均粒径Dbasを作成する機能である。平均粒径Dbasは、検査初期段階において作成され、基準検量線を作成するのと同時に作成するとよい。この基準粒径作成機能Bは、撮像処理部10、照明部20、濃度判定処理部30、二値化処理部40、基準粒径作成・記憶領域部90の協働により発揮される。
質量判定機能Cは、基準検量線の補正によって得られた補正検量線を基に実際の製品製造ラインにおいて散布される粉粒体(以下、製品用粉粒体ともいう)の質量を算出し、所定時間に自由落下する製品用粉粒体の総質量に対する質量判定を行う機能である。これは、基準検量線の補正後、撮像処理部10、照明部20、濃度判定処理部30、二値化処理部40、検量線記憶領域部60、質量演算部70及び質量判定処理部80の協働により発揮される。
濃度判定機能Dは、基準検量線作成機能A、基準粒径作成機能B及び質量判定機能Cの前提となる画像データの濃度(明るさ)判定の機能である。これは、撮像処理部10、照明部20及び濃度判定処理部30の協働により発揮される。
検量線補正機能Eは、上述した検量線作成機能Aによって作成された検量線を、実際に検査対象となる製品用粉粒体の大きさに応じて補正する機能である。基準検量線の補正は、自由落下する製品用粉粒体の二値化画像データを基に、一定周期で行われる。基準検量線の補正は、製品用粉粒体の平均粒径Dと、検査初期段階の基準粉粒体の平均粒径Dbasとの比であるD/Dbasの値に基づいて行われる。これは、濃度判定処理後、撮像処理部10、照明部20、濃度判定処理部30、二値化処理部40、検量線記憶領域部60及び補正検量線作成部55の協働により発揮される。
The reference calibration curve creation function A includes the pixel of the granular material indicated by the binarized image data captured by the imaging unit 11 and binarized, and the mass of the granular material measured by the mass measuring unit 130. This is a function for creating a standard calibration curve that shows the correspondence relationship by a linear function. The reference calibration curve is created at the initial stage of inspection every time setting of spraying conditions such as the cut-out amount of the granular material spraying unit 300 described later. The “inspection initial stage” refers to a preparatory stage prior to production of a product, and refers to a stage prior to operating the entire product manufacturing line. The reference calibration curve creation function A includes the imaging processing unit 10, the illumination unit 20, the concentration determination processing unit 30, the binarization processing unit 40, the reference calibration curve creation unit 50, the calibration curve storage region unit 60, and the mass measurement unit 130. Demonstrated through collaboration.
The reference particle size creation function B is an average of powder particles (hereinafter also referred to as reference powder particles) at the initial stage of inspection from the binarized image data of the powder particles imaged and binarized at the initial stage of inspection. This is a function for creating the particle size Dbas. The average particle diameter Dbas is created at the initial stage of the examination, and may be created simultaneously with the creation of the standard calibration curve. The reference particle size creation function B is exhibited by the cooperation of the imaging processing unit 10, the illumination unit 20, the density determination processing unit 30, the binarization processing unit 40, and the reference particle size creation / storage area unit 90.
The mass determination function C calculates the mass of powder particles (hereinafter also referred to as product powder particles) to be dispersed in an actual product production line based on the corrected calibration curve obtained by correcting the reference calibration curve, This is a function for performing mass determination with respect to the total mass of the granular material for products that freely falls within a predetermined time. After correction of the standard calibration curve, the imaging processing unit 10, the illumination unit 20, the concentration determination processing unit 30, the binarization processing unit 40, the calibration curve storage region unit 60, the mass calculation unit 70, and the mass determination processing unit 80 Demonstrated through collaboration.
The density determination function D is a function for determining density (brightness) of image data, which is a premise of the reference calibration curve generation function A, the reference particle size generation function B, and the mass determination function C. This is exhibited by the cooperation of the imaging processing unit 10, the illumination unit 20, and the density determination processing unit 30.
The calibration curve correction function E is a function that corrects the calibration curve created by the calibration curve creation function A described above according to the size of the product granular material that is actually the inspection target. The correction of the reference calibration curve is performed at a constant cycle based on the binarized image data of the free-falling product granular material. The correction of the reference calibration curve is performed based on the value of D / Dbas which is the ratio of the average particle diameter D of the product granular material to the average particle diameter Dbas of the reference powder initial stage. This is exhibited by the cooperation of the imaging processing unit 10, the illumination unit 20, the density determination processing unit 30, the binarization processing unit 40, the calibration curve storage area unit 60, and the corrected calibration curve creation unit 55 after the density determination processing. .

前記5つの機能を組み合わせて具備する検査装置100は、製品を構成する散布対象物へ連続散布された粉粒体の質量を散布中に時機よく好適に検査することができる。以下に、検査装置100の各構成部について詳述する。なお、以下の説明において単に「粉粒体」というときには、文脈に応じ、検量線の作成のために用いられる基準粉粒体若しくは実際の検査対象となる製品用粉粒体を指すか、又はそれら両者を指す。   The inspection apparatus 100 having a combination of the five functions can timely and suitably inspect the mass of the powder particles continuously sprayed onto the spraying object constituting the product during spraying. Hereinafter, each component of the inspection apparatus 100 will be described in detail. In the following description, when the term “powder” is simply used, it refers to the reference granule used for the preparation of the calibration curve or the powder for product to be actually inspected, depending on the context. Refers to both.

撮像処理部10は、粉粒体を撮像する撮像手段11、撮像手段11が撮像した粉粒体の画像データを保存する保存部12及び撮像手段11と保存部12を制御する撮像制御部13を有する。これにより、散布対象物へ向けて自由落下する粉粒体を撮像し画像データ10Wとして保存することができる。
撮像手段11は、散布される粉粒体のすべてを撮像の対象としてもよいが、それに代えて、ある一部の領域を撮像対象としてもよい。例えば、個数基準で大粒径側から95%以上の粒子が計測されるように、製品用粉粒体203の落下方向に沿う撮像領域を設定してもよい。このように設定することで、散布される粉粒体のすべてを撮像の対象とした場合よりも撮像領域が小さく(狭く)なり、画像データを二値化処理する際の負荷を軽減することができ、計測時間も短縮化することができる。
撮像手段11としては、自由落下する粉粒体を静止画像として撮像できる種々の手段を特に制限なく採用できる。例えば、CCD方式のエリアカメラやラインスキャンカメラなどが挙げられる。特に、画像処理しやすくするために、撮像素子を有する撮像装置を用いることが好ましく、ラインスキャンカメラを用いることがより好ましい。撮像素子としては、電荷結合素子(CCD)であってもCMOSセンサであってもよい。撮像素子は、必ずしもカラー撮像素子である必要はなく、例えば256階調のグレースケールでの階調表現ができる撮像素子が好ましく、更に高階調な階調表現ができる撮像素子がより好ましい。また、撮像する粒子に対する分解能を上げることが、より鮮明な画像を得るために好ましい。
The imaging processing unit 10 includes an imaging unit 11 that captures an image of the granular material, a storage unit 12 that stores image data of the granular material captured by the imaging unit 11, and an imaging control unit 13 that controls the imaging unit 11 and the storage unit 12. Have. Thereby, the granular material which falls freely toward a spreading | diffusion target object can be imaged, and it can preserve | save as image data 10W.
The imaging unit 11 may use all of the dispersed particles as an imaging target, but instead may use a certain region as an imaging target. For example, an imaging region along the falling direction of the product granular material 203 may be set so that particles of 95% or more are measured from the large particle size side on the number basis. By setting in this way, the imaging area becomes smaller (narrower) than when all of the dispersed powder particles are taken as an imaging target, and the load when binarizing the image data can be reduced. Measurement time can be shortened.
As the image pickup means 11, various means that can pick up the free-falling powder particles as a still image can be used without particular limitation. For example, a CCD area camera or a line scan camera can be used. In particular, in order to facilitate image processing, it is preferable to use an imaging device having an imaging element, and it is more preferable to use a line scan camera. The imaging device may be a charge coupled device (CCD) or a CMOS sensor. The image sensor is not necessarily a color image sensor, for example, an image sensor capable of expressing gradations in 256 gray scales is preferable, and an image sensor capable of expressing gradations in higher gradations is more preferable. Further, it is preferable to increase the resolution with respect to the particles to be imaged in order to obtain a clearer image.

保存部12は、撮像手段11で連続的に撮像された画像データ10Wをその撮像サンプリング数10C及び撮像サンプリング時間10Tとともに時系列で保存する。サンプリング数10Cをカウントすることにより1枚1枚撮像できているか確認する。また、保存部12は、二値化処理部40で生成された二値化画像データ40Wを、サンプリング数及びサンプリング時間ともに時系列で保存する。
撮像制御部13は、撮像手段11による撮像スピード、撮像開始及び停止の制御、画像データ10W及び二値化画像データ40Wの保存部12への書き込み及び保存部12からの読み出しの制御など、撮像処理及び画像データに関する制御を行う。撮像スピードは、自由落下する粉粒体の落下スピード等に合わせて適宜設定すればよい。なお本明細書において、画像データ10Wのうち、基準検量線作成用のものを11W、質量演算及び質量判定用のものを12W、基準検量線補正用のものを13Wとして区別していうこともある。
The storage unit 12 stores the image data 10W continuously imaged by the imaging unit 11 in time series together with the imaging sampling number 10C and the imaging sampling time 10T. By counting the number of samplings 10C, it is confirmed whether each image can be captured. In addition, the storage unit 12 stores the binarized image data 40W generated by the binarization processing unit 40 in a time series with respect to both the sampling number and the sampling time.
The imaging control unit 13 performs imaging processing such as imaging speed by the imaging unit 11, control of imaging start and stop, control of writing the image data 10W and binarized image data 40W to the storage unit 12, and reading from the storage unit 12. And control related to image data. The imaging speed may be appropriately set according to the falling speed of the free-falling granular material. In the present specification, among the image data 10W, the reference calibration curve creation may be distinguished as 11W, the mass calculation and mass determination for 12W, and the reference calibration curve correction for 13W.

照明部20は、撮像手段11で撮像される撮像領域、すなわち粉粒体が自由落下する軌道上の所定の撮像領域を照らす機能を備える。照明部20としては、撮像処理部10による撮像に十分な明るさを提供できるものを特に制限なく採用できる。図1に示す本実施形態では、撮像手段11に対向配置される透過照明方式が用いられている。照明部20は、画像処理制御部110(例えば撮像制御部13)に接続され、照明強度を制御するようにすることが好ましい。これにより、照明の照度が下がり、画像データから検出される濃度が下がった際に、照明強度を上げ、反対に照明の照度が上がり、画像データから検出される濃度が上がった際に、照明強度を下げることができる。具体的には、例えば濃度判定処理部30で検出している濃度値が、最低基準濃度30Qの1.1倍以下の値になった場合、撮像制御部13にて照明強度を上昇させ、検出濃度値が最低基準濃度30Qの1.25倍〜2倍の間となるように変更する。このように、撮像制御部13で照明部20の照明強度を変更することで、所望の明るさを得られるように照明部20を制御することができる。また、撮像手段11と照明部20とは、各々が対向するように角度や配置を調整できる機構が設けられている。また、照明部20の照明方式は、本実施形態の透過照明方式でなくともよく、例えば反射型照明方式であってもよい。また、照明部20は、検査装置100の他の構成と接続されていなくてもよく、例えば撮像処理部10や照度判定処理部30等を有する画像処理制御部110に接続されていてもよい。   The illuminating unit 20 has a function of illuminating an imaging region imaged by the imaging unit 11, that is, a predetermined imaging region on a trajectory where powder particles freely fall. As the illumination unit 20, a unit that can provide sufficient brightness for imaging by the imaging processing unit 10 can be employed without any particular limitation. In the present embodiment shown in FIG. 1, a transmission illumination system that is disposed to face the imaging unit 11 is used. The illumination unit 20 is preferably connected to the image processing control unit 110 (for example, the imaging control unit 13) and controls the illumination intensity. As a result, when the illumination intensity decreases and the density detected from the image data decreases, the illumination intensity increases. Conversely, when the illumination intensity increases and the density detected from the image data increases, the illumination intensity increases. Can be lowered. Specifically, for example, when the density value detected by the density determination processing unit 30 is 1.1 times or less the minimum reference density 30Q, the imaging control unit 13 increases the illumination intensity and detects the density value. The density value is changed to be between 1.25 and 2 times the minimum reference density 30Q. In this way, by changing the illumination intensity of the illumination unit 20 by the imaging control unit 13, the illumination unit 20 can be controlled to obtain a desired brightness. In addition, the imaging unit 11 and the illumination unit 20 are provided with a mechanism that can adjust the angle and arrangement so that they face each other. Moreover, the illumination method of the illumination part 20 may not be the transmission illumination method of this embodiment, for example, may be a reflection type illumination method. Further, the illumination unit 20 may not be connected to another configuration of the inspection apparatus 100, and may be connected to, for example, the image processing control unit 110 including the imaging processing unit 10, the illuminance determination processing unit 30, and the like.

濃度判定処理部30は、撮像処理部10に接続されており、濃度判定機能Dの中核をなす。濃度判定処理部30は、保存部12に保存された画像データ10W内で粉粒体が映り込まない領域に検出領域30Pを定め、その検出領域30Pの濃度(明るさ)を検出する。更に濃度判定処理部30は、二値化処理部40による二値化処理に好適な濃度の最低基準濃度30Qを設定する。これにより濃度判定処理部30は、検出した濃度が設定された一定の明るさ(最低基準濃度30Q)未満の場合に照明異常判定を行う。この場合、濃度判定処理部30は、検査装置100による検査工程のすべてを停止するための照明不良信号30Xを撮像制御部13へ送る。一方、対象の画像データが一定の明るさ以上であった場合は、特に信号は発信しない。このような照明異常判定は、二値化処理の工程に進む前段階でなされる、二値化処理に適正な画像データであるかの判定である。照明異常判定は、照明部20の故障や照明劣化の検知や、撮像手段11と照明部20との位置関係のずれによるカメラ素子へ受光する光量の減少を検知するものである。本実施形態では、照度異常判定が発生した場合、検査装置100は検査を停止する。   The density determination processing unit 30 is connected to the imaging processing unit 10 and forms the core of the density determination function D. The density determination processing unit 30 defines a detection area 30P in an area where the powder and granular materials are not reflected in the image data 10W stored in the storage unit 12, and detects the density (brightness) of the detection area 30P. Further, the density determination processing unit 30 sets a minimum reference density 30Q that is suitable for binarization processing by the binarization processing unit 40. Thereby, the density determination processing unit 30 performs the illumination abnormality determination when the detected density is less than the set constant brightness (minimum reference density 30Q). In this case, the density determination processing unit 30 sends to the imaging control unit 13 an illumination failure signal 30 </ b> X for stopping all the inspection processes performed by the inspection apparatus 100. On the other hand, when the target image data has a certain brightness or higher, no signal is transmitted. Such illumination abnormality determination is a determination made as to whether or not the image data is appropriate for the binarization process, which is performed before the process proceeds to the binarization process. The illumination abnormality determination is to detect a failure of the illumination unit 20 or illumination deterioration, or a decrease in the amount of light received by the camera element due to a shift in the positional relationship between the imaging unit 11 and the illumination unit 20. In the present embodiment, when an illuminance abnormality determination occurs, the inspection apparatus 100 stops the inspection.

二値化処理部40は、撮像処理部10に接続されており、保存部12に保存された画像データ10Wの二値化処理を行い、二値化画像データ40Wを生成する。二値化処理は、前述のとおり、照明不良信号30Xが発信されない限り行われる。具体的には、二値化閾値40Qを予め設定しておき、二値化閾値40Qよりも画像濃度(階調)の低い画素部分を「黒」(階調の下限値:例えば256階調であれば0階調)に変換して粉粒体の領域を示す。一方、前記二値化閾値40Qよりも画像濃度(階調)の高い画素部分を「白」(階調の上限値:例えば256階調であれば255階調)に変換して、粉粒体以外の背景領域を示す。このようにして、二階調からなる二値化画像データ40Wが生成される。生成された二値化画像データ40Wは、対応する画像データ10Wが有する撮像サンプリング時間10Tとともに、撮像処理部10の保存部12に書き込まれ保存される。前記の二値化閾値40Qは、適宜任意に設定でき、撮像された粉粒体の画素(撮像面積)を的確に把握できる数値に設定することができる。なお本明細書において、二値化画像データ40Wのうち、検量線作成用のものを41W、質量演算及び質量判定用のものを42W、検量線補正用のものを43Wとして区別していうこともある。この二値化処理部40においては、後述する、濃淡補正フィルタ処理の機能を備えていることが二値化処理の精度向上の観点から好ましい。   The binarization processing unit 40 is connected to the imaging processing unit 10, performs binarization processing on the image data 10 </ b> W stored in the storage unit 12, and generates binarized image data 40 </ b> W. As described above, the binarization process is performed unless the illumination failure signal 30X is transmitted. Specifically, a binarization threshold 40Q is set in advance, and a pixel portion having an image density (gradation) lower than the binarization threshold 40Q is set to “black” (lower limit of gradation: for example, 256 gradations). If there is, it is converted to 0 gradation) to indicate the region of the powder and granular material. On the other hand, a pixel portion having an image density (gradation) higher than the binarization threshold value 40Q is converted to “white” (upper gradation value: for example, 255 gradations if 256 gradations), and the granular material The background area other than is shown. In this way, binary image data 40W having two gradations is generated. The generated binarized image data 40W is written and stored in the storage unit 12 of the imaging processing unit 10 together with the imaging sampling time 10T included in the corresponding image data 10W. The binarization threshold 40Q can be arbitrarily set as appropriate, and can be set to a numerical value capable of accurately grasping the pixel (imaging area) of the imaged granular material. In the present specification, among the binarized image data 40W, the calibration curve creation may be distinguished as 41W, the mass calculation and mass determination as 42W, and the calibration curve correction as 43W. . In the binarization processing unit 40, it is preferable from the viewpoint of improving the accuracy of the binarization processing to have a function of density correction filter processing described later.

