JP2017115598A - Start driving control method for engine driving type compressor and engine driving type compressor - Google Patents

Start driving control method for engine driving type compressor and engine driving type compressor Download PDF

Info

Publication number
JP2017115598A
JP2017115598A JP2015248948A JP2015248948A JP2017115598A JP 2017115598 A JP2017115598 A JP 2017115598A JP 2015248948 A JP2015248948 A JP 2015248948A JP 2015248948 A JP2015248948 A JP 2015248948A JP 2017115598 A JP2017115598 A JP 2017115598A
Authority
JP
Japan
Prior art keywords
engine
valve
intake
pressure
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248948A
Other languages
Japanese (ja)
Other versions
JP6618347B2 (en
Inventor
正幸 山後
Masayuki Sango
正幸 山後
貢 桐生
Mitsugu Kiryu
貢 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2015248948A priority Critical patent/JP6618347B2/en
Publication of JP2017115598A publication Critical patent/JP2017115598A/en
Application granted granted Critical
Publication of JP6618347B2 publication Critical patent/JP6618347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a start control method for an engine driving type compressor capable of substantially reducing load applied to an engine just after its starting operation.SOLUTION: This invention is constituted in such a way that a cylinder 112 of an intake adjustment valve 11 for opening or closing an intake port 41 of a compressor main body 40 is partitioned into two chambers by a piston 119 connected to a valve body 116, one of the chambers is applied as a valve closing pressure receiving chamber 113 and the other is applied as an auxiliary pressure receiving chamber 114 storing a spring 114a. A releasing flow passage 14 communicated with the valve closing pressure receiving chamber 113 is closed and at the same time a forced valve closing flow passage 21 is opened, an intake flow passage 23 communicated with the auxiliary pressure receiving chamber 114 is opened and at the same time, upon starting an engine 50 under a closed state of the intake/discharge flow passage 22, the load applied to the engine 50 just after starting the engine under closing the intake adjustment valve 11 in a quite short time by synergetic effects of increased pressure in the valve closing pressure receiving chamber 113 as the pressure in the receiver tank 60 and an intake action at the auxiliary pressure receiving chamber 114 by negative pressure generated at the intake flow passage 115 is substantially reduced.SELECTED DRAWING: Figure 1

Description

本発明はエンジン駆動型圧縮機の始動制御方法,及び前記始動制御方法を実行するエンジン駆動型圧縮機に関し,より詳細には,エンジン駆動型圧縮機を,始動負荷を軽減した状態で始動させるための始動制御方法及び前記始動方法を実行するエンジン駆動型圧縮機に関する。   The present invention relates to a start control method for an engine driven compressor, and an engine drive compressor for executing the start control method, and more particularly to start the engine drive compressor with a reduced start load. The engine start-up control method and the engine-driven compressor for executing the start-up method.

圧縮機本体を駆動する駆動源としてディーゼルエンジン(以下単に「エンジン」と言う)を備えたエンジン駆動型圧縮機は,電源の確保が困難である土木作業現場や建築現場等の屋外における作業等において広く使用されている。   An engine-driven compressor equipped with a diesel engine (hereinafter simply referred to as “engine”) as a drive source for driving the compressor body is used in outdoor work such as civil engineering work sites and construction sites where it is difficult to secure a power source. Widely used.

このようなエンジン駆動型圧縮機の一例として,被圧縮気体を潤滑油と共に圧縮して気液混合流体として吐出する,油冷式の圧縮機を圧縮機本体340として備えたエンジン駆動型圧縮機300の構成例を図7に示す。   As an example of such an engine-driven compressor, an engine-driven compressor 300 provided with an oil-cooled compressor as a compressor body 340 that compresses a compressed gas together with lubricating oil and discharges it as a gas-liquid mixed fluid. An example of the configuration is shown in FIG.

このエンジン駆動型圧縮機300では,前述した圧縮機本体340とエンジン350の他,圧縮機本体340より圧縮気体と共に吐出された潤滑油を分離するためのレシーバタンク360を備え,このレシーバタンク360内で潤滑油が分離された後の圧縮気体を,オイルセパレータ366を介してさらに油分を除去した後,図示せざる空気作業機等が接続された消費側に供給することができるように構成されていると共に,レシーバタンク360内に回収された潤滑油を,オイルクーラ363,オイルフィルタ367を介して圧縮機本体340に供給する給油流路364が設けられている。   The engine-driven compressor 300 includes a receiver tank 360 for separating lubricating oil discharged together with the compressed gas from the compressor body 340 in addition to the compressor body 340 and the engine 350 described above. The compressed gas from which the lubricating oil has been separated is removed through the oil separator 366 and then supplied to the consumer side to which an unillustrated air working machine or the like is connected. In addition, an oil supply passage 364 is provided for supplying the lubricating oil collected in the receiver tank 360 to the compressor main body 340 through the oil cooler 363 and the oil filter 367.

このようなエンジン駆動型圧縮機300には,消費側に対し,安定した圧力の圧縮気体を供給することができるようにするために,圧縮機本体340の吐出側圧力,図示の構成ではレシーバタンク360内の圧力に応じて,圧縮機本体340の吸気量を調整する吸気調整装置310が設けられている。   In such an engine-driven compressor 300, in order to be able to supply compressed gas with a stable pressure to the consumption side, the discharge side pressure of the compressor main body 340, the receiver tank in the illustrated configuration, An intake air adjusting device 310 that adjusts the intake air amount of the compressor main body 340 according to the pressure in the 360 is provided.

この吸気調整装置310として,図7に示すエンジン駆動型圧縮機では,圧縮機本体340の吸気口341を開閉する吸気調整弁311と,この吸気調整弁311を開閉制御するアンローダレギュレータ316を設け,このアンローダレギュレータ316とレシーバタンク360を制御流路312によって連通してレシーバタンク360内の圧縮気体を,吸気調整弁311を閉弁するための作動圧力としてアンローダレギュレータ316に導入可能と成すと共に,レシーバタンク360内の圧力が所定の定格圧力以上のとき制御流路312を開く圧力調整弁313を設けている。   As the intake air adjusting device 310, the engine drive type compressor shown in FIG. 7 is provided with an intake air adjusting valve 311 that opens and closes the air inlet 341 of the compressor body 340, and an unloader regulator 316 that controls the opening and closing of the air intake adjusting valve 311. The unloader regulator 316 and the receiver tank 360 are communicated with each other by the control flow path 312 so that the compressed gas in the receiver tank 360 can be introduced into the unloader regulator 316 as an operating pressure for closing the intake adjustment valve 311, and the receiver A pressure regulating valve 313 that opens the control flow path 312 when the pressure in the tank 360 is equal to or higher than a predetermined rated pressure is provided.

なお,図7中の符号314は逃がし流路であり,圧力調整弁313が制御流路312を閉じてアンローダレギュレータ316に対する圧縮気体の導入が停止した際,アンローダレギュレータ316の受圧室内の圧縮気体を絞り315を介して放気して,アンローダレギュレータ316をリターンスプリング(図示せず)の付勢力によって全開位置に復帰させることができるように構成されている。   Reference numeral 314 in FIG. 7 is an escape passage. When the pressure regulating valve 313 closes the control passage 312 and the introduction of the compressed gas to the unloader regulator 316 is stopped, the compressed gas in the pressure receiving chamber of the unloader regulator 316 is removed. The unloader regulator 316 can be returned to the fully open position by the urging force of a return spring (not shown) by releasing air through the throttle 315.

このように構成された吸気調整装置310を設けることで,レシーバタンク360内の圧力が定格圧力以上になると,アンローダレギュレータ316にレシーバタンク360内の圧縮気体の導入が開始されて,吸気調整弁311が圧縮機本体340の吸気口341を絞り,又は閉じると共に,レシーバタンク360内の圧力が定格圧力未満に低下すると,吸気調整弁311が圧縮機本体340の吸気口341を開くことで,レシーバタンク360内の圧力が圧力調整弁313の作動圧力によって設定された定格圧力に近付くよう圧縮機本体340に対する吸気調整が行われる。   By providing the intake air adjustment device 310 configured as described above, when the pressure in the receiver tank 360 becomes equal to or higher than the rated pressure, the introduction of the compressed gas in the receiver tank 360 is started to the unloader regulator 316 and the intake air adjustment valve 311 is started. Restricts or closes the intake port 341 of the compressor main body 340, and when the pressure in the receiver tank 360 falls below the rated pressure, the intake adjustment valve 311 opens the intake port 341 of the compressor main body 340, thereby receiving the receiver tank. The intake air adjustment to the compressor main body 340 is performed so that the pressure in 360 is close to the rated pressure set by the operating pressure of the pressure adjustment valve 313.

以上のように構成されたエンジン駆動型圧縮機300において,圧縮機本体340の駆動源であるエンジン350は,低回転域でのトルクが小さく,始動時に負荷がかかると停止(ストール)し易い。   In the engine-driven compressor 300 configured as described above, the engine 350, which is the drive source of the compressor main body 340, has a small torque in the low rotation range and is likely to stop (stall) when a load is applied at the start.

その一方で,エンジン駆動型圧縮機300では,エンジン350に対する負荷である圧縮機本体340がエンジン350に直結されており,エンジン350は,始動開始時より圧縮機本体340の回転に伴う負荷を受けることから,エンジン350の始動時,圧縮機本体340から受ける負荷を低減することができれば,エンジン350を円滑に始動させることができる。   On the other hand, in the engine-driven compressor 300, the compressor main body 340, which is a load on the engine 350, is directly connected to the engine 350, and the engine 350 receives a load accompanying the rotation of the compressor main body 340 from the start of starting. Therefore, if the load received from the compressor main body 340 can be reduced when the engine 350 is started, the engine 350 can be started smoothly.

このようなエンジン駆動型圧縮機300の構成に着目し,始動時にエンジン350にかかる負荷を軽減するために,後掲の特許文献1には,図7中に符号320で示した始動負荷軽減装置が開示されている。   Focusing on the configuration of the engine-driven compressor 300 as described above, in order to reduce the load applied to the engine 350 at the time of starting, Patent Document 1 described later includes a starting load reducing device denoted by reference numeral 320 in FIG. Is disclosed.

この始動負荷軽減装置320は,圧力調整弁313の一次側と二次側を連通して圧力調整弁313をバイパスするバイパス流路321と,このバイパス流路321を開閉する始動アンローダバルブ325によって構成されており(特許文献1[0008]欄,図5参照),始動時,始動アンローダバルブ325の操作によってバイパス流路321を開くことで,圧力調整弁313の作動圧力に基づいて行われる吸気調整をキャンセルし,アンローダレギュレータ316を,圧力調整弁313を介さずに直接,レシーバタンク360に連通することができるように構成されている。   The starting load reducing device 320 includes a bypass passage 321 that communicates the primary side and the secondary side of the pressure regulating valve 313 to bypass the pressure regulating valve 313, and a starting unloader valve 325 that opens and closes the bypass passage 321. (Refer to Patent Document 1 [0008] column, FIG. 5), and at the time of start-up, by opening the bypass flow path 321 by operating the start unloader valve 325, the intake air adjustment performed based on the operating pressure of the pressure control valve 313 The unloader regulator 316 can be directly communicated with the receiver tank 360 without going through the pressure regulating valve 313.

その結果,エンジン350の始動により圧縮機本体340が回転を開始することによってレシーバタンク360内の圧力が上昇すると,アンローダレギュレータ316が作動して吸気調整弁311を閉じて圧縮機本体340が無負荷運転に移行することで,始動開始時のエンジン350にかかる負荷を軽減することができるように構成されている。   As a result, when the pressure in the receiver tank 360 rises due to the rotation of the compressor main body 340 due to the start of the engine 350, the unloader regulator 316 is activated to close the intake adjustment valve 311 and the compressor main body 340 is unloaded. By shifting to the operation, the load applied to the engine 350 at the start of starting can be reduced.

そして,エンジン350の運転状態が安定した後に,始動負荷軽減装置320に設けた始動アンローダバルブ325を操作してバイパス流路321を閉じ,圧力調整弁313がレシーバタンク360内の圧力に応じて制御流路312を開閉する通常運転に復帰することで,既知の吸気調整を行うことができるように構成されている。   Then, after the operating state of the engine 350 is stabilized, the start unloader valve 325 provided in the start load reducing device 320 is operated to close the bypass flow path 321, and the pressure adjustment valve 313 is controlled according to the pressure in the receiver tank 360. By returning to the normal operation of opening and closing the flow path 312, the known intake air adjustment can be performed.

特開2002−168177号公報JP 2002-168177 A

前掲の特許文献1として紹介した始動負荷軽減装置320では,始動時に圧力調整弁313をバイパスしてレシーバタンク360とアンローダレギュレータ315を直接連通することで,エンジン350の始動により圧縮機本体340が回転を開始してレシーバタンク360内の圧力がアンローダレギュレータ316の作動圧力まで上昇すれば,圧力調整弁313の作動圧力より低い圧力であっても吸気調整弁311が閉じて無負荷運転に移行することから,圧力調整弁313の作動圧力に対し,アンローダレギュレータ316の作動圧力を充分に低く設定しておくことで,始動時のエンジン350に対して加わる負荷を大幅に低減することができる。   In the starting load reducing device 320 introduced as Patent Document 1 described above, the compressor main body 340 is rotated by starting the engine 350 by bypassing the pressure regulating valve 313 and directly connecting the receiver tank 360 and the unloader regulator 315 at the time of starting. If the pressure in the receiver tank 360 rises to the operating pressure of the unloader regulator 316, even if the pressure is lower than the operating pressure of the pressure regulating valve 313, the intake regulating valve 311 is closed and shifts to no-load operation. Therefore, by setting the operating pressure of the unloader regulator 316 sufficiently lower than the operating pressure of the pressure regulating valve 313, the load applied to the engine 350 at the time of starting can be greatly reduced.

しかし,上記構成の始動負荷軽減装置320では,エンジン350の始動後,レシーバタンク360内の圧力がアンローダレギュレータ316の作動圧力に達する迄の間,圧縮機本体340は吸気口341を全開とした全負荷運転を行うこととなるため,最も不安定な運転状態にある,始動直後のエンジン350に対する負荷を充分に軽減することができない。   However, in the starting load reducing device 320 configured as described above, the compressor body 340 fully opens the intake port 341 until the pressure in the receiver tank 360 reaches the operating pressure of the unloader regulator 316 after the engine 350 is started. Since the load operation is performed, the load on the engine 350 immediately after the start in the most unstable operation state cannot be sufficiently reduced.

特に,近年の排ガス規制に対応するために,電子制御化と,吸気冷却器付ターボ(インタークーラ付ターボ)エンジン等の過給式エンジンの採用によって単位排気量あたりのトルク・出力を向上させて,同一の最大出力を発生する自然吸気エンジンに比較して小排気量化を図る,所謂「ダウンサイジング」を行ったエンジンを搭載したエンジン駆動型圧縮機にあっては,エンジンの起動から無負荷運転の回転速度まで立ち上がる始動時における低回転域では,過給の効果が得られず,同一の最大出力を発生する自然吸気エンジンに比較して始動時のトルクや出力が小さいことから,始動負荷の更なる軽減の達成は,過給式のエンジンを搭載したエンジン駆動型圧縮機を円滑に始動させる上で不可欠となる。   In particular, in order to comply with recent exhaust gas regulations, the torque and output per unit displacement is improved by adopting electronic control and a supercharged engine such as a turbo engine with an intake air cooler (turbo with an intercooler). An engine-driven compressor equipped with a so-called “downsizing” engine that achieves a smaller engine displacement than a naturally aspirated engine that produces the same maximum output. In the low engine speed range, where the engine speed rises to the maximum speed, the effect of supercharging cannot be obtained, and the starting torque and output are small compared to a naturally aspirated engine that generates the same maximum output. Achieving further mitigation is essential for smoothly starting an engine-driven compressor equipped with a supercharged engine.

また,エンジンの始動に成功して所定の回転速度に達したとしても,エンジンが冷えた状態では十分な出力が出ないため,この状態で始動アンローダバルブ325を操作して始動負荷軽減装置320による制御を終了して吸気調整装置310による既知の吸気調整を開始すると,圧縮機本体340の吸気口341を全開した全負荷運転に移行するため,エンジン350には急激な負荷が加わる。   Further, even if the engine is successfully started and reaches a predetermined rotational speed, sufficient output is not output when the engine is cold. In this state, the start unloader valve 325 is operated and the start load reducing device 320 operates. When the control ends and the known intake air adjustment by the intake air adjusting device 310 is started, the engine 350 shifts to a full load operation in which the intake port 341 of the compressor main body 340 is fully opened, so that a sudden load is applied to the engine 350.

このような急激な負荷が加わることによるエンジンストールを防止する方法としては,エンジン350の回転速度が所定の回転速度に達した後においても,始動負荷軽減装置320によって負荷が軽減された状態を維持してエンジンの暖機運転を行うことが有効である。   As a method of preventing the engine stall due to such a sudden load, even when the rotational speed of the engine 350 reaches a predetermined rotational speed, the state in which the load is reduced by the starting load reducing device 320 is maintained. Thus, it is effective to perform warm-up operation of the engine.

しかし,前掲の特許文献1として紹介した従来の始動負荷軽減装置320では,手動式の始動アンローダバルブ325をオペレータが切替操作する構成であるとこから,オペレータが適切な切替タイミングを掴めずに早期に切替を実行してしまうと,充分な暖機がされていないまま通常運転に移行することでエンジンをストールさせてしまうおそれがあり,また,逆に,ストールをおそれるあまり切替が遅れると,充分な暖機運転が行われた後も負荷軽減状態での運転が必要以上に継続されることで燃料が浪費されることとなるため,オペレータの技能如何によっては,始動負荷軽減装置の機能を充分に引き出すことができない。   However, in the conventional starting load reducing device 320 introduced as the above-mentioned Patent Document 1, since the operator is configured to switch the manual starter unloader valve 325, the operator can quickly detect the appropriate switching timing. If switching is performed, the engine may stall due to shifting to normal operation without sufficient warm-up, and conversely, if switching is delayed too much to cause stalling, Even after the warm-up operation is performed, the fuel is wasted by continuing the operation in the reduced load state more than necessary. Therefore, depending on the skill of the operator, the function of the starting load reducing device can be sufficiently It cannot be pulled out.

