JP2017116177A - Gas burning appliance - Google Patents

Gas burning appliance Download PDF

Info

Publication number
JP2017116177A
JP2017116177A JP2015251905A JP2015251905A JP2017116177A JP 2017116177 A JP2017116177 A JP 2017116177A JP 2015251905 A JP2015251905 A JP 2015251905A JP 2015251905 A JP2015251905 A JP 2015251905A JP 2017116177 A JP2017116177 A JP 2017116177A
Authority
JP
Japan
Prior art keywords
transistor
drive current
combustion
loss
proportional valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015251905A
Other languages
Japanese (ja)
Inventor
吉成 鳴瀬
Yoshinari Naruse
吉成 鳴瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2015251905A priority Critical patent/JP2017116177A/en
Publication of JP2017116177A publication Critical patent/JP2017116177A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce aged deterioration due to heat in peripheral parts of a transistor, in a gas burning appliance including the transistor for supplying a driving current to a proportional valve.SOLUTION: A gas combustion appliance includes: a combustion part 13 which can switch and control the size of a combustion region to a plurality of capacity levels; a proportional valve 16 which adjusts the flow rate of fuel gas to the combustion part 13; and a control board which controls the number of capacity levels and the drive current of the proportional valve 16 so as to obtain the required combustion heat quantity. In the gas combustion appliance provided with the transistor Q1 through which the drive current of the proportional valve 16 flows, on the control board, when the control board controls the drive current within a range X in which the number of capability levels can be switched, while maintaining the combustion heat quantity, and the loss of the transistor Q1 is equal to or larger than a predetermined value, the magnitude of the drive current is changed and controlled so that the loss of the transistor Q1 is less than the predetermined value, and the number of capability stages of the combustion part 13 is changed and controlled so as to maintain the combustion heat quantity before and after the change.SELECTED DRAWING: Figure 2

Description

本発明は、暖房用ガス熱源機やガス給湯器などのガス燃焼機器に関する。   The present invention relates to gas combustion equipment such as a gas heat source for heating and a gas water heater.

例えば、下記の特許文献1に開示されているように、ガス給湯器などのガス燃焼機器においては、制御開度指令に応じた駆動電流をガス比例弁に安定的に供給するために定電流回路を用いて駆動電流を制御しており、駆動電流は、直接的には定電流回路を構成するトランジスタ(Tr1)によって制御されている。   For example, as disclosed in Patent Document 1 below, in a gas combustion apparatus such as a gas water heater, a constant current circuit is used to stably supply a drive current corresponding to a control opening degree command to a gas proportional valve. Is used to control the drive current, and the drive current is directly controlled by the transistor (Tr1) constituting the constant current circuit.

特許第3571847号公報Japanese Patent No. 3571847

上記定電流回路のトランジスタには、比例弁の駆動電流がコレクタ−エミッタ間にそのまま流れることとなるが、比例弁の駆動電流は数10mA〜100数十mA程度と比較的大きいため、トランジスタの損失特性によって発熱量が比較的大きくなる場合がある。   In the transistor of the constant current circuit, the drive current of the proportional valve flows directly between the collector and the emitter, but the drive current of the proportional valve is relatively large, about several tens mA to several tens of mA, so that the loss of the transistor The calorific value may be relatively large depending on the characteristics.

トランジスタやその周辺回路の動作自体への影響が小さい発熱量であっても、基板上の樹脂ポッティング等の周辺パーツの経年劣化を促進させ、これにより製品寿命を縮めてしまうことが懸念されるため、可能な限り損失の少ないトランジスタを採用することが理想であるが、求められる特性に適合し且つ現実的な価格で入手可能なトランジスタの選択肢は限られており、比例弁の駆動電流制御における回路特性とコストとを優先してトランジスタを選定した場合に、周辺パーツにとっては好ましくない動作条件で長時間にわたり運転が継続されることがある。   Even if the amount of heat generated has little effect on the operation of the transistor or its peripheral circuit itself, it is concerned that it may accelerate the aging of peripheral parts such as resin potting on the substrate, thereby shortening the product life. It is ideal to use transistors with as little loss as possible, but there are limited transistor options that meet the required characteristics and are available at a realistic price. When a transistor is selected giving priority to characteristics and cost, the operation may be continued for a long time under operating conditions that are not preferable for peripheral parts.

たとえば、本願出願人は、特開2014−66497号公報に、温水暖房端末の暖房負荷(要求燃焼能力)に応じて、燃焼領域の大きさを複数の能力段数のいずれかに切替制御するとともに、ガス比例弁の開度を制御する暖房用熱源機を開示しており、暖房負荷の状態によっては、小さい能力段数で比例弁の開度が比較的大きい状態で数十分間定常的に暖房運転が行われることがある。   For example, the applicant of the present application switches the size of the combustion area to any one of a plurality of capacity stages according to the heating load (required combustion capacity) of the hot water heating terminal in Japanese Patent Application Laid-Open No. 2014-66497, Discloses a heat source unit for heating that controls the opening of the gas proportional valve. Depending on the heating load, the heating operation is constantly performed for several tens of minutes with a small number of capacity stages and a relatively large opening of the proportional valve. May be performed.