基準検量線作成部50は、撮像処理部10に接続されており、検査初期段階(製造ライン稼働前の段階)に実行される基準検量線作成機能Aの中核をなす。基準検量線作成部50は、基準粉粒体の画素Vと質量Gとの対応関係を一次関数で示す基準検量線50Fを作成する。前記「基準粉粒体の画素V」とは、二値化画像データ40Wで「黒」とされた画素数のことである。基準検量線50Fの作成に際し、前記一次関数の画素Vは、所定時間に、撮像処理部10に保存される二値化画像データ41Wから得られる累積した基準粉粒体の画素41Vに基づく。他方、前記一次関数の質量Gは、前記所定時間に、撮像対象とされた基準粉粒体の落下軌道の下方で質量測定部130により測定される基準粉粒体の質量50Gに基づく。質量測定部130は、基準検量線作成部50に接続され、所定時間経過後に、取得した質量値を基準検量線作成部50に送る。また、質量測定部130は、基準検量線作成部50に接続しなくとも、例えば基準粉粒体の落下軌道の下方に粉粒体を受け皿などで受け、受け皿に乗った基準粉粒体をはかりで測定し、その値を基準検量線作成部50に入力してもよい。質量測定と同時に、二値化画像データ41Wに基づき累積した基準粉粒体の画素41Vが基準検量線作成部50に蓄積される。所定時間経過後、基準検量線作成部50において、得られた基準粉粒体の画素41V及び質量50Gから、重み(質量G/画素V)を算出する。その重みが基準検量線50Fである一次関数の定数として検量線記憶領域部60に保持される。基準検量線作成部50における「所定時間」は、適宜任意に設定できる。散布対象物における1製品あたりの搬送速度に合わせた時間では測定質量が小さい場合は、それより長い時間を設定して、前記重み(質量G/画素V)を算出できる。例えば、1製品毎(0.2秒毎)では質量値が小さく測定できない場合、60秒間までの間で適宜設定することができる。検量線記憶領域部60は、基準検量線作成部50に接続されており、作成された基準検量線50Fを保存する。   The reference calibration curve creation unit 50 is connected to the imaging processing unit 10 and forms the core of the reference calibration curve creation function A that is executed at the initial stage of inspection (the stage before the operation of the production line). The reference calibration curve creation unit 50 creates a reference calibration curve 50F that shows the correspondence between the pixel V and the mass G of the reference granular material by a linear function. The “pixel V of the reference granular material” is the number of pixels set to “black” in the binarized image data 40W. When creating the reference calibration curve 50F, the pixel V of the linear function is based on the accumulated reference powder pixel 41V obtained from the binarized image data 41W stored in the imaging processing unit 10 at a predetermined time. On the other hand, the mass G of the linear function is based on the mass 50G of the reference granular material measured by the mass measurement unit 130 below the dropping trajectory of the reference granular material targeted for imaging at the predetermined time. The mass measuring unit 130 is connected to the reference calibration curve creating unit 50 and sends the acquired mass value to the reference calibration curve creating unit 50 after a predetermined time has elapsed. In addition, the mass measuring unit 130 is not connected to the reference calibration curve creating unit 50, for example, receives a granular material in a receiving tray or the like below the dropping trajectory of the reference granular material, and measures the reference granular material on the receiving tray. And the value may be input to the reference calibration curve creation unit 50. Simultaneously with the mass measurement, the reference granular material pixels 41V accumulated based on the binarized image data 41W are accumulated in the reference calibration curve creation unit 50. After elapse of a predetermined time, the reference calibration curve creation unit 50 calculates the weight (mass G / pixel V) from the obtained pixel 41V and mass 50G of the reference granular material. The weight is held in the calibration curve storage area 60 as a constant of a linear function whose reference calibration curve is 50F. The “predetermined time” in the reference calibration curve creation unit 50 can be arbitrarily set as appropriate. When the measured mass is small in the time matched to the conveyance speed per product in the application object, the weight (mass G / pixel V) can be calculated by setting a longer time. For example, if the mass value is small and cannot be measured for each product (every 0.2 seconds), it can be set appropriately for up to 60 seconds. The calibration curve storage area unit 60 is connected to the reference calibration curve creation unit 50 and stores the created reference calibration curve 50F.

基準粒径作成・記憶領域部90は、撮像処理部10及び補正検量線作成部55に接続されており、検査初期段階(製造ライン稼働前の段階)に実行される基準粒径作成機能Bの中核をなす。基準粒径作成・記憶領域部90は、基準粒径作成部91と、基準粒径記憶領域部92とを有しており、検査初期段階の基準粉粒体の平均粒径Dbasを作成し、これを保存する。基準粒径作成部91は、撮像処理部10の保存部12に保存された検査初期段階の二値化画像データ40Wから基準粉粒体の平均粒径Dbasを算出する。例えば、二値化処理部40で生成された二値化画像データ40Wにおける、検査初期段階の基準粉粒体の画像を対象とし、一方向とそれに直交する方向に沿う、それぞれの画像の寸法を測定する。そして、それぞれの寸法で確定される長方形の対角線の長さを算出し、この長さを粉粒体の粒径とし、これらの平均粒径Dbasを算出する。算出された平均粒径Dbasは、基準粒径記憶領域部92に書き込まれ、保存される。   The reference particle size creation / storage area unit 90 is connected to the imaging processing unit 10 and the corrected calibration curve creation unit 55, and has a reference particle size creation function B that is executed at the initial inspection stage (stage before the production line is operated). The core. The reference particle size creation / storage region unit 90 includes a reference particle size creation unit 91 and a reference particle size storage region unit 92, and creates an average particle size Dbas of the reference powder body at the initial stage of inspection, Save this. The reference particle size creation unit 91 calculates the average particle size Dbas of the reference powder body from the binarized image data 40W at the initial stage of inspection stored in the storage unit 12 of the imaging processing unit 10. For example, in the binarized image data 40W generated by the binarization processing unit 40, the image of the reference granular material in the initial stage of inspection is targeted, and the dimensions of each image along one direction and the direction orthogonal thereto are set. taking measurement. And the length of the diagonal of the rectangle decided by each dimension is calculated, this length is made into the particle size of a granular material, and these average particle sizes Dbas are calculated. The calculated average particle diameter Dbas is written into the reference particle diameter storage area 92 and stored.

補正検量線作成部55は、撮像処理部10及び検量線記憶領域部60に接続されており、検量線補正機能Eの中核をなす。補正検量線作成部55は、製品用粉粒体の画像データ13Wを二値化処理して得られる二値化画像データ43Wから製品用粉粒体の平均粒径Dを算出し、製品用粉粒体の平均粒径Dと基準粉粒体の平均粒径Dbasとから、基準検量線50Fの傾きを補正した補正検量線51Fを作成する。補正検量線51Fは、製品用粉粒体の質量Gと、製品用粉粒体の画素Vとの一次関数である。作成された補正検量線51Fは、検量線記憶領域部60に書き込まれ、保存される。   The corrected calibration curve creation unit 55 is connected to the imaging processing unit 10 and the calibration curve storage area unit 60 and forms the core of the calibration curve correction function E. The corrected calibration curve creation unit 55 calculates the average particle diameter D of the product granules from the binarized image data 43W obtained by binarizing the image data 13W of the product powder, and the product powder From the average particle diameter D of the granular material and the average particle diameter Dbas of the reference granular material, a corrected calibration curve 51F in which the inclination of the reference calibration curve 50F is corrected is created. The corrected calibration curve 51F is a linear function of the mass G of the product granular material and the pixel V of the product granular material. The created corrected calibration curve 51F is written and stored in the calibration curve storage area 60.

質量演算部70は、撮像処理部10及び検量線記憶領域部60に接続されており、質量判定処理部80とともに、補正検量線51Fの作成後の製造ライン稼働中の質量判定機能Cの中核をなす。質量演算部70は、補正検量線51Fの作成に用いられた二値化画像データ42Wに基づき累積した製品用粉粒体の画素43Vから、補正検量線51Fに基づいて総質量値77Gを算出する。具体的には、散布対象物の1製品に相当する部分が搬送される所定時間分(すなわち前記散布対象物の1製品に相当する部分が製品用粉粒体の散布位置を通過し終わる時間分)の累積した粉粒体の画素42Vに、検量線記憶領域部60に保存されている補正検量線51Fの重み(質量G/画素V)を乗算することにより、1製品単位当たりの製品用粉粒体の総質量77Gを算出する。質量演算部70における「所定時間」は、適宜任意に設定でき、搬送される製品となる散布対象物の速度に合わせて設定することが好ましい。前記散布対象物が長尺帯状である場合は、移動中の散布対象物の1製品に相当する領域面積に対して製品用粉粒体の粉粒体を散布する時間である。前記散布対象物が製品単位に既に区分けされて間欠的に搬送される場合は、間隔をあけて移動中の散布対象物の面積に対して製品用粉粒体の粉粒体を散布する時間である。例えば、300個/分の製品搬送速度ならば60/300=200ms(ミリ秒)、400個/分の速度ならば60/400=150ms(ミリ秒)となる。   The mass calculation unit 70 is connected to the imaging processing unit 10 and the calibration curve storage area unit 60, and together with the mass determination processing unit 80, the core of the mass determination function C during operation of the production line after the creation of the corrected calibration curve 51F. Eggplant. The mass calculation unit 70 calculates a total mass value 77G based on the corrected calibration curve 51F from the pixel 43V of the product granular material accumulated based on the binarized image data 42W used to create the corrected calibration curve 51F. . Specifically, for a predetermined time during which a portion corresponding to one product of the application object is transported (that is, for a time during which a portion corresponding to one product of the application object finishes passing through the application position of the granular material for product) ) Accumulated powder particles 42V is multiplied by the weight (mass G / pixel V) of the corrected calibration curve 51F stored in the calibration curve storage area unit 60, so that the product powder per product unit The total mass 77G of the granule is calculated. The “predetermined time” in the mass calculation unit 70 can be arbitrarily set as appropriate, and is preferably set in accordance with the speed of the application object to be conveyed. When the said dispersion | distribution target object is elongate strip shape, it is time to spray | spread the granular material of the granular material for products with respect to the area | region area equivalent to 1 product of the distribution target object in movement. When the object to be sprayed is already divided into product units and transported intermittently, it is time to spray the granular material for the product on the area of the object to be sprayed at intervals. is there. For example, 60/300 = 200 ms (milliseconds) for a product conveyance speed of 300 / min, and 60/400 = 150 ms (milliseconds) for a speed of 400 / min.

質量判定処理部80は、質量演算部70及び後述する不良排出部120に接続されており、質量演算部70とともに、基準検量線50Fの補正によって補正検量線51Fを作成した後の質量判定機能Bの中核をなす。質量判定処理部80では、散布される製品用粉粒体の規定内質量80Qが設定される。この「規定内質量80Q」は1製品単位で含有されるべき製品用粉粒体の質量の許容範囲に相当する。質量判定処理部80は、前記の製品用粉粒体の総質量77Gのデータを質量演算部70から受信し、総質量77Gが規定内質量80Qであるか否かの判定を行う。その判定に基づいて、総質量77Gが規定内質量80Qの範囲外である場合は、質量不良信号80Xを発信する。一方、総質量77Gが規定内質量80Qの範囲内である場合は、質量良品信号80Yを発信する。例えば、規定内質量80Qを1製品当たりFg(グラム)の上下限値±10%の範囲と定めた場合、その範囲外のものをNG判定とする。   The mass determination processing unit 80 is connected to the mass calculation unit 70 and a defective discharge unit 120 described later, and together with the mass calculation unit 70, the mass determination function B after creating the corrected calibration curve 51F by correcting the reference calibration curve 50F. The core of In the mass determination processing unit 80, an in-specified mass 80Q of the product granular material to be dispersed is set. This “specified internal mass 80Q” corresponds to the allowable range of the mass of the granular material for product to be contained in one product unit. The mass determination processing unit 80 receives the data of the total mass 77G of the product granular material from the mass calculation unit 70, and determines whether or not the total mass 77G is the prescribed mass 80Q. Based on the determination, when the total mass 77G is outside the range of the specified internal mass 80Q, a mass defect signal 80X is transmitted. On the other hand, when the total mass 77G is within the range of the specified internal mass 80Q, a mass acceptable product signal 80Y is transmitted. For example, when the specified internal mass 80Q is determined to be within the range of the upper and lower limit values ± 10% of Fg (grams) per product, the product outside the range is determined as NG.

質量判定処理部80は、発信する質量不良信号80X及び質量良品信号80Yを、粉粒体質量検査装置100に接続される別の装置へと送信できるようにされている。その際、質量不良信号80X及び質量良品信号80Yに、対象となる製品(良品・不良製品)を特定するための情報(例えば、撮像サンプリング時間10Tなど)が含まれていることが好ましい。これにより、受信する側の装置は、質量不良となる製品に対処するための機能が発揮され得る。このようにして粉粒体質量検査装置100は、製品用粉粒体の散布状況から、製品を構成する散布対象物へ連続散布された製品用粉粒体の総質量を散布中に時機よく検知することができる。   The mass determination processing unit 80 is configured to transmit the mass defect signal 80X and the mass non-defective signal 80Y to be transmitted to another device connected to the granular material mass inspection device 100. In that case, it is preferable that information (for example, imaging sampling time 10T etc.) for specifying the target product (non-defective product / defective product) is included in the mass defect signal 80X and the mass acceptable product signal 80Y. As a result, the receiving device can exhibit a function for dealing with a product having a mass defect. In this way, the granular material mass inspection apparatus 100 detects the total mass of the granular material for product continuously dispersed to the scatter object constituting the product from the state of dispersion of the granular material for product in a timely manner. can do.

図2及び図3に示すとおり、本実施形態の粉粒体質量検査方法は、検査初期工程A1と基準検量線作成後の検査工程B1とを有する。検査初期工程A1は、検査装置100の基準検量線作成機能A及び基準粒径作成機能Bを利用して行う一連の処理工程である。基準検量線作成後の検査工程B1は、検査初期工程A1にて基準検量線及び基準粒径が計測・記憶された後で、基準検量線及び基準粒径を用いて、製品用粉粒体の質量判定を行う工程である。すなわち、基準検量線作成後の検査工程B1は、基準検量線及び基準粒径の存在下で、検量線補正機能E及び質量判定機能Cを利用して行う一連の処理工程である。また、検査初期工程A1及び基準検量線作成後の検査工程B1はそれぞれ、検査装置100の濃度判定機能Dを利用する。この粉粒体質量検査方法については、粉粒体含有物品である、検査対象の製品である発熱体の概要をまず説明し、更に図4を参照して、発熱体の製造に用いられる製造装置としての散布装置について説明した上で詳述する。   As shown in FIGS. 2 and 3, the granular material mass inspection method of the present embodiment includes an inspection initial step A <b> 1 and an inspection step B <b> 1 after creating a standard calibration curve. The inspection initial step A1 is a series of processing steps performed using the reference calibration curve creation function A and the reference particle size creation function B of the inspection apparatus 100. After the standard calibration curve and the standard particle diameter are measured and stored in the initial inspection process A1, the standard calibration curve and the standard particle size are used to perform the inspection process B1 after creating the standard calibration curve. This is a step of performing mass determination. That is, the inspection process B1 after creating the reference calibration curve is a series of processing steps performed using the calibration curve correction function E and the mass determination function C in the presence of the reference calibration curve and the reference particle size. The inspection initial process A1 and the inspection process B1 after the creation of the standard calibration curve each use the density determination function D of the inspection apparatus 100. About this granular material mass inspection method, the outline | summary of the heat generating body which is a granular object containing article | item and the product to be inspected is demonstrated first, and also with reference to FIG. 4, the manufacturing apparatus used for manufacture of a heat generating body The spraying device will be described in detail.