そこで本発明は,上記従来技術における欠点を解消するために成されたもので,エンジン駆動型圧縮機の始動時に,エンジン及び圧縮機本体の回転開始後,より短時間で,好適には始動時にスタータモータによってエンジンを回転させている間に,吸気調整弁を全閉とできるようにすることで,スタータモータが切り離されて自立運転を開始した,始動直後のエンジンにかかる負荷の大幅な軽減を図ることで,自然吸気型エンジンが搭載されている場合はもとより,過給式の採用によってダウンサイジングされたエンジンが搭載されている場合であっても,始動時におけるエンジンストールの発生を確実に防止することができるエンジン駆動型圧縮機の始動制御方法,及びエンジン駆動型作業機を提供することを目的とする。   Therefore, the present invention was made to eliminate the above-mentioned drawbacks of the prior art, and at the time of starting the engine-driven compressor, the engine and the compressor body start to rotate in a shorter time, preferably at the time of starting. By enabling the intake air adjustment valve to be fully closed while the engine is being rotated by the starter motor, the starter motor is disconnected and independent operation is started. As a result, not only when a naturally aspirated engine is installed, but also when an engine downsized by the supercharging system is installed, it is possible to reliably prevent the occurrence of engine stall at start-up. It is an object of the present invention to provide an engine-driven compressor start control method and an engine-driven work machine that can be used.

また,本発明の更なる目的は,前記目的に加え,始動負荷軽減モードでの運転の解除を,オペレータの勘や経験によらずに適切なタイミングで行うことができるようにすることで,暖機不足によるエンジンストールの発生や,不必要に長い負荷軽減状態での運転継続に伴う燃料の浪費を防止することのできるエンジン駆動型圧縮機の始動制御方法及びエンジン駆動型圧縮機を提供することを目的とする。   A further object of the present invention is to warm up the operation by releasing the operation in the starting load reduction mode at an appropriate timing without depending on the operator's intuition and experience. To provide an engine-driven compressor start control method and an engine-driven compressor capable of preventing the occurrence of engine stall due to a shortage of the engine and the waste of fuel due to the continuation of operation in an unnecessarily long load reduction state. With the goal.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。   Hereinafter, means for solving the problem will be described together with reference numerals used in the embodiment for carrying out the invention. This code is used to clarify the correspondence between the description of the scope of claims and the description of the mode for carrying out the invention. Needless to say, it is used in a limited manner for the interpretation of the technical scope of the present invention. It is not a thing.

上記目的を達成するために,本発明のエンジン駆動型圧縮機1の始動制御方法は,
エンジン50,前記エンジン50によって駆動される圧縮機本体40,及び前記圧縮機本体40に対する吸気を制御する吸気調整装置10を備え,前記吸気調整装置10が,前記圧縮機本体40の吸気口41を開閉する吸気調整弁11と,前記吸気調整弁11の閉弁受圧室113と前記圧縮機本体40の前記吐出側(図示の実施形態においてレシーバタンク60)間を連通する制御流路12と,前記圧縮機本体40の吐出側圧力が所定の定格圧力(P4)以上のときに前記制御流路12を開き,前記定格圧力(P4)未満のとき前記制御流路12を閉じる圧力調整弁13を備えたエンジン駆動型圧縮機1において,
前記吸気調整弁11に気密室(図示の例ではシリンダ)112を設け,該気密室112内を弁体116の動作を制御する受圧体(図示の例ではピストン)119によって仕切ることで,一方を前記閉弁受圧室113と成すと共に,他方を補助受圧室(図示の例ではスプリング室)114とし,前記閉弁受圧室113内の圧縮気体を逃がす逃がし流路14と,前記補助受圧室114内への外気の導入及び排出を可能とする吸排気流路22を設け,
前記逃がし流路14と前記吸排気流路22を閉じ,かつ,前記閉弁受圧室113と前記圧縮機本体の吐出側(図示の例ではレシーバタンク60)とを連通すると共に,前記補助受圧室114を前記吸気調整弁11の二次側に連通した状態でエンジン50を始動させる,始動負荷軽減モードでの始動を行い,
前記エンジン50の始動が判定され,かつ,前記エンジン50が所定の安定運転状態になったと判定されるまで,前記始動負荷軽減モードでの運転を維持すると共に,その後,前記吸気調整装置10による吸気調整を行う通常運転モードに移行することを特徴とする(請求項1)。
In order to achieve the above object, a start control method for the engine driven compressor 1 of the present invention includes:
An engine 50, a compressor main body 40 driven by the engine 50, and an intake air adjusting device 10 for controlling intake air to the compressor main body 40 are provided, and the intake air adjusting device 10 defines an intake port 41 of the compressor main body 40. An intake adjustment valve 11 that opens and closes, a closed pressure receiving chamber 113 of the intake adjustment valve 11, and a control flow path 12 that communicates between the discharge side (the receiver tank 60 in the illustrated embodiment) of the compressor body 40; A pressure adjusting valve 13 is provided that opens the control flow path 12 when the discharge side pressure of the compressor body 40 is equal to or higher than a predetermined rated pressure (P4) and closes the control flow path 12 when the pressure is less than the rated pressure (P4). In the engine driven compressor 1,
An airtight chamber (cylinder in the illustrated example) 112 is provided in the intake adjustment valve 11, and the inside of the airtight chamber 112 is partitioned by a pressure receiving body (piston in the illustrated example) 119 that controls the operation of the valve body 116. The auxiliary pressure receiving chamber (in the illustrated example, a spring chamber) 114 is formed as the valve closing pressure receiving chamber 113, and the escape passage 14 for releasing the compressed gas in the valve closing pressure receiving chamber 113, and the auxiliary pressure receiving chamber 114. An intake / exhaust flow path 22 that enables introduction and discharge of outside air to the
The relief flow path 14 and the intake / exhaust flow path 22 are closed, the closed valve pressure receiving chamber 113 communicates with the discharge side of the compressor body (the receiver tank 60 in the illustrated example), and the auxiliary pressure receiving chamber 114 is connected. Is started in the start load reduction mode, in which the engine 50 is started in a state where the engine is communicated with the secondary side of the intake air adjustment valve 11;
Until the engine 50 is determined to start and until it is determined that the engine 50 has reached a predetermined stable operation state, the operation in the start load reducing mode is maintained, and thereafter, the intake air intake by the intake air adjusting device 10 is maintained. It shifts to the normal operation mode which performs adjustment (Claim 1).

なお,本発明における吸気調整弁11は,図1及び図2に示した吸気調整弁11のように,前記気密室112,閉弁受圧室113及び補助受圧室114が弁体116や弁座115aと共に共通の弁箱111内に形成されている場合の他,図7に従来技術として示した構成のように,弁体や弁座を備えた吸気調整弁(吸気調整弁の本体)311と,この吸気調整弁311を開閉動作するアンローダレギュレータ316を別個に設けた構成とすることもでき,この場合,アンローダレギュレータ316のシリンダが前述の気密室112,このシリンダ(気密室)内に,ピストンやダイヤフラム等の受圧体を介して仕切られた室が,前述の閉弁受圧室113及び補助受圧室114となる。   Note that, in the intake adjustment valve 11 according to the present invention, like the intake adjustment valve 11 shown in FIGS. 1 and 2, the airtight chamber 112, the valve closing pressure receiving chamber 113, and the auxiliary pressure receiving chamber 114 are provided with a valve body 116 and a valve seat 115a. In addition to the case where it is formed in a common valve box 111, as in the configuration shown as the prior art in FIG. 7, an intake adjustment valve (intake adjustment valve main body) 311 having a valve body and a valve seat, An unloader regulator 316 that opens and closes the intake adjustment valve 311 can also be provided separately. In this case, the cylinder of the unloader regulator 316 is placed in the above-described airtight chamber 112 and this cylinder (airtight chamber) with a piston or The chamber partitioned through a pressure receiving body such as a diaphragm becomes the above-described valve closing pressure receiving chamber 113 and auxiliary pressure receiving chamber 114.

前述の始動制御方法において,前記エンジン50が前記安定運転状態になったと判定された後,前記逃がし流路14と前記吸排気流路22を開き,かつ,前記補助受圧室114と前記吸気調整弁11の二次側との連通を遮断すると共に,前記圧縮機本体の吐出側(レシーバタンク60)と前記閉弁受圧室113間を遮断して,前記通常運転モードに切り替えることができる(請求項2)。   In the above-described start control method, after it is determined that the engine 50 is in the stable operation state, the escape passage 14 and the intake / exhaust passage 22 are opened, and the auxiliary pressure receiving chamber 114 and the intake adjustment valve 11 are opened. The communication with the secondary side of the compressor is cut off, and the discharge side (receiver tank 60) of the compressor body and the valve-closing pressure receiving chamber 113 are cut off to switch to the normal operation mode. ).

更に,前記エンジン50の運転状態が所定の始動判定条件を満たしたときに,前記エンジンの始動を判定し,
前記エンジン50の始動判定後,第一の所定時間が経過し,かつ,前記エンジンの冷却水温度が所定の暖機完了温度(T1)を超えるか,又は,前記第一の所定時間の経過から更に第二の所定時間が経過するかの,いずれかの条件が満たされたとき,前記エンジン50が前記安定運転状態となったことを判定するものとしても良い(請求項3)。
Further, when the operating state of the engine 50 satisfies a predetermined start determination condition, the start of the engine is determined,
After the start determination of the engine 50, a first predetermined time elapses, and the engine coolant temperature exceeds a predetermined warm-up completion temperature (T1), or from the elapse of the first predetermined time. Further, it may be determined that the engine 50 is in the stable operation state when any of the second predetermined time elapses or the condition is satisfied (Claim 3).

前述の通常運転への移行は,エンジン50が安定運転状態であることの判定がされた後,直ちに行うものとしても良いが,
前記安定運転状態となったことの判定により,先ず,前記吸排気流路22を開くと共に,前記補助受圧室114と前記吸気調整弁11の二次側との連通を遮断する通常運転移行準備を行い,
前記安定運転状態となったことの判定より更に第三の所定時間が経過したとき,前記逃がし流路14を開くと共に,前記圧縮機本体の吐出側(レシーバタンク60)と前記閉弁受圧室113間を遮断して,前記通常運転モードに移行することが好ましい(請求項4)。
The transition to the normal operation described above may be performed immediately after it is determined that the engine 50 is in a stable operation state.
Based on the determination that the stable operation state has been established, first, the intake / exhaust flow path 22 is opened, and preparation for transition to normal operation is performed to block communication between the auxiliary pressure receiving chamber 114 and the secondary side of the intake adjustment valve 11. ,
When a third predetermined time has elapsed from the determination that the stable operation state has been reached, the escape passage 14 is opened, and the discharge side (receiver tank 60) of the compressor body and the valve closing pressure receiving chamber 113 are opened. It is preferable to interrupt the interval and shift to the normal operation mode.

更に,前記通常運転モードによる運転時,前記圧縮機本体40の吐出側圧力に応じて無負荷回転速度(N2)と定格回転速度(N4)間で前記エンジンの回転速度を制御する速度制御を行うと共に,
前記通常運転モードへの移行前,前記通常運転モードにおける前記無負荷回転速度(N2)よりも高い回転速度である始動回転速度(N3)での定速運転となるよう前記エンジンの回転速度を制御することもできる(請求項5)。
Further, during operation in the normal operation mode, speed control is performed to control the engine speed between the no-load speed (N2) and the rated speed (N4) according to the discharge side pressure of the compressor body 40. Along with
Before the transition to the normal operation mode, the engine speed is controlled so that the engine is operated at a constant speed at a start speed (N3) that is higher than the no-load speed (N2) in the normal operation mode. (Claim 5).

なお,前記エンジンの始動判定は,前記エンジン50の回転速度が所定の始動判定回転速度(N1)を超えたとき,前記エンジン50に設けた発電装置(図示せず)の発電電圧又は電流が所定の始動判定値を超えたとき,又は,前記エンジン50の油圧が所定の始動判定圧力を超えたときのいずれかの条件を満たしたときに行うものとすることができる(請求項6)。   The engine start determination is performed when the power generation voltage or current of a power generator (not shown) provided in the engine 50 is predetermined when the rotation speed of the engine 50 exceeds a predetermined start determination rotation speed (N1). This determination can be made when the start determination value is exceeded, or when any of the conditions when the hydraulic pressure of the engine 50 exceeds a predetermined start determination pressure is satisfied (Claim 6).

また,前記始動制御方法を実行する,本発明のエンジン駆動型圧縮機1は,
エンジン50,前記エンジン50によって駆動される圧縮機本体40,及び前記圧縮機本体40に対する吸気を制御する吸気調整装置10を備え,前記吸気調整装置10が,前記圧縮機本体40の吸気口41を開閉する吸気調整弁11と,前記吸気調整弁11の閉弁受圧室113と前記圧縮機本体40の前記吐出側(図示の例ではレシーバタンク60)間を連通する制御流路12と,前記圧縮機本体40の前記吐出側圧力が所定の定格圧力(P4)以上のときに前記制御流路12を開き,前記定格圧力(P4)未満のとき前記制御流路12を閉じる圧力調整弁13を備えたエンジン駆動型圧縮機1において,
前記吸気調整弁11に気密室(図示の例ではシリンダ)112を設け,該気密室112内を,弁体116の動作を制御する受圧体(図示の例ではピストン)119によって仕切ることで,一方を前記閉弁受圧室113と成すと共に,他方を補助受圧室(図示の例ではスプリング室)114とし,前記閉弁受圧室113内の圧縮気体を逃がす逃がし流路14,前記補助受圧室114内への外気の導入及び排出を可能とする吸排気流路22,前記吸気調整弁11の前記閉弁受圧室113を前記圧縮機本体の吐出側(レシーバタンク60)と連通させる強制閉弁流路21,及び,前記補助受圧室114を前記吸気調整弁11の二次側に連通する吸引流路23をそれぞれ設けると共に,前記各流路(14,21,22,23)を開閉する電磁弁(図1の例ではSV1〜SV3,図2の例ではSV3,SV4)を設け,
前記エンジン駆動型圧縮機1の各部の動作を制御するコントローラ30によって,前記エンジンの運転状態を判定するエンジン運転状態判定手段31と,前記エンジン運転状態判定手段31の判定結果に従い,運転モードを切り替える運転モード切替手段32を実現し,
前記運転モード切替手段32に,前記電磁弁の開閉動作を制御する電磁弁制御手段34を設けると共に,
前記電磁弁制御手段34が,
前記エンジン運転状態判定手段31が,前記エンジン50が始動待機状態にあると判定したとき,前記逃がし流路14と前記吸排気流路22を閉じ,前記強制閉弁流路21と前記吸引流路23を開く制御信号を前記各電磁弁に出力した始動負荷軽減モードで前記エンジン50の始動を待機し,
前記エンジン運転状態判定手段31が,前記エンジン50が始動したことを判定し,かつ,前記エンジンが所定の安定運転状態になったと判定する迄,前記始動負荷軽減モードを維持すると共に,その後,前記吸気調整装置10による吸気調整を行う通常運転モードに移行する(請求項7)。
Further, the engine drive type compressor 1 of the present invention for executing the start control method includes:
An engine 50, a compressor main body 40 driven by the engine 50, and an intake air adjusting device 10 for controlling intake air to the compressor main body 40 are provided, and the intake air adjusting device 10 defines an intake port 41 of the compressor main body 40. The intake adjustment valve 11 that opens and closes, the closed pressure receiving chamber 113 of the intake adjustment valve 11, and the control flow path 12 that communicates between the discharge side (the receiver tank 60 in the illustrated example) of the compressor body 40, and the compression There is provided a pressure adjusting valve 13 that opens the control flow path 12 when the discharge side pressure of the machine body 40 is equal to or higher than a predetermined rated pressure (P4) and closes the control flow path 12 when the pressure is less than the rated pressure (P4). In the engine driven compressor 1,
An airtight chamber (cylinder in the illustrated example) 112 is provided in the intake adjustment valve 11, and the inside of the airtight chamber 112 is partitioned by a pressure receiving body (piston in the illustrated example) 119 that controls the operation of the valve body 116. Is formed as the valve closing pressure receiving chamber 113, and the other is set as an auxiliary pressure receiving chamber (a spring chamber in the illustrated example) 114, and the escape passage 14 for releasing the compressed gas in the valve closing pressure receiving chamber 113 is provided in the auxiliary pressure receiving chamber 114. Intake / exhaust flow path 22 that enables introduction and discharge of outside air to / from the compressor, and a forced valve closing flow path 21 that communicates the closed pressure receiving chamber 113 of the intake adjustment valve 11 with the discharge side (receiver tank 60) of the compressor body. , And a suction passage 23 for communicating the auxiliary pressure receiving chamber 114 with the secondary side of the intake regulating valve 11, respectively, and an electromagnetic valve for opening and closing each passage (14, 21, 22, 23) (see FIG. 1 In the example SV1 to SV3, SV3, SV4 a) provided in the example of FIG. 2,
The controller 30 that controls the operation of each part of the engine-driven compressor 1 switches the operation mode according to the determination result of the engine operation state determination unit 31 that determines the operation state of the engine and the engine operation state determination unit 31. The operation mode switching means 32 is realized,
The operation mode switching means 32 is provided with a solenoid valve control means 34 for controlling the opening / closing operation of the solenoid valve,
The electromagnetic valve control means 34
When the engine operation state determination means 31 determines that the engine 50 is in a start standby state, the escape passage 14 and the intake / exhaust passage 22 are closed, and the forced valve passage 21 and the suction passage 23 are closed. In the starting load reduction mode in which a control signal for opening the engine is output to each solenoid valve,
Until the engine operating state determining means 31 determines that the engine 50 has started and determines that the engine has entered a predetermined stable operating state, the engine start state reducing mode is maintained, and thereafter The system shifts to a normal operation mode in which intake air adjustment is performed by the intake air adjusting device 10 (claim 7).