比例弁の開度は、比例弁に供給される駆動電流の大きさに比例するため、比例弁の開度が大きい場合には駆動電流も大きくなり、例えば80mA程度の駆動電流が数十分間流れ続ける場合がある。仮に、選定されるトランジスタのコレクタ−エミッタ間電流に対する損失の特性として、例えば80mA前後に損失のピークがあると、上記のような場合にトランジスタの発熱量が最大となり、周辺パーツの劣化を促進させてしまう。   Since the opening of the proportional valve is proportional to the magnitude of the driving current supplied to the proportional valve, the driving current increases when the opening of the proportional valve is large. For example, the driving current of about 80 mA is several tens of minutes. It may continue to flow. As a characteristic of loss with respect to the collector-emitter current of the selected transistor, for example, if there is a loss peak at around 80 mA, the amount of heat generated by the transistor is maximized in the above case, and the deterioration of peripheral parts is promoted. End up.

そこで、本発明は、比例弁に駆動電流を供給するトランジスタを備えるガス燃焼機器において、トランジスタ周辺パーツの熱による経年劣化を低減させることを目的とする。   Therefore, an object of the present invention is to reduce the aging deterioration due to heat of peripheral parts of a transistor in a gas combustion apparatus including a transistor that supplies a drive current to a proportional valve.

上記目的を達成するために、本願発明は、次の技術的手段を講じた。   In order to achieve the above object, the present invention has taken the following technical means.

すなわち、本発明は、燃焼領域の大きさを複数の能力段数に切替制御可能に構成された燃焼部と、該燃焼部への燃料ガス流路の中途部に設けられ且つ駆動電流に応じて開度が調整される比例弁と、要求燃焼熱量が得られるように前記燃焼部の能力段数を制御するとともに前記比例弁の駆動電流を制御する制御部とを備え、該制御部は、前記比例弁の駆動電流が流れるトランジスタを有するガス燃焼機器において、前記制御部は、燃焼熱量を維持しつつ前記能力段数を切替可能な範囲内であって、且つ、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合に、前記トランジスタの損失が所定値未満となるよう前記駆動電流の大きさを変更制御するとともに、その変更前後で燃焼熱量が維持されるように前記燃焼部の能力段数を変更制御することを特徴とするものである(請求項1)。   That is, the present invention provides a combustion section configured to be capable of switching the size of the combustion region to a plurality of capacity stages, and provided in the middle of the fuel gas flow path to the combustion section, and is opened according to the drive current. A proportional valve whose degree of adjustment is adjusted, and a control unit that controls the number of capacity stages of the combustion unit so as to obtain the required amount of combustion heat, and that controls the drive current of the proportional valve, the control unit comprising the proportional valve In the gas combustion device having the transistor through which the drive current flows, the control unit is within a range in which the number of capacity stages can be switched while maintaining the amount of combustion heat, and the loss of the transistor is a predetermined value or more. And controlling the magnitude of the drive current so that the loss of the transistor is less than a predetermined value, and maintaining the amount of combustion heat before and after the change. Is characterized in that the changing control capability number of parts (Claim 1).

かかる本発明のガス燃焼機器によれば、燃焼熱量を維持しつつトランジスタの発熱量を低減させることができるので、給湯能力や暖房能力を低下させることなくトランジスタの周辺パーツ、例えばポッティング剤などの経年劣化がトランジスタの発熱によって促進されることを回避できる。さらに、トランジスタの放熱器の削除若しくは簡素化を図ることもでき、これによりコスト削減を図ることもできる。   According to the gas combustion apparatus of the present invention, the heat generation amount of the transistor can be reduced while maintaining the heat of combustion, so that the peripheral parts of the transistor, for example, potting agents, etc. It can be avoided that the deterioration is accelerated by the heat generation of the transistor. Further, it is possible to eliminate or simplify the radiator of the transistor, thereby reducing the cost.

また、本発明は、燃焼部と、該燃焼部への燃料ガス流路の中途部に設けられ且つ駆動電流に応じて開度が調整される比例弁と、要求燃焼熱量が得られるように前記比例弁の駆動電流を制御する制御部とを備え、該制御部は、前記比例弁の駆動電流が流れるトランジスタを有するガス燃焼機器において、前記制御部は、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合に、前記トランジスタの損失が所定値未満となるよう、要求燃焼熱量が得られなくとも前記駆動電流の大きさを変更制御することを特徴とするものである(請求項2)。   Further, the present invention provides a combustion section, a proportional valve provided in the middle of the fuel gas flow path to the combustion section and having an opening degree adjusted according to the drive current, and the above-described combustion heat quantity so as to obtain the required amount of combustion heat. A control unit that controls the drive current of the proportional valve, and the control unit is a gas combustion apparatus having a transistor through which the drive current of the proportional valve flows. When the drive current is controlled within a range, the magnitude of the drive current is controlled to be changed even if the required combustion heat quantity is not obtained so that the loss of the transistor is less than a predetermined value. (Claim 2).