まず、ここでの発熱体は、基材シートの少なくとも一面側に、酸化反応を起こす被酸化性金属、塩化ナトリウム等の電解質及び水を含む発熱組成物の層と、該層上に配置された、吸水性ポリマーの粉粒体を含む保水材の層とを備える。吸水性ポリマーの粒子の粉粒体の含有質量は、発熱体の発熱特性を左右する重要な要素の1つとなる。この発熱体の製造方法は、長尺の基材シート上に、鉄粉等の被酸化性金属、電解質及び水等を含むスラリー状の発熱組成物を塗布して発熱体を形成し、次いで該発熱体の上に、吸水性ポリマーの粉粒体を層状に散布し、保水材の層を形成する工程を有する。したがって、本製造方法において、前記基材シートに前記発熱組成物が塗布されたものが、粉粒体の散布対象物となる。   First, the heating element here was disposed on at least one side of the base sheet, a layer of a heat generating composition containing an oxidizable metal that causes an oxidation reaction, an electrolyte such as sodium chloride, and water, and the layer. And a water retention material layer containing water-absorbent polymer particles. The mass content of the water-absorbing polymer particles is one of the important factors that influence the heat generation characteristics of the heat generator. In this heating element manufacturing method, a heating element is formed by applying a slurry-like heating composition containing an oxidizable metal such as iron powder, an electrolyte and water on a long base sheet, and then forming the heating element. On the heating element, the method comprises a step of spraying a water-absorbing polymer powder in layers to form a water-retaining material layer. Therefore, in this manufacturing method, what the said exothermic composition was apply | coated to the said base material sheet turns into a spray object of a granular material.

図4には、粉粒体の散布装置500(以下、単に散布装置500ともいう。)が示されている。散布装置500は、前述のとおり、発熱体に含有される吸水性ポリマーの粉粒体202の散布装置であり、粉粒体の散布工程を実行する。散布装置500は、粉粒体散布部300、検査装置100及び不良品排出処理部120を備えており、本実施形態では、粉粒体散布部300は、吸水性ポリマーの粉粒体202を一時貯蔵するホッパ301、粉体供給装置400、筒状の排出口303、粉粒体を水平方向に搬送するトラフ304、トラフ304の一端側に片持ち梁の状態でトラフ304を振動させる振動体305を有する。トラフ304と振動体305とを合わせて振動フィーダ306という。   FIG. 4 shows a powder particle spraying device 500 (hereinafter also simply referred to as a spraying device 500). As described above, the spraying device 500 is a spraying device for the water-absorbing polymer powder 202 contained in the heating element, and executes the powder spraying step. The spraying device 500 includes a powder particle spraying unit 300, an inspection device 100, and a defective product discharge processing unit 120. In the present embodiment, the powder particle spraying unit 300 temporarily stores the water absorbent polymer powder particles 202. A hopper 301 for storing, a powder supply device 400, a cylindrical discharge port 303, a trough 304 for conveying powder particles horizontally, and a vibrating body 305 that vibrates the trough 304 in a cantilevered state at one end of the trough 304. Have The trough 304 and the vibrating body 305 are collectively referred to as a vibration feeder 306.

粉粒体散布部300においては、ホッパ301内の粉粒体202が、粉体供給装置400により搬出される。搬出された粉粒体202はトラフ304における任意の位置で受け取られ、電磁フィーダ305の振動で好適に分散されながらトラフ304の終端部304A側へ移動する。粉粒体202は終端部304Aから自由落下し、搬送コンベア(図示せず)で搬送されてくる散布対象物206に連続的に散布される。散布対象物206は、前述のとおり、基材シート201上に非酸化性金属の粒子、塩化ナトリウム等の電解質及び水を含む発熱組成物205を塗布したものである。   In the powder particle distribution unit 300, the powder particles 202 in the hopper 301 are carried out by the powder supply device 400. The discharged granular material 202 is received at an arbitrary position in the trough 304, and moves toward the end portion 304A of the trough 304 while being suitably dispersed by the vibration of the electromagnetic feeder 305. The granular material 202 falls freely from the end portion 304A and is continuously sprayed onto the spray object 206 transported by a transport conveyor (not shown). As described above, the spray object 206 is obtained by applying the exothermic composition 205 containing non-oxidizing metal particles, an electrolyte such as sodium chloride, and water on the base sheet 201.

この粉粒体散布部300に対して粉粒体質量検査装置100は、図4に示すとおり、粉粒体202の落下軌道空間を間に挟んで撮像手段11と照明部20とが対向するように配置されている。   As shown in FIG. 4, the particle mass inspection apparatus 100 is configured so that the imaging unit 11 and the illuminating unit 20 face each other with the falling orbit space of the particle 202 interposed therebetween, as shown in FIG. 4. Is arranged.

不良品排出処理部120は、粉粒体質量検査装置100の質量判定処理部80に接続されており、質量判定処理部80が発信した質量不良信号80Xを受信すると、製造ラインから質量不良信号80Xに対応する散布対象物を特定し、特定した散布対象物を製造ラインから排出する。本実施形態では、不良品排出処理部120は、フライトコンベア(図示せず)等から構成されている。   The defective product discharge processing unit 120 is connected to the mass determination processing unit 80 of the granular material mass inspection apparatus 100, and when receiving the mass defect signal 80X transmitted from the mass determination processing unit 80, the mass defect signal 80X from the production line. The spraying object corresponding to is identified, and the identified spraying object is discharged from the production line. In the present embodiment, the defective product discharge processing unit 120 includes a flight conveyor (not shown) and the like.

ここで、本実施形態の粉粒体質量検査方法における検査初期工程A1について、図4の装置の概要構成図と図2のフローチャートとを参照して、詳細に説明する。   Here, the inspection initial step A1 in the granular material mass inspection method of the present embodiment will be described in detail with reference to the schematic configuration diagram of the apparatus in FIG. 4 and the flowchart in FIG.

検査初期工程A1は、基準粉粒体202の散布部300の切り出し量等の散布条件の設定の都度、検査初期段階において実行される。したがって検査初期工程A1は、散布装置500の設定条件にあった適正な検量線が得られる限り、発熱体の製造ライン上、製造ライン以外のいずれで実施されてもよい。   The inspection initial process A1 is executed at the initial stage of inspection every time the spraying conditions such as the cutout amount of the spraying part 300 of the reference granular material 202 are set. Therefore, the inspection initial process A1 may be performed on the heating element manufacturing line or other than the manufacturing line as long as an appropriate calibration curve suitable for the setting conditions of the spraying device 500 is obtained.

まず、各装置を図4のように配置した状態で、粉粒体202の落下軌道の下方に質量測定部130を設置する。質量測定部130としては、受け取る基準粉粒体の質量を時系列で計測できるものであれば特に制限なく採用できる。例えば、ロードセルに粉粒体受け皿又は検量皿のみを設置したものなどが挙げられる。質量測定部130は、散布装置500が有する構成であってもよく、散布装置500と別体とする構成であってもよい。   First, in a state where each device is arranged as shown in FIG. As the mass measuring unit 130, any mass measuring unit that can measure the mass of the received reference granular material in time series can be used without any particular limitation. For example, the thing which installed only the granular material tray or the calibration dish in the load cell is mentioned. The mass measurement unit 130 may have a configuration included in the spraying device 500 or may be configured separately from the spraying device 500.

基準粉粒体の平均粒径Dbasは、基準検量線の作成と平行して、又は基準検量線の作成に先立ち、二値化処理部40において取得された画素41Wに基づいて測定される。詳細には、図5に示すとおり、二値化処理部40において取得された粉粒体の画像P1,P2,・・・,Pnを対象とし、一方向Xとそれに直交する方向Yに沿う画像Piの(iは自然数を表す。)の寸法xi,yiを測定する。そして寸法xi,yiで画定される長方形の対角線の長さdiを算出し、この値を画像Piの粒径とする。そして(1/n)ΣPiから基準粉粒体の平均粒径Dbasを算出する。平均粒径Dbasの算出に用いる粒子の数nは例えば100以上とする。   The average particle diameter Dbas of the reference granular material is measured based on the pixels 41W acquired in the binarization processing unit 40 in parallel with the preparation of the reference calibration curve or prior to the creation of the reference calibration curve. Specifically, as shown in FIG. 5, an image along one direction X and a direction Y orthogonal to the target image P <b> 1, P <b> 2,..., Pn obtained by the binarization processing unit 40. Measure dimensions xi and yi of Pi (i represents a natural number). Then, the length di of the rectangular diagonal line defined by the dimensions xi and yi is calculated, and this value is used as the particle size of the image Pi. Then, the average particle diameter Dbas of the reference granular material is calculated from (1 / n) ΣPi. The number n of particles used for calculating the average particle diameter Dbas is, for example, 100 or more.

次いで、検査装置100を稼働させる。照明部20が検査装置100と連動していない場合は、照明部20の電源も入れる。次いで、撮像処理部10において、撮像スピードや検量線作成のための「所定時間」、その他の諸条件を入力する。また、濃度判定処理部30では検出領域30P及び濃度の最低基準濃度30Qの設定を行い、二値化処理部40では二値化閾値40Qの設定を行う。その後、散布部300を稼働し、検査装置100に撮像開始の入力を行い、撮像処理を実行する(撮像処理工程AB11)。この撮像処理工程AB11により、前述のとおり、撮像画像データ11Wが、その撮像サンプリング時間10Tとともに時系列で保存部12に保存される。   Next, the inspection apparatus 100 is operated. When the illumination unit 20 is not linked to the inspection apparatus 100, the illumination unit 20 is also turned on. Next, the imaging processing unit 10 inputs imaging speed, “predetermined time” for creating a calibration curve, and other various conditions. The density determination processing unit 30 sets the detection area 30P and the minimum reference density 30Q, and the binarization processing unit 40 sets the binarization threshold 40Q. Thereafter, the spraying unit 300 is operated to input imaging start to the inspection apparatus 100 and execute imaging processing (imaging processing step AB11). By this imaging processing step AB11, as described above, the captured image data 11W is stored in the storage unit 12 in time series together with the imaging sampling time 10T.

次いで、濃度判定処理工程D11を、濃度判定処理部30において設定されたタイミングで行う。すなわち、画像データ11Wの濃度を検出し、濃度の最低基準濃度30Qとの比較を行う。検出した濃度が設定された一定の明るさ(最低基準濃度30Q)以下の場合に照明異常判定D12を行う。この場合、濃度判定処理部30は、検査装置100による検査工程のすべてを停止するための照明不良信号30Xを撮像制御部13へ送る。これにより、検査装置100全体が停止する。停止後に、照明部30を調節して、再度、基準検量線作成工程A13を実行することとなる。一方、対象の画像データが一定の明るさ以上であった場合は、特に信号は発信されず次の二値化処理工程A12へと進む。   Next, the density determination processing step D11 is performed at the timing set in the density determination processing unit 30. That is, the density of the image data 11W is detected and compared with the lowest reference density 30Q. When the detected density is equal to or less than the set constant brightness (minimum reference density 30Q), the illumination abnormality determination D12 is performed. In this case, the density determination processing unit 30 sends to the imaging control unit 13 an illumination failure signal 30 </ b> X for stopping all the inspection processes performed by the inspection apparatus 100. Thereby, the whole inspection apparatus 100 stops. After the stop, the illumination unit 30 is adjusted and the reference calibration curve creation step A13 is executed again. On the other hand, if the target image data has a certain brightness or more, no signal is transmitted and the process proceeds to the next binarization process A12.

前述した濃度判定処理工程D11は、間断なく自由落下する微小な粉粒体を的確に捉えるためになされる。照明の故障や経時劣化により、明るさが暗くなった場合、粒子が抽出できない。そのため、濃度の最低基準濃度30Qは、検査対象の粉粒体202の粒径などによって、粒子を捉えられる明るさに決定する。一律には定められないが、例えば平均粒径が440μm〜550μm程度の粉粒体では、最低基準濃度30Qを、グレースケールの256階調において、濃度50と定めることができる。   The above-described concentration determination processing step D11 is performed in order to accurately capture minute powder particles that freely fall without interruption. Particles cannot be extracted when the brightness becomes dark due to lighting failure or deterioration over time. For this reason, the minimum reference concentration 30Q of the concentration is determined to be a brightness at which particles can be captured by the particle size of the granular material 202 to be inspected. Although not uniformly determined, for example, in a granular material having an average particle diameter of about 440 μm to 550 μm, the minimum reference density 30Q can be determined as a density 50 in 256 gray scales.

次いで、二値化処理部40において、撮像処理部10の保存部12に保存された画像データ11Wの二値化処理工程AB12を行い、二値化画像データ41Wを生成する。二値化処理工程AB12においては、濃淡補正フィルタ処理がなされることが好ましい。これにより、二値化処理に対する濃度影響が非常に小さく抑えられる。この濃淡補正フィルタ処理とは、入力画像と、入力画像から作成された内部処理画像とを差分演算することで、背景の濃淡変化を除去し、照明ムラ・照明劣化の影響を抑制することができるフィルタ処理である。これにより、撮像画像データ10Wの明るさムラを低減して所望の粉粒体の画素部分のみを抽出することができ、濃度が広い範囲にふれても適正な二値化処理が可能である。   Next, in the binarization processing unit 40, the binarization processing step AB12 of the image data 11W stored in the storage unit 12 of the imaging processing unit 10 is performed to generate binarized image data 41W. In the binarization processing step AB12, it is preferable that density correction filter processing is performed. As a result, the density effect on the binarization process can be kept very small. This gradation correction filter processing is to perform a difference calculation between an input image and an internally processed image created from the input image, thereby removing background gradation changes and suppressing the effects of illumination unevenness and illumination deterioration. Filter processing. As a result, it is possible to reduce the brightness unevenness of the captured image data 10W and extract only the pixel portion of the desired granular material, and appropriate binarization processing is possible even when the density is in a wide range.

二値化処理の内容は前述したとおりであり、二値化閾値40Qを境に0階調と1階調とに変換する。図6は、撮像した粒子画像、すなわち撮像画像データ11Wであり、図7は、図6に示す撮像した粒子画像の二値化画像である。図7において黒色部分が粉粒体202を示している。図7に示す黒色部分の大きさや配置は、図6に示す撮像画像データ11Wに写った粉粒体202の大きさや配置と一致しており、適正な二値化処理がなされていることが確認できる。この二値化画像データ41Wから粉粒体の画素数を把握できる。二値化画像データ41Wは、次の基準検量線作成工程のため、撮像処理部10の保存部12に保存される。   The contents of the binarization processing are as described above, and conversion into 0 gradation and 1 gradation with the binarization threshold 40Q as a boundary. 6 is a captured particle image, that is, captured image data 11W, and FIG. 7 is a binarized image of the captured particle image shown in FIG. In FIG. 7, the black portion indicates the powder body 202. The size and arrangement of the black portions shown in FIG. 7 are the same as the size and arrangement of the powder particles 202 shown in the captured image data 11W shown in FIG. 6, and it is confirmed that appropriate binarization processing has been performed. it can. From this binarized image data 41W, the number of pixels of the granular material can be grasped. The binarized image data 41W is stored in the storage unit 12 of the imaging processing unit 10 for the next reference calibration curve creation process.

二値化閾値40Qは、粉粒体202の粒径やその粒径のばらつき、すなわち、画像データでの粉粒体202部分の階調のばらつきによって決められる。図8に、二値化閾値40Qと測定される画素の関係を示す。二値化閾値40Qを下げていくと、検知量の減少に伴い画素数が減る。反対に、二値化閾値40Qを上げていくと、画素数が増えるが、撮像ノイズの影響を受けてしまう。二値化閾値40Qは一律には定められないが、例えば平均粒径が440μm〜550μm程度の粉粒体では、200階調から240階調までの間に設定することが好ましく、220階調に設定することがより好ましい。   The binarization threshold value 40Q is determined by the particle size of the granular material 202 and the variation of the particle size, that is, the gradation variation of the granular material 202 portion in the image data. FIG. 8 shows the relationship between the binarization threshold 40Q and the measured pixel. As the binarization threshold value 40Q is lowered, the number of pixels decreases as the detection amount decreases. On the contrary, when the binarization threshold 40Q is increased, the number of pixels increases, but it is affected by imaging noise. Although the binarization threshold value 40Q is not uniformly determined, for example, in the case of a granular material having an average particle diameter of about 440 μm to 550 μm, it is preferable to set between 200 gradations and 240 gradations, and to 220 gradations. It is more preferable to set.