なお,本発明において電磁弁制御手段34が出力する前述の制御信号には,信号の出力停止(無信号)を含む。   In the present invention, the aforementioned control signal output by the solenoid valve control means 34 includes signal output stop (no signal).

上記構成のエンジン駆動型圧縮機1において,前記電磁弁制御手段34は,前記エンジン運転状態判定手段31が前記安定運転状態になったことを判定した後,前記逃がし流路14と前記吸排気流路22の開放と,前記強制閉弁流路21と前記吸引流路23の閉塞を行う制御信号を前記各電磁弁に出力することにより,前記通常運転モードへの切り替えを行うように構成することができる(請求項8)。   In the engine-driven compressor 1 having the above-described configuration, the solenoid valve control unit 34 determines that the engine operation state determination unit 31 has entered the stable operation state, and then the escape channel 14 and the intake / exhaust channel. And switching to the normal operation mode by outputting a control signal for closing the forcible valve closing channel 21 and the suction channel 23 to each electromagnetic valve. (Claim 8).

また,前記エンジン運転状態判定手段31は,前記エンジン50の運転状態が所定の始動判定条件を満たしたときに,前記エンジン50の始動を判定すると共に,前記エンジン50の始動判定後,第一の所定時間が経過し,かつ,前記エンジン50の冷却水温度が所定の暖機完了温度(T1)を超えるか,又は,前記第一の所定時間の経過から更に第二の所定時間が経過するかの,いずれかの条件が満たされたとき,前記エンジン50が前記安定運転状態となったことを判定するものとすることができる(請求項9)。   The engine operating state determination means 31 determines whether the engine 50 starts when the operating state of the engine 50 satisfies a predetermined start determination condition, and after the engine 50 start determination, Whether a predetermined time has elapsed and the coolant temperature of the engine 50 exceeds a predetermined warm-up completion temperature (T1), or whether a second predetermined time has elapsed from the elapse of the first predetermined time When any one of the above conditions is satisfied, it can be determined that the engine 50 is in the stable operation state (claim 9).

また,前記電磁弁制御手段34は,
前記エンジン運転状態判定手段31が,前記エンジン50が前記安定運転状態になったことを判定したとき,前記吸排気流路22を開くと共に,前記吸引流路23を閉じる制御信号を出力する,通常運転移行準備を実行すると共に,
前記安定運転状態の判定後,更に第三の所定時間が経過したとき,前記逃がし流路14を開くと共に,前記強制閉弁流路21を閉じる制御信号を出力して,前記通常運転モードへ移行するものとすることが好ましい(請求項10)。
The solenoid valve control means 34
When the engine operation state determination means 31 determines that the engine 50 has entered the stable operation state, the engine operation state determination means 31 outputs a control signal for opening the intake and exhaust passage 22 and closing the suction passage 23. While preparing for the transition,
When the third predetermined time has elapsed after the determination of the stable operation state, the control circuit outputs a control signal for opening the relief flow path 14 and closing the forced valve closing flow path 21 to shift to the normal operation mode. It is preferable to do this (claim 10).

更に,前記運転モード切替手段32には,エンジン50〔エンジン50のエンジンコントロールユニット(ECU)51〕に対し回転速度を指令する速度指令を出力するエンジン速度指令手段35を設けることができ,
前記エンジン速度指令手段35が,
前記通常運転モードによる運転時,前記圧縮機本体40の吐出側圧力(レシーバタンク60内の圧力)に応じて無負荷回転速度(N2)と定格回転速度(N4)間で前記エンジン50の回転速度を制御する速度指令を出力すると共に,
前記通常運転モードへの移行前,前記エンジン50の回転速度を,前記通常運転モードにおける前記無負荷回転速度(N2)よりも高い回転速度である始動回転速度(N3)による定速運転とする速度指令を出力するよう構成することができる(請求項11)。
Further, the operation mode switching means 32 can be provided with engine speed command means 35 for outputting a speed command for commanding the rotational speed to the engine 50 [engine control unit (ECU) 51 of the engine 50).
The engine speed command means 35 is
During operation in the normal operation mode, the rotational speed of the engine 50 between the no-load rotational speed (N2) and the rated rotational speed (N4) according to the discharge side pressure of the compressor body 40 (pressure in the receiver tank 60). Outputs a speed command to control
Prior to the transition to the normal operation mode, the speed of the engine 50 is set to a constant speed operation at a start rotation speed (N3) that is higher than the no-load rotation speed (N2) in the normal operation mode. A command can be output (claim 11).

更に,前記エンジン運転状態判定手段31が,前記エンジン50の始動判定を,前記エンジン50の回転速度が所定の始動判定回転速度(N1)を超えたとき,前記エンジン50に設けた発電装置(図示せず)の発電電圧又は電流が所定の始動判定値を超えたとき,又は,前記エンジン50の油圧が所定の始動判定圧力を超えたときのいずれかの条件を満たしたときに行うものとすることができる(請求項12)。   Further, the engine operating state determination means 31 makes a start determination of the engine 50. When the rotational speed of the engine 50 exceeds a predetermined start determination rotational speed (N1), a power generator (see FIG. (Not shown) when the power generation voltage or current exceeds a predetermined start determination value, or when the hydraulic pressure of the engine 50 exceeds a predetermined start determination pressure. (Claim 12).

以上で説明した本発明の構成により,本発明の始動制御方法を実行することにより,本発明のエンジン駆動型圧縮機1では,以下の顕著な効果を得ることができた。   By executing the start control method of the present invention with the configuration of the present invention described above, the following remarkable effects can be obtained in the engine-driven compressor 1 of the present invention.

本発明のエンジン駆動型圧縮機1の構成にあっては,エンジン50の始動時,吸気調整弁11の閉弁受圧室113に設けた逃がし流路14を閉じると共に,受圧体(図示の例ではピストン)119を介して閉弁受圧室113の反対側に形成された補助受圧室(スプリング室)114の吸排気流路22を閉じ,且つ,この補助受圧室114を吸引流路23によって吸気調整弁11の二次側に連通し,吸気調整弁11の閉弁受圧室113と圧縮機本体の吐出側(レシーバタンク60)とを強制閉弁流路21で連通する構成を採用したことで,図7を参照して説明した従来技術の始動負荷軽減装置320を使用して始動を行う場合に比較して,エンジン50の始動動作(圧縮機本体40の回転動作)の開始後,より短時間で圧縮機本体40の吸気口41を閉じることができ,これによりエンジン50の始動直後の負荷を大幅に軽減することができた。   In the configuration of the engine driven compressor 1 of the present invention, when the engine 50 is started, the relief passage 14 provided in the valve closing pressure receiving chamber 113 of the intake adjustment valve 11 is closed, and a pressure receiving body (in the illustrated example). The intake / exhaust flow path 22 of the auxiliary pressure receiving chamber (spring chamber) 114 formed on the opposite side of the valve closing pressure receiving chamber 113 via the piston 119 is closed, and the auxiliary pressure receiving chamber 114 is closed by the suction flow path 23 with the intake adjustment valve. 11, the valve closing pressure receiving chamber 113 of the intake adjustment valve 11 and the discharge side (receiver tank 60) of the compressor main body are communicated by a forced valve closing flow path 21. Compared with the case where the starting load reducing device 320 of the prior art described with reference to FIG. 7 is used for starting, the engine 50 starts in a shorter time after the start operation (rotation operation of the compressor body 40) is started. Inlet of compressor main body 40 1 can be a closed and thereby it is possible to greatly reduce the load immediately after the start of the engine 50.

すなわち,前掲の特許文献1に記載の構成では,始動時においても逃がし流路314が開放された状態にあるため,圧縮機本体340の回転によってレシーバタンク360内の圧力が上昇しても,上昇した圧力の一部は吸気調整弁311の閉弁動作に使用されずに放気されていた。   That is, in the configuration described in the above-mentioned Patent Document 1, since the escape passage 314 is opened even at the time of start-up, even if the pressure in the receiver tank 360 increases due to the rotation of the compressor body 340, the increase occurs. A part of the pressure was discharged without being used for the valve closing operation of the intake adjustment valve 311.

また,特許文献1に記載の構成では,アンローダレギュレータ316に設けられているピストンやダイヤフラム等の受圧体(図示せず)を,負圧によって閉弁方向に移動させる一切の構成を備えていない。   Further, the configuration described in Patent Document 1 does not include any configuration for moving a pressure receiving body (not shown) such as a piston or a diaphragm provided in the unloader regulator 316 in the valve closing direction by negative pressure.

これに対し,上記本願の構成では,強制閉弁流路21によって閉弁受圧室113を,逃がし流路14を閉じた状態で圧縮機本体の二次側(レシーバタンク60)に連通することで,圧縮機本体の吐出側圧力と閉弁受圧室113内の圧力が同圧となることで圧縮機本体の吐出側で生じた僅かな圧力上昇であってもダイレクトに受圧体119に伝えることができるようになっている。   On the other hand, in the configuration of the present application, the forced valve closing passage 21 communicates the valve closing pressure receiving chamber 113 with the secondary passage (receiver tank 60) of the compressor body with the relief passage 14 closed. The pressure on the discharge side of the compressor main body and the pressure in the valve closing pressure receiving chamber 113 are the same pressure, so that even a slight pressure increase generated on the discharge side of the compressor main body can be directly transmitted to the pressure receiving body 119. It can be done.

しかも,補助受圧室114を吸気調整弁11の二次側において吸入流路115と連通したことで,圧縮機本体40が回転を開始して吸入流路115内が負圧となると,補助受圧室114内も負圧となることで,受圧体119を閉弁方向へ移動させる力を発揮する。   In addition, when the auxiliary pressure receiving chamber 114 communicates with the suction flow path 115 on the secondary side of the intake adjustment valve 11, the compressor main body 40 starts to rotate and the suction flow path 115 becomes negative pressure. The negative pressure in 114 also exerts a force to move the pressure receiving body 119 in the valve closing direction.

その結果,本願の構成では,同性能の吸気調整弁11を使用した場合であっても,特許文献1に記載の構成を採用する場合に比較して,圧縮機本体40の二次側圧力(レシーバタンク60内の圧力)が低い状態で吸気調整弁11を全閉とした無負荷運転状態に移行することができ,これにより,起動から回転立上がり時の始動トルクが小さく最も不安定な状態にある始動直後のエンジン50にかかる負荷を低減することができ,スムーズにエンジン50を立ち上げることで,エンジンストールを防止することができた。   As a result, in the configuration of the present application, even when the intake adjustment valve 11 having the same performance is used, the secondary side pressure of the compressor body 40 (see FIG. It is possible to shift to a no-load operation state in which the intake adjustment valve 11 is fully closed while the pressure in the receiver tank 60 is low. The load applied to the engine 50 immediately after a certain start can be reduced, and the engine 50 can be started up smoothly to prevent engine stall.

エンジン運転状態判定手段31が,エンジン50の始動判定後,所定の第一設定時間を経過し,かつ冷却水温が予め設定した温度(T1)を超えるか,または第二設定時間経過するかの,いずれかの条件が満たされたときに,エンジン50が安定運転状態にあると判定すると共に,該安定運転状態であることの判定がされた後に,始動負荷軽減モードから通常運転モードに移行(自動移行)する構成を採用したことで,エンジン50の回転速度や出力が不安定な状態(暖機運転未完)で始動負荷軽減モードを終了して通常運転モードに移行することがなく,エンジンストールの発生をより確実に防止することができた。   Whether the engine operating state determination means 31 has passed a predetermined first set time after the start of the engine 50 and the cooling water temperature exceeds a preset temperature (T1), or whether a second set time has elapsed, When any of the conditions is satisfied, it is determined that the engine 50 is in the stable operation state, and after the determination that the engine 50 is in the stable operation state is made, the start load reduction mode is shifted to the normal operation mode (automatic operation mode). Transition), the engine 50 is not in the state where the engine speed or output is unstable (warm-up operation incomplete), and the start load reduction mode is not terminated and the normal operation mode is not entered. It was possible to prevent the occurrence more reliably.

特に,上記構成では,夏季等の暖かい時期における始動や,エンジン50の停止後の再始動のように,既にエンジン50が暖まった状態で始動する場合,前記第一設定時間が経過した後,第二設定時間が経過する前に,水温が設定温度(T1)に達すると安定運転状態であることが判定されて通常運転モードへの移行が可能となることで,常に第二設定時間が経過するまで運転を継続する場合に比較して始動負荷軽減モードでの運転時間を短縮でき,始動負荷軽減モードでの運転による燃料の消費量を減少させることができた。   In particular, in the above configuration, when the engine 50 is already warmed up, such as in a warm season such as summer or when the engine 50 is restarted after being stopped, the first set time has elapsed. If the water temperature reaches the set temperature (T1) before the second set time elapses, it is determined that the operation is stable and the normal operation mode can be entered, so the second set time always elapses. Compared with the case where the operation is continued until the operation load is reduced, the operation time in the start load reduction mode can be shortened, and the amount of fuel consumed by the operation in the start load reduction mode can be reduced.

なお,油冷式の圧縮機本体を搭載したエンジン駆動型圧縮機では,レシーバタンク60内に回収された潤滑油をレシーバタンク60内の圧力によって圧送することで圧縮機本体40に再度給油する構成を採用するが,本発明の構成では前述したように,従来の構造(図7参照)に比較して,圧縮機本体40の吐出側圧力(レシーバタンク60内の圧力)が低い状態で吸気調整弁11を全閉とした始動負荷軽減モード運転が行われる。   In an engine-driven compressor equipped with an oil-cooled compressor body, the lubricating oil collected in the receiver tank 60 is pumped by the pressure in the receiver tank 60 to supply the compressor body 40 again. However, in the configuration of the present invention, as described above, the intake air adjustment is performed in a state where the discharge side pressure of the compressor body 40 (pressure in the receiver tank 60) is lower than that of the conventional structure (see FIG. 7). The start load reduction mode operation is performed with the valve 11 fully closed.

そのため,寒冷時等,潤滑油の粘性が増大して,流動性が低下している場合,この状態から通常運転に移行して全負荷運転が開始されると,全負荷運転への移行初期において圧縮機本体40に対する給油が不足するおそれがある。   For this reason, when the viscosity of the lubricating oil increases and the fluidity decreases, such as during cold weather, when the full load operation is started from this state, the initial transition to full load operation will occur. There is a possibility that the oil supply to the compressor body 40 is insufficient.

しかし,始動負荷軽減モード後の,通常運転への移行を,通常運転移行準備を行った後に行う,2段階の構成とした例では,補助受圧室114に連通する吸引流路23を閉じると共に吸排気流路22を開くことで受圧体119に作用していた負圧が消失することにより,吸気調整弁11が一時的に僅かに開き,圧縮機本体40が吸気,圧縮を開始することで吐出側圧力(レシーバタンク60内の圧力)が始動負荷軽減モード時の圧力(P1)よりも高い圧力(P2)に上昇すると共に,この圧縮に伴い吐出空気温度も上昇して潤滑油が温められることで,油冷式の圧縮機本体40を搭載したエンジン駆動型圧縮機1を,寒冷時等に使用する場合であっても,圧縮機本体40に対する給油不足や,給油不足に伴う吐出空気温度の異常上昇により当該圧縮機が非常停止することを防止することができた。   However, in the example in which the transition to the normal operation after the start load reduction mode is performed after the preparation for the transition to the normal operation is performed, the suction passage 23 communicating with the auxiliary pressure receiving chamber 114 is closed and the intake / exhaust is closed. When the air flow path 22 is opened, the negative pressure acting on the pressure receiving body 119 disappears, so that the intake adjustment valve 11 is slightly opened temporarily, and the compressor body 40 starts intake and compression, thereby causing the discharge side. As the pressure (pressure in the receiver tank 60) rises to a pressure (P2) higher than the pressure (P1) in the starting load reduction mode, the discharge air temperature also rises with this compression and the lubricating oil is warmed. Even when the engine-driven compressor 1 equipped with the oil-cooled compressor body 40 is used in cold weather, the compressor body 40 is insufficiently supplied with oil or the discharge air temperature is abnormal due to insufficient supply of oil. By the rise It was possible to prevent the said compressor emergency stop.

また,通常運転移行準備時に吸気調整弁11が僅かに開いて負荷が増大し,その後,通常運転モードへの移行時に吸気調整弁11が全開となることで,圧縮機本体40の負荷についても段階的に増加させることができ,無負荷運転の状態から急激に全負荷運転に移行する場合に比較してエンジンストールを生じ難くすることができると共に,通常運転移行準備時に,圧縮機本体40の吐出側圧力(レシーバタンク60内の圧力)が,既に,始動負荷軽減モード時の圧力(P1)よりも高い圧力(P2)に上昇していることで,定格圧力(P4)まで昇圧させる時間を短縮することができた。  In addition, the intake adjustment valve 11 is slightly opened at the time of preparation for transition to normal operation, and the load increases. Thereafter, the intake adjustment valve 11 is fully opened at the time of transition to the normal operation mode, so that the load on the compressor body 40 is also stepped. The engine stall can be made less likely to occur compared to the case where the full load operation is suddenly shifted from the no-load operation state, and the discharge of the compressor main body 40 is prepared during preparation for the normal operation shift. Since the side pressure (pressure in the receiver tank 60) has already increased to a pressure (P2) higher than the pressure (P1) in the start load reduction mode, the time to increase the pressure to the rated pressure (P4) is shortened. We were able to.

始動負荷軽減モード時のエンジン50の回転速度である始動回転速度(N3)を,通常運転モードでの運転時における無負荷回転速度(N2)に対し高回転に設定することで,エンジン50の始動から立上がり時における始動トルクが大きくなり,始動性を向上させることができた。   The engine speed of the engine 50 is started by setting the engine speed (N3), which is the engine speed of the engine 50 in the start load reduction mode, to be higher than the no-load speed (N2) during operation in the normal operation mode. As a result, the starting torque at the start-up increased and the startability was improved.