かかる本発明のガス燃焼機器によれば、トランジスタの発熱量を低減させることができるので、トランジスタの周辺パーツ、例えばポッティング剤などの経年劣化がトランジスタの発熱によって促進されることを回避できる。さらに、トランジスタの放熱器の削除若しくは簡素化を図ることもでき、これによりコスト削減を図ることもできる。なお、上記請求項2の構成は、特に暖房負荷に応じて要求燃焼熱量が決定される暖房用のガス燃焼機器において好適に実施でき、暖房運転の場合には一時的に要求燃焼熱量未満で動作制御を行っても即座に室温に影響が出るものではないため、トランジスタやその周辺パーツの温度が低下するまで駆動電流をトランジスタの損失が比較的低い範囲内で制御した後、要求燃焼熱量に基づく駆動電流の制御に復帰させれば良い。   According to the gas combustion device of the present invention, since the amount of heat generated by the transistor can be reduced, it is possible to avoid the deterioration of the peripheral parts of the transistor, for example, potting agent, over time due to the heat generated by the transistor. Further, it is possible to eliminate or simplify the radiator of the transistor, thereby reducing the cost. The configuration of claim 2 can be preferably implemented particularly in a gas combustion appliance for heating in which the required amount of combustion heat is determined according to the heating load, and temporarily operates below the required amount of combustion heat in the case of heating operation. Even if the control is performed, the room temperature is not affected immediately, so the drive current is controlled within a relatively low range of the transistor loss until the temperature of the transistor and its surrounding parts decreases, and then based on the required combustion heat quantity What is necessary is just to return to control of drive current.

上記本発明のガス燃焼機器において、前記制御部は、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合の前記駆動電流の大きさの変更制御を、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している状態を所定時間継続するまで行わないように構成されているものとすることができる(請求項3)。これによれば、トランジスタの損失が比較的高い範囲内で駆動電流が短時間流れても、トータルの発熱量としてはさほど周辺パーツに悪影響がないため、このような場合には駆動電流の変更制御を行わないことで、燃焼効率や騒音対策等を優先して要求燃焼熱量に応じた駆動電流制御を継続させることができる。   In the gas combustion apparatus of the present invention, the control unit performs the change control of the magnitude of the drive current when the drive current is controlled within a range in which the loss of the transistor is a predetermined value or more. The driving current is controlled within a range in which the loss of the current becomes equal to or greater than a predetermined value until it is continued for a predetermined time (claim 3). According to this, even if the drive current flows for a short time within the range where the transistor loss is relatively high, the total heat generation does not adversely affect the peripheral parts. By not performing the control, it is possible to continue the drive current control in accordance with the required amount of combustion heat, giving priority to combustion efficiency and noise countermeasures.

また、上記本発明のガス燃焼機器において、前記制御部は、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合の前記駆動電流の大きさの変更制御を、前記駆動電流と前記トランジスタの損失とに基づく前記トランジスタの発熱によって該トランジスタの周囲温度が所定温度以上になったと推定されるまで行わないように構成されているものとすることもできる(請求項4)。これによれば、トランジスタの周囲温度が所定温度以上になったと推定されない場合には周辺パーツに悪影響がないため、このような場合には駆動電流の変更制御を行わないことで、燃焼効率や騒音対策等を優先して要求燃焼熱量に応じた駆動電流制御を継続させることができる。   Further, in the gas combustion device of the present invention, the control unit performs a change control of the magnitude of the drive current when the drive current is controlled within a range in which the loss of the transistor is a predetermined value or more. It may be configured not to perform the operation until it is estimated that the ambient temperature of the transistor has become equal to or higher than a predetermined temperature due to heat generation of the transistor based on the driving current and the loss of the transistor. ). According to this, when it is not estimated that the ambient temperature of the transistor has exceeded the predetermined temperature, there is no adverse effect on the peripheral parts. In such a case, the drive current change control is not performed, so that the combustion efficiency and noise can be reduced. Drive current control corresponding to the required combustion heat quantity can be continued with priority on measures and the like.

なお、上記推定は、具体的には、比例弁の駆動電流の制御履歴データ、若しくは、比例弁の実際の駆動電流の検出値の検出履歴データに基づいて行うことができる。例えば、駆動電流に対するトランジスタの損失に関するデータを予め制御部に記憶保持させておき、該データを用いて直近の所定時間内でのトランジスタの発熱量を算出するとともに、トランジスタ及びその周辺パーツの放熱量をも算出乃至推定して、発熱量と放熱量との差分によりトランジスタの周囲温度の推定を行うことができる。   Specifically, the above estimation can be performed based on the control history data of the drive current of the proportional valve or the detection history data of the detected value of the actual drive current of the proportional valve. For example, data related to the loss of the transistor with respect to the drive current is stored in the control unit in advance, and the heat generation amount of the transistor within the latest predetermined time is calculated using the data, and the heat dissipation amount of the transistor and its peripheral parts is calculated. As a result, the ambient temperature of the transistor can be estimated from the difference between the heat generation amount and the heat dissipation amount.

以上説明したように、本発明のガス燃焼機器によれば、比例弁に駆動電流を供給するトランジスタの発熱に起因するトランジスタ周辺パーツの経年劣化を低減させることができる。   As described above, according to the gas combustion apparatus of the present invention, it is possible to reduce the aging of the peripheral parts of the transistor due to the heat generation of the transistor that supplies the drive current to the proportional valve.