次いで、基準検量線作成及び基準粒径計測工程AB13を、基準検量線作成部50において行う。ここでは、前述のとおり、基準粉粒体の画素Vと質量Gから得られた重み(質量G/画素V)を定数とする一次関数で表される基準検量線50Fを作成する。これは、基準検量線作成のための「所定時間」の間の、二値化画像データ41Wに基づいて累積した基準粉粒体の画素41Vと、質量測定部130で測定された基準粉粒体の質量50Gとに基づいてなされる。これにより、散布部300の散布条件に対応した基準検量線50Fが得られる。この基準検量線50Fを検量線記憶領域部60に保存して(基準検量線及び基準粒径記憶工程AB14)、本実施形態の粉粒体質量検査方法における基準検量線作成工程A1が終了する。   Next, the standard calibration curve creation unit 50 performs the standard calibration curve creation and the standard particle size measurement process AB13. Here, as described above, the reference calibration curve 50F represented by a linear function with the weight (mass G / pixel V) obtained from the pixel V and the mass G of the reference granular material as a constant is created. This is because the reference powder particles 41V accumulated based on the binarized image data 41W during the “predetermined time” for creating the reference calibration curve, and the reference powder particles measured by the mass measuring unit 130 Based on the mass of 50G. Thereby, the reference | standard calibration curve 50F corresponding to the distribution conditions of the distribution part 300 is obtained. The reference calibration curve 50F is stored in the calibration curve storage area 60 (reference calibration curve and reference particle size storage step AB14), and the reference calibration curve creation step A1 in the granular material mass inspection method of the present embodiment is completed.

次に、本実施形態の基準検量線作成後の検査工程B1について、図3のフローチャートを参照して説明する。基準検量線作成後の検査工程B1は、基準検量線50Fが作成された後、質量測定部130を取り除き、製品の製造ライン全体を稼働させた状態で行われる。まず、検査装置100の電源を入れて質量判定の基準となる規定内質量80Qや質量演算のための「所定時間」等を設定入力する。ホッパ301内には、基準粉粒体を引き続き充填させたままにしておき、これを製品用粉粒体として用いてもよく、あるいは、ホッパ301内から基準粉粒体を除去し、該基準粉粒体と異なる粒径を有する別の種類の製品用粉粒体を新たに充填してもよい。次いで散布部300の電源を入れて、製造ライン全体を稼働させ、製品用粉粒体203を散布し始めて、検査装置100による検査を開始する。製造ラインでは、粉粒体散布部300が稼働し、搬送ベルト(図示せず)で搬送されてくる散布対象物206に対し、連続的に製品用粉粒体203を散布する。   Next, the inspection process B1 after the creation of the reference calibration curve of the present embodiment will be described with reference to the flowchart of FIG. After the reference calibration curve 50F is created, the inspection process B1 after the creation of the reference calibration curve is performed in a state where the mass measuring unit 130 is removed and the entire product production line is operated. First, the inspection apparatus 100 is turned on, and the specified mass 80Q, which is a reference for mass determination, and “predetermined time” for mass calculation are set and input. The hopper 301 may be left filled with the reference powder and used as a product powder. Alternatively, the reference powder may be removed from the hopper 301 and the reference powder. Another type of product granular material having a particle size different from that of the granular material may be newly filled. Next, the power of the spraying unit 300 is turned on, the entire production line is operated, the product granular material 203 is started to be sprayed, and the inspection by the inspection apparatus 100 is started. In the production line, the granular material spraying unit 300 operates and continuously sprays the product granular material 203 on the spray object 206 transported by a transport belt (not shown).

次いで粉粒体質量検査装置100において、製品用粉粒体203を対象として、撮像処理工程CE11、濃度判定処理工程D11及び二値化処理工程CE12を、検査初期工程A1と同様にして行う。基準検量線作成後の検査工程B1においても、二値化処理工程CE12で濃淡補正フィルタ処理がなされることが好ましい。これにより、二値化処理に対する濃度影響が非常に小さく抑えられている。そのため、濃度の最低基準濃度30Qを基準検量線作成工程A1よりもかなり低水準に抑えることができる。すなわち照明異常による検査中止の可能性が低く、且つ、適正な二値化処理で製品用粉粒体203の画素の的確な把握が可能となる。これにより、製品の連続生産ラインの稼働中に、連続散布される粉粒体202の散布量を更に時機よく検査することができる。また、照明の長寿命化にもつながる。   Next, in the granular material mass inspection apparatus 100, the imaging processing step CE11, the concentration determination processing step D11, and the binarization processing step CE12 are performed in the same manner as the initial inspection step A1 for the product granular material 203. Also in the inspection process B1 after the creation of the standard calibration curve, it is preferable that the density correction filter process is performed in the binarization process CE12. Thereby, the density effect on the binarization process is suppressed to a very small level. Therefore, the minimum reference concentration 30Q of the concentration can be suppressed to a considerably lower level than the reference calibration curve creation step A1. In other words, the possibility of stopping the inspection due to an abnormal illumination is low, and the pixel of the product granular material 203 can be accurately grasped by an appropriate binarization process. Thereby, during operation of a continuous production line of products, it is possible to further timely inspect the application amount of the powder particles 202 that are continuously applied. It also leads to longer life of lighting.

撮像処理工程CE11においては、散布される製品用粉粒体203のすべてを撮像の対象としてもよいが、それに代えて、ある一部の領域を撮像領域としてもよい。具体的には、図9に示すように、個数基準で大粒径側から95%以上の粒子が計測されるように、製品用粉粒体203の落下方向に沿う撮像領域を狭く設定するとよい。
図10は、粉粒体の粒径を計測する際の撮像領域Wを示している。図10に示すように、粉粒体203の落下方向に沿う長さをL、落下方向と直交する幅方向に沿う長さをXとしたときの撮像領域をWとした場合、落下方向に沿う長さL及び幅方向に沿う長さXの一方又は両方の長さを小さくすることで撮像領域Wが小さく(狭く)なる。撮像領域Wを小さくすることで、二値化処理工程CE12等における処理の負荷を軽減することができ、計測時間も短縮することができる。
図11(a)は、落下方向に沿う長さLを変更したときの、製品用粉粒体203の粒径Dの計測値を示しており、図11(b)は、落下方向に沿う長さLを変更したときの、粉粒体の最大値正規化粒径を示している。なお、最大値正規化粒径とは、撮像領域Wにおける平均粒径を全ウィンドウ時の平均粒径で除した値である。図11(a)に示すように、落下方向に沿う長さLを大きくした場合、すなわち、落下方向に沿う長さLを大きくして撮像領域Wを大きくした場合、粉粒体203の粒径Dの計測値は、落下方向に沿う長さLが所定の長さを超えると漸近する。これは、最大値正規化粒径についても同様である(図11(b)参照)。
例えば、個数基準で大粒径側から95%以上の粒子の平均粒径D95における落下方向に沿う長さL95を超えると、粉粒体203の粒径Dの計測値は、漸近している。そのため、個数基準で大粒径側から95%以上の粒子の平均粒径D95から、この平均粒径D95のときの落下方向に沿う長さL95を求め、L≧L95とすればよい。また、落下方向に沿う方向の長さLは、大きくするほど撮像領域Wが大きくなり、撮像精度が向上するが、二値化処理工程等における処理の負荷も増す。そのため、撮像領域Wにおける落下方向に沿う長さLは、L95以上となるL95の近傍の値に設定することが好ましい。
また製品1枚毎に検査するためには、長さLは、検査時間を考慮した値にする必要がある。図12は、撮像領域Wの幅方向Xの長さを固定した状態で長さLを変化させたときの粒径の測定時間を示すグラフである。図12に示すように、粉粒体の粒径の測定時間は、撮像領域Wの長さLに応じて線形に増加する。粉粒体の質量検査には、粒径の計測以外に面積計測や濃淡計測等の画像処理が含まれるため、それらすべての処理を製品1枚の加工速度内に終了させる必要がある。例えば、加工速度100ms/枚、粒径の計測以外の画像処理時間が約80msの場合、粒径の計測時間は100ms−80ms=20ms以下に抑制することで、製品1枚毎に検査をすることができる。すなわち、この場合、撮像領域Wの長さLを21mmにする必要がある。
In the imaging process CE11, all of the product powder particles 203 to be dispersed may be taken as an imaging target, but instead, a certain area may be taken as an imaging area. Specifically, as shown in FIG. 9, the imaging region along the falling direction of the product granular material 203 may be set narrow so that 95% or more particles are measured from the large particle size side on the number basis. .
FIG. 10 shows the imaging region W when measuring the particle size of the granular material. As shown in FIG. 10, when the length along the falling direction of the granular material 203 is L, and the length along the width direction orthogonal to the dropping direction is X, the imaging region is W, and along the falling direction. The imaging region W becomes smaller (narrower) by reducing the length of one or both of the length L and the length X along the width direction. By reducing the imaging region W, it is possible to reduce the processing load in the binarization processing step CE12 and the like, and it is possible to shorten the measurement time.
Fig.11 (a) has shown the measured value of the particle size D of the granular material 203 for products when changing the length L along a dropping direction, FIG.11 (b) is the length along a dropping direction. The maximum normalized particle diameter of the granular material when the thickness L is changed is shown. The maximum normalized particle size is a value obtained by dividing the average particle size in the imaging region W by the average particle size in all windows. As shown in FIG. 11A, when the length L along the drop direction is increased, that is, when the imaging region W is enlarged by increasing the length L along the drop direction, the particle size of the powder 203 The measured value of D asymptotically approaches when the length L along the drop direction exceeds a predetermined length. The same applies to the maximum normalized particle diameter (see FIG. 11B).
For example, when the length L95 along the drop direction in the average particle diameter D95 of 95% or more of particles from the large particle diameter side on the number basis is exceeded, the measured value of the particle diameter D of the granular material 203 is asymptotic. Therefore, the length L95 along the dropping direction when the average particle diameter D95 is obtained from the average particle diameter D95 of 95% or more particles from the large particle diameter side on the number basis, and L ≧ L95 may be satisfied. Further, as the length L in the direction along the falling direction is increased, the imaging region W is increased and the imaging accuracy is improved, but the processing load in the binarization processing step and the like is also increased. For this reason, the length L along the drop direction in the imaging region W is preferably set to a value in the vicinity of L95 that is L95 or more.
In addition, in order to inspect every product, the length L needs to be a value in consideration of the inspection time. FIG. 12 is a graph showing the measurement time of the particle size when the length L is changed in a state where the length in the width direction X of the imaging region W is fixed. As shown in FIG. 12, the measurement time of the particle size of the granular material increases linearly according to the length L of the imaging region W. Since the mass inspection of the granular material includes image processing such as area measurement and density measurement in addition to the measurement of the particle size, it is necessary to finish all these processes within the processing speed of one product. For example, when the processing speed is 100 ms / sheet and the image processing time other than the particle size measurement is about 80 ms, the particle size measurement time is controlled to 100 ms−80 ms = 20 ms or less, thereby inspecting each product. Can do. That is, in this case, the length L of the imaging region W needs to be 21 mm.

検査工程B1においては、二値化処理工程CE12と質量演算処理工程C13との間で、二値化処理工程CE12において二値化処理された各二値化画像データから得られる製品用粉粒体203の画素に基づき、基準検量線補正工程E11を行う。基準検量線補正工程E11は、以下の処理を以下の順序で含んでいる。
・E12:製品用粉粒体203の粒径の測定
・E13:測定された粒径の複数のデータに基づく製品用粉粒体203の平均粒径Dの算出
・E14:製品用粉粒体の平均粒径Dと、基準粉粒体の粒径Dbasとの比であるD/Dbasの値、すなわち粒径変動率αの算出
・E15:粒径変動率αに基づく基準検量線50Fの補正による補正検量線51Fの作成
In the inspection process B1, the granular material for product obtained from each binarized image data binarized in the binarization processing step CE12 between the binarization processing step CE12 and the mass calculation processing step C13. Based on 203 pixels, the reference calibration curve correction step E11 is performed. The reference calibration curve correction step E11 includes the following processes in the following order.
E12: Measurement of the particle size of the product granule 203 E13: Calculation of the average particle size D of the product granule 203 based on a plurality of data of the measured particle size E14: of the product granule D / Dbas value which is the ratio between the average particle diameter D and the particle diameter Dbas of the reference powder body, that is, calculation of the particle diameter fluctuation rate α. E15: By correction of the reference calibration curve 50F based on the particle diameter fluctuation rate α. Creation of calibration curve 51F

工程E12における製品用粉粒体203の粒径の測定は、先に述べた図5に示す方法によって行われる。このようにして、画像データ13Wから得られる累積した製品用粉粒体203の画素43Vに基づき、製品用粉粒体203の数の平均値としての粒径が求められる。この平均値としての粒径の値をそのまま用いてもよいが、補正の精度を一層高めることを目的として、工程E13において製品用粉粒体203の粒径Dを、複数の二値化画像データを基にした単純移動平均によって算出することが好ましい。例えば、現在の撮像で取得された二値化画像データを含み、且つ過去に遡る合計30個の二値化画像データの単純移動平均粒径D’を算出することができる。   The measurement of the particle size of the product granular material 203 in the step E12 is performed by the method shown in FIG. Thus, based on the accumulated pixel 43V of the product granular material 203 obtained from the image data 13W, the particle size as an average value of the number of the product granular material 203 is obtained. The average particle size value may be used as it is, but for the purpose of further improving the accuracy of correction, the particle size D of the product granular material 203 is changed to a plurality of binarized image data in step E13. It is preferable to calculate by a simple moving average based on. For example, the simple moving average particle diameter D ′ of a total of 30 binarized image data including binarized image data acquired by the current imaging and going back to the past can be calculated.

このようにして製品用粉粒体203の平均粒径D(すなわち移動平均粒径D’)が求められたら、工程E14において、平均粒径D(すなわち移動平均粒径D’)と、基準粉粒体の粒径Dbasとの比D(D’)/Dbasの値である粒径変動率αを算出する。引き続き、工程E15において基準検量線50Fの補正が行われる。基準検量線50Fは、先に述べたとおり一次関数であるところ、補正においては、一次関数の傾きaに粒径変動率αを乗じた値であるaαを補正検量線51Fの傾きa’(=aα)として用いる。なお検量線51Fの切片は、基準検量線50Fの切片と同様にゼロである。   When the average particle diameter D (that is, moving average particle diameter D ′) of the product granular material 203 is obtained in this way, in step E14, the average particle diameter D (that is, moving average particle diameter D ′) and the reference powder A particle diameter variation rate α which is a ratio D (D ′) / Dbas ratio to the particle diameter Dbas of the granules is calculated. Subsequently, the reference calibration curve 50F is corrected in step E15. The reference calibration curve 50F is a linear function as described above. In the correction, the inclination α ′ of the correction calibration curve 51F (= aα, which is a value obtained by multiplying the inclination a of the linear function by the particle size variation rate α, is obtained. aα). Note that the intercept of the calibration curve 51F is zero like the intercept of the reference calibration curve 50F.