また,始動回転速度(N3)を通常運転モード時における無負荷回転速度(N2)よりも高回転に設定したことで,冷却水温の上昇が早くなり,冷却水温を安定運転状態であることの判定基準とする場合,冷却水温が判定基準となる所定温度(T1)を超える迄の時間が短くなり,始動負荷軽減モードでの暖機運転を早期に終了して通常運転モードに移行して,被圧縮気体の圧縮を開始することができた。   In addition, the start rotation speed (N3) is set to be higher than the no-load rotation speed (N2) in the normal operation mode, so that the cooling water temperature rises faster and the cooling water temperature is determined to be in a stable operation state. In the case of the standard, the time until the cooling water temperature exceeds the predetermined temperature (T1) as the judgment criterion is shortened, the warm-up operation in the start load reduction mode is terminated early, the normal operation mode is entered, and the The compression of the compressed gas could be started.

さらに,始動回転速度(N3)を,通常運転モード時の無負荷回転速度(N2)よりも高く設定することは,低回転域のトルクや出力が小さく,始動時にストールし易いターボ過給器を備えたエンジンを搭載したエンジン駆動型圧縮機を始動する場合であっても,始動時における過給圧,従ってエンジン50の出力を高めることができ,エンジンストールを生じ難くすることができ,しかも,通常運転に移行した際,無負荷回転速度(N2)から定格回転速度(N4)に回転速度を上昇させる場合に比較して,前記無負荷回転速度(N2)よりも高速である始動回転速度(N3)から定格回転速度(N4)に回転速度を上昇させる場合の方が,より短時間で定格回転速度(N4)に到達するため,圧縮機本体の吐出側圧力(レシーバタンク60内の圧力)を短時間で,特に,前述したように,圧縮機本体の吐出側圧力(レシーバタンク60内の圧力)が始動負荷軽減モード時の圧力(P1)よりも高い圧力(P2)に上昇している場合には更に短時間で,定格圧力(P4)まで昇圧させることが可能となる。   Furthermore, setting the starting rotational speed (N3) higher than the no-load rotational speed (N2) in the normal operation mode can reduce the torque and output in the low rotational range and make the turbocharger easy to stall at the start. Even when starting an engine-driven compressor equipped with the engine provided, it is possible to increase the supercharging pressure at the time of starting, and thus the output of the engine 50, and to make it difficult for engine stall to occur, Compared with the case where the rotational speed is increased from the no-load rotational speed (N2) to the rated rotational speed (N4) when shifting to the normal operation, the starting rotational speed (N2) is higher than the no-load rotational speed (N2). When the rotational speed is increased from N3) to the rated rotational speed (N4), the rated rotational speed (N4) is reached in a shorter time. Pressure) within a short time, and in particular, as described above, the discharge side pressure (pressure in the receiver tank 60) of the compressor body is set to a pressure (P2) higher than the pressure (P1) in the start load reduction mode. When the pressure rises, the pressure can be raised to the rated pressure (P4) in a shorter time.

本発明のエンジン駆動型圧縮機の説明図。Explanatory drawing of the engine drive type compressor of this invention. 本発明のエンジン駆動型圧縮機の変形例を示す説明図。Explanatory drawing which shows the modification of the engine drive type compressor of this invention. コントローラの機能ブロック図。Functional block diagram of the controller. 各部の動作タイミングを示すタイムチャート。The time chart which shows the operation timing of each part. 各部の動作タイミングを示すタイムチャート(通常運転移行準備を行う場合)。Time chart showing the operation timing of each part (when preparing for normal operation transition). 吸気調整弁(変形例)の断面図。Sectional drawing of an intake regulating valve (modification). 従来のエンジン駆動型圧縮機の説明図。Explanatory drawing of the conventional engine drive type compressor.

以下に,本発明の始動制御方法を実行する,本発明のエンジン駆動型圧縮機の構成例を,添付図面を参照しながら説明する。   Hereinafter, a configuration example of an engine-driven compressor according to the present invention that executes the start control method according to the present invention will be described with reference to the accompanying drawings.

〔エンジン駆動型圧縮機の全体構成〕
図1中の符号1は本発明のエンジン駆動型圧縮機であり,このエンジン駆動型圧縮機1は,圧縮機本体40,前記圧縮機本体40を駆動するエンジン50,前記圧縮機本体40より吐出された圧縮気体を貯留するレシーバタンク60を備え,圧縮機本体40より吐出された圧縮気体を,レシーバタンク60内に貯留した後,逆止弁61を介して図示せざる空気作業機等が接続された消費側に対して供給することができるように構成されている。
[Overall configuration of engine-driven compressor]
Reference numeral 1 in FIG. 1 denotes an engine-driven compressor according to the present invention. The engine-driven compressor 1 is discharged from a compressor body 40, an engine 50 that drives the compressor body 40, and the compressor body 40. A receiver tank 60 for storing the compressed gas, and after storing the compressed gas discharged from the compressor body 40 in the receiver tank 60, an air working machine (not shown) is connected via the check valve 61. It is comprised so that it can supply with respect to the consumed side.

本実施形態において,前述の圧縮機本体40は潤滑,冷却及び密封のための潤滑油と共に被圧縮気体を圧縮する油冷式のスクリュ圧縮機であり,レシーバタンク60内には,吐出流路62を介して潤滑油との気液混合流体として吐出された圧縮気体が導入され,このレシーバタンク60内で潤滑油を分離することができるように構成されていると共に,レシーバタンク60内に回収された潤滑油を,オイルクーラ63を介して圧縮機本体40に再度供給する,給油流路64を備えている。   In the present embodiment, the aforementioned compressor body 40 is an oil-cooled screw compressor that compresses a gas to be compressed together with lubricating oil for lubrication, cooling, and sealing. Compressed gas discharged as a gas-liquid mixed fluid with the lubricating oil is introduced through the gas tank, and the lubricating oil can be separated in the receiver tank 60 and is collected in the receiver tank 60. An oil supply passage 64 is provided for supplying again the lubricating oil to the compressor body 40 via the oil cooler 63.

もっとも,本発明で対象とするエンジン駆動型圧縮機1に搭載する圧縮機本体40は,このような油冷式のものに限定されず,被圧縮気体の圧縮に潤滑油を必要としない,オイルフリー式の圧縮機本体を搭載するものとしても良く,この場合,前述のレシーバタンク60や,レシーバタンク60内に回収された潤滑油を圧縮機本体40に供給するための給油流路64等は省略することができる。   However, the compressor main body 40 mounted on the engine-driven compressor 1 that is the subject of the present invention is not limited to such an oil-cooled type, and an oil that does not require lubricating oil to compress the compressed gas. A free-type compressor main body may be mounted. In this case, the above-described receiver tank 60, an oil supply passage 64 for supplying lubricating oil collected in the receiver tank 60 to the compressor main body 40, and the like are provided. Can be omitted.

〔吸気調整装置〕
以上のように構成されたエンジン駆動型圧縮機1には,圧縮機本体40の二次側圧力,本実施形態にあってはレシーバタンク60内の圧力が所定の定格圧力(P4)に近付くよう,レシーバタンク60内の圧力が所定の定格圧力(P4)以上になると圧縮機本体40の吸気口41を絞り又は閉じ,定格圧力(P4)未満になると全開にする吸気調整を行う吸気調整装置10を備えている点では,図7を参照して説明した従来のエンジン駆動型圧縮機の構成と同様である。
[Intake adjuster]
In the engine-driven compressor 1 configured as described above, the secondary side pressure of the compressor body 40, that is, the pressure in the receiver tank 60 in the present embodiment, approaches the predetermined rated pressure (P4). When the pressure in the receiver tank 60 becomes equal to or higher than a predetermined rated pressure (P4), the intake port 41 of the compressor body 40 is throttled or closed, and when the pressure is lower than the rated pressure (P4), the intake air adjustment device 10 performs the intake air adjustment to be fully opened. Is the same as the configuration of the conventional engine-driven compressor described with reference to FIG.

また,この吸気調整装置10が,圧縮機本体40の吸気口41を開閉制御する,図示の例では常時開(ノーマリオープン)型の吸気調整弁11と,この吸気調整弁11の閉弁受圧室113と圧縮機本体の吐出側(レシーバタンク60)間を連通する制御流路12,レシーバタンク60内の圧力に応じて,レシーバタンク60内の圧力が所定の定格圧力(P4)以上であるとき前記制御流路12を開くと共に,定格圧力(P4)未満であるとき前記制御流路12を閉じる圧力調整弁13によって構成されている点,及び,前記閉弁受圧室113内の圧縮気体を絞り15を介して放出する逃がし流路14を備えている点でも,図7を参照して説明したエンジン駆動型圧縮機の構成と同様であるが,本発明のエンジン駆動型圧縮機1では,本発明の始動制御を可能とするため,各部を下記のように構成している。   In addition, the intake adjusting device 10 controls opening and closing of the intake port 41 of the compressor body 40. In the illustrated example, the intake adjusting valve 11 that is normally open (normally open) and the closed pressure receiving pressure of the intake adjusting valve 11 are shown. The pressure in the receiver tank 60 is equal to or higher than a predetermined rated pressure (P4) according to the pressure in the control flow path 12 and the receiver tank 60 communicating between the chamber 113 and the discharge side (receiver tank 60) of the compressor body. When the control flow path 12 is opened and the pressure control valve 13 is closed when the pressure is less than the rated pressure (P4), the compressed gas in the closed pressure receiving chamber 113 is The configuration of the engine-driven compressor described with reference to FIG. 7 is the same as that of the engine-driven compressor described with reference to FIG. 7 in that the escape flow path 14 that discharges through the throttle 15 is provided. Of the present invention To enable dynamic control, it constitutes each part as follows.

〔吸気調整弁〕
圧縮機本体40の吸気口41を開閉する前述の吸気調整弁11は,そのボディ(弁箱)111内に形成された空間によって被圧縮気体が通過する吸入流路115が形成されていると共に,この吸入流路115内に設けた弁座115aに,弁体116を着座させることで,吸入流路115を閉塞することができるように構成されている。
[Intake adjustment valve]
The above-described intake adjustment valve 11 that opens and closes the intake port 41 of the compressor body 40 has a suction passage 115 through which a compressed gas passes by a space formed in the body (valve box) 111, The valve body 116 is seated on a valve seat 115a provided in the suction flow path 115 so that the suction flow path 115 can be closed.

この弁体116は,円盤状の弁体116に弁軸116aが取り付けられた,所謂「傘型弁」であり,ボディ111内に形成された円筒状のスリーブ117内に弁軸116aを挿入した状態で,このスリーブ117の軸線方向に弁体116を進退移動させることで,弁体116を弁座115aに着座させた閉弁位置と,弁座115aから弁体116が離間した開弁位置間を移動できるように構成されている。   The valve body 116 is a so-called “umbrella valve” in which a valve shaft 116 a is attached to a disc-shaped valve body 116, and the valve shaft 116 a is inserted into a cylindrical sleeve 117 formed in the body 111. In this state, by moving the valve body 116 forward and backward in the axial direction of the sleeve 117, between the valve closing position where the valve body 116 is seated on the valve seat 115a and the valve opening position where the valve body 116 is separated from the valve seat 115a. It is configured to be able to move.

このような弁体116の移動を可能とするために,吸気調整弁11の弁箱111には,前述のスリーブ117を介して吸入流路と連通するシリンダ112が前記スリーブ117と同軸に形成されている。   In order to enable such movement of the valve body 116, a cylinder 112 communicating with the suction flow path via the sleeve 117 is formed coaxially with the sleeve 117 in the valve box 111 of the intake adjustment valve 11. ing.

このシリンダ112は,スリーブ117に弁軸116aが挿入された状態で,且つ,前記スリーブ117の形成側とは反対側の端部を端板118で塞ぐことにより気密室を成し,この気密室(シリンダ)112内を,弁軸116aの他端に連結された受圧体119,本実施形態ではピストンを介して二室に分割することにより,前記端板118側に吸気調整弁11の閉弁受圧室113が形成されていると共に,ピストン119を介して前記閉弁受圧室113とは反対側に,補助受圧室114が形成されている。   The cylinder 112 forms an airtight chamber in a state where the valve shaft 116 a is inserted into the sleeve 117 and closes an end opposite to the formation side of the sleeve 117 with an end plate 118. The inside of the (cylinder) 112 is divided into two chambers via a pressure receiving body 119 connected to the other end of the valve shaft 116a, in this embodiment a piston, so that the intake adjustment valve 11 is closed on the end plate 118 side. A pressure receiving chamber 113 is formed, and an auxiliary pressure receiving chamber 114 is formed on the opposite side of the valve closing pressure receiving chamber 113 via a piston 119.

図示の構成では,吸気調整弁11を常時開(ノーマリオープン)型とするために,前述した補助受圧室114内にピストン119を閉弁受圧室113側に押圧するスプリング114aを収容して,補助受圧室114にスプリング室としての機能を持たせているが,吸気調整弁11を常時開型とすることができるものであれば,スプリング114aは必ずしも補助受圧室114に設ける必要はない。   In the illustrated configuration, in order to make the intake adjustment valve 11 normally open (normally open) type, a spring 114 a that presses the piston 119 toward the valve closing pressure receiving chamber 113 is accommodated in the auxiliary pressure receiving chamber 114 described above. Although the auxiliary pressure receiving chamber 114 has a function as a spring chamber, the spring 114a is not necessarily provided in the auxiliary pressure receiving chamber 114 as long as the intake adjustment valve 11 can be normally opened.

なお,図示の構成では,弁体116や弁座115aのみならず,弁体116を進退移動させるためのシリンダ112やピストン119等をいずれもボディ(弁箱)111に設けた構成を示したが,図7を参照して従来技術として説明したエンジン駆動型圧縮機のように,弁体の駆動機構を備えない吸気調整弁本体と,この吸気調整弁本体の弁体を駆動するアンローダレギュレータ等の駆動機構をそれぞれ別体とした構成を採用するものとしても良く,この場合,前述した閉弁受圧室113や補助受圧室114,受圧体119は,アンローダレギュレータ内に形成される。   In the illustrated configuration, not only the valve body 116 and the valve seat 115a but also a cylinder 112, a piston 119, and the like for moving the valve body 116 forward and backward are provided in the body (valve box) 111. 7, as in the case of the engine-driven compressor described as the prior art with reference to FIG. 7, an intake adjustment valve body that does not include a valve body drive mechanism, an unloader regulator that drives the valve body of the intake adjustment valve body, and the like. A configuration in which the drive mechanisms are separately provided may be employed. In this case, the above-described valve closing pressure receiving chamber 113, auxiliary pressure receiving chamber 114, and pressure receiving body 119 are formed in the unloader regulator.

また,図1及び図2に示した例では,受圧体(ピストン)119を,弁体116の弁軸116aに直接取り付けた構成を示したが,図6に示すように,図1及び図2の構成における弁軸116aを長手方向の中間位置で分割して,弁体116に連結された弁軸116a’と,受圧体(ピストン)119に連結されたピストンロッド119aを別個に設け,弁体閉鎖用スプリング116bによって,圧縮機本体40の回転によって生じた吸入流路115内の負圧によって弁体116が弁座115aから離間し得る程度の弱い力で,弁体116を弁座115a側に付勢した吸気調整弁11を使用するものとしても良い。   1 and 2, the pressure receiving body (piston) 119 is directly attached to the valve shaft 116a of the valve body 116. As shown in FIG. 6, as shown in FIG. The valve shaft 116a in the configuration of 1 is divided at an intermediate position in the longitudinal direction, and a valve shaft 116a 'connected to the valve body 116 and a piston rod 119a connected to a pressure receiving body (piston) 119 are provided separately, and the valve body Due to the closing spring 116b, the valve body 116 is moved toward the valve seat 115a with a weak force such that the valve body 116 can be separated from the valve seat 115a by the negative pressure in the suction flow path 115 generated by the rotation of the compressor body 40. The energized intake adjustment valve 11 may be used.

この構成では,圧縮機本体40が停止した状態では,弁体116は弁座115aと接触した状態にあるが,圧縮機本体40の作動時,スプリング114aの付勢力によって受圧体(ピストン)119が紙面左側に移動している状態では圧縮機本体40に対する吸気が可能な状態(開弁状態)となり,閉弁受圧室113に対する圧縮気体の導入によって受圧体(ピストン)119が紙面右側に移動すると,ピストンロッド119aが弁軸116a’に突合して弁体116を弁座115aに押圧して開かないようにすることで閉弁できるようになっている。   In this configuration, the valve body 116 is in contact with the valve seat 115a when the compressor main body 40 is stopped. However, when the compressor main body 40 is operated, the pressure receiving body (piston) 119 is moved by the biasing force of the spring 114a. In the state of moving to the left side of the paper, the compressor main body 40 can be sucked (opened state), and when the pressure receiving body (piston) 119 is moved to the right side of the paper by introducing compressed gas into the valve closing pressure receiving chamber 113, The piston rod 119a is brought into contact with the valve shaft 116a ′ so that the valve body 116 is pressed against the valve seat 115a so as not to be opened, so that the valve can be closed.

更に,弁体116の駆動機構として,図示の例では,気密室であるシリンダ112内を,閉弁受圧室113に導入された圧縮気体の圧力を受けて移動するピストン119を受圧体として設けることによって仕切る構成を採用したが,受圧体119は前述のピストンに限定されず,閉弁受圧室113内に導入された圧縮気体によって弁体116の動作を制御し得るものであれば,例えばダイヤフラム等を受圧体119としても良い。   Furthermore, as a driving mechanism for the valve body 116, in the illustrated example, a piston 119 that moves under the pressure of the compressed gas introduced into the valve closing pressure receiving chamber 113 in the cylinder 112, which is an airtight chamber, is provided as a pressure receiving body. However, the pressure receiving body 119 is not limited to the above-described piston, and may be, for example, a diaphragm or the like as long as the operation of the valve body 116 can be controlled by the compressed gas introduced into the valve closing pressure receiving chamber 113. The pressure receiving body 119 may be used.