本発明の一実施形態に係るガス燃焼機器である暖房用ガス熱源機の概略構成図である。It is a schematic block diagram of the gas heat source machine for heating which is a gas combustion apparatus which concerns on one Embodiment of this invention. 同ガス燃焼機器における燃焼能力切替制御を説明するためのグラフである。It is a graph for demonstrating the combustion capacity switching control in the same gas combustion apparatus. 同ガス燃焼機器の比例弁駆動回路の概略回路図である。It is a schematic circuit diagram of the proportional valve drive circuit of the gas combustion apparatus.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るガス燃焼機器としてのガス熱源機1を用いた温水循環式暖房装置を示しており、該暖房装置は、暖房運転機能を有するガス熱源機1と、低温暖房端末としての床暖房端末2と、高温暖房端末3とから主構成されている。図1においては、熱源機1の暖房運転機能の要部のみ図示しているが、熱源機1としては、給湯・暖房及び追焚きの機能を有する複合熱源機を好適に用いることができる。   FIG. 1 shows a hot water circulation heating device using a gas heat source device 1 as a gas combustion device according to an embodiment of the present invention, and the heating device includes a gas heat source device 1 having a heating operation function, Mainly composed of a floor heating terminal 2 as a low temperature heating terminal and a high temperature heating terminal 3. In FIG. 1, only the main part of the heating operation function of the heat source device 1 is illustrated, but as the heat source device 1, a composite heat source device having functions of hot water supply / heating and reheating can be suitably used.

熱源機1は、燃焼缶体11と、暖房用温水循環回路12とを備えている。缶体11内部には、複数の燃焼領域13a,13bに区分された燃焼装置13(燃焼部)が設けられている。なお、燃焼装置13に対して燃焼用空気を供給する送風ファン(図示せず)が燃焼装置13の下方に配設される。   The heat source machine 1 includes a combustion can body 11 and a warm water circulation circuit 12 for heating. Inside the can 11, a combustion device 13 (combustion unit) divided into a plurality of combustion regions 13 a and 13 b is provided. A blower fan (not shown) that supplies combustion air to the combustion device 13 is disposed below the combustion device 13.

該燃焼装置13の各燃焼領域13a,13bは、それぞれ複数本のバーナによって形成されており、図示例では2つの燃焼領域を図示しているが、3以上の燃焼領域に区分されていてもよい。これらの各燃焼領域13a,13bには、燃料ガス供給源側から燃焼用燃料としてガスを供給するガス供給管14が接続されている。このガス供給管14には、燃料ガス供給源側から順に、元栓としての元ガス電磁弁15と、ガス供給量を調整するガス比例弁16とが設けられている。このガス比例弁16の下流側でガス供給管14が各燃焼領域13a,13b毎に分岐され、第1の燃焼領域13aに対して第1能力切替弁17aを介してガスが供給され、第2の燃焼領域13bに対して第2能力切替弁17bを介してガスが供給されるようになっている。   Each of the combustion regions 13a and 13b of the combustion device 13 is formed by a plurality of burners, and in the illustrated example, two combustion regions are illustrated, but may be divided into three or more combustion regions. . A gas supply pipe 14 for supplying gas as a combustion fuel from the fuel gas supply source side is connected to each of the combustion regions 13a and 13b. The gas supply pipe 14 is provided with an original gas solenoid valve 15 as a main plug and a gas proportional valve 16 for adjusting the gas supply amount in order from the fuel gas supply source side. The gas supply pipe 14 is branched for each of the combustion regions 13a and 13b on the downstream side of the gas proportional valve 16, and gas is supplied to the first combustion region 13a via the first capacity switching valve 17a. Gas is supplied to the combustion region 13b through the second capacity switching valve 17b.

これにより、図2に示すように、第1及び第2能力切替弁17a,17bの選択的開閉制御によって燃料領域の大きさを複数の能力段数(図示例では、第1の燃焼領域13aのみを燃焼させる1段、第2の燃焼領域13bのみを燃焼させる2段、並びに、第1及び第2の燃焼領域13a,13bを燃焼させる3段)に切替制御可能に構成されているとともに、ガス比例弁16の開度制御(駆動電流制御)により各能力段数における燃料ガスの供給量を調整することによって、各能力段数毎に燃焼熱量(給湯号数)を所定範囲で変更制御可能に構成されている。そして、隣接する段数の下段側の能力段数の大燃焼側の領域Xと上段側の能力段数の小燃焼側の領域とは燃焼熱量がオーバーラップされており、これにより燃焼装置13全体の燃焼熱量を、第1燃焼領域13aのみをバーナの最小燃焼能力で燃焼させる最小燃焼熱量(例えば給湯号数換算で3号)から、複数の燃焼領域13a,13bのすべてを最大燃焼能力で燃焼させる最大燃焼熱量(例えば給湯号数換算で10号)まで、連続的に変更調整可能としている。   As a result, as shown in FIG. 2, the size of the fuel region is reduced to a plurality of capacity stages (in the illustrated example, only the first combustion region 13a is controlled) by selective opening and closing control of the first and second capability switching valves 17a and 17b. 1 stage to burn, 2 stages to burn only the second combustion region 13b, and 3 stages to burn the first and second combustion regions 13a and 13b), and is proportional to the gas. By adjusting the supply amount of the fuel gas at each capability stage number by opening degree control (drive current control) of the valve 16, the amount of combustion heat (number of hot water supply) can be changed and controlled within a predetermined range for each capability stage number. Yes. The combustion heat quantity overlaps the large combustion side area X of the capacity stage number on the lower side of the adjacent stage number and the small combustion side area of the capacity stage on the upper stage side. From the minimum combustion heat quantity (for example, No. 3 in terms of the number of hot water supply) that burns only the first combustion area 13a with the minimum combustion capacity of the burner, the maximum combustion that burns all of the plurality of combustion areas 13a and 13b with the maximum combustion capacity It is possible to change and adjust continuously up to the amount of heat (for example, No. 10 in terms of the number of hot water supply).