基準検量線50Fを粒径変動率αで補正することには次に述べる意義がある。本発明では、三次元形状を有する物体である粉粒体の散布質量を、粒子の二次元投影像に基づき算出している。したがって、粉粒体の散布の全期間にわたり粒子の投影面積が不変であれば、すなわち粒子の粒径が不変であれば、投影面積と散布質量との相関関係が維持される。一方、粉粒体の散布中に何らかの原因によって粒子の粒径が変化した場合には、投影面積と散布質量との相関関係が崩れてしまう。例えば、検量線作成時の粒子の半径をdとし、粒径変動率をα(=d’/d)と定義した場合、変動後の粒径はd’=αdとなる。したがって、粒径の変動の前後での面積比S’/Sは、πd’2/πd2=(αd)2/d2=α2となる。また、粒径の変動の前後での体積比V’/Vは、{(π/6)d’3}/{(π/6)d3}=(αd)3/d3=α3となる。したがって、粒径変動率αが例えば1.1の場合、つまり粒径が10%増加した場合には、面積比S’/Sは1.21となり、体積比V’/Vは1.33となる。すなわちΔ=V’/V−S’/Sで定義される誤差が12%となる。要するに、粒径が10%増加した場合には、検量線から算出される散布質量に12%の誤差が生じることになる。この現象は、同質量の粉粒体を散布しているにもかかわらず、粒径変動率αが1を超えると、撮像処理によって取得される二値化画像データの面積が相対的に小さくなり(画素数が少なくなり)、実際よりも少量の粉粒体が散布されていると誤認されてしまうこと、及び粒径変動率αが1を下回ると、撮像処理によって取得される二値化画像データの面積が相対的に大きくなり(画素数が多くなり)、実際よりも多量の粉粒体が散布されていると誤認されてしまうことに起因している。そこで本発明では、誤差の発生を極力小さくすべく、基準となる検量線の傾きaに粒径変動率αを乗じることで、粒径変動率αが1を超えた場合には検量線の傾きを大きくする補正をして、実際の散布質量との乖離を小さくしている。また、粒径変動率αが1を下回った場合には検量線の傾きを小さくする補正をして、実際の散布質量との乖離を小さくしている。   Correcting the standard calibration curve 50F with the particle size variation rate α has the following significance. In the present invention, the scattering mass of the granular material that is an object having a three-dimensional shape is calculated based on the two-dimensional projection image of the particles. Therefore, if the projected area of the particles does not change over the entire period of spraying the granular material, that is, if the particle diameter of the particles does not change, the correlation between the projected area and the sprayed mass is maintained. On the other hand, when the particle size of the particles changes for some reason during the spraying of the granular material, the correlation between the projected area and the sprayed mass is lost. For example, if the particle radius at the time of preparing the calibration curve is defined as d and the particle size variation rate is defined as α (= d ′ / d), the particle size after variation is d ′ = αd. Therefore, the area ratio S ′ / S before and after the variation of the particle diameter is πd′2 / πd2 = (αd) 2 / d2 = α2. Further, the volume ratio V ′ / V before and after the change in particle diameter is {(π / 6) d′ 3} / {(π / 6) d3} = (αd) 3 / d3 = α3. Therefore, when the particle size variation rate α is 1.1, for example, when the particle size is increased by 10%, the area ratio S ′ / S is 1.21, and the volume ratio V ′ / V is 1.33. Become. That is, the error defined by Δ = V ′ / V−S ′ / S is 12%. In short, when the particle diameter increases by 10%, an error of 12% occurs in the spray mass calculated from the calibration curve. This phenomenon is caused by the fact that the area of the binarized image data acquired by the imaging process becomes relatively small when the particle size variation rate α exceeds 1, even though powders of the same mass are scattered. A binarized image acquired by an imaging process when the number of pixels is reduced and it is misunderstood that a smaller amount of powder is scattered than the actual size and the particle size variation rate α is less than 1. This is due to the fact that the area of the data is relatively large (the number of pixels is increased), and it is mistaken that a larger amount of powder particles than the actual one is scattered. Therefore, in the present invention, in order to minimize the occurrence of an error, the slope of the calibration curve when the particle size variation rate α exceeds 1 is obtained by multiplying the standard calibration curve slope a by the particle size variation rate α. The deviation from the actual spread mass is reduced by correcting the difference. When the particle size variation rate α is less than 1, correction is made to reduce the slope of the calibration curve to reduce the deviation from the actual sprayed mass.

基準検量線補正処理工程E11での処理が完了したら、次いで、質量演算処理工程C13を質量演算部70にて行う。前述のとおり、質量演算のための「所定時間」の間に、二値化画像データ42Wに基づいて累積した粉粒体の画素42V(すなわち図3における面積x)から、補正検量線51Fに基づいて、総質量77G(すなわち1製品単位当たりの総質量77G)を算出する。すなわち図3の画素42Vをそのまま用いてもよいが、総質量77Gの算出の精度を一層高めることを目的として、複数の二値化画像データを基にした単純移動平均によって画素42Vを算出し、算出された画素42Vと補正検量線51Fに基づいて、製品用粉粒体203の総質量77Gを算出することが好ましい。例えば、現在の撮像で取得された二値化画像データを含み、且つ過去に遡る合計30個の二値化画像データの単純移動平均を算出することができる。   When the processing in the reference calibration curve correction processing step E11 is completed, the mass calculation processing step C13 is then performed in the mass calculation unit 70. As described above, during the “predetermined time” for the mass calculation, from the powder pixel 42V accumulated based on the binarized image data 42W (that is, the area x in FIG. 3), based on the corrected calibration curve 51F. The total mass 77G (that is, the total mass 77G per product unit) is calculated. That is, the pixel 42V of FIG. 3 may be used as it is, but for the purpose of further improving the accuracy of calculating the total mass 77G, the pixel 42V is calculated by a simple moving average based on a plurality of binarized image data, It is preferable to calculate the total mass 77G of the product granular material 203 based on the calculated pixel 42V and the corrected calibration curve 51F. For example, it is possible to calculate a simple moving average of a total of 30 binarized image data including binarized image data acquired by current imaging and going back to the past.

次いで、質量判定処理工程C14を質量判定処理部80にて行う。これにより、散布された製品用粉粒体203の総質量77Gが規定内質量80Qの範囲外であれば質量異常判定を行い、質量不良信号80Xを発信する(質量不良信号発信C15)。一方、総質量77Gが規定内質量80Qの範囲内であれば、質量良品信号80Yを発信する(質量良品信号発信C16)。質量不良信号80X及び質量良品信号80Yには、対象となる製品(良品・不良製品)を特定する情報(撮像サンプリング時間10Tなど)が含まれていることが好ましい。以上の「検量線作成後の検査工程B1」における各工程は、製造ライン稼働中繰り返し行われ、検査中止の操作により本実施形態の粉粒体質量検査が終了する。   Next, the mass determination processing step C <b> 14 is performed in the mass determination processing unit 80. As a result, if the total mass 77G of the sprayed product granular material 203 is out of the specified mass 80Q, a mass abnormality determination is performed and a mass defect signal 80X is transmitted (mass defect signal transmission C15). On the other hand, if the total mass 77G is within the range of the specified internal mass 80Q, a mass acceptable product signal 80Y is transmitted (mass acceptable product signal transmission C16). The mass defect signal 80X and the non-defective product signal 80Y preferably include information (such as an imaging sampling time 10T) that identifies a target product (non-defective product / defective product). Each process in the above “inspection process B1 after creating a calibration curve” is repeatedly performed during the operation of the production line, and the granular mass inspection of the present embodiment is completed by the operation of stopping the inspection.

上述した質量不良信号80X若しくは質量良品信号80Yは、本実施形態において検査装置100に接続された制御装置400で受信される(図4参照)。制御装置400は、受信信号に基づき、不良品排出処理部であるフライトコンベア(図示せず)に指示を出す。具体的には、質量不良信号80Xに基づく排出信号400Xを出す。これを受けたフライトコンベア(図示せず)は、排出信号400Xに基づいて、対象となる製品を特定し製造ラインから排出する(不良品排出処理工程)。すなわち、制御装置400及び排出装置であるフライトコンベア(図示せず)とで不良品排出処理工程が実行される。   The mass defect signal 80X or the non-defective product signal 80Y described above is received by the control device 400 connected to the inspection device 100 in this embodiment (see FIG. 4). The control device 400 issues an instruction to a flight conveyor (not shown), which is a defective product discharge processing unit, based on the received signal. Specifically, the discharge signal 400X based on the mass defect signal 80X is output. The flight conveyor (not shown) having received this specifies the target product and discharges it from the production line based on the discharge signal 400X (defective product discharge processing step). That is, the defective product discharge processing step is executed by the control device 400 and a flight conveyor (not shown) as a discharge device.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態は、本発明を発熱体の製造方法に適用した例であったが、本発明を他の物品の製造に適用してもよい。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, the above embodiment is an example in which the present invention is applied to a method of manufacturing a heating element, but the present invention may be applied to the manufacture of other articles.

また前記実施形態においては、検査工程B1の撮像処理工程CE11において、製品用粉粒体203の落下方向に沿う撮像領域を狭く設定したが、これに代えて、又はこれに加えて、検査初期工程A1の撮像処理工程AB11において、基準粉粒体202の落下方向に沿う撮像領域を狭く設定してもよい。   Moreover, in the said embodiment, in the imaging process CE11 of inspection process B1, although the imaging area along the fall direction of the granular material 203 for products was set narrowly, it replaces with or in addition to this, an inspection initial process In the imaging processing step AB11 of A1, the imaging area along the falling direction of the reference granular material 202 may be set narrow.

上述した実施形態に関し、本発明は更に以下の粉粒体質量検査装置及び検査方法、並びに粉粒体含有物品の製造装置及び製造方法を開示する。
<1>
製品を構成する散布対象物へ散布された粉粒体の質量を該粉粒体の散布中に検査する粉粒体質量検査装置であって、
前記散布対象物へ向けて自由落下する粉粒体を撮像し画像データとして保存する撮像処理部と、
前記撮像処理部で撮像される撮像領域を照らす照明部と、
前記撮像処理部が保存する前記画像データにおける、粉粒体が映り込まない領域の濃度を検出し、照明の異常を判定する濃度判定処理部と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成し、前記撮像処理部に保存させる二値化処理部と、
検査初期段階において、前記撮像処理部で所定時間に蓄積された前記二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方に位置する質量測定部によって前記所定時間に測定された粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す基準検量線を作成する基準検量線作成部と、
前記所定時間に蓄積された検査初期段階の前記二値化画像データから、検査初期段階の粉粒体の粒径Dbasを作成し、記憶する基準粒径作成・記憶領域部と、
前記基準検量線と検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する補正検量線作成部と、
前記基準検量線及び前記補正検量線を記憶する検量線記憶領域部と、
前記補正検量線の存在下で、撮像され二値化処理された検査対象となる粉粒体の各二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算部と、
前記質量演算部における演算結果に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理部と、
有する粉粒体質量検査装置。
In relation to the above-described embodiment, the present invention further discloses the following granular material mass inspection apparatus and inspection method, and the granular material-containing article manufacturing apparatus and manufacturing method.
<1>
It is a granular mass inspection device that inspects the mass of the granular material sprayed on the scattering object constituting the product during the spraying of the granular material,
An imaging processing unit that captures and stores powder particles that freely fall toward the object to be sprayed, and stores it as image data;
An illumination unit for illuminating an imaging region imaged by the imaging processing unit;
In the image data stored by the imaging processing unit, a concentration determination processing unit that detects a concentration of a region where the powder and granular materials are not reflected, and determines abnormality of illumination,
A binarization processing unit that binarizes the image data based on a predetermined threshold value to generate binarized image data, and stores the binarized image data in the imaging processing unit;
In the initial stage of inspection, the predetermined time is determined by the pixel of the granular material obtained from the binarized image data accumulated in the predetermined time by the imaging processing unit and the mass measuring unit located below the dropping trajectory of the granular material. Based on the measured mass of the granular material, a standard calibration curve creating unit that creates a standard calibration curve indicating a correspondence relationship between the pixel and the mass by a linear function,
From the binarized image data of the initial stage of inspection accumulated in the predetermined time, the particle diameter Dbas of the granular body of the initial stage of inspection is created and stored, and a reference particle diameter creation / storage area unit,
In the presence of the standard calibration curve and the particle size Dbas of the granular material at the initial stage of inspection, the particle diameter D of the granular material to be inspected is calculated, and the particle diameter D of the granular material to be inspected and the initial stage of inspection Based on the value of D / Dbas, which is the ratio to the particle size Dbas of the granular material at the stage, a corrected calibration curve creation unit that creates a corrected calibration curve that corrects the slope of the reference calibration curve;
A calibration curve storage area for storing the reference calibration curve and the corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of each binarized image data of the granular material to be inspected and binarized, the granular material to be inspected based on the corrected calibration curve A mass calculation unit for calculating the mass of
Based on the calculation result in the mass calculation unit, a mass determination processing unit that makes a determination on the total mass of the granular material to be inspected, which falls freely in a predetermined time,
Having a granular mass inspection device.

<2>
前記撮像処理部は、前記撮像領域のうちの一部の領域を撮像対象とする前記<1>に記載の粉粒体質量検査装置。
<3>
前記撮像処理部は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する前記<1>又は<2>のいずれか一に記載の粉粒体質量検査装置。
<4>
前記補正検量線作成部は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する前記<1>ないし<3>に記載の粉粒体質量検査装置。
<5>
前記二値化処理部は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う前記<1>ないし<4>のいずれか一に記載の粉粒体質量検査装置。
<2>
The granular mass inspection apparatus according to <1>, wherein the imaging processing unit targets a part of the imaging area as an imaging target.
<3>
The imaging processing unit sets the imaging area along the falling direction of the granular material so that 95% or more of the particles are measured from the large particle diameter side on the basis of the number, either <1> or <2> The granular material mass inspection apparatus according to claim 1.
<4>
The correction calibration curve creation unit calculates the particle diameter D of the granular material to be inspected by a simple moving average based on the plurality of binarized image data. <1> to <3> Particle mass inspection device.
<5>
The powder according to any one of <1> to <4>, wherein the binarization processing unit performs the binarization processing after performing density correction filter processing that reduces brightness unevenness of the captured image data. Granule mass inspection device.

<6>
前記照明部を前記撮像手段に対向配置し、透過照明方式で自由落下する粉粒体を撮像する前記<1>ないし<5>のいずれか一に記載の粉粒体質量検査装置。
<7>
前記撮像処理部は、粉粒体を撮像する前記撮像手段と、該撮像手段を制御する撮像制御部とを有し、前記照明部は、前記撮像制御部により照明強度が制御される前記<1>ないし<6>のいずれか一に記載の粉粒体質量検査装置。
<8>
前記撮像制御部は、前記撮像領域の照度が下がることで前記画像データから検出される濃度が下がった際に、前記照明部の照明強度を上げ、前記撮像領域の照度が上がることで、前記画像データから検出される濃度が上がった際に、前記照明部の照明強度を下げる前記<1>ないし<7>のいずれか一に記載の粉粒体質量検査装置。
<9>
前記撮像処理部は、前記撮像手段が撮像した粉粒体の画像データを保存する保存部を有し、該保存部は、前記撮像手段で連続的に撮像された前記画像データを、撮像サンプリング数及び撮像サンプリング時間とともに時系列で保存する前記<1>ないし<8>のいずれか一に記載の粉粒体質量検査装置。
<6>
The granular material mass inspection apparatus according to any one of <1> to <5>, wherein the illumination unit is disposed so as to face the imaging unit, and the granular material that freely falls by a transmission illumination method is imaged.
<7>
The imaging processing unit includes the imaging unit that images the powder and the imaging control unit that controls the imaging unit, and the illumination unit is configured such that the illumination intensity is controlled by the imaging control unit. > To <6> The granular material mass inspection apparatus according to any one of the above.
<8>
The imaging control unit increases the illumination intensity of the illumination unit and increases the illuminance of the imaging region when the density detected from the image data decreases as the illuminance of the imaging region decreases. The granular material mass inspection apparatus according to any one of <1> to <7>, wherein when the concentration detected from the data increases, the illumination intensity of the illumination unit is decreased.
<9>
The imaging processing unit includes a storage unit that stores the image data of the granular material captured by the imaging unit, and the storage unit captures the image data continuously captured by the imaging unit. And the granular material mass inspection apparatus as described in any one of said <1> thru | or <8> preserve | saved in time series with imaging sampling time.

<10>
撮像手段は、撮像素子を有するラインスキャンカメラを用いることが好ましい前記<1>ないし<9>のいずれか一に記載の粉粒体質量検査装置。
<11>
前記撮像素子は、256階調のグレースケールでの階調表現ができる撮像素子が好ましい前記<10>に記載の粉粒体質量検査装置。
<12>
前記撮像素子として、電荷結合素子(CCD)が用いられる前記<10>又は<11>に記載の粉粒体質量検査装置。
<13>
前記製品は、基材シートの少なくとも一面側に、酸化反応を起こす被酸化性金属、塩化ナトリウム等の電解質及び水を含む発熱組成物の層と、該層上に配置された、吸水性ポリマーの粉粒体を含む保水材の層とを備える発熱体である前記<1>ないし<12>のいずれか一に記載の粉粒体質量検査装置。
<10>
The granular material mass inspection apparatus according to any one of <1> to <9>, wherein the imaging unit preferably uses a line scan camera having an imaging element.
<11>
The granular material mass inspection apparatus according to <10>, wherein the imaging element is preferably an imaging element capable of expressing gradation in a gray scale of 256 gradations.
<12>
The granular material mass inspection apparatus according to <10> or <11>, wherein a charge coupled device (CCD) is used as the imaging element.
<13>
The product comprises a layer of an exothermic composition containing an oxidizable metal that causes an oxidation reaction, an electrolyte such as sodium chloride, and water on at least one side of a base sheet, and a water-absorbing polymer disposed on the layer. The granular material mass inspection apparatus according to any one of <1> to <12>, wherein the granular mass inspection device is a heating element including a water retention material layer including granular material.