〔閉弁受圧室側の流路〕
(1)閉弁受圧室側流路の種類
吸気調整弁11に設けられた閉弁受圧室113には,前述の吸気調整装置10を構成する前述の制御流路12や,前述の逃がし流路14が連通されている他,前記制御流路12をバイパスして閉弁受圧室113を圧縮機本体の吐出側(レシーバタンク60)に連通する強制閉弁流路21が連通されている。
[Flow path on valve-closing pressure chamber side]
(1) Type of valve closing pressure receiving chamber side flow path In the valve closing pressure receiving chamber 113 provided in the intake air adjusting valve 11, the above-described control flow path 12 constituting the above-described intake air adjusting device 10 and the above-described relief flow path are provided. 14 is communicated, and a forced valve closing channel 21 is connected which bypasses the control channel 12 and communicates the valve closing pressure receiving chamber 113 to the discharge side (receiver tank 60) of the compressor body.

(2)制御流路
このうちの制御流路12は,前述した吸気調整装置10を構成するもので,圧縮機本体40の吐出側(レシーバタンク60)と吸気調整弁11の閉弁受圧室113間を連通する流路であり,該制御流路12中に設けられた圧力調整弁13によって圧縮機本体40の吐出側圧力(レシーバタンク60内の圧力)が定格圧力(P4)以上になると制御流路12を開き,定格圧力(P4)未満のとき制御流路12を閉じて,吸気調整弁11の閉弁受圧室113に対する作動圧力の導入を制御する。
(2) Control flow path Among these, the control flow path 12 constitutes the intake air adjusting device 10 described above, and the discharge side (receiver tank 60) of the compressor body 40 and the closed pressure receiving chamber 113 of the intake air adjusting valve 11 are included. When the discharge side pressure (pressure in the receiver tank 60) of the compressor main body 40 becomes equal to or higher than the rated pressure (P4) by the pressure adjusting valve 13 provided in the control flow path 12, the flow is communicated with the control flow path 12. The flow path 12 is opened, and when the pressure is less than the rated pressure (P4), the control flow path 12 is closed to control the introduction of the operating pressure to the closed pressure receiving chamber 113 of the intake adjustment valve 11.

図示の例では,この圧力調整弁13として,圧力調整弁13の一次側圧力によって弁体を弁座より離間させる機械制御式の構造のものを示したが,圧力調整弁は,例えばこれを電空レギュレータ等の電気制御式の弁によって構成し,レシーバタンク60内の圧力を検出した圧力センサからの検出信号を受信した後述のコントローラ30からの制御信号によって,レシーバタンク60内の圧力に応じた開度で制御流路12を開閉するように構成するものとしても良い。   In the illustrated example, the pressure control valve 13 has a mechanical control structure in which the valve body is separated from the valve seat by the primary pressure of the pressure control valve 13. It is configured by an electrically controlled valve such as an empty regulator, and in accordance with the pressure in the receiver tank 60 by a control signal from a controller 30 (described later) that has received a detection signal from a pressure sensor that has detected the pressure in the receiver tank 60. The control channel 12 may be configured to open and close with the opening.

(3)逃がし流路
また,前述した逃がし流路14は,吸気調整弁11の閉弁受圧室113内の圧縮気体を放気するための流路であり,この逃がし流路14によって閉弁受圧室113内の圧縮気体を放気する。
(3) Relief flow path The above-described relief flow path 14 is a flow path for discharging the compressed gas in the valve closing pressure receiving chamber 113 of the intake adjustment valve 11, and the valve closing pressure received by this relief flow path 14. The compressed gas in the chamber 113 is released.

本発明の構成では,この逃がし流路14に電磁弁SV2を設けて逃がし流路14を開閉できるようにすることで,通常運転モードでの運転時には閉弁受圧室113内の圧縮気体を放気するが,始動負荷軽減モード時には逃がし流路14を閉じることができるように構成している。   In the configuration of the present invention, an electromagnetic valve SV2 is provided in the escape flow path 14 so that the escape flow path 14 can be opened and closed, so that the compressed gas in the valve closed pressure receiving chamber 113 is discharged during operation in the normal operation mode. However, the relief flow path 14 can be closed in the starting load reduction mode.

図示の構成では,この逃がし流路14に絞り15を設け放気量を調整しているが,逃がし流路14の管径を調整して放気量を調整する場合,絞り15は必ずしも設けなくても良い。   In the configuration shown in the figure, the throttle 15 is provided in the escape flow path 14 to adjust the air discharge amount. However, when adjusting the air discharge amount by adjusting the tube diameter of the escape flow path 14, the throttle 15 is not necessarily provided. May be.

(4)強制閉弁流路
更に,前述の強制閉弁流路21は,始動負荷軽減モード時,レシーバタンク60内の圧力如何に拘わらず,吸気調整弁11の閉弁受圧室113を圧縮機本体40の吐出側(本実施形態ではレシーバタンク60)に連通する流路であり,図示の例では,前述した制御流路12とは別にレシーバタンク60と閉弁受圧室113間を連通する強制閉弁流路21を設けると共に,強制閉弁流路21を開閉する電磁弁SV1を設ける構成を採用している。
(4) Forced valve closing flow path Further, the above-mentioned forced valve closing flow path 21 allows the valve closing pressure receiving chamber 113 of the intake adjustment valve 11 to be a compressor regardless of the pressure in the receiver tank 60 in the start load reducing mode. The flow path communicates with the discharge side of the main body 40 (in this embodiment, the receiver tank 60). In the example shown in the drawing, the forced communication between the receiver tank 60 and the valve-closing pressure receiving chamber 113 is provided separately from the control flow path 12 described above. A configuration is employed in which the valve closing channel 21 is provided and the electromagnetic valve SV1 for opening and closing the forced valve closing channel 21 is provided.

もっとも,この強制閉弁流路21は,レシーバタンク60内の圧力に拘わらず吸気調整弁11の閉弁受圧室133とレシーバタンク60を連通することできるものであれば,前述した制御流路12と一部又は全部を共用する流路として形成するものとしても良い。   However, if the forced valve closing flow path 21 can communicate the closed pressure receiving chamber 133 of the intake adjustment valve 11 and the receiver tank 60 regardless of the pressure in the receiver tank 60, the control flow path 12 described above. It is good also as what forms as a flow path which shares a part or all.

制御流路12と一部を共用する構成例としては,圧力調整弁13の一次側と二次側をバイパスするバイパス流路を設け,このバイパス流路に電磁弁SV1を設けることで,始動負荷軽減モード時に電磁弁SV1を開くことで,レシーバタンク60と吸気調整弁11の閉弁受圧室113間を連通する強制閉弁流路が形成されるようにしても良い。   As a configuration example that shares a part with the control flow path 12, a bypass flow path that bypasses the primary side and the secondary side of the pressure regulating valve 13 is provided, and an electromagnetic valve SV1 is provided in the bypass flow path, thereby starting load By opening the electromagnetic valve SV1 in the reduction mode, a forced valve closing flow path that communicates between the receiver tank 60 and the valve closing pressure receiving chamber 113 of the intake adjustment valve 11 may be formed.

また,制御流路12に設けた圧力調整弁13を前述したように電空レギュレータによって構成した例では,通常運転モードでの運転時には,後述するコントローラ30がレシーバタンク60内の圧力に応じて電空レギュレータの開閉を制御するが,始動負荷軽減モード時には,レシーバタンク60内の圧力に応じた制御をキャンセルして,電空レギュレータを開くようにすることで,制御流路12及び圧力調整弁13に,強制閉弁流路21と電磁弁SV1の機能を併せ持たせる構成としても良い。   Further, in the example in which the pressure regulating valve 13 provided in the control flow path 12 is configured by the electropneumatic regulator as described above, the controller 30 (to be described later) is charged according to the pressure in the receiver tank 60 during operation in the normal operation mode. The open / close of the empty regulator is controlled. In the starting load reduction mode, the control flow path 12 and the pressure regulating valve 13 are opened by canceling the control according to the pressure in the receiver tank 60 and opening the electropneumatic regulator. Moreover, it is good also as a structure which has the function of the forced valve closing flow path 21 and the solenoid valve SV1 together.

更に,この強制閉弁流路21は,例えば図2に示すように,前述した逃がし流路14とその一部を共用する流路として形成することも可能であり,一例として,三方電磁弁SV4のコモンポートdを閉弁受圧室113に連通し,三方電磁弁SV4の他のポートeをレシーバタンク60に連通すると共に,残りのポートfを,絞り15を介して開放(図示の例では吸気調整弁11の一次側における吸気流路115内で開放)し,三方電磁弁SV4の操作によって,吸気調整弁11の閉弁受圧室113をレシーバタンク60に連通する強制閉弁流路21と,閉弁受圧室113を吸気制御弁11の一次側における吸入流路115に連通する逃がし流路14のいずれか一方が択一的に形成されるように構成するものとしても良い。   Furthermore, the forced valve closing flow path 21 can be formed as a flow path that shares a part with the above-described escape flow path 14 as shown in FIG. 2, for example, as an example, a three-way electromagnetic valve SV4. Of the three-way solenoid valve SV4 is connected to the receiver tank 60, and the remaining port f is opened via the throttle 15 (intake air in the illustrated example). Open in the intake passage 115 on the primary side of the regulating valve 11), and by operating the three-way solenoid valve SV4, a forced closing passage 21 that connects the closed pressure receiving chamber 113 of the intake regulating valve 11 to the receiver tank 60; The valve closing pressure receiving chamber 113 may be configured such that any one of the relief passages 14 communicating with the suction passage 115 on the primary side of the intake control valve 11 is alternatively formed.

〔補助受圧室側の流路〕
(1)補助受圧室に連通される流路の種類
吸気調整弁11のボディ111内に形成された前述の気密室(シリンダ)112内には,受圧体であるピストン119を介して前述の閉弁受圧室113とは反対側に,前述の補助受圧室114が形成されている。
[Flow path on the auxiliary pressure receiving chamber side]
(1) Types of flow paths communicating with the auxiliary pressure receiving chamber The above-described airtight chamber (cylinder) 112 formed in the body 111 of the intake pressure adjusting valve 11 is closed in the above-described closed state via a piston 119 serving as a pressure receiving body. The auxiliary pressure receiving chamber 114 described above is formed on the opposite side to the valve pressure receiving chamber 113.

この補助受圧室114には,補助受圧室114に対する外気の吸排気を可能とする吸排気流路22と,補助受圧室114内を吸引して負圧とする吸引流路23が連通されている。   The auxiliary pressure receiving chamber 114 communicates with an intake / exhaust flow path 22 that allows intake and exhaust of external air to and from the auxiliary pressure receiving chamber 114 and a suction flow path 23 that sucks the inside of the auxiliary pressure receiving chamber 114 to generate a negative pressure.

(2)吸排気流路
このうちの吸排気流路22は,通常運転モードでの運転時,補助受圧室114を大気開放して,受圧体(ピストン)119の移動に伴う補助受圧室114の容積変化に伴って,補助受圧室114内に対する外気の導入及び排出を可能とすると共に,始動負荷軽減モード時には,閉じることができるように構成されている。
(2) Intake / exhaust flow path Among these, the intake / exhaust flow path 22 opens the auxiliary pressure receiving chamber 114 to the atmosphere during operation in the normal operation mode, and the volume change of the auxiliary pressure receiving chamber 114 accompanying the movement of the pressure receiving body (piston) 119. Accordingly, the outside air can be introduced into and discharged from the auxiliary pressure receiving chamber 114 and can be closed in the start load reducing mode.

図示の例では,前述の補助受圧室114に連通した吸排気流路22を,吸気調整弁11の一次側における吸気流路115内に連通し,補助受圧室に対し,圧縮機本体の吸入流路に設けた図示せざるエアフィルタを通過した気体を導入可能とすることで,補助受圧室114内に塵芥が吸入されて作動不良等が生じることを防止すると共に,吸排気音の消音を図っている。   In the illustrated example, the intake / exhaust flow path 22 communicated with the auxiliary pressure receiving chamber 114 is communicated with the intake flow path 115 on the primary side of the intake adjustment valve 11 so that the suction flow path of the compressor main body is connected to the auxiliary pressure receiving chamber. By making it possible to introduce gas that has passed through an air filter (not shown) provided in the above, it is possible to prevent dust from being sucked into the auxiliary pressure receiving chamber 114 and cause malfunctions, and to mute intake and exhaust sounds. Yes.

(3)吸引流路
また,前述の吸引流路23は,始動負荷軽減モード時,補助受圧室114を吸気調整弁11の二次側で吸入流路115に連通して,補助受圧室114内を負圧に吸引するためのもので,通常運転モードでの運転時には,補助受圧室114と吸気調整弁11の二次側間の連通を遮断することができるように構成されている。
(3) Suction channel In addition, the above-described suction channel 23 communicates the auxiliary pressure receiving chamber 114 with the suction channel 115 on the secondary side of the intake adjustment valve 11 in the start load reducing mode, and the inside of the auxiliary pressure receiving chamber 114. When the operation is performed in the normal operation mode, the communication between the auxiliary pressure receiving chamber 114 and the secondary side of the intake adjustment valve 11 can be blocked.

(4)吸排気流路と吸引流路の構成例
前述した吸排気流路22と吸引流路23は,それぞれ独立して設けることもできるが,図示の実施形態では,吸排気流路22と吸引流路23とを一部共通の流路によって構成すると共に,両流路の開閉を,単一の三方電磁弁SV3によって行うことができるように構成している。
(4) Configuration Example of Intake / Exhaust Channel and Suction Channel The above-described intake / exhaust channel 22 and suction channel 23 can be provided independently, but in the illustrated embodiment, the intake / exhaust channel 22 and the suction channel are provided. 23 is constituted by a partly common flow path, and both the flow paths can be opened and closed by a single three-way solenoid valve SV3.

このような構成として,図1及び図2に示す例では,三方電磁弁SV3のコモンポートaを吸気調整弁11の補助受圧室114に連通すると共に,三方電磁弁SV3の他のポートbを吸気調整弁11の一次側において吸入流路115に連通し,残りのポートcを吸気調整弁11の二次側において吸入流路115に連通している。   As such a configuration, in the example shown in FIGS. 1 and 2, the common port a of the three-way solenoid valve SV3 is communicated with the auxiliary pressure receiving chamber 114 of the intake adjustment valve 11, and the other port b of the three-way solenoid valve SV3 is suctioned. The adjustment valve 11 communicates with the suction flow path 115 on the primary side, and the remaining port c communicates with the suction flow path 115 on the secondary side of the intake adjustment valve 11.

この構成により,始動負荷軽減モード時には,補助受圧室114と吸気調整弁11の二次側とを連通することで吸引流路23が形成される一方,補助受圧室114と吸気調整弁11の一次側間(吸排気流路22)が遮断され,通常運転モード時には,補助受圧室114を吸気調整弁11の一次側に連通することで吸排気流路22が形成されると共に,補助受圧室と吸気調整弁の二次側(吸引流路23)が遮断されるように構成されている。   With this configuration, in the start load reduction mode, the suction flow passage 23 is formed by communicating the auxiliary pressure receiving chamber 114 and the secondary side of the intake adjustment valve 11, while the auxiliary pressure receiving chamber 114 and the primary air intake adjustment valve 11 are primary. In the normal operation mode, the auxiliary pressure receiving chamber 114 is connected to the primary side of the intake adjustment valve 11 to form the intake / exhaust flow passage 22 and the auxiliary pressure receiving chamber and the intake air adjustment. The secondary side (suction flow path 23) of the valve is configured to be shut off.

〔エンジン〕
本発明は,低回転速度域でのトルクや出力が,同程度の最大出力を発生する自然吸気エンジンに比較して小さい過給式のエンジンを搭載したエンジン駆動型圧縮機1に対し適用する場合に特に効果的であるが,本発明の適用対象とするエンジン駆動型圧縮機1は,このような過給式のエンジンを搭載したものに限定されず,自然吸気型のエンジンを搭載したエンジン駆動型圧縮機に対しても適用可能である。
〔engine〕
The present invention is applied to an engine-driven compressor 1 equipped with a supercharged engine in which torque and output in a low rotational speed region are smaller than those of a naturally aspirated engine that generates the same maximum output. However, the engine driven compressor 1 to which the present invention is applied is not limited to the one equipped with such a supercharged engine, and the engine driven equipped with a naturally aspirated engine. It can also be applied to a type compressor.

また,本発明は,図7を参照して説明したように,ガバナレバーによって機械式の速度制御を行うエンジンを搭載したエンジン駆動型圧縮機1を対象とするものとすることも可能であるが,本実施形態のエンジン駆動型圧縮機1では,エンジンコントロールユニット(ECU)を備えた電子制御式のエンジン50を搭載したエンジン駆動型圧縮機1を対象とした。   In addition, as described with reference to FIG. 7, the present invention can be directed to the engine-driven compressor 1 equipped with an engine that performs mechanical speed control by a governor lever. The engine-driven compressor 1 of the present embodiment is directed to the engine-driven compressor 1 equipped with an electronically controlled engine 50 equipped with an engine control unit (ECU).

従って,本実施形態のエンジン駆動型圧縮機1では,図7を参照して説明したエンジンのカバナレバーに代わり,ECUによって,後述するコントローラ30からの速度指令によりエンジン50の回転速度を制御する回転速度制御手段51が実現されている。   Therefore, in the engine-driven compressor 1 of the present embodiment, the rotational speed at which the rotational speed of the engine 50 is controlled by the ECU in response to a speed command from the controller 30, which will be described later, instead of the engine lever described with reference to FIG. Control means 51 is realized.

また,エンジン50には,該エンジン50の運転状態を検出するための水温センサや水温スイッチ等の冷却水温検出手段52,回転速度センサ等の回転速度検出手段53,油圧センサまたは油圧スイッチ等の油圧検出手段(図示せず)等が設けられていると共に,オルタネータやダイナモ等の発電手段(図示せず)と,該発電手段の発電電圧及び/又は電流を検出する発電電圧/電流検出手段(図示せず)等の各種の検出手段が設けられている。   Further, the engine 50 includes a coolant temperature detecting means 52 such as a water temperature sensor and a water temperature switch for detecting the operating state of the engine 50, a rotational speed detecting means 53 such as a rotational speed sensor, and a hydraulic pressure such as a hydraulic sensor or a hydraulic switch. A detecting means (not shown) and the like are provided, a power generating means (not shown) such as an alternator and a dynamo, and a generated voltage / current detecting means (not shown) for detecting the generated voltage and / or current of the generating means. Various detection means such as not shown) are provided.