缶体11内の上部には熱交換器18が配設されている。なお、図示していないが、燃焼装置13で燃料を燃焼させることによる燃焼ガスの顕熱を回収する一次熱交換器と、該一次熱交換器において回収しきれなかった燃焼ガスの熱エネルギー、すなわち潜熱を回収する二次熱交換器とを設けた潜熱回収式高効率熱源機として構成することもできる。   A heat exchanger 18 is disposed in the upper part of the can 11. Although not shown in the figure, a primary heat exchanger that recovers sensible heat of the combustion gas generated by burning fuel in the combustion device 13, and thermal energy of the combustion gas that cannot be recovered in the primary heat exchanger, that is, It can also be configured as a latent heat recovery type high efficiency heat source device provided with a secondary heat exchanger for recovering latent heat.

暖房回路12は、高温暖房端末3及び低温暖房端末2との間で熱媒となる温水の循環経路を形成するものであって、該循環経路を循環する温水を加熱する上記熱交換器18と、該熱交換器18で所定温度(例えば80℃程度)に加熱された高温温水を高温暖房端末3へ供給するための高温暖房往き管路12aと、高温暖房端末3で放熱した後の温水を熱交換器18へ戻すための暖房戻り管路12bと、熱交換器18の上流側で暖房戻り管路12bから分岐して熱交換器18で加熱される前の低温(例えば60℃程度)の温水を低温暖房端末2へ供給するための低温暖房往き管路12cと、熱交換器18で加熱された高温の温水の一部を暖房戻り管路12bにバイパスするバイパス管路12dとから主構成されている。   The heating circuit 12 forms a circulation path of hot water serving as a heat medium between the high-temperature heating terminal 3 and the low-temperature heating terminal 2, and the heat exchanger 18 that heats the hot water circulating in the circulation path; The high-temperature hot water going to the high-temperature heating terminal 3 for supplying the high-temperature hot water heated to a predetermined temperature (for example, about 80 ° C.) by the heat exchanger 18 and the hot water after radiating heat from the high-temperature heating terminal 3 A heating return pipe 12b for returning to the heat exchanger 18 and a low temperature (for example, about 60 ° C.) before being heated from the heating return pipe 12b by being branched from the heating return pipe 12b on the upstream side of the heat exchanger 18. The main configuration includes a low-temperature heating forward pipe 12c for supplying hot water to the low-temperature heating terminal 2, and a bypass pipe 12d for bypassing a part of the high-temperature hot water heated by the heat exchanger 18 to the heating return pipe 12b. Has been.

さらに、暖房戻り管路12bの途中には、膨張タンク19と、該タンク19の下流側に設けられた暖房循環ポンプPとが介設されている。図示例では、低温暖房往き管路12cは暖房循環ポンプPの下流側で暖房戻り管路12bから分岐されている。バイパス管路12dは、高温暖房往き管路12aから分岐されているとともに、膨張タンク19及び暖房循環ポンプPの上流側で暖房戻り管路12bに合流されている。なお、膨張タンク19には、各暖房端2,3から戻ってきた低温水とバイパス管路12dを介して流入する高温温水とが混合されてなる低温温水が流入する。   Further, an expansion tank 19 and a heating circulation pump P provided on the downstream side of the tank 19 are interposed in the middle of the heating return pipe 12 b. In the illustrated example, the low-temperature heating forward pipe 12c is branched from the heating return pipe 12b on the downstream side of the heating circulation pump P. The bypass pipe 12d is branched from the high-temperature heating forward pipe 12a and joined to the heating return pipe 12b on the upstream side of the expansion tank 19 and the heating circulation pump P. The expansion tank 19 is supplied with low-temperature hot water that is a mixture of low-temperature water returned from the heating ends 2 and 3 and high-temperature hot water flowing through the bypass pipe 12d.

上記送風ファン、能力切替弁17a,17b、元ガス電磁弁15、ガス比例弁16、暖房循環ポンプPなどの各制御対象は、制御部(制御基板)によって制御され、暖房運転中、要求される暖房能力(給湯能力)に基づいて要求燃焼熱量を決定し、要求燃焼熱量が得られるように燃焼装置13の能力段数及び比例弁16の開度が制御される。比例弁16は、供給される駆動電流に応じてその開度が調整されるものであり、本実施形態では制御部は比例弁に駆動電流を供給する定電流回路(比例弁駆動回路)を備えて、直接的には駆動電流を制御するように構成されている。   Control targets such as the blower fan, capacity switching valves 17a and 17b, the original gas solenoid valve 15, the gas proportional valve 16, and the heating circulation pump P are controlled by the control unit (control board) and are required during the heating operation. The required amount of combustion heat is determined based on the heating capacity (hot water supply capacity), and the number of capacity stages of the combustion device 13 and the opening degree of the proportional valve 16 are controlled so that the required amount of combustion heat is obtained. The opening degree of the proportional valve 16 is adjusted according to the supplied drive current. In this embodiment, the control unit includes a constant current circuit (proportional valve drive circuit) that supplies the drive current to the proportional valve. Thus, the drive current is directly controlled.