<14>
製品を構成する散布対象物へ散布された粉粒体の質量を該粉粒体の散布中に検査する粉粒体質量検査方法であって、照明部により照らされ、前記散布対象物へ向けて自由落下する粉粒体を撮像手段で撮像する撮像処理工程と、前記撮像手段が撮像した画像データにおける、前記粉粒体が映り込まない撮像領域の濃度を検出し、前記照明部の照明の異常を判定する濃度判定処理工程と、前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成する二値化処理工程と、検査初期段階に生成された二値化画像データから得られる粉粒体の画素と、検査初期段階に質量測定部によって測定された粉粒体の質量と、により作成される画素と質量との対応関係を一次関数で示す基準検量線、及び検査初期段階において二値化画像データから算出される検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する基準検量線補正処理工程と、前記補正検量線の存在下で、前記二値化処理工程で二値化処理された検査対象となる粉粒体の前記二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算処理工程と、前記質量演算処理工程で演算された質量に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理工程と、を有する粉粒体質量検査方法。
<14>
A mass inspection method for inspecting the mass of a granular material dispersed on an object to be dispersed that constitutes a product during the dispersion of the granular material, illuminated by an illumination unit, and directed toward the object to be dispersed An imaging processing step of imaging the free-falling powder particles with the imaging means, and detecting an image area where the powder particles are not reflected in the image data captured by the imaging means, and abnormal lighting of the illumination unit A density determination processing step for determining image data, a binarization processing step for generating binarized image data by binarizing the image data based on a predetermined threshold, and binarization generated in the initial stage of inspection A standard calibration curve indicating a correspondence relationship between a pixel and a mass created by a pixel function of a particle body obtained from image data and a mass of the granule body measured by a mass measuring unit in an initial stage of inspection as a linear function, And binarized image data at the initial stage of inspection. In the presence of the particle size Dbas of the granular material at the initial stage of inspection calculated from the data, the particle size D of the granular material to be inspected is calculated, and the particle size D of the granular material to be inspected and the initial stage of inspection Based on the value of D / Dbas, which is the ratio to the particle size Dbas of the granular material at the stage, a reference calibration curve correction processing step for creating a correction calibration curve in which the inclination of the reference calibration curve is corrected, and the correction calibration curve In the presence, from the pixel of the binarized image data of the granular material to be inspected binarized in the binarization processing step, based on the corrected calibration curve, the granular material to be inspected A mass calculation processing step for calculating the mass of the powder, and a mass determination processing step for making a determination on the total mass of the granular material to be inspected that freely falls in a predetermined time based on the mass calculated in the mass calculation processing step And a granular mass inspection method.

<15>
前記撮像処理工程は、前記撮像領域のうちの一部の領域を撮像対象として設定する前記<14>に記載の粉粒体質量検査方法。
<16>
前記撮像処理工程は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する前記<14>又は<15>に記載の粉粒体質量検査方法。
<17>
前記基準検量線補正処理工程は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する前記<14>ないし<16>の何れか一に記載の粉粒体質量検査方法。
<18>
前記二値化処理工程は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う前記<14>ないし<17>の何れか一に記載の粉粒体質量検査方法。
<19>
前記濃度判定処理工程は、濃度の最低基準濃度を、前記粉粒体の粒径などに基づいて明るさを設定する前記<14>ないし<18>のいずれか一に記載の粉粒体質量検査方法。
<15>
The granular mass inspection method according to <14>, wherein the imaging processing step sets a part of the imaging area as an imaging target.
<16>
The imaging processing step is described in <14> or <15>, in which the imaging region is set along the falling direction of the granular material so that particles of 95% or more are measured from the large particle diameter side on the basis of the number. Powder mass inspection method.
<17>
In any one of the above items <14> to <16>, the reference calibration curve correction processing step calculates the particle size D of the granular material to be inspected by a simple moving average based on the plurality of binarized image data The granular material mass inspection method according to claim 1.
<18>
The powder according to any one of <14> to <17>, wherein the binarization processing step performs the binarization processing after performing density correction filter processing to reduce brightness unevenness of the captured image data. Granule mass inspection method.
<19>
In the concentration determination processing step, the granular mass inspection according to any one of <14> to <18>, in which the minimum reference concentration of the concentration is set based on a particle size of the granular material. Method.

<20>
前記濃度判定処理工程は、平均粒径が440μm〜550μm程度の粉粒体では、最低基準濃度を、グレースケールの256階調において、濃度50に設定する前記<19>に記載の粉粒体質量検査方法。
<21>
前記撮像手段は、自由落下する前記粉粒体を静止画像として撮像できる種々の手段により構成される前記<14>ないし<20>のいずれか一に記載の粉粒体質量検査方法。
<22>
前記撮像手段は、CCD方式のエリアカメラやラインスキャンカメラなどにより構成される前記<14>ないし<21>のいずれか一に記載の粉粒体質量検査方法。
<20>
In the concentration determination processing step, in the granular material having an average particle diameter of about 440 μm to 550 μm, the minimum standard concentration is set to the concentration 50 in 256 gray scales. Inspection method.
<21>
The granular material mass inspection method according to any one of <14> to <20>, wherein the imaging unit is configured by various units capable of capturing the granular material that falls freely as a still image.
<22>
The granular material mass inspection method according to any one of <14> to <21>, wherein the imaging unit includes a CCD area camera, a line scan camera, or the like.

<23>
粉粒体を散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造装置であって、前記散布対象物に向けて粉粒体を散布する粉粒体散布部と、前記散布対象物へ向けて自由落下する粉粒体を撮像し画像データとして保存する撮像処理部と、前記撮像処理部で撮像される撮像領域を照らす照明部と、前記撮像処理部が保存する前記画像データにおける、粉粒体が映り込まない領域の濃度を検出し、照明の異常を判定する濃度判定処理部と、前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成し、前記撮像処理部に保存させる二値化処理部と、検査初期段階において、前記撮像処理部で所定時間に蓄積された前記二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方に位置する質量測定部によって前記所定時間に測定された粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す基準検量線を作成する基準検量線作成部と、前記所定時間に蓄積される検査初期段階の前記二値化画像データから、検査初期段階の粉粒体の粒径Dbasを作成し、記憶する基準粒径作成・記憶領域部と、前記基準検量線と検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する補正検量線作成部と、前記基準検量線及び前記補正検量線を記憶する検量線記憶領域部と、前記補正検量線の存在下で、撮像され二値化処理された検査対象となる粉粒体の各二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算部と、前記質量演算部における演算結果に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理部と、前記質量判定処理部が粉粒体の質量異常と判定した場合に、質量異常に対応する散布対象物を特定し、製造ラインから前記質量異常に対応する散布対象物を排出する不良品排出処理部と、を有する粉粒体含有物品の製造装置。
<23>
A powder-containing product manufacturing apparatus that manufactures an article including the granular material by spraying the granular material on the spray target, the powder spraying the granular material toward the spray target A particle dispersion unit, an imaging processing unit that captures and stores powder particles that freely fall toward the object to be dispersed, and stores the image data as image data, an illumination unit that illuminates an imaging region captured by the imaging processing unit, and the imaging A density determination processing unit that detects a density of an area in which the granular material is not reflected in the image data stored by the processing unit and determines an illumination abnormality, and binarization processing of the image data based on a predetermined threshold value To generate binarized image data and store the binarized image data in the imaging processing unit, and the binarized image data accumulated in the imaging processing unit at a predetermined time in the initial stage of inspection. Below the pixel of the powder and the dropping trajectory of the powder Based on the mass of the granular material measured at the predetermined time by the mass measuring unit to be placed, a standard calibration curve creating unit that creates a standard calibration curve indicating a correspondence relationship between the pixel and the mass with a linear function, and the predetermined From the binarized image data in the initial stage of inspection accumulated in time, the particle diameter Dbas of the granular body in the initial stage of inspection is created and stored, the reference particle diameter creation / storage area unit, the reference calibration curve and the inspection In the presence of the particle size Dbas of the granular material at the initial stage, the particle size D of the granular material to be inspected is calculated, and the particle diameter D of the granular material to be inspected and the granular material at the initial stage of inspection Based on the value of D / Dbas which is a ratio to the particle diameter Dbas, a corrected calibration curve creation unit for creating a corrected calibration curve in which the slope of the reference calibration curve is corrected, and the reference calibration curve and the corrected calibration curve are stored. In the presence of the calibration curve storage area and the corrected calibration curve, images are captured. Based on the corrected calibration curve, from the pixel of each binarized image data of the granular material to be inspected subjected to the valuation process, a mass calculation unit that calculates the mass of the granular material to be inspected, and the mass Based on the calculation result in the calculation unit, a mass determination processing unit that makes a free fall at a predetermined time and makes a determination on the total mass of the granular material to be inspected, and the mass determination processing unit determines that the mass of the granular material is abnormal In such a case, an apparatus for producing a granular material-containing article, comprising: a defective product discharge processing unit that identifies a spray target corresponding to a mass abnormality and discharges the spray target corresponding to the mass abnormality from a production line.

<24>
前記撮像処理部は、前記撮像領域のうちの一部の領域を撮像対象とする前記<23>に記載の粉粒体含有物品の製造装置。
<25>
前記撮像処理部は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する前記<23>又は<24>に記載の粉粒体含有物品の製造装置。
<26>
前記補正検量線作成部は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する前記<23>ないし<25>に記載の粉粒体含有物品の製造装置。
<27>
前記二値化処理部は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う前記<23>ないし<26>のいずれか一に記載の粉粒体含有物品の製造装置。
<28>
前記照明部を前記撮像手段に対向配置し、透過照明方式で自由落下する粉粒体を撮像する前記<23>ないし<27>のいずれか一に記載の粉粒体含有物品の製造装置。
<29>
前記撮像処理部は、粉粒体を撮像する前記撮像手段と、該撮像手段を制御する撮像制御部とを有し、前記照明部は、前記撮像制御部により照明強度が制御される前記<23>ないし<28>のいずれか一に記載の粉粒体含有物品の製造装置。
<24>
The said imaging process part is a manufacturing apparatus of the granular material containing article as described in said <23> which makes some imaging | photography areas the imaging object.
<25>
The imaging processing unit described in <23> or <24>, in which the imaging region is set along the falling direction of the granular material so that particles of 95% or more are measured from the large particle size side on a number basis. Manufacturing equipment for powder-containing articles.
<26>
The correction calibration curve creation unit calculates the particle diameter D of the granular material to be inspected by a simple moving average based on the plurality of binarized image data, according to <23> to <25>. Equipment for producing powder-containing articles.
<27>
The powder according to any one of <23> to <26>, wherein the binarization processing unit performs the binarization processing after performing density correction filter processing that reduces brightness unevenness of the captured image data. Apparatus for producing granular-containing articles.
<28>
The apparatus for producing a granular material-containing article according to any one of <23> to <27>, wherein the illuminating unit is disposed to face the imaging unit and images a granular material that freely falls by a transmission illumination method.
<29>
The imaging processing unit includes the imaging unit that images the powder and the imaging control unit that controls the imaging unit, and the illumination unit is configured such that the illumination intensity is controlled by the imaging control unit. > To <28> The apparatus for producing a granular material-containing article according to any one of the above.

<30>
前記撮像制御部は、前記撮像領域の照度が下がることで前記画像データから検出される濃度が下がった際に、前記照明部の照明強度を上げ、前記撮像領域の照度が上がることで、前記画像データから検出される濃度が上がった際に、前記照明部の照明強度を下げる前記<23>ないし<29>のいずれか一に記載の粉粒体含有物品の製造装置。
<31>
前記撮像処理部は、前記撮像手段が撮像した粉粒体の画像データを保存する保存部を有し、該保存部は、前記撮像手段で連続的に撮像された前記画像データを、撮像サンプリング数及び撮像サンプリング時間とともに時系列で保存する前記<23>ないし<30>のいずれか一に記載の粉粒体含有物品の製造装置。
<32>
撮像手段は、撮像素子を有するラインスキャンカメラを用いることが好ましい前記<23>ないし<31>のいずれか一に記載の粉粒体含有物品の製造装置。
<33>
前記撮像素子は、256階調のグレースケールでの階調表現ができる撮像素子が好ましい前記<32>に記載の粉粒体含有物品の製造装置。
<34>
前記撮像素子として、電荷結合素子(CCD)が用いられる前記<32>又は<33>に記載の粉粒体含有物品の製造装置。
<35>
前記粉粒体含有物品は、長尺の基材シート上に、鉄粉等の被酸化性金属、電解質及び水等を含むスラリー状の発熱組成物が塗布された発熱体を有し、該発熱体の上に、吸水性ポリマーの粉粒体が層状に散布された保水材の層が形成されている請求項<23>ないし<34>のいずれか一に記載の粉粒体含有物品の製造装置。
<30>
The imaging control unit increases the illumination intensity of the illumination unit and increases the illuminance of the imaging region when the density detected from the image data decreases as the illuminance of the imaging region decreases. The apparatus for producing a granular material-containing article according to any one of <23> to <29>, wherein the illumination intensity of the illumination unit is decreased when the concentration detected from the data increases.
<31>
The imaging processing unit includes a storage unit that stores the image data of the granular material captured by the imaging unit, and the storage unit captures the image data continuously captured by the imaging unit. And the manufacturing apparatus of the granular material containing article as described in any one of said <23> thru | or <30> preserve | saved in time series with imaging sampling time.
<32>
The apparatus for producing a granular material-containing article according to any one of <23> to <31>, wherein the imaging unit preferably uses a line scan camera having an imaging element.
<33>
The apparatus for producing a granular material-containing article according to <32>, wherein the imaging element is preferably an imaging element capable of expressing gradation in a gray scale of 256 gradations.
<34>
The apparatus for producing a granular material-containing article according to <32> or <33>, wherein a charge coupled device (CCD) is used as the imaging element.
<35>
The granular material-containing article has a heating element in which a slurry-like heating composition containing an oxidizable metal such as iron powder, an electrolyte, water, and the like is applied on a long base sheet. The production of a granular material-containing article according to any one of claims <23> to <34>, wherein a layer of a water-retaining material in which a water-absorbent polymer granular material is dispersed in layers is formed on the body. apparatus.

<36>
粉粒体を散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、前記散布対象物に向けて粉粒体を散布する粉粒体散布工程と、照明部により照らされ、前記散布対象物へ向けて自由落下する粉粒体を撮像する撮像処理工程と、前記撮像手段が撮像した画像データにおける、前記粉粒体が映り込まない撮像領域の濃度を検出し、前記照明部の照明の異常を判定する濃度判定処理工程と、前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成する二値化処理工程と、初期段階に生成された二値化画像データから得られる粉粒体の画素と、初期段階に質量測定部によって測定された粉粒体の質量と、により作成される画素と質量との対応関係を一次関数で示す基準検量線、及び初期段階において前記二値化画像データから算出される初期段階の粉粒体の粒径Dbasの存在下で、対象となる粉粒体の粒径Dを算出し、対象となる粉粒体の粒径Dと初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する基準検量線補正処理工程と、前記補正検量線の存在下で、前記二値化処理工程で二値化処理された対象となる粉粒体の前記二値化画像データの画素から、前記補正検量線に基づいて、対象となる粉粒体の質量を算出する質量演算処理工程と、前記質量演算処理工程で演算された質量に基づいて、所定時間に自由落下する、対象となる粉粒体の総質量に対する判定を下す質量判定処理工程と、粉粒体の質量異常と判定した場合に、質量異常に対応する散布対象物を特定し、製造ラインから前記質量異常に対応する散布対象物を排出する不良品排出処理工程と、を有する粉粒体含有物品の製造方法。
<36>
A method for producing an article including a granular material by dispersing the granular material on an object to be dispersed, wherein the powder is applied to the object to be dispersed. The granular material is reflected in the granular material scattering step, the imaging processing step of imaging the granular material that is illuminated by the illumination unit and freely falls toward the scattering object, and the image data captured by the imaging means A density determination processing step of detecting a density of a non-imaging area and determining an abnormality in illumination of the illumination unit; and binarizing the image data based on a predetermined threshold to generate binary image data Pixels created by the binarization process, the particles of the granular material obtained from the binarized image data generated in the initial stage, and the mass of the granular material measured by the mass measuring unit in the initial stage, and A standard calibration curve showing the correspondence with mass as a linear function, and In the initial stage, the particle diameter D of the target granular material is calculated in the presence of the initial particle diameter Dbas calculated from the binarized image data. A standard calibration curve correction processing step for creating a corrected calibration curve in which the slope of the standard calibration curve is corrected based on the value of D / Dbas, which is the ratio of the diameter D to the particle size Dbas of the powder at the initial stage; Based on the corrected calibration curve, the target powder is obtained from the pixel of the binarized image data of the target granular material binarized in the binarization processing step in the presence of the corrected calibration curve. A mass calculation processing step for calculating the mass of the granular material, and a mass determination processing for making a determination on the total mass of the target granular material that falls freely for a predetermined time based on the mass calculated in the mass calculation processing step. When it is determined that the process and mass abnormal mass, Identify the sprayed object to respond, method for producing a granular material containing article having a defective discharge process for discharging the mass abnormally corresponding scatter object from the production line.