なお,前述の冷却水温検出手段52である水温センサまたは水温スイッチは,エンジン50のウォータジャケットの出口部(図示せず)に設けることが好ましく,ウォータジャケットの出口部にサーモスタット(図示せず)を設けている場合には,このサーモスタットの上流側に設ける。   The water temperature sensor or water temperature switch, which is the cooling water temperature detecting means 52, is preferably provided at the outlet (not shown) of the water jacket of the engine 50, and a thermostat (not shown) is provided at the outlet of the water jacket. If provided, install upstream of this thermostat.

〔キースイッチ〕
図1中の符号70は,エンジン駆動型圧縮機1の始動及び停止操作を行うための既知のキースイッチであり,このキースイッチ70にキー(図示せず)を指し込んで回転させることにより,「OFF」,「ON」,「C」のいずれかのポジションに回転させることができるように構成されている。
[Key switch]
Reference numeral 70 in FIG. 1 is a known key switch for starting and stopping the engine-driven compressor 1, and by inserting a key (not shown) into the key switch 70 and rotating it, It is configured to be able to rotate to any one of “OFF”, “ON”, and “C” positions.

このうちの「OFF」はエンジン駆動型圧縮機1の各部に対する通電が停止された停止状態,「ON」は,所謂「アクセサリーポジション」であり,エンジン,コントローラなどの電子制御装置,センサや各種計器類等に対する通電が行われた状態,「C」は,「ON」ポジションで行われた通電状態を維持しつつ,更にエンジンのスタータモータに対し通電を行ってエンジン50を始動させる,所謂「始動ポジション」である。   Of these, “OFF” is a stopped state in which the power supply to each part of the engine-driven compressor 1 is stopped, and “ON” is a so-called “accessory position”. “C” is a state in which power is supplied to the engine, etc., while maintaining the power supply state performed in the “ON” position, and further energizing the starter motor of the engine to start the engine 50, so-called “start” "Position".

このようなキースイッチ70を備えたエンジン駆動型圧縮機1の構成において,「OFF」ポジションでキーが抜かれた状態にあるキースイッチ70に,キーを差し込んで「ON」ポジションに回転させた後,更に「C」ポジションに回転させてスタータモータに対する通電を開始してエンジンを始動させた後,「ON」位置に戻すことで,エンジン駆動型圧縮機1の始動と運転の継続を行うことができると共に,「ON」ポジションから,「OFF」ポジションに回転させると,エンジン駆動型圧縮機1を停止させ,且つ,キーを抜き取ることができるように構成されている。   In the configuration of the engine-driven compressor 1 having such a key switch 70, after inserting the key into the key switch 70 in the state where the key is removed at the “OFF” position and rotating it to the “ON” position, Furthermore, the engine-driven compressor 1 can be started and continued by returning to the “ON” position after starting the engine by starting energization to the starter motor by rotating to the “C” position. At the same time, the engine-driven compressor 1 can be stopped and the key can be removed when it is rotated from the “ON” position to the “OFF” position.

なお,エンジン駆動型圧縮機1の始動及び停止操作のためのスイッチは,このようなキースイッチ70に限定されず,アクセサリーのON,OFFを行うことができると共に,スタータモータのON,OFFを行うことができるものであれば,各種の構成を採用することかでき,アクセサリーのON,OFFと,スタータモータのON,OFFを行うスイッチは別々に設けるものとしても良い。   The switch for starting and stopping the engine-driven compressor 1 is not limited to such a key switch 70, and can turn on / off the accessory and turn on / off the starter motor. As long as it is possible, various configurations can be adopted, and the switch for turning the accessory ON and OFF and the starter motor ON and OFF may be provided separately.

〔コントローラ〕
(1)全体構成
以上のように,各流路に設けられた電磁弁(図1ではSV1〜SV3,図2ではSV3,SV4)やエンジン50等,エンジン駆動型圧縮機1の動作を統括的に制御するために,エンジン駆動型圧縮機1には,制御用のコントローラ30が設けられている。
〔controller〕
(1) Overall configuration As described above, the operation of the engine-driven compressor 1 such as the solenoid valves (SV1 to SV3 in FIG. 1, SV3 and SV4 in FIG. 2), the engine 50, etc. provided in each flow path is comprehensively described. In order to control the engine, the engine-driven compressor 1 is provided with a controller 30 for control.

このコントローラ30は,図3に示すように,エンジン50の運転状態を判定する,エンジン運転状態判定手段31と,このエンジン運転状態判定手段31の判定結果に従い,始動負荷軽減モードでの運転,又は,通常運転モードでの運転を実行するための制御信号を各部に対して出力する,運転モード切替手段32が実現されている。   As shown in FIG. 3, the controller 30 determines the operation state of the engine 50, determines whether the engine 50 is in operation, and operates in the start load reduction mode according to the determination result of the engine operation state determination unit 31. The operation mode switching means 32 that outputs a control signal for executing the operation in the normal operation mode to each unit is realized.

(2)エンジン運転状態判定手段
前述のエンジン運転状態判定手段31は,前述したキースイッチ70のポジションと,エンジン50に設けられた回転速度検出手段53,冷却水温検出手段52,油圧検出手段(図示せず),及び発電電圧/電流検出手段(図示せず)からの検出信号,及び内蔵するタイマ36によってカウントされたカウント時間に応じて,エンジン50の運転状態を判定するもので,エンジン50の運転状態として,始動待機状態,始動状態,及び,安定運転状態を判定する。
(2) Engine operating state determining means The engine operating state determining means 31 includes the position of the key switch 70 described above, the rotational speed detecting means 53 provided in the engine 50, the cooling water temperature detecting means 52, the hydraulic pressure detecting means (FIG. (Not shown), a detection signal from a generated voltage / current detection means (not shown), and a count time counted by a built-in timer 36, the operation state of the engine 50 is determined. As the operation state, a start standby state, a start state, and a stable operation state are determined.

このうち,始動待機状態は,キースイッチがOFFからON(アクセサリーポジション)の状態に切り替えられ,エンジン運転状態判定手段31が起動したときに判定される。   Among these, the start standby state is determined when the key switch is switched from OFF to ON (accessory position) and the engine operation state determination means 31 is activated.

また,始動状態は,前記エンジン50の運転状態が所定の始動判定条件を満たしたときに判定されるもので,例えば,回転速度検出手段53によって検出されたエンジンの回転速度が所定の始動判定回転速度(N1)を超えたとき,発電電圧/電流検出手段(図示せず)が検出した電圧/電流値が所定の始動判定値を超えたとき,又は,油圧検出手段(図示せず)が検出した圧力値が所定の始動判定圧力を超えたとき,のいずれかの条件を満たしたときに判定するものとすることができ,本実施形態にあっては,このうち,回転速度検出手段が,始動判定回転速度(N1)を超える回転速度を検出したときに始動状態の判定を行うものとした。   The start state is determined when the operating state of the engine 50 satisfies a predetermined start determination condition. For example, the rotation speed of the engine detected by the rotation speed detection means 53 is a predetermined start determination rotation. When the speed (N1) is exceeded, when the voltage / current value detected by the generated voltage / current detection means (not shown) exceeds a predetermined start determination value, or by the hydraulic pressure detection means (not shown) When the measured pressure value exceeds a predetermined start determination pressure, it can be determined when any one of the conditions is satisfied. In this embodiment, the rotational speed detecting means includes The start state is determined when a rotation speed exceeding the start determination rotation speed (N1) is detected.

さらに,安定運転状態は,前記始動状態が判定された後,所定の安定運転条件を満たしたときに判定され,本実施形態にあっては,エンジンの始動判定後,第一の所定時間が経過し,かつ,冷却水温検出手段52によって検出されたエンジンの冷却水温度が所定の暖機完了温度(T1)を超えるか,又は,前記第一の所定時間の経過から更に第二の所定時間が経過するかの,いずれかの条件が満たされたとき,安定運転状態を判定するよう構成した。   Furthermore, the stable operation state is determined when a predetermined stable operation condition is satisfied after the start state is determined. In the present embodiment, a first predetermined time has elapsed after the engine start determination. And the engine coolant temperature detected by the coolant temperature detection means 52 exceeds a predetermined warm-up completion temperature (T1), or a second predetermined time after the first predetermined time elapses. The system is configured to determine the stable operation state when any of the conditions has elapsed.

(3)運転モード切替手段
(3-1) 全体構成
運転モード切替手段32は,前述したエンジン運転状態判定手段31による判定結果に従い,エンジン駆動型圧縮機1の運転モードを,始動負荷軽減モードと通常運転モードのいずれかに切り替えるもので,この運転モード切替手段32は,一例として,図3に示すように,更に,エンジン運転状態判定手段31の判定結果に従い,前記いずれの運転モードと成すかを選択する運転モード選択手段33と,前記運転モード選択手段33の選択結果に従い,吸気調整弁11の閉弁受圧室113と補助受圧室114に連通された各流路を開閉する電磁弁(図1の例ではSV1〜SV3,図2の例では又はSV3,SV4)の動作を制御する制御信号を出力する電磁弁制御手段34と,エンジン50の回転速度制御手段(ECU)51に対し選択結果に従った速度指令を出力するエンジン速度指令手段35を備えている。
(3) Operation mode switching means
(3-1) Overall Configuration The operation mode switching unit 32 sets the operation mode of the engine-driven compressor 1 to either the start load reduction mode or the normal operation mode according to the determination result by the engine operation state determination unit 31 described above. For example, as shown in FIG. 3, the operation mode switching means 32 further selects one of the operation modes according to the determination result of the engine operation state determination means 31. 33, and solenoid valves (SV1 to SV3 in the example of FIG. 1) that open and close each flow path connected to the closed pressure receiving chamber 113 and the auxiliary pressure receiving chamber 114 according to the selection result of the operation mode selection means 33. , In the example of FIG. 2, or the solenoid valve control means 34 for outputting a control signal for controlling the operation of SV3, SV4), and the rotational speed control means (ECU) 51 of the engine 50 On the other hand, an engine speed command means 35 for outputting a speed command according to the selection result is provided.

(3-2) 運転モード選択手段
前述の運転モード選択手段33は,エンジン運転状態判定手段31が始動待機状態であることの判定後,安定運転状態であることの判定を行う迄,始動負荷軽減モードによる運転を選択すると共に,エンジン運転状態判定手段が安定運転状態にあることの判定を行うと,通常運転モードによる運転への移行を選択する。
(3-2) Operation mode selection means The above-described operation mode selection means 33 reduces the starting load until it is determined that the engine operation state determination means 31 is in the start standby state and then is determined to be in the stable operation state. When the operation according to the mode is selected and the engine operation state determination means determines that the operation is in the stable operation state, the shift to the operation according to the normal operation mode is selected.

(3-3) 電磁弁制御手段
前述の電磁弁制御手段34は,運転モード選択手段33による運転モードの選択が,始動負荷軽減モードであるとき,逃がし流路14と吸排気流路22を閉じ,強制閉弁流路21と吸引流路23を開く制御信号を電磁弁(図1の例ではSV1〜SV3,図2の例ではSV3,SV4)に出力する。
(3-3) Solenoid valve control means When the operation mode selection by the operation mode selection means 33 is the start load reduction mode, the solenoid valve control means 34 closes the escape passage 14 and the intake / exhaust passage 22 and A control signal for opening the forced valve closing channel 21 and the suction channel 23 is output to the electromagnetic valves (SV1 to SV3 in the example of FIG. 1, SV3 and SV4 in the example of FIG. 2).

一方,運転モード選択手段33が通常運転モードを選択した後,逃がし流路14と吸排気流路22の開放と,強制閉弁流路1と吸引流路23の閉塞を行う制御信号を前記各電磁弁(図1の例ではSV1〜SV3,図2の例ではSV3,SV4)に出力し,定格圧力(P4)を基準とした前記圧力調整弁13の開閉動作による圧縮機本体40の吐出側(レシーバタンク60)と吸気調整弁11の閉弁受圧室113間の連通及び遮断が行われる既知の吸気制御を開始する。   On the other hand, after the operation mode selection means 33 selects the normal operation mode, control signals for opening the relief flow path 14 and the intake / exhaust flow path 22 and closing the forced valve closing flow path 1 and the suction flow path 23 are sent to the electromagnetic signals. 1 (SV1 to SV3 in the example of FIG. 1, SV3, SV4 in the example of FIG. 2), and the discharge side of the compressor main body 40 by the opening / closing operation of the pressure regulating valve 13 based on the rated pressure (P4) ( The known intake control in which the communication between the receiver tank 60) and the valve closing pressure receiving chamber 113 of the intake adjusting valve 11 is cut off is started.

(3-4) エンジン速度指令手段
前述のエンジン速度指令手段35は,通常運転モードでの運転時,圧縮機本体の吐出側圧力(レシーバタンク内の圧力)を検出する圧力スイッチや圧力センサ等の圧力検出手段65の検出圧力に応じて,エンジン50の回転速度を無負荷回転速度(N2)と定格回転速度(N4)間で変化させる速度指令を回転速度制御手段(ECU)51に出力し,エンジン駆動型圧縮機1の始動から前記通常運転モードへの移行が行われるまでは,前記無負荷回転速度(N2)よりも高速であるが,定格回転速度(N4)よりも低速である始動回転速度(N3)となるようエンジン50の回転速度制御手段(ECU)51に対し速度指令を出力する。
(3-4) Engine speed command means The engine speed command means 35 described above is a pressure switch or pressure sensor that detects the discharge side pressure (pressure in the receiver tank) of the compressor body during operation in the normal operation mode. A speed command for changing the rotational speed of the engine 50 between the no-load rotational speed (N2) and the rated rotational speed (N4) according to the detected pressure of the pressure detecting means 65 is output to the rotational speed control means (ECU) 51, From the start of the engine-driven compressor 1 to the transition to the normal operation mode, the rotation speed is higher than the no-load rotation speed (N2) but lower than the rated rotation speed (N4). A speed command is output to the rotational speed control means (ECU) 51 of the engine 50 so that the speed (N3) is obtained.

ここで,エンジンの始動と暖機運転を,定格回転速度(N4)(最大出力)で行えば,エンジンストールのおそれは無くなるが,燃料消費量が多くなるため,始動及び暖機運転時の回転速度である始動回転速度(N3)は,可能な限り低回転とすることが好ましい。   Here, if the engine is started and the engine is warmed up at the rated speed (N4) (maximum output), there is no risk of engine stall, but the fuel consumption increases, so the rotation during the engine start and warm-up operations The starting rotational speed (N3), which is the speed, is preferably as low as possible.

そこで,本実施形態にあっては,圧縮機本体40の無負荷運転時(N2)の動力に対し所定の余裕を加えた動力を設定し,この設定した動力を超えるエンジン出力,トルクを発生する回転速度という条件を満足する,可及的に低い回転速度に始動回転速度(N3)を設定している。 Therefore, in the present embodiment, power is set by adding a predetermined margin to the power of the compressor body 40 during no-load operation (N2), and engine output and torque exceeding the set power are generated. The starting rotational speed (N3) is set to the lowest possible rotational speed that satisfies the condition of rotational speed.

〔動作説明等〕
以上のように構成された本発明のエンジン駆動型圧縮機1における,始動負荷軽減モードでの始動から,通常運転モードによる運転迄の一連の動作を図4に示したタイムチャートを参照して説明すれば,以下の通りである。
[Description of operation]
In the engine-driven compressor 1 of the present invention configured as described above, a series of operations from the start in the start load reduction mode to the operation in the normal operation mode will be described with reference to the time chart shown in FIG. Then, it is as follows.

(1)始動負荷軽減モードによる始動
キースイッチ70にキーを差し込み,OFFポジションからONポジションに切り替えると,エンジン駆動型圧縮機1を構成するエンジン50やコントローラ30等の制御装置類,各検出手段や計器盤等に対する通電が開始され,コントローラ30のエンジン運転状態判定手段31が起動して,エンジン50が始動を待機した状態にある,始動待機状態であると判定する。
(1) Start by start load reduction mode When a key is inserted into the key switch 70 and switched from the OFF position to the ON position, the control devices such as the engine 50 and the controller 30 constituting the engine-driven compressor 1, the detection means, The energization of the instrument panel or the like is started, the engine operating state determination means 31 of the controller 30 is activated, and it is determined that the engine 50 is in a start standby state in a state of waiting for start.

この,エンジン運転状態判定手段31の判定結果に従い,運転モード選択手段33は運転モードとして始動負荷軽減モードを選択し,電磁弁制御手段34は,この選択結果に従い,各電磁弁(図1の例ではSV1〜SV3,図2の例ではSV3,SV4)に制御信号を出力し,前記逃がし流路14と前記吸排気流路22を閉じ,前記強制閉弁流路21と前記吸引流路23を開く制御信号を出力してエンジン50の始動を待機する。   According to the determination result of the engine operation state determination means 31, the operation mode selection means 33 selects the start load reduction mode as the operation mode, and the solenoid valve control means 34 determines each solenoid valve (example of FIG. 1) according to this selection result. Then, a control signal is output to SV1 to SV3, SV3 and SV4 in the example of FIG. 2, the relief passage 14 and the intake / exhaust passage 22 are closed, and the forced valve closing passage 21 and the suction passage 23 are opened. A control signal is output to wait for the engine 50 to start.