すなわち、制御部は、図3に示すように、制御中枢としてのマイクロプロセッサ20と、マイクロプロセッサ20の比例弁開度信号出力ポートから出力される開度信号に応じた駆動電流を比例弁16に供給する定電流回路21とを備えている。なお、図示例では、駆動電流の電流値に応じた監視電圧信号をマイクロプロセッサ20の監視信号入力ポートに出力する駆動電流監視回路30をも設けられている。   That is, as shown in FIG. 3, the control unit supplies the proportional valve 16 with a drive current corresponding to the opening signal output from the microprocessor 20 as the control center and the proportional valve opening signal output port of the microprocessor 20. And a constant current circuit 21 to be supplied. In the illustrated example, a driving current monitoring circuit 30 that outputs a monitoring voltage signal corresponding to the current value of the driving current to the monitoring signal input port of the microprocessor 20 is also provided.

定電流回路21は、開度信号のインピーダンス変換を行うボルテージフォロア22と、変換後の開度信号を分圧して基準電圧を出力する分圧回路23と、非反転入力端子に上記基準電圧が入力されるオペアンプ24と、該オペアンプ24の出力に接続されたpnp型トランジスタQ1とを備えている。トランジスタQ1のベースがオペアンプ24の出力に接続され、トランジスタQ1のコレクタは比例弁16及びオペアンプ24の反転入力端子に接続されて負帰還回路が構成されており、これによりオペアンプ24のバーチャルショートによりコレクタ電圧が上記基準電圧と等しくなって、比例弁16の両端電圧Vとその抵抗成分Rとに基づく定電流I=V/Rが駆動電流として比例弁16に供給される。この定電流Iは、トランジスタQ1のコレクタ−エミッタ間電流となり、エミッタから出力される。 The constant current circuit 21 includes a voltage follower 22 that performs impedance conversion of the opening signal, a voltage dividing circuit 23 that divides the converted opening signal and outputs a reference voltage, and the reference voltage is input to a non-inverting input terminal. And an pnp transistor Q1 connected to the output of the operational amplifier 24. The base of the transistor Q1 is connected to the output of the operational amplifier 24, and the collector of the transistor Q1 is connected to the proportional valve 16 and the inverting input terminal of the operational amplifier 24 to form a negative feedback circuit. the voltage becomes equal to the reference voltage, constant current I L = V L / R L based on the voltage across V L of the proportional valve 16 and its resistance component R L is supplied to the proportional valve 16 as the drive current. The constant current I L, the collector of the transistor Q1 - becomes emitter current is outputted from the emitter.

駆動電流監視回路30は、トランジスタQ1のエミッタに接続された負荷抵抗R1を備えており、該負荷抵抗R1に駆動電流Iが供給されることによって、駆動電流Iに応じた電圧(I×R1)が負荷抵抗R1に生じる。この負荷抵抗R1の電圧は、分圧回路31によって分圧されて監視電圧信号としてマイクロプロセッサ20の監視信号入力ポートに入力され、監視電圧信号に基づいて比例弁16の駆動電流の電流値を監視可能となっている。 Driving current monitoring circuit 30 includes a load resistor R1 connected to the emitter of the transistor Q1, the drive current I L is supplied to the load resistor R1, a voltage corresponding to the drive current I L (I L × R1) occurs in the load resistance R1. The voltage of the load resistor R1 is divided by the voltage dividing circuit 31 and input to the monitoring signal input port of the microprocessor 20 as a monitoring voltage signal, and the current value of the drive current of the proportional valve 16 is monitored based on the monitoring voltage signal. It is possible.

なお、比例弁1の抵抗成分Rは例えば数10Ω〜数百Ωであり、負荷抵抗R1の抵抗値は例えば数10Ω〜数百Ωであり、分圧回路31を構成する抵抗R2,R3は例えば数百kΩとすることができる。また、上記トランジスタQ1は、損失特性として、コレクタ−エミッタ間電流が60〜100mAであるときに損失のピークがあり、発熱も最も大きくなるものが用いられている。 The resistance component RL of the proportional valve 1 is, for example, several tens of ohms to several hundreds ohms, the resistance value of the load resistance R1 is, for example, several tens of ohms to several hundreds ohms, and the resistors R2 and R3 constituting the voltage dividing circuit 31 are For example, it can be several hundred kΩ. The transistor Q1 has a loss characteristic that has a loss peak when the collector-emitter current is 60 to 100 mA and generates the largest amount of heat.

そして、本実施形態においては、制御部のマイクロプロセッサ20は、要求燃焼熱量が得られるように燃焼装置13の能力段数及び比例弁16の駆動電流制御を行っているときに、比例弁16の駆動電流が図2に領域Xで示す範囲内の例えばA点で所定時間(例えば10〜20分程度)継続して制御されていれば、駆動電流とトランジスタQ1の損失とに基づくトランジスタQ1の発熱によってトランジスタQ1の周囲温度が所定温度以上になったと推定し、燃焼装置13の能力段数を1段上げるとともに、その前後で燃焼熱量を維持するように駆動電流の大きさをB点まで変更制御するよう制御構成されている。すなわち、本実施形態では、駆動電流が60mAであるときのトランジスタQ1の損失を所定値Lとすると、トランジスタQ1の損失が所定値L以上となる範囲X内で駆動電流が所定時間継続して制御されていれば、トランジスタQ1の損失が所定値L未満となるよう駆動電流の大きさが変更制御される。   In the present embodiment, the microprocessor 20 of the control unit drives the proportional valve 16 when controlling the number of stages of the combustion device 13 and the drive current of the proportional valve 16 so as to obtain the required amount of combustion heat. If the current is continuously controlled for a predetermined time (for example, about 10 to 20 minutes) at the point A within the range indicated by the region X in FIG. 2, for example, the heat generated by the transistor Q1 based on the drive current and the loss of the transistor Q1. It is estimated that the ambient temperature of the transistor Q1 has become equal to or higher than the predetermined temperature, and the number of capacity stages of the combustion device 13 is increased by one, and the drive current is changed and controlled up to point B so as to maintain the combustion heat quantity before and after that. Control configured. That is, in this embodiment, when the loss of the transistor Q1 when the drive current is 60 mA is a predetermined value L, the drive current is continuously controlled within a range X in which the loss of the transistor Q1 is equal to or greater than the predetermined value L. If so, the magnitude of the drive current is controlled so that the loss of the transistor Q1 is less than the predetermined value L.