<37>
前記撮像処理工程は、前記撮像領域のうちの一部の領域を撮像対象として設定する前記<36>に記載の粉粒体含有物品の製造方法。
<38>
前記撮像処理工程は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する前記<36>又は<37>に記載の粉粒体含有物品の製造方法。
<39>
前記基準検量線補正処理工程は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する前記<36>ないし<38>のいずれか一に記載の粉粒体含有物品の製造方法。
<37>
The imaging processing step is the method for manufacturing a granular-material-containing article according to <36>, in which a part of the imaging area is set as an imaging target.
<38>
The imaging processing step is described in <36> or <37>, in which the imaging region is set along the falling direction of the granular material so that 95% or more particles are measured from the large particle size side on the basis of the number. Of producing a granular material-containing article.
<39>
In any one of <36> to <38>, the reference calibration curve correction processing step calculates the particle size D of the granular material to be inspected by a simple moving average based on the plurality of binarized image data. The manufacturing method of the granular material containing article as described in any one.

<40>
前記二値化処理工程は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う前記<36>ないし<39>のいずれか一に記載の粉粒体含有物品の製造方法。
<41>
前記濃度判定処理工程は、濃度の最低基準濃度を、前記粉粒体の粒径などに基づいて明るさを設定する前記<36>ないし<40>のいずれか一に記載の粉粒体含有物品の製造方法。
<42>
前記濃度判定処理工程は、平均粒径が440μm〜550μm程度の粉粒体では、最低基準濃度を、グレースケールの256階調において、濃度50に設定する前記<41>に記載の粉粒体含有物品の製造方法。
<43>
前記撮像手段は、自由落下する前記粉粒体を静止画像として撮像できる種々の手段により構成される前記<36>ないし<42>のいずれか一に記載の粉粒体含有物品の製造方法。
<44>
前記撮像手段は、CCD方式のエリアカメラやラインスキャンカメラなどにより構成される前記<36>ないし<43>のいずれか一に記載の粉粒体含有物品の製造方法。
<40>
The powder according to any one of <36> to <39>, wherein the binarization processing step performs the binarization processing after performing density correction filter processing to reduce brightness unevenness of the captured image data. A method for producing a granule-containing article.
<41>
The granular material-containing article according to any one of <36> to <40>, wherein the concentration determination processing step sets brightness based on a minimum particle concentration of the granular material based on a particle diameter of the granular material Manufacturing method.
<42>
In the density determination processing step, in the granular material having an average particle diameter of about 440 μm to 550 μm, the minimum reference concentration is set to a concentration of 50 in 256 gray scales. Article manufacturing method.
<43>
The said imaging means is a manufacturing method of the granular material containing article as described in any one of said <36> thru | or <42> comprised by the various means which can image the said granular material falling freely as a still image.
<44>
The method for producing a granular material-containing article according to any one of <36> to <43>, wherein the imaging unit is configured by a CCD area camera, a line scan camera, or the like.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.

〔実施例1〕
図1に示す粉粒体質量検査装置100と図5に示す粉粒体散布部300とを用いて実施した。検査初期工程(基準検量線作成工程)A1においては図5における質量測定部130としてのロードセルを設置し、基準検量線作成後の検査工程B1においてはロードセルを取り除いた。撮像手段11にはラインスキャンカメラを使用し、照明部20にはライン照明を使用した。具体的な設定条件は次のとおりとした。
ワークディスタンス:450mm
ライトワークディスタンス:30mm
分解能:16画素/mm(0.06mm/画素)
基準粉粒体(吸水性ポリマー)の粒径Dbas:500μm
トリガ種類:内部トリガ
撮像周期:100ms
ライントリガ周期:82μs/ライン
ライン数:1200ライン
シャッタースピード:40μs
照明ボリューム(照度):50
前記の「撮像周期」とは製品の搬送速度である。また、「ライン数」とはラインスキャンカメラを用いて1枚の画像を形成するために必要なライントリガの回数である。このライン数は、撮像周期/ライントリガ周期を基に決定した。ライン数=100ms/82μs=1220ラインとなるが、応答速度が追い付かずに検査抜けが発生するのを防ぐため、若干ライン数を減らし前記の数値とした。
[Example 1]
It implemented using the granular material mass inspection apparatus 100 shown in FIG. 1, and the granular material spreading | diffusion part 300 shown in FIG. In the initial inspection process (reference calibration curve creation process) A1, a load cell as the mass measuring unit 130 in FIG. 5 was installed, and in the inspection process B1 after the creation of the standard calibration curve, the load cell was removed. A line scan camera was used for the imaging means 11, and line illumination was used for the illumination unit 20. The specific setting conditions were as follows.
Work distance: 450mm
Light work distance: 30mm
Resolution: 16 pixels / mm (0.06 mm / pixel)
Particle diameter Dbas of standard powder (water absorbent polymer): 500 μm
Trigger type: Internal trigger Imaging cycle: 100 ms
Line trigger cycle: 82 μs / line Number of lines: 1200 lines Shutter speed: 40 μs
Lighting volume (illuminance): 50
The “imaging cycle” is a product conveyance speed. The “number of lines” is the number of line triggers necessary to form one image using a line scan camera. The number of lines was determined based on the imaging cycle / line trigger cycle. The number of lines = 100 ms / 82 μs = 1220 lines, but the number of lines was slightly reduced to the above value in order to prevent the inspection speed from catching up without the response speed catching up.

また、実施条件は次のとおりとした。
製品質量:0.074g/セル(5.328kg/h)
検量時間:60秒(600枚/分)
散布量:0.018g/セル〜0.117g/セル
二値化閾値40Q:220
前記「セル」は、散布の幅方向に2分割された左側又は右側の計測ウィンドウを意味する。ここでは2セルが1枚(1製品)となる。
The implementation conditions were as follows.
Product mass: 0.074 g / cell (5.328 kg / h)
Calibration time: 60 seconds (600 sheets / minute)
Application amount: 0.018 g / cell to 0.117 g / cell Binary threshold 40Q: 220
The “cell” means a left or right measurement window divided into two in the width direction of spreading. Here, two cells are one (one product).

前記の条件のもと、基準検量線作成工程AB13を実施し、図13に示す一次関数で表される基準検量線を得た。次いで、基準検量線作成後の検査工程B1を実施した。具体的には、撮像周期:150ms、切り出し量:3.552kg/hとして、連続散布される製品用粉粒体を撮像し続けた。製品用粉粒体は、基準粉粒体と概ね同じ平均粒径を有するが、粒径の変動の程度が大きいものである。この製品用粉粒体を連続散布している状態下、画像データ12Wに基づく二値化画像データ42Wを生成した。二値化画像データ42Wの累積した粉粒体の画素43Vに基づき粒径変動率αを算出し、基準検量線の補正を行った。粒径変動率αの経時変化を図14(a)に示す。そのときの、ロードセルの実測質量の経時変化を図14(b)に示す。また、二値化画像データ42Wの累積した粉粒体の画素42Vと、補正された検量線とに基づき、対応する質量Gを算出した。その結果を図14(c)に示す。なお、図14(b)及び図14(c)における縦軸の散布量(%)は、目標散布量を100%としたときの実測散布量又は計測散布量の相対表示である。   Under the conditions described above, the standard calibration curve creating step AB13 was performed to obtain a standard calibration curve represented by a linear function shown in FIG. Subsequently, inspection process B1 after creation of a standard calibration curve was performed. Specifically, imaging was continuously performed on the product granular material with an imaging cycle of 150 ms and a cutout amount of 3.552 kg / h. The product granule has approximately the same average particle size as the reference particle, but the degree of variation in particle size is large. Under the state where the powder particles for product are continuously dispersed, binarized image data 42W based on the image data 12W is generated. The particle size variation rate α was calculated based on the accumulated pixel 43V of the granular material in the binarized image data 42W, and the reference calibration curve was corrected. The change with time of the particle size variation rate α is shown in FIG. FIG. 14B shows the change with time of the actually measured mass of the load cell at that time. Further, the corresponding mass G was calculated on the basis of the accumulated particle pixel 42V of the binarized image data 42W and the corrected calibration curve. The result is shown in FIG. In addition, the scatter amount (%) on the vertical axis in FIGS. 14B and 14C is a relative display of the measured scatter amount or the measured scatter amount when the target scatter amount is 100%.

〔比較例1〕
実施例1において、検査工程B1での基準検量線の補正を行わずに計測を行った。その結果を図14(c)に示す。
[Comparative Example 1]
In Example 1, measurement was performed without correcting the reference calibration curve in the inspection process B1. The result is shown in FIG.

図14(c)に示す結果から明らかなとおり、実施例1においては、製品粉粒体の粒径が経時的に変動しても、ラインカメラを用いた計測量が、目標散布量とほぼ一致していることが判る。これに対して比較例1では、製品粉粒体の粒径が基準粉粒体の粒径よりも大きくなっていることに起因して、ラインカメラを用いた計測量が、目標散布量よりも少なくなっていることが判る。   As is apparent from the results shown in FIG. 14C, in Example 1, even when the particle size of the product powder varies with time, the measurement amount using the line camera is almost equal to the target application amount. You can see that you are doing it. On the other hand, in Comparative Example 1, the measurement amount using the line camera is larger than the target spraying amount because the particle size of the product granular material is larger than the particle size of the reference granular material. You can see that it is decreasing.

10 撮像処理部
11 撮像手段
12 保存部
13 撮像制御部
20 照明部
30 濃度判定処理部
40 二値化処理部
50 検量線作成部
55 補正検量線作成部
60 検量線記憶領域部
70 質量演算部
80 質量判定処理部
59 質量測定部
90 基準粒径作成記憶部
100 粉粒体質量検査装置
110 画像処理制御部
202 基準粉粒体(吸水性ポリマー)
203 製品用粉粒体(吸水性ポリマー)
206 散布対象物
300 粉粒体散布部
500 粉粒体散布装置
DESCRIPTION OF SYMBOLS 10 Imaging process part 11 Imaging means 12 Storage part 13 Imaging control part 20 Illumination part 30 Density determination process part 40 Binarization process part 50 Calibration curve creation part 55 Correction | amendment calibration curve creation part 60 Calibration curve storage area part 70 Mass calculation part 80 Mass determination processing unit 59 Mass measurement unit 90 Reference particle size creation storage unit 100 Powder mass inspection device 110 Image processing control unit 202 Reference particle (water absorbent polymer)
203 Powder for Product (Water Absorbing Polymer)
206 Target object 300 Particulate spraying part 500 Particulate spraying device

Claims (16)