図1に示す例では,電磁弁制御手段34からの制御信号によって,強制閉弁流路21に設けた電磁弁SV1を開,逃がし流路14に設けた電磁弁SV2を閉と成すと共に,三方電磁弁SV3によって,補助受圧室114と吸気調整弁11の二次側(ポートa−c)間を連通して,補助受圧室114内を負圧と成す吸引流路23が形成されると共に,補助受圧室114と吸気調整弁の一次側(ポートa−b)間(吸排気流路22)を遮断する。   In the example shown in FIG. 1, the solenoid valve SV1 provided in the forced valve closing passage 21 is opened and the solenoid valve SV2 provided in the escape passage 14 is closed by a control signal from the solenoid valve control means 34, and three-way The electromagnetic valve SV3 forms a suction passage 23 that communicates between the auxiliary pressure receiving chamber 114 and the secondary side (ports a-c) of the intake regulating valve 11 and forms a negative pressure in the auxiliary pressure receiving chamber 114. The space between the auxiliary pressure receiving chamber 114 and the primary side (ports ab) of the intake adjustment valve (intake / exhaust flow path 22) is blocked.

また,図2に示す例では,電磁弁制御手段34からの制御信号によって三方電磁弁SV4が吸気調整弁11の閉弁受圧室113とレシーバタンク60間(ポートd−e)を連通して強制閉弁流路21を形成すると共に,閉弁受圧室113と吸気調整弁11の一次側間(ポートd−f),すなわち逃がし流路14を遮断し,また,三方電磁弁SV3によって,補助受圧室114と吸気調整弁11の二次側間(ポートa−c)を連通して,補助受圧室114内を負圧と成す吸引流路23を形成すると共に,補助受圧室114と吸気調整弁11の一次側間(ポートa−b),すなわち吸排気流路22を遮断する。   In the example shown in FIG. 2, the three-way solenoid valve SV4 communicates between the closed pressure receiving chamber 113 of the intake regulating valve 11 and the receiver tank 60 (port de) by a control signal from the solenoid valve control means 34. The closed flow path 21 is formed, the primary pressure side (port df) between the valve closed pressure receiving chamber 113 and the intake regulating valve 11, that is, the escape flow path 14 is shut off, and the auxiliary pressure received by the three-way solenoid valve SV3. The suction passage 23 that communicates between the chamber 114 and the secondary side (ports a-c) of the intake adjustment valve 11 to form a negative pressure in the auxiliary pressure receiving chamber 114, and the auxiliary pressure receiving chamber 114 and the intake adjustment valve 11 between the primary sides (ports ab), that is, the intake / exhaust flow path 22 is shut off.

このように,始動負荷軽減モードでエンジン50の始動を待機している状態では,吸気調整弁11の閉弁受圧室113と補助受圧室(スプリング室)114内の圧力は共に大気圧(ゲージ圧0MPa)であるため,スプリング114aの付勢力のみが受圧体(ピストン)119に作用し,受圧体119は図中,紙面左側に押され,吸気調整弁11の弁体116が弁座115aより最大限離間した,全開状態となっている。   As described above, in the state where the engine 50 is on standby in the starting load reduction mode, the pressures in the closed pressure receiving chamber 113 and the auxiliary pressure receiving chamber (spring chamber) 114 of the intake adjustment valve 11 are both atmospheric pressure (gauge pressure). Therefore, only the urging force of the spring 114a acts on the pressure receiving body (piston) 119, and the pressure receiving body 119 is pushed to the left side of the drawing in the drawing, so that the valve body 116 of the intake adjustment valve 11 is larger than the valve seat 115a. It is in a fully open state with a limited distance.

また,運転モード切替手段32のエンジン速度指令手段35は,運転モード選択手段33の選択に従い,エンジン50に設けた回転速度制御手段(ECU)51に対し,通常運転モード時の無負荷回転速度(N2)よりも高い回転速度である始動回転速度(N3)とする速度指令を出力する。   In addition, the engine speed command means 35 of the operation mode switching means 32 sends the no-load rotation speed (in normal operation mode) to the rotation speed control means (ECU) 51 provided in the engine 50 according to the selection of the operation mode selection means 33. A speed command for starting rotation speed (N3), which is higher than N2), is output.

このようにして,エンジン50の始動を待機した状態から,キースイッチ70をONポジションからCポジション(始動ポジション)に切り替えて,スタータモータに対する通電を開始してエンジン50を回転させると,スタータモータによるエンジン50の回転に伴ってエンジン50の出力軸に連結されている圧縮機本体40も回転を開始する。   In this way, when the key switch 70 is switched from the ON position to the C position (start position) from the standby state for starting the engine 50 and the starter motor is energized to rotate the engine 50, the starter motor As the engine 50 rotates, the compressor body 40 connected to the output shaft of the engine 50 also starts rotating.

このとき,吸気調整弁11は全開の状態にあることから,スタータモータによってエンジン50と共に回転された圧縮機本体40は,被圧縮気体の吸入と圧縮を開始する。   At this time, since the intake adjustment valve 11 is fully open, the compressor body 40 rotated together with the engine 50 by the starter motor starts to suck and compress the compressed gas.

このように圧縮機本体40が吸気を開始することで,圧縮機本体40の吸入流路115が負圧になると,吸入流路115に吸引流路23を介して連通された補助受圧室(スプリング室)114内も負圧となる。   Thus, when the suction flow path 115 of the compressor main body 40 becomes negative pressure when the compressor main body 40 starts intake, an auxiliary pressure receiving chamber (spring) communicated with the suction flow path 115 via the suction flow path 23. Chamber) 114 also has negative pressure.

また,圧縮機本体40内に吸引された被圧縮気体は,圧縮機本体40内で圧縮されて吐出されることで圧縮機本体40の吐出側圧力(レシーバタンク60内の圧力)が上昇し,圧縮機本体40の吐出側(レシーバタンク60)と強制閉弁流路21を介して連通された吸気調整弁11の閉弁受圧室113内の圧力が上昇を開始する。   Further, the compressed gas sucked into the compressor body 40 is compressed and discharged in the compressor body 40, thereby increasing the discharge side pressure (pressure in the receiver tank 60) of the compressor body 40, The pressure in the valve closing pressure receiving chamber 113 of the intake regulating valve 11 communicated with the discharge side (receiver tank 60) of the compressor main body 40 via the forced valve closing flow path 21 starts to rise.

閉弁受圧室113内の圧縮気体を放気する逃がし流路14は,始動負荷軽減モードの選択時,閉じているため,このようにしてレシーバタンク60内の圧力が上昇すると,この圧力上昇は,そのまま,閉弁受圧室113内の圧力上昇となって,受圧体119に対し直接作用すると共に,補助受圧室(スプリング室)114が吸気調整弁11の二次側に連通されて負圧となっていることで,気密室(シリンダ)112内の受圧体(ピストン)119には,閉弁受圧室113側からの加圧と,補助受圧室114側からの吸引力が同時に作用し,両者の相乗効果によって,これを図1中,紙面右方向に移動させて,弁体116を弁座115aに着座させる,閉弁方向の力が加わる。   Since the escape passage 14 for releasing the compressed gas in the valve-closing pressure receiving chamber 113 is closed when the start load reduction mode is selected, when the pressure in the receiver tank 60 rises in this way, this pressure rise As it is, the pressure in the valve closing pressure receiving chamber 113 rises and acts directly on the pressure receiving body 119, and the auxiliary pressure receiving chamber (spring chamber) 114 is communicated with the secondary side of the intake regulating valve 11 to reduce the negative pressure. Thus, the pressure receiving body (piston) 119 in the hermetic chamber (cylinder) 112 is simultaneously subjected to the pressurization from the valve closing pressure receiving chamber 113 side and the suction force from the auxiliary pressure receiving chamber 114 side. Due to this synergistic effect, a force in the valve closing direction is applied, which moves the valve body 116 to the right in FIG. 1 and seats the valve body 116 on the valve seat 115a.

その結果,同一の性能を有する吸気調整弁11を使用した場合,逃がし流路によって放気されている閉弁受圧室内に対し圧縮気体を導入して始動時における閉弁を達成しようとした前掲の特許文献1に記載の構成に比較して,逃がし流路14を閉じた状態で,且つ,閉弁受圧室113側からの加圧と,補助受圧室114側からの負圧吸引によって受圧体119を移動させる構成を採用した本発明の構成では,特許文献1に記載の始動負荷軽減状態での始動によって吸気調整弁が全閉となるレシーバタンク内の圧力(P3)に対し,より低いレシーバタンク60内の圧力(P1)によって吸気調整弁11を全閉とすることができ,その結果,圧縮機本体40が回転を開始した後,より早期に吸気調整弁11を閉じることができる。   As a result, when the intake regulating valve 11 having the same performance is used, the compressed gas is introduced into the closed pressure receiving chamber which is discharged by the escape flow path to achieve the closing at the time of starting. Compared to the configuration described in Patent Document 1, the pressure receiving body 119 is in a state in which the escape passage 14 is closed and is pressurized by the valve closing pressure receiving chamber 113 side and by the negative pressure suction from the auxiliary pressure receiving chamber 114 side. In the configuration of the present invention that employs a configuration that moves the receiver tank, the receiver tank is lower than the pressure (P3) in the receiver tank in which the intake adjustment valve is fully closed by starting in the starting load reduction state described in Patent Document 1. The intake adjustment valve 11 can be fully closed by the pressure (P1) in 60, and as a result, the intake adjustment valve 11 can be closed earlier after the compressor body 40 starts rotating.

このように,本発明の構成では,圧縮機本体40が回転を開始した後,極めて短時間のうちに吸気調整弁を閉じることが可能であることから,スタータモータによるエンジンの回転中に吸気調整弁11が絞られ,好ましくは閉じることで,スタータモータから切り離され,自立運転を開始した始動直後の最も不安定な運転状態にあるエンジン50の負荷を大幅に軽減して,低回転領域から始動回転速度(N3)への立ち上がりを円滑に行わせることが可能であると共に,始動負荷軽減モードによる始動時のエンジンの回転速度である始動回転速度(N3)を,通常運転モード時における無負荷回転速度(N2)よりも高回転に設定したことにより,始動負荷軽減モードでの運転時におけるエンジンのトルクと出力を高めることで,エンジンストールを発生させることなく,所定の安定運転状態となる迄,暖機運転を行うことが可能である。   Thus, in the configuration of the present invention, since the intake adjustment valve can be closed within a very short time after the compressor body 40 starts rotating, the intake adjustment is performed during engine rotation by the starter motor. When the valve 11 is throttled and preferably closed, it is disconnected from the starter motor, and the load on the engine 50 in the most unstable operation state immediately after the start of the self-sustaining operation is greatly reduced, so that the engine is started from the low speed range. It is possible to smoothly start up to the rotational speed (N3), and the starting rotational speed (N3), which is the rotational speed of the engine at the time of starting in the starting load reduction mode, is changed to the no-load rotation in the normal operation mode. By setting the engine speed to be higher than the speed (N2), the engine torque and output during operation in the start load reduction mode are increased. Without causing Lumpur, until a predetermined stabilized operating condition, it is possible to perform warm-up operation.

(2)始動負荷軽減モードから通常運転モードへの移行
以上のようにして,始動負荷軽減モードでの始動を行った後,回転速度検出手段53が所定の始動判定回転速度(N1)以上の回転速度を検出すると,エンジン運転状態判定手段31は,エンジン50が始動したことを判定し,このエンジン50の始動判定後,所定の安定運転判定条件が満たされることで,エンジン運転状態判定手段31は,エンジン50が安定運転となったことを判定する。
(2) Transition from start load reducing mode to normal operation mode After starting in the start load reducing mode as described above, the rotation speed detecting means 53 rotates at a speed equal to or higher than a predetermined start determination rotation speed (N1). When the speed is detected, the engine operation state determination unit 31 determines that the engine 50 has started, and after the engine 50 has been started, the engine operation state determination unit 31 satisfies the predetermined stable operation determination condition. , It is determined that the engine 50 is in a stable operation.

本実施形態において,この安定運転判定条件は,エンジンの始動判定から第一の所定時間が経過した後,更に,冷却水温が予め設定した温度(T1)を超えるか,又は,前記第一の所定時間の経過から更に第二の所定時間が経過するかのいずれか一方の条件が満たされたときに満たされ,エンジン運転状態判定手段31はエンジン50が安定運転状態になったことを判定する。   In the present embodiment, the stable operation determination condition is that after the first predetermined time has elapsed from the engine start determination, the cooling water temperature further exceeds a preset temperature (T1), or the first predetermined This is satisfied when either one of the conditions for the second predetermined time elapses after the passage of time is satisfied, and the engine operation state determination means 31 determines that the engine 50 is in a stable operation state.

図4には,第一の所定時間経過後,第二の所定時間が経過する前に,冷却水温が設定温度(T1)を超えることで安定運転状態であることの判定が行われた例を示している。   FIG. 4 shows an example in which it is determined that the cooling water temperature exceeds the set temperature (T1) after the first predetermined time has elapsed and the stable operation state has occurred before the second predetermined time has elapsed. Show.

なお,本実施形態では,上記第一設定時間を,エンジン50の始動判定後,無負荷回転速度(N2)に達し,かつエンジン50の各部に設けた各種センサからの信号によりECUが,エンジン運転状態を自己診断するに要する時間を考慮し,一例として30秒に設定した。   In the present embodiment, after the engine 50 is determined to start, the first set time reaches the no-load rotation speed (N2), and the ECU operates the engine based on signals from various sensors provided in each part of the engine 50. Considering the time required for self-diagnosis of the state, it was set to 30 seconds as an example.

また,本実施形態では,上記第二の設定時間を,通常の周囲環境条件(常温)時に,エンジン始動後,冷却水温が所定温度(T1)を超える,または,エンジンオイルが各部に行き渡る,所謂「暖機運転」が完了するまでに要する時間に基づいて,一例として120秒に設定した。   Further, in the present embodiment, the second set time is the so-called so that the cooling water temperature exceeds a predetermined temperature (T1) after starting the engine or the engine oil is distributed to each part under normal ambient environment conditions (normal temperature). Based on the time required to complete the “warm-up operation”, 120 seconds was set as an example.

なお,本実施形態にあっては,前述のようにエンジンの始動判定を,エンジン回転速度の検出結果に基づいて行うものとしたが,この構成に代えて,オルタネータやダイナモ等のエンジンに設けた発電装置(図示せず)の発電電圧や発電電流を検出する,発電電圧/電流検出手段(図示せず)が検出する電圧/電流値が,所定の始動判定値以上となったときにエンジン50の始動判定を行うものとしても良く,又は,エンジン50の油圧を検出する油圧検出手段(図示せず)を設け,該油圧検出手段が検出した油圧が所定の始動判定値以上となったときにエンジンの始動を判定するものとしても良く,エンジンの運転状態を判定可能な各種検出手段からの検出信号を利用して判定することができる。   In the present embodiment, the engine start determination is performed based on the detection result of the engine rotation speed as described above. However, instead of this configuration, an engine such as an alternator or a dynamo is provided. When the voltage / current value detected by the generated voltage / current detecting means (not shown) for detecting the generated voltage or generated current of the power generator (not shown) becomes equal to or higher than a predetermined start determination value, the engine 50 Or a hydraulic pressure detecting means (not shown) for detecting the hydraulic pressure of the engine 50 is provided, and when the hydraulic pressure detected by the hydraulic pressure detecting means exceeds a predetermined starting judgment value. The engine start may be determined, and can be determined using detection signals from various detection means capable of determining the operating state of the engine.

このように,エンジン運転状態判定手段31が,エンジン50が安定運転状態となったことを判定すると,運転モード切替手段32に設けた運転モード選択手段33は,運転モードとして,通常運転モードを選択し,以降,キースイッチ70をOFFポジションに操作してエンジン駆動型圧縮機1を停止する迄,通常運転モードによる運転が行われる。   As described above, when the engine operation state determination unit 31 determines that the engine 50 is in the stable operation state, the operation mode selection unit 33 provided in the operation mode switching unit 32 selects the normal operation mode as the operation mode. Thereafter, the operation in the normal operation mode is performed until the key switch 70 is operated to the OFF position and the engine driven compressor 1 is stopped.

この通常運転モードの選択に従い,電磁弁制御手段34は,各電磁弁(図1の例ではSV1〜SV3,図2の例ではSV3,SV4)に作動信号を出力し,前記逃がし流路14と前記吸排気流路22を開き,前記強制閉弁流路21と前記吸引流路23を閉じる。   In accordance with the selection of the normal operation mode, the solenoid valve control means 34 outputs an operation signal to each solenoid valve (SV1 to SV3 in the example of FIG. 1 and SV3 and SV4 in the example of FIG. 2). The intake / exhaust flow path 22 is opened, and the forced valve closing flow path 21 and the suction flow path 23 are closed.

図1に示す例では,電磁弁制御手段34からの制御信号によって,強制閉弁流路21に設けた電磁弁SV1を閉,逃がし流路14に設けた電磁弁SV2を開と成すと共に,三方電磁弁SV3によって,補助受圧室114と吸気調整弁11の一次側間(ポートa−b)を連通して吸排気流路22を開くと共に,補助受圧室114と吸気調整弁11の二次側間(ポートa−c),すなわち吸引流路23が閉ざされる。   In the example shown in FIG. 1, the solenoid valve SV1 provided in the forced valve passage 21 is closed and the solenoid valve SV2 provided in the relief passage 14 is opened by a control signal from the solenoid valve control means 34, and three-way The electromagnetic valve SV3 communicates between the auxiliary pressure receiving chamber 114 and the primary side (ports ab) of the intake adjustment valve 11 to open the intake / exhaust flow path 22 and between the auxiliary pressure receiving chamber 114 and the secondary side of the intake adjustment valve 11. (Ports a-c), that is, the suction flow path 23 is closed.