また、各種状況に応じて、図2のA点からC点への遷移として示すように、能力段数の変更をせずに、比例弁16の駆動電流のみをトランジスタQ1の損失の小さい領域まで変更制御することで、燃焼熱量を一時的に低下させてトランジスタQ1の発熱量を小さくすることもできる。   Also, according to various situations, as shown as a transition from point A to point C in FIG. 2, only the drive current of proportional valve 16 is changed to a region where the loss of transistor Q1 is small, without changing the number of capacity stages. By controlling, the amount of heat generated by the transistor Q1 can be reduced by temporarily reducing the amount of combustion heat.

A点からB点への変更制御と、A点からC点への変更制御とは、いずれか一つのみをマイクロプロセッサ20の制御方式として実装することもできるし、両方を実装した上で各種動作条件等に応じていずれの変更制御を行うかを選択するよう構成することもできる。   Only one of the change control from the A point to the B point and the change control from the A point to the C point can be implemented as a control method of the microprocessor 20, or various types can be implemented after both are implemented. It can also be configured to select which change control is to be performed according to operating conditions and the like.

図2の領域Wで示す範囲は、燃焼熱量を維持しつつ能力段数を切替可能な範囲であって、且つ、トランジスタQ1の損失が最も高くなる範囲であり、所定時間を超えて継続してこの領域W内の駆動電流がトランジスタQ1を流れると、トランジスタの発熱によってその周囲の回路部品やポッティング等の周辺パーツの経年劣化を促進させてしまうが、本実施形態によれば、所定時間を超える長時間にわたってトランジスタQ1の発熱量が大きい状態が継続されることを回避して、トランジスタQ1の周辺パーツの熱による劣化促進を防止できるとともに、トランジスタQ1の放熱板の削除乃至簡素化によってコスト低減を図ることもできる。   The range indicated by the region W in FIG. 2 is a range in which the number of capacity stages can be switched while maintaining the amount of combustion heat, and is the range in which the loss of the transistor Q1 is the highest. When the drive current in the region W flows through the transistor Q1, the heat generation of the transistor promotes aged deterioration of peripheral parts such as circuit parts and potting around the transistor. However, according to the present embodiment, a long time exceeding a predetermined time. By avoiding that the heat generation amount of the transistor Q1 is continuously large over time, it is possible to prevent the peripheral parts of the transistor Q1 from being accelerated by heat and to reduce the cost by eliminating or simplifying the heat dissipation plate of the transistor Q1. You can also.

本発明は、上記実施形態に限定されるものではなく、適宜設計変更できる。例えば、上記実施形態では、駆動電流が領域Xで示す範囲内で所定時間継続して制御されていることによって、トランジスタQ1の周囲温度が所定温度以上になったと推定したが、かかる推定は適宜のものであってよく、例えば、駆動電流に対するトランジスタQ1の損失に関するデータを予めマイクロプロセッサ20に記憶保持させておき、該データを用いて直近の所定時間内でのトランジスタQ1の発熱量を算出するとともに、トランジスタQ1及びその周辺パーツの放熱量をも算出乃至推定して、発熱量と放熱量との差分によりトランジスタの周囲温度の推定を行うこともできる。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate. For example, in the above embodiment, it is estimated that the ambient temperature of the transistor Q1 has become equal to or higher than the predetermined temperature because the drive current is continuously controlled within the range indicated by the region X for a predetermined time. For example, data related to the loss of the transistor Q1 with respect to the drive current is stored in the microprocessor 20 in advance, and the amount of heat generated by the transistor Q1 within the most recent predetermined time is calculated using the data. The heat dissipation amount of the transistor Q1 and its peripheral parts can also be calculated or estimated, and the ambient temperature of the transistor can be estimated from the difference between the heat generation amount and the heat dissipation amount.

また、上記実施形態では暖房運転中の制御として説明したが、給湯器の給湯運転中にも同様の制御を行うことができる。   Moreover, although the said embodiment demonstrated as control during heating operation, the same control can be performed also during hot water supply operation of a water heater.