製品を構成する散布対象物へ散布された粉粒体の質量を該粉粒体の散布中に検査する粉粒体質量検査装置であって、
前記散布対象物へ向けて自由落下する粉粒体を撮像し画像データとして保存する撮像処理部と、
前記撮像処理部で撮像される撮像領域を照らす照明部と、
前記撮像処理部が保存する前記画像データにおける、粉粒体が映り込まない領域の濃度を検出し、照明の異常を判定する濃度判定処理部と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成し、前記撮像処理部に保存させる二値化処理部と、
検査初期段階において、前記撮像処理部で所定時間に蓄積された前記二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方に位置する質量測定部によって前記所定時間に測定された粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す基準検量線を作成する基準検量線作成部と、
前記所定時間に蓄積された検査初期段階の前記二値化画像データから、検査初期段階の粉粒体の粒径Dbasを作成し、記憶する基準粒径作成・記憶領域部と、
前記基準検量線と検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する補正検量線作成部と、
前記基準検量線及び前記補正検量線を記憶する検量線記憶領域部と、
前記補正検量線の存在下で、撮像され二値化処理された検査対象となる粉粒体の各二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算部と、
前記質量演算部における演算結果に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理部と、
を有する粉粒体質量検査装置。
It is a granular mass inspection device that inspects the mass of the granular material sprayed on the scattering object constituting the product during the spraying of the granular material,
An imaging processing unit that captures and stores powder particles that freely fall toward the object to be sprayed, and stores it as image data;
An illumination unit for illuminating an imaging region imaged by the imaging processing unit;
In the image data stored by the imaging processing unit, a concentration determination processing unit that detects a concentration of a region where the powder and granular materials are not reflected, and determines abnormality of illumination,
A binarization processing unit that binarizes the image data based on a predetermined threshold value to generate binarized image data, and stores the binarized image data in the imaging processing unit;
In the initial stage of inspection, the predetermined time is determined by the pixel of the granular material obtained from the binarized image data accumulated in the predetermined time by the imaging processing unit and the mass measuring unit located below the dropping trajectory of the granular material. Based on the measured mass of the granular material, a standard calibration curve creating unit that creates a standard calibration curve indicating a correspondence relationship between the pixel and the mass by a linear function,
From the binarized image data of the initial stage of inspection accumulated in the predetermined time, the particle diameter Dbas of the granular body of the initial stage of inspection is created and stored, and a reference particle diameter creation / storage area unit,
In the presence of the standard calibration curve and the particle size Dbas of the granular material at the initial stage of inspection, the particle diameter D of the granular material to be inspected is calculated, and the particle diameter D of the granular material to be inspected and the initial stage of inspection Based on the value of D / Dbas, which is the ratio to the particle size Dbas of the granular material at the stage, a corrected calibration curve creation unit that creates a corrected calibration curve that corrects the slope of the reference calibration curve;
A calibration curve storage area for storing the reference calibration curve and the corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of each binarized image data of the granular material to be inspected and binarized, the granular material to be inspected based on the corrected calibration curve A mass calculation unit for calculating the mass of
Based on the calculation result in the mass calculation unit, a mass determination processing unit that makes a determination on the total mass of the granular material to be inspected, which falls freely in a predetermined time,
A granular material mass inspection apparatus.
前記撮像処理部は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する請求項1に記載の粉粒体質量検査装置。   2. The granular material mass according to claim 1, wherein the imaging processing unit sets the imaging region along the falling direction of the granular material so that 95% or more of particles are measured from the large particle size side on a number basis. Inspection device. 前記補正検量線作成部は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する請求項1又は2に記載の粉粒体質量検査装置。   The granular material according to claim 1 or 2, wherein the corrected calibration curve creation unit calculates the particle size D of the granular material to be inspected by a simple moving average based on the plurality of binarized image data. Quantity inspection device. 前記二値化処理部は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う請求項1ないし3のいずれか一項に記載の粉粒体質量検査装置。   The granular material according to any one of claims 1 to 3, wherein the binarization processing unit performs the binarization processing after performing density correction filter processing for reducing unevenness in brightness of captured image data. Quantity inspection device. 製品を構成する散布対象物へ散布された粉粒体の質量を該粉粒体の散布中に検査する粉粒体質量検査方法であって、
照明部により照らされ、前記散布対象物へ向けて自由落下する粉粒体を撮像手段で撮像する撮像処理工程と、
前記撮像手段が撮像した画像データにおける、前記粉粒体が映り込まない撮像領域の濃度を検出し、前記照明部の照明の異常を判定する濃度判定処理工程と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成する二値化処理工程と、
検査初期段階に生成された二値化画像データから得られる粉粒体の画素と、検査初期段階に質量測定部によって測定された粉粒体の質量と、により作成される画素と質量との対応関係を一次関数で示す基準検量線、及び検査初期段階において二値化画像データから算出される検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する基準検量線補正処理工程と、
前記補正検量線の存在下で、前記二値化処理工程で二値化処理された検査対象となる粉粒体の前記二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算処理工程と、
前記質量演算処理工程で演算された質量に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理工程と、
を有する粉粒体質量検査方法。
It is a granular mass inspection method for inspecting the mass of a granular material sprayed on a scattering object constituting a product during the spraying of the granular material,
An imaging process step of capturing an image of the granular material that is illuminated by the illuminating unit and freely falls toward the object to be dispersed;
In the image data captured by the imaging means, a density determination process step of detecting a density of an imaging region in which the granular material is not reflected and determining an abnormality in illumination of the illumination unit;
A binarization process for generating binarized image data by binarizing the image data based on a predetermined threshold;
Correspondence between the pixel and mass created by the pixel of the granular material obtained from the binarized image data generated in the initial stage of inspection and the mass of the granular body measured by the mass measuring unit in the initial stage of inspection The particle size of the granular material to be inspected in the presence of the standard calibration curve indicating the relationship as a linear function and the particle size Dbas of the granular material in the initial stage of inspection calculated from the binarized image data in the initial stage of inspection D was calculated, and the slope of the standard calibration curve was corrected based on the value of D / Dbas, which is the ratio of the particle size D of the granular material to be inspected and the particle size Dbas of the initial granularity of the inspection. A reference calibration curve correction process for creating a corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of the binarized image data of the granular material to be inspected binarized in the binarization processing step, based on the corrected calibration curve, the inspection target A mass calculation processing step for calculating the mass of the granular material,
Based on the mass calculated in the mass calculation processing step, a mass determination processing step for making a determination on the total mass of the granular material to be inspected, which freely falls in a predetermined time;
A granular material mass inspection method having
前記撮像処理工程は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する請求項5に記載の粉粒体質量検査方法。   The granular material mass according to claim 5, wherein the imaging processing step sets the imaging region along the falling direction of the granular material so that 95% or more of particles are measured from the large particle size side on the basis of the number. Inspection method. 前記基準検量線補正処理工程は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する請求項5又は6に記載の粉粒体質量検査方法。   The said standard calibration curve correction process process calculates the particle size D of the granular material used as test object by the simple moving average based on the said some binarized image data. Body mass inspection method. 前記二値化処理工程は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う請求項5ないし7のいずれか一項に記載の粉粒体質量検査方法。   The granular material according to any one of claims 5 to 7, wherein the binarization processing step performs the binarization processing after performing a density correction filter processing that reduces brightness unevenness of the captured image data. Quantity inspection method. 粉粒体を散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造装置であって、
前記散布対象物に向けて粉粒体を散布する粉粒体散布部と、
前記散布対象物へ向けて自由落下する粉粒体を撮像し画像データとして保存する撮像処理部と、
前記撮像処理部で撮像される撮像領域を照らす照明部と、
前記撮像処理部が保存する前記画像データにおける、粉粒体が映り込まない領域の濃度を検出し、照明の異常を判定する濃度判定処理部と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成し、前記撮像処理部に保存させる二値化処理部と、
検査初期段階において、前記撮像処理部で所定時間に蓄積された前記二値化画像データから得られる粉粒体の画素と、粉粒体の落下軌道の下方に位置する質量測定部によって前記所定時間に測定された粉粒体の質量とに基づいて、画素と質量との対応関係を一次関数で示す基準検量線を作成する基準検量線作成部と、
前記所定時間に蓄積される検査初期段階の前記二値化画像データから、検査初期段階の粉粒体の粒径Dbasを作成し、記憶する基準粒径作成・記憶領域部と、
前記基準検量線と検査初期段階の粉粒体の粒径Dbasの存在下で、検査対象となる粉粒体の粒径Dを算出し、検査対象となる粉粒体の粒径Dと検査初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する補正検量線作成部と、
前記基準検量線及び前記補正検量線を記憶する検量線記憶領域部と、
前記補正検量線の存在下で、撮像され二値化処理された検査対象となる粉粒体の各二値化画像データの画素から、前記補正検量線に基づいて、検査対象となる粉粒体の質量を算出する質量演算部と、
前記質量演算部における演算結果に基づいて、所定時間に自由落下する、検査対象となる粉粒体の総質量に対する判定を下す質量判定処理部と、
前記質量判定処理部が粉粒体の質量異常と判定した場合に、質量異常に対応する散布対象物を特定し、製造ラインから前記質量異常に対応する散布対象物を排出する不良品排出処理部と、
を有する粉粒体含有物品の製造装置。
It is a manufacturing apparatus of a granular material containing article which manufactures an article containing the granular material by spraying the granular material on an object to be sprayed,
A granular material spraying unit for spraying the granular material toward the object to be sprayed;
An imaging processing unit that captures and stores powder particles that freely fall toward the object to be sprayed, and stores it as image data;
An illumination unit for illuminating an imaging region imaged by the imaging processing unit;
In the image data stored by the imaging processing unit, a concentration determination processing unit that detects a concentration of a region where the powder and granular materials are not reflected, and determines abnormality of illumination,
A binarization processing unit that binarizes the image data based on a predetermined threshold value to generate binarized image data, and stores the binarized image data in the imaging processing unit;
In the initial stage of inspection, the predetermined time is determined by the pixel of the granular material obtained from the binarized image data accumulated in the predetermined time by the imaging processing unit and the mass measuring unit located below the dropping trajectory of the granular material. Based on the measured mass of the granular material, a standard calibration curve creating unit that creates a standard calibration curve indicating a correspondence relationship between the pixel and the mass by a linear function,
From the binarized image data at the initial stage of inspection accumulated at the predetermined time, the particle diameter Dbas of the granular body at the initial stage of inspection is created and stored, and a reference particle diameter creation / storage area unit,
In the presence of the standard calibration curve and the particle size Dbas of the granular material at the initial stage of inspection, the particle diameter D of the granular material to be inspected is calculated, and the particle diameter D of the granular material to be inspected and the initial stage of inspection Based on the value of D / Dbas, which is the ratio to the particle size Dbas of the granular material at the stage, a corrected calibration curve creation unit that creates a corrected calibration curve that corrects the slope of the reference calibration curve;
A calibration curve storage area for storing the reference calibration curve and the corrected calibration curve;
In the presence of the corrected calibration curve, from the pixels of each binarized image data of the granular material to be inspected and binarized, the granular material to be inspected based on the corrected calibration curve A mass calculation unit for calculating the mass of
Based on the calculation result in the mass calculation unit, a mass determination processing unit that makes a determination on the total mass of the granular material to be inspected, which falls freely in a predetermined time,
When the mass determination processing unit determines that the mass of the granular material is abnormal, the defective product discharge processing unit that identifies the scattering object corresponding to the mass abnormality and discharges the scattering object corresponding to the mass abnormality from the production line. When,
An apparatus for producing a granular-material-containing article having
前記撮像処理部は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する請求項9に記載の粉粒体含有物品の製造装置。   The granular material containing according to claim 9, wherein the imaging processing unit sets the imaging region along the falling direction of the granular material so that 95% or more of particles are measured from the large particle size side on the basis of the number. Article manufacturing equipment. 前記補正検量線作成部は、検査対象となる粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する請求項9又は10に記載の粉粒体含有物品の製造装置。   The granular material according to claim 9 or 10, wherein the corrected calibration curve creating unit calculates the particle diameter D of the granular material to be inspected by a simple moving average based on the plurality of binarized image data. Production equipment for contained articles. 前記二値化処理部は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う請求項9ないし10のいずれか一項に記載の粉粒体含有物品の製造装置。   The granular material according to any one of claims 9 to 10, wherein the binarization processing unit performs the binarization processing after performing density correction filter processing for reducing unevenness in brightness of captured image data. Production equipment for contained articles. 粉粒体を散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、
前記散布対象物に向けて粉粒体を散布する粉粒体散布工程と、
照明部により照らされ、前記散布対象物へ向けて自由落下する粉粒体を撮像する撮像処理工程と、
前記撮像手段が撮像した画像データにおける、前記粉粒体が映り込まない撮像領域の濃度を検出し、前記照明部の照明の異常を判定する濃度判定処理工程と、
前記画像データを所定の閾値に基づいて二値化処理して二値化画像データを生成する二値化処理工程と、
初期段階に生成された二値化画像データから得られる粉粒体の画素と、初期段階に質量測定部によって測定された粉粒体の質量と、により作成される画素と質量との対応関係を一次関数で示す基準検量線、及び初期段階において前記二値化画像データから算出される初期段階の粉粒体の粒径Dbasの存在下で、対象となる粉粒体の粒径Dを算出し、対象となる粉粒体の粒径Dと初期段階の粉粒体の粒径Dbasとの比であるD/Dbasの値に基づき、前記基準検量線の傾きを補正した補正検量線を作成する基準検量線補正処理工程と、
前記補正検量線の存在下で、前記二値化処理工程で二値化処理された対象となる粉粒体の前記二値化画像データの画素から、前記補正検量線に基づいて、対象となる粉粒体の質量を算出する質量演算処理工程と、
前記質量演算処理工程で演算された質量に基づいて、所定時間に自由落下する、対象となる粉粒体の総質量に対する判定を下す質量判定処理工程と、
粉粒体の質量異常と判定した場合に、質量異常に対応する散布対象物を特定し、製造ラインから前記質量異常に対応する散布対象物を排出する不良品排出処理工程と、
を有する粉粒体含有物品の製造方法。
A method for producing an article containing a granular material, wherein an article containing the granular material is produced by dispersing the granular material on an object to be dispersed,
A powder particle dispersion step of spraying powder particles toward the object to be sprayed;
An imaging process step of imaging the granular material that is illuminated by the illuminating unit and freely falls toward the scattering object;
In the image data captured by the imaging means, a density determination process step of detecting a density of an imaging region in which the granular material is not reflected and determining an abnormality in illumination of the illumination unit;
A binarization process for generating binarized image data by binarizing the image data based on a predetermined threshold;
The correspondence between the pixel and mass created by the pixel of the granular material obtained from the binarized image data generated in the initial stage and the mass of the granular material measured by the mass measurement unit in the initial stage In the presence of the standard calibration curve indicated by a linear function and the particle size Dbas of the initial stage powder particle calculated from the binarized image data in the initial stage, the particle diameter D of the target powder body is calculated. Based on the value of D / Dbas, which is the ratio of the particle size D of the target granular material to the particle size Dbas of the initial stage granular material, a corrected calibration curve is created by correcting the slope of the reference calibration curve. A standard calibration curve correction process;
In the presence of the correction calibration curve, from the pixels of the binarized image data of the target granular material subjected to binarization processing in the binarization processing step, the target is based on the correction calibration curve. A mass calculation processing step for calculating the mass of the granular material,
Based on the mass calculated in the mass calculation processing step, a mass determination processing step for making a determination on the total mass of the target granular material that falls freely in a predetermined time;
When it is determined that the mass of the granular material is abnormal, the object to be dispersed corresponding to the mass abnormality is identified, and the defective product discharge processing step of discharging the object to be dispersed corresponding to the mass abnormality from the production line;
The manufacturing method of the granular material containing article | item which has NO.
前記撮像処理工程は、個数基準で大粒径側から95%以上の粒子が計測されるように、粉粒体の落下方向に沿う前記撮像領域を設定する請求項13に記載の粉粒体含有物品の製造方法。   The said granular material containing of Claim 13 which sets the said imaging area | region along the fall direction of a granular material so that the said imaging process process may measure 95% or more of particles from the large particle size side on a number basis. Article manufacturing method. 前記基準検量線補正処理工程は、粉粒体の粒径Dを、複数の前記二値化画像データを基にした単純移動平均によって算出する請求項13又は14に記載の粉粒体含有物品の製造方法。   15. The granular material-containing article according to claim 13 or 14, wherein the reference calibration curve correction processing step calculates the particle diameter D of the granular material by a simple moving average based on the plurality of binarized image data. Production method. 前記二値化処理工程は、撮像された画像データの明るさムラを低減する濃淡補正フィルタ処理をした後に前記二値化処理を行う請求項13ないし15のいずれか一項に記載の粉粒体含有物品の製造方法。   The granular material according to any one of claims 13 to 15, wherein the binarization processing step performs the binarization processing after performing density correction filter processing for reducing unevenness in brightness of captured image data. Manufacturing method of contained article.
JP2015248126A 2015-12-21 2015-12-21 Granule mass inspection apparatus and inspection method, and manufacturing apparatus and manufacturing method for powder-containing article Active JP6619643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248126A JP6619643B2 (en) 2015-12-21 2015-12-21 Granule mass inspection apparatus and inspection method, and manufacturing apparatus and manufacturing method for powder-containing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248126A JP6619643B2 (en) 2015-12-21 2015-12-21 Granule mass inspection apparatus and inspection method, and manufacturing apparatus and manufacturing method for powder-containing article

Publications (2)

Publication Number Publication Date
JP2017116260A true JP2017116260A (en) 2017-06-29
JP6619643B2 JP6619643B2 (en) 2019-12-11

Family

ID=59234322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248126A Active JP6619643B2 (en) 2015-12-21 2015-12-21 Granule mass inspection apparatus and inspection method, and manufacturing apparatus and manufacturing method for powder-containing article

Country Status (1)

Country Link
JP (1) JP6619643B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174155A (en) * 2018-03-27 2019-10-10 日本製鉄株式会社 Particle diameter measurement device and particle diameter measurement method
WO2019220748A1 (en) * 2018-05-14 2019-11-21 花王株式会社 Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
CN111982757A (en) * 2020-05-13 2020-11-24 北京华龛生物科技有限公司 Method for measuring number of particles in unit mass powder
WO2021075309A1 (en) * 2019-10-15 2021-04-22 株式会社堀場製作所 Particle group characteristic measurement device, particle group characteristic measurement method, program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010033A (en) * 1996-06-21 1998-01-16 Eisai Co Ltd Sensor head for photographing granulated body, and grain size measuring device
US20040184649A1 (en) * 2002-12-20 2004-09-23 J.M. Canty Inc. Granular product inspection device
CN104138854A (en) * 2014-06-25 2014-11-12 山东大学 Pseudo dual-energy ray imaging-based ore separation system and method
JP2015010952A (en) * 2013-06-28 2015-01-19 大成建設株式会社 Grain size distribution measurement system and weight conversion factor calculation system
JP2015111088A (en) * 2013-12-06 2015-06-18 花王株式会社 Powder mass inspection apparatus
JP2015114174A (en) * 2013-12-10 2015-06-22 花王株式会社 Powder granule material mass inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010033A (en) * 1996-06-21 1998-01-16 Eisai Co Ltd Sensor head for photographing granulated body, and grain size measuring device
US20040184649A1 (en) * 2002-12-20 2004-09-23 J.M. Canty Inc. Granular product inspection device
JP2015010952A (en) * 2013-06-28 2015-01-19 大成建設株式会社 Grain size distribution measurement system and weight conversion factor calculation system
JP2015111088A (en) * 2013-12-06 2015-06-18 花王株式会社 Powder mass inspection apparatus
JP2015114174A (en) * 2013-12-10 2015-06-22 花王株式会社 Powder granule material mass inspection method
CN104138854A (en) * 2014-06-25 2014-11-12 山东大学 Pseudo dual-energy ray imaging-based ore separation system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174155A (en) * 2018-03-27 2019-10-10 日本製鉄株式会社 Particle diameter measurement device and particle diameter measurement method
JP7003786B2 (en) 2018-03-27 2022-01-21 日本製鉄株式会社 Particle size measuring device and particle size measuring method
WO2019220748A1 (en) * 2018-05-14 2019-11-21 花王株式会社 Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
JP2019200063A (en) * 2018-05-14 2019-11-21 花王株式会社 Apparatus and method for inspecting powder and granular material spraying amount, and apparatus and method for manufacturing article having powder and granular material
CN111868485A (en) * 2018-05-14 2020-10-30 花王株式会社 Device and method for inspecting amount of scattering of powder or granule, and device and method for manufacturing article containing powder or granule
WO2021075309A1 (en) * 2019-10-15 2021-04-22 株式会社堀場製作所 Particle group characteristic measurement device, particle group characteristic measurement method, program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method
EP4033221A4 (en) * 2019-10-15 2023-10-25 HORIBA, Ltd. Particle group characteristic measurement device, particle group characteristic measurement method, program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method
CN111982757A (en) * 2020-05-13 2020-11-24 北京华龛生物科技有限公司 Method for measuring number of particles in unit mass powder

Also Published As

Publication number Publication date
JP6619643B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
JP5886266B2 (en) Particle mass inspection device
JP6619643B2 (en) Granule mass inspection apparatus and inspection method, and manufacturing apparatus and manufacturing method for powder-containing article
EP3505910B1 (en) Powder ratio measuring device and powder ratio measuring system
JP6190261B2 (en) Particle mass inspection method
EP0391530B1 (en) Method of measuring average particle size of granular material
US8019040B2 (en) X-ray inspection device and production system
CN102565087A (en) Device and method for the detection of solid substances in a liquid phase
CN111968173A (en) Method and system for analyzing granularity of mixture
JP2000329683A (en) Detecting method for particle size of object conveyed by belt conveyor
JP2019007901A (en) Apparatus and method for inspecting powder particle mass, and apparatus for producing powder containing article and method for producing the same
CN111868485B (en) Device and method for inspecting amount of scattering of powder or granule, and device and method for manufacturing article containing powder or granule
JP2020504296A (en) Measuring device for particle size and wet / dry of transferred raw material, and particle size measuring device for mixed raw material
JP2019200063A5 (en)
JP2019039782A (en) Inspection apparatus and method of powder particle support sheet
JP2019007901A5 (en)
JP5902067B2 (en) Paper dust adhesion amount inspection method and paper dust adhesion amount inspection device
US20230075710A1 (en) Method of dust suppression for crushers with spraying devices
JP2009080030A (en) X-ray inspection device
JP2004191074A (en) Density estimation method of tablet and inspection device
JP2000081396A (en) Method and apparatus for automatically judging quality of side surface of taking-up roll
CN211426291U (en) Panty-shape diapers production detection device
JP6765645B2 (en) How to inspect the brazing material pattern
JP2010230572A (en) Defect inspection device and method
JPH0720066A (en) Method for measuring adhering amount of binder to glass fiber mat
JP2021135062A (en) Method and apparatus for manufacturing composite sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R151 Written notification of patent or utility model registration

Ref document number: 6619643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250