13 燃焼部
16 比例弁
Q1 トランジスタ
13 Combustion section 16 Proportional valve Q1 Transistor

Claims (4)

燃焼領域の大きさを複数の能力段数に切替制御可能に構成された燃焼部と、該燃焼部への燃料ガス流路の中途部に設けられ且つ駆動電流に応じて開度が調整される比例弁と、要求燃焼熱量が得られるように前記燃焼部の能力段数を制御するとともに前記比例弁の駆動電流を制御する制御部とを備え、該制御部は、前記比例弁の駆動電流が流れるトランジスタを有するガス燃焼機器において、
前記制御部は、燃焼熱量を維持しつつ前記能力段数を切替可能な範囲内であって、且つ、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合に、前記トランジスタの損失が所定値未満となるよう前記駆動電流の大きさを変更制御するとともに、その変更前後で燃焼熱量が維持されるように前記燃焼部の能力段数を変更制御することを特徴とするガス燃焼機器。
A combustor configured to be able to switch and control the size of the combustion region to a plurality of capacity stages, and a proportionality that is provided in the middle of the fuel gas flow path to the combustor and whose opening is adjusted according to the drive current A valve and a control unit for controlling the number of stages of the combustion unit so as to obtain a required amount of combustion heat and for controlling the drive current of the proportional valve, the control unit being a transistor through which the drive current of the proportional valve flows In gas combustion equipment having
When the control unit controls the drive current within a range in which the number of capacity stages can be switched while maintaining a combustion heat amount, and the loss of the transistor is equal to or greater than a predetermined value, The drive current magnitude is changed and controlled so that the loss of the transistor is less than a predetermined value, and the capacity stage number of the combustion section is changed and controlled so that the amount of combustion heat is maintained before and after the change. Gas burning equipment.
燃焼部と、該燃焼部への燃料ガス流路の中途部に設けられ且つ駆動電流に応じて開度が調整される比例弁と、要求燃焼熱量が得られるように前記比例弁の駆動電流を制御する制御部とを備え、該制御部は、前記比例弁の駆動電流が流れるトランジスタを有するガス燃焼機器において、
前記制御部は、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合に、前記トランジスタの損失が所定値未満となるよう、要求燃焼熱量が得られなくとも前記駆動電流の大きさを変更制御することを特徴とするガス燃焼機器。
A combustor, a proportional valve provided in the middle of the fuel gas flow path to the combustor, the opening of which is adjusted according to the drive current, and the drive current of the proportional valve so as to obtain the required amount of combustion heat. A control unit for controlling, in the gas combustion equipment having a transistor through which the drive current of the proportional valve flows,
The control unit is configured to control the driving current within a range in which the loss of the transistor is equal to or greater than a predetermined value, so that the loss of the transistor is less than the predetermined value even if the required combustion heat amount is not obtained. A gas combustion apparatus characterized by changing and controlling the magnitude of a drive current.
請求項1又は2に記載のガス燃焼機器において、前記制御部は、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合の前記駆動電流の大きさの変更制御を、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している状態を所定時間継続するまで行わないように構成されていることを特徴とするガス燃焼機器。   3. The gas combustion device according to claim 1, wherein the control unit controls the change in the magnitude of the drive current when the drive current is controlled within a range in which the loss of the transistor is a predetermined value or more. The gas combustion device is configured not to perform the control of the drive current within a range in which the loss of the transistor is equal to or greater than a predetermined value until the transistor is maintained for a predetermined time. 請求項1又は2に記載のガス燃焼機器において、前記制御部は、前記トランジスタの損失が所定値以上となる範囲内で前記駆動電流を制御している場合の前記駆動電流の大きさの変更制御を、前記駆動電流と前記トランジスタの損失とに基づく前記トランジスタの発熱によって該トランジスタの周囲温度が所定温度以上になったと推定されるまで行わないように構成されていることを特徴とするガス燃焼機器。   3. The gas combustion device according to claim 1, wherein the control unit controls the change in the magnitude of the drive current when the drive current is controlled within a range in which the loss of the transistor is a predetermined value or more. The gas combustion device is configured not to perform the operation until it is estimated that the ambient temperature of the transistor has become equal to or higher than a predetermined temperature due to the heat generation of the transistor based on the drive current and the loss of the transistor. .
JP2015251905A 2015-12-24 2015-12-24 Gas burning appliance Pending JP2017116177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251905A JP2017116177A (en) 2015-12-24 2015-12-24 Gas burning appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251905A JP2017116177A (en) 2015-12-24 2015-12-24 Gas burning appliance

Publications (1)

Publication Number Publication Date
JP2017116177A true JP2017116177A (en) 2017-06-29

Family

ID=59234271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251905A Pending JP2017116177A (en) 2015-12-24 2015-12-24 Gas burning appliance

Country Status (1)

Country Link
JP (1) JP2017116177A (en)

Similar Documents

Publication Publication Date Title
US9625177B2 (en) Furnace controller and a furnace that controls a gas input rate to maintain a discharge air temperature
KR100852988B1 (en) Boiler control method according to heating load
JP2017116177A (en) Gas burning appliance
JP6005998B2 (en) Combustion device
JP2012193924A (en) Combustion device
JP2016099073A (en) Storage hot water supply system
JP5534333B2 (en) Combustion device
JP2021113620A (en) Bath device
JP2017155996A (en) Heat source device
JP5851454B2 (en) Hot water heating system
JP2013108723A (en) Heating system
CN108700334B (en) Heat carrier boiler system
JP6740775B2 (en) Gas combustion equipment
KR101262595B1 (en) Recovery system of combustion air for furnace
JP5883809B2 (en) Heating system
JP5542574B2 (en) Hot water circulation system
JPH11294761A (en) Combustor
JP2021063620A (en) Heat source machine
JP2018119749A (en) Water heater
JP2018188963A (en) Motor driver for water heater, and water heater
JP2012078060A (en) Hot water circulation system
JP3276719B2 (en) Temperature control method of hot water heater
JP4563350B2 (en) Hot water circulation system
JP2003294252A (en) Two-temperature type heat source machine
JP2017146071A (en) Boiler

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414