また,図2に示す例では,電磁弁制御手段34からの制御信号によって三方電磁弁SV4が,吸気調整弁11の閉弁受圧室113と吸気調整弁11の一次側間(ポートd−f)を連通して逃がし流路を開くと共に,閉弁受圧室とレシーバタンク間(ポートd−e),従って強制閉弁流路21を閉じ,また,三方電磁弁SV3によって,補助受圧室114と吸気調整弁11の一次側間(ポートa−b)を連通して吸排気流路22を開くと共に,補助受圧室114と吸気調整弁11の二次側間(ポートa−c),従って吸引流路23を閉じる。   In the example shown in FIG. 2, the three-way solenoid valve SV4 is connected between the valve closing pressure receiving chamber 113 of the intake regulating valve 11 and the primary side of the intake regulating valve 11 (port df) by a control signal from the solenoid valve control means 34. And the relief flow path is opened, the valve closing pressure receiving chamber and the receiver tank (port de), and therefore the forced valve closing flow path 21 is closed, and the auxiliary pressure receiving chamber 114 and the intake air are closed by the three-way solenoid valve SV3. The primary side (ports ab) of the regulating valve 11 is communicated to open the intake / exhaust flow path 22, and the secondary side of the auxiliary pressure receiving chamber 114 and the intake regulating valve 11 (ports a-c), and hence the suction flow path. 23 is closed.

これにより,圧縮機本体40に対する吸気調整が,レシーバタンク60内の圧力に応じて圧力調整弁13が制御流路12を開閉制御することにより行われる,既知の通常運転モードでの運転に移行する。   As a result, the adjustment of the intake air to the compressor main body 40 shifts to the operation in the known normal operation mode in which the pressure adjustment valve 13 is controlled to open and close the control flow path 12 according to the pressure in the receiver tank 60. .

すなわち,閉弁受圧室113と補助受圧室114に対する各流路の連通状態を前述したように切り替えたことにより,補助受圧室(スプリング室)114は閉弁状態にある吸気調整弁11の一次側と連通することで,負圧の状態から大気圧となる。   That is, by switching the communication state of each flow path to the valve closing pressure receiving chamber 113 and the auxiliary pressure receiving chamber 114 as described above, the auxiliary pressure receiving chamber (spring chamber) 114 is the primary side of the intake regulating valve 11 in the valve closing state. By communicating with the system, the atmospheric pressure is changed from the negative pressure state.

また,強制閉弁流路21を介した閉弁受圧室113とレシーバタンク60間の連通が遮断されると共に,通常運転モードへの移行直後には,レシーバタンク60内の圧力は圧力調整弁13の作動圧力未満であるため制御流路12を介した閉弁受圧室113とレシーバタンク60間の連通も行われていない。   Further, the communication between the valve closing pressure receiving chamber 113 and the receiver tank 60 via the forced valve closing flow path 21 is interrupted, and immediately after the transition to the normal operation mode, the pressure in the receiver tank 60 is adjusted to the pressure regulating valve 13. Therefore, communication between the valve-closing pressure receiving chamber 113 and the receiver tank 60 via the control flow path 12 is not performed.

しかも,閉弁受圧室113内の圧縮気体は,逃がし流路14が開くことで放気され,受圧体119を図示右側に押圧する力,すなわち,吸気調整弁11の弁体116を閉弁方向に押圧する力が消失する。   Moreover, the compressed gas in the valve closing pressure receiving chamber 113 is released when the escape passage 14 is opened, and the force that presses the pressure receiving body 119 to the right in the drawing, that is, the valve body 116 of the intake regulating valve 11 is closed. The pressing force disappears.

その結果,受圧体119はスプリング114aの付勢力によって紙面左側,従って,吸気調整弁11の弁体116を弁座115aより離間する方向に押圧されて吸気調整弁11が全開状態となる。   As a result, the pressure receiving body 119 is pressed to the left side of the drawing by the urging force of the spring 114a, and accordingly, the valve body 116 of the intake adjustment valve 11 is pushed away from the valve seat 115a, and the intake adjustment valve 11 is fully opened.

また,エンジン速度指令手段35は,運転モード選択手段33による通常運転モードの選択により始動回転速度(N3)による一定回転速度での運転を解除して,レシーバタンク60内の圧力を検出する圧力検出手段65が検出した圧力に応じて,無負荷回転速度(N2)から定格回転速度(N4)の間で無段階にエンジン50の回転速度を可変と成す速度指令を出力する,既知の速度制御が行われる。   Further, the engine speed command means 35 releases the operation at a constant rotational speed by the starting rotational speed (N3) by selecting the normal operation mode by the operation mode selection means 33, and detects the pressure in the receiver tank 60. In accordance with the pressure detected by the means 65, there is a known speed control that outputs a speed command that makes the rotational speed of the engine 50 variable steplessly between the no-load rotational speed (N2) and the rated rotational speed (N4). Done.

そして,始動負荷軽減モードから通常運転モードに移行した際のレシーバタンク60内の圧力(P1)は,定格圧力(P4)よりも低圧であり,このレシーバタンク60内の圧力(P1)を検出した圧力検出手段65からの検出信号に基づき,エンジン速度指令手段35は,エンジンの回転速度を定格回転速度(N4)とする速度指令を回転速度制御手段(ECU)51へ出力する。   The pressure (P1) in the receiver tank 60 when the start load reduction mode is shifted to the normal operation mode is lower than the rated pressure (P4), and the pressure (P1) in the receiver tank 60 is detected. Based on the detection signal from the pressure detection means 65, the engine speed command means 35 outputs to the rotation speed control means (ECU) 51 a speed command for setting the engine rotation speed to the rated rotation speed (N4).

また,圧力調整弁13も定格圧力(P4)未満では閉弁状態であるため,吸気調整弁11の閉弁受圧室113に対しレシーバタンク60内の圧力が導入されていないことから,吸気調整弁11は全開状態を維持し,レシーバタンク60内の圧力が上昇する。   Further, since the pressure regulating valve 13 is also closed when the pressure is lower than the rated pressure (P4), the pressure in the receiver tank 60 is not introduced into the valve closing pressure receiving chamber 113 of the intake regulating valve 11, and therefore the intake regulating valve 11 maintains a fully open state, and the pressure in the receiver tank 60 rises.

レシーバタンク60内の圧力上昇に応じ,レシーバタンク60内の圧力を検出する圧力検出手段65からの検出信号を受信したエンジン速度指令手段35は,レシーバタンク60内の圧力が定格圧力(P4)を超えると,エンジン50の回転速度を定格回転速度(N4)から圧力の上昇に応じて徐々に減速していき,無負荷回転速度(N2)まで低下させる。   The engine speed command means 35 that has received the detection signal from the pressure detection means 65 for detecting the pressure in the receiver tank 60 in response to the pressure increase in the receiver tank 60 determines that the pressure in the receiver tank 60 is the rated pressure (P4). If it exceeds, the rotational speed of the engine 50 is gradually decelerated from the rated rotational speed (N4) according to the pressure increase, and is reduced to the no-load rotational speed (N2).

また,レシーバタンク60内の圧力が上昇して定格圧力(P4)以上になると,圧力調整弁13が制御流路12を開いて吸気調整弁11の閉弁受圧室113に対する圧縮気体の導入が開始されて圧縮機本体40の吸気口41が絞り又は閉ざされ,一方,レシーバタンク60内の圧力が定格圧力(P4)未満になると圧力調整弁13が制御流路12を閉じて吸気調整弁11の閉弁受圧室113に対する圧縮気体の導入が停止されて吸気調整弁11は圧縮機本体40の吸気口41を開くことで,レシーバタンク60内の圧力が定格圧力(P4)となるよう,既知の吸気調整が行われ,以降,エンジン駆動型圧縮機1が停止する迄,前述した速度制御と吸気調整が行われる。   When the pressure in the receiver tank 60 rises and becomes equal to or higher than the rated pressure (P4), the pressure regulating valve 13 opens the control flow path 12 and starts introducing compressed gas into the closed pressure receiving chamber 113 of the intake regulating valve 11. Then, the intake port 41 of the compressor body 40 is throttled or closed. On the other hand, when the pressure in the receiver tank 60 becomes less than the rated pressure (P4), the pressure adjustment valve 13 closes the control flow path 12 and the intake adjustment valve 11 The introduction of the compressed gas to the valve-closing pressure receiving chamber 113 is stopped and the intake adjustment valve 11 opens the intake port 41 of the compressor body 40 so that the pressure in the receiver tank 60 becomes the rated pressure (P4). After the intake air adjustment is performed, the speed control and the intake air adjustment described above are performed until the engine driven compressor 1 is stopped.

〔効果等〕
図7を参照して説明した特許文献1に記載の構成では,アンローダレギュレータ316の閉弁受圧室は逃がし流路314を介して常時開放されており,レシーバタンク360内の圧力の一部しか閉弁動作に利用されていない。
[Effects]
In the configuration described in Patent Document 1 described with reference to FIG. 7, the valve receiving pressure chamber of the unloader regulator 316 is always opened via the escape passage 314, and only a part of the pressure in the receiver tank 360 is closed. Not used for valve operation.

しかも,特許文献1に記載の構成では,負圧を利用した閉弁作用がないことから,圧力調整弁313をバイパスしてレシーバタンク360とアンローダレギュレータ316を直接連通した状態でエンジン350を始動させたとしても,レシーバタンク360内の圧力が本実施例の始動負荷軽減モード時に吸気調整弁311が全閉となる圧力(P1)よりも高い圧力(P3)とならなければ吸気調整弁311は全閉(無負荷運転)にはならず,エンジン350の始動から無負荷運転となるまでの間,始動から回転立上がり途中のエンジン350には本実施例と比べて長時間,圧縮に伴う負荷がかかるため,始動に失敗してエンジンストールが生じる恐れがある。   Moreover, in the configuration described in Patent Document 1, since there is no valve closing action using negative pressure, the engine 350 is started in a state where the receiver tank 360 and the unloader regulator 316 are in direct communication with the pressure regulating valve 313 bypassed. Even if the pressure in the receiver tank 360 does not become a pressure (P3) higher than the pressure (P1) at which the intake adjustment valve 311 is fully closed in the starting load reduction mode of this embodiment, the intake adjustment valve 311 is all During the period from the start of the engine 350 to the no-load operation without being closed (no-load operation), the engine 350 in the middle of starting the rotation from the start is subjected to a load accompanying compression for a long time compared to the present embodiment. As a result, the engine may fail due to a start failure.

これに対し,図1〜図4を参照して説明した本発明の構成では,始動負荷軽減モードによるエンジン駆動型圧縮機1の始動後,即座に圧縮機本体40の吸気口41を閉じて無負荷運転とすることにより,スムーズにエンジン50を始動できると共に,エンジン50が所定の始動判定回転速度(N1)に達し,更に,所定の安定運転状態となるまで暖機運転を行ってから通常運転モードに移行する構成としたことで,通常運転への移行によって全負荷運転に移行してもエンジン50がストールすることがない。   On the other hand, in the configuration of the present invention described with reference to FIGS. 1 to 4, immediately after the engine-driven compressor 1 is started in the starting load reduction mode, the intake port 41 of the compressor body 40 is immediately closed. By making the load operation, the engine 50 can be started smoothly, the engine 50 reaches a predetermined start determination rotational speed (N1), and further performs a warm-up operation until a predetermined stable operation state is reached, followed by a normal operation. By adopting a configuration for shifting to the mode, the engine 50 does not stall even when shifting to full load operation due to shifting to normal operation.

さらに,エンジン50の始動判定から第一の所定時間経過後,エンジン50の冷却水温度が設定温度(T1)を超えるか,または第二の所定時間を経過するかの,いずれか一方の条件が満たされたときに安定運転状態となったことを判定し,始動負荷軽減モードから通常運転モードに移行することにより,冷却水温が所定の設定温度(T1)以上となっていて暖機が不要な場合に迄,第二の所定時間が経過する迄始動負荷軽減モードによる運転を継続することによる燃料の浪費を防止することができ,速やかに圧縮空気を用いた作業を開始することができる。   Furthermore, after the first predetermined time elapses from the start determination of the engine 50, one of the conditions whether the coolant temperature of the engine 50 exceeds the set temperature (T1) or the second predetermined time elapses. When it is satisfied, it is determined that the stable operation state has been reached, and the transition from the start load reduction mode to the normal operation mode allows the cooling water temperature to be equal to or higher than the predetermined set temperature (T1), so that warm-up is unnecessary. In some cases, it is possible to prevent waste of fuel due to continuing operation in the start load reduction mode until the second predetermined time elapses, and work using compressed air can be started quickly.

〔その他(変更例)〕
以上で説明した構成では,エンジン運転状態判定手段31による安定運転状態の判定,従って,運転モード選択手段33が通常運転モードを選択した際,電磁弁制御手段34が,前記逃がし流路14と前記吸排気流路22の開放,前記強制閉弁流路21と前記吸引流路23の閉塞をいずれも同時に行う構成について説明した。
[Other (change examples)]
In the configuration described above, when the stable operation state is determined by the engine operation state determination unit 31, and accordingly, when the operation mode selection unit 33 selects the normal operation mode, the solenoid valve control unit 34 has the escape passage 14 and the The configuration in which the intake / exhaust passage 22 is opened and the forced valve closing passage 21 and the suction passage 23 are simultaneously closed has been described.

しかし,油冷式の圧縮機本体40を搭載したエンジン駆動型圧縮機1では,圧縮気体と共に吐出した潤滑油をレシーバタンク60内に回収し,回収した潤滑油をレシーバタンク60内の圧力によって再度,圧縮機本体40に給油する構成を採用する。   However, in the engine-driven compressor 1 equipped with the oil-cooled compressor main body 40, the lubricating oil discharged together with the compressed gas is collected in the receiver tank 60, and the collected lubricating oil is recovered again by the pressure in the receiver tank 60. The structure which supplies oil to the compressor main body 40 is adopted.

そのため,始動負荷軽減モード時のレシーバタンク60内の圧力が比較的低い圧力(P1)となる本発明のエンジン駆動型圧縮機1の構成では,寒冷時等の低温の環境で使用する場合のように,潤滑油が低温で高粘度の状態にあり,流動性が低くなっていると,圧縮機本体40に対して充分に潤滑油を圧送できない場合が生じ得る。   Therefore, in the configuration of the engine driven compressor 1 of the present invention in which the pressure in the receiver tank 60 in the starting load reduction mode becomes a relatively low pressure (P1), it is used in a low temperature environment such as a cold time. In addition, when the lubricating oil is in a state of high viscosity at a low temperature and fluidity is low, there may be a case where the lubricating oil cannot be sufficiently pumped to the compressor body 40.

このように,圧縮機本体40に対する給油が不十分の状態であっても,始動負荷軽減モードでの運転時には吸気調整弁11が全閉となっており,圧縮機本体40は吸気と圧縮を行っていないことから,給油不足が生じていても吐出気体温度が上昇しないため吐出空気温度の異常上昇により当該圧縮機が非常停止することはないが,このように吐出気体温度が上昇しないということは,レシーバタンク60内の潤滑油も温まり難くなっていることを意味する。   As described above, even when the oil supply to the compressor main body 40 is insufficient, the intake adjustment valve 11 is fully closed during operation in the start load reducing mode, and the compressor main body 40 performs intake and compression. Therefore, even if there is a shortage of refueling, the discharge gas temperature does not rise, so the compressor does not stop due to an abnormal rise in the discharge air temperature. However, the discharge gas temperature does not rise in this way. This means that the lubricating oil in the receiver tank 60 is also difficult to warm.

そのため,始動負荷軽減モードでの運転によりエンジン50は暖機されても,圧縮機本体40に給油される潤滑油は充分に暖まっていないため,この状態で通常運転モードに移行して全負荷運転が開始されると,全負荷運転開始直後に圧縮機本体40に対する潤滑油の供給量が不足してしまい,圧縮機本体40内の温度(吐出空気温度)が急激に上昇して当該圧縮機が非常停止することも懸念される。   Therefore, even if the engine 50 is warmed up by the operation in the starting load reduction mode, the lubricating oil supplied to the compressor body 40 is not sufficiently warmed. In this state, the normal operation mode is entered and the full load operation is performed. Is started, the supply amount of lubricating oil to the compressor main body 40 becomes insufficient immediately after the start of the full load operation, the temperature in the compressor main body 40 (discharged air temperature) rises rapidly, and the compressor An emergency stop is also a concern.

そこで,本実施形態では,図1〜図4を参照して説明した前述の実施形態において,通常運転モードへの移行時に,電磁弁制御手段34が,前記逃がし流路14と前記吸排気流路22の開放と,前記強制閉弁流路21と前記吸引流路23の閉塞をいずれも同時に行っていた構成に代えて,通常運転モードへの移行時,電磁弁制御手段34が,先ず,前記吸排気流路22を開くと共に,前記吸引流路23を閉じる制御信号(ポートa−cを閉じ,ポートa−bを開く制御信号)を三方電磁弁SV3に出力して,通常運転移行準備を実行し,その後,更に,第三の所定時間が経過したときに,電磁弁(図1の構成ではSV1,SV2,図2の構成ではSV4)に対し逃がし流路14を開くと共に,強制閉弁流路21を閉じる制御信号(図1の例ではSV1を閉,SV2を開とする制御信号,図2の例ではSV4のポートd−e間を閉じ,ポートd−f間を開く制御信号)を出力して,通常運転に移行するように構成し,これによって,通常運転モードに移行して全負荷運転に移行する前に,レシーバタンク60内の圧力を,始動負荷軽減モード時の圧力(P1)から,寒冷時等において流動性が低下している潤滑油であっても圧縮機本体40に対し圧送可能な圧力(P2)まで昇圧させるようにした。   Therefore, in the present embodiment, in the above-described embodiment described with reference to FIGS. 1 to 4, the electromagnetic valve control means 34 performs the escape flow path 14 and the intake / exhaust flow path 22 when shifting to the normal operation mode. And the forced valve closing channel 21 and the suction channel 23 are both closed at the same time, instead of the configuration in which the solenoid valve control means 34 first moves to the normal operation mode. A control signal for closing the suction flow path 23 (a control signal for closing the ports a-c and opening the ports a-b) is output to the three-way solenoid valve SV3, and the normal operation transition preparation is executed. After that, when a third predetermined time has elapsed, the relief passage 14 is opened with respect to the solenoid valve (SV1, SV2 in the configuration of FIG. 1, SV4 in the configuration of FIG. 2), and the forced valve closing passage. Control signal for closing 21 (in the example of FIG. The control signal for closing SV1 and opening SV2 (in the example of FIG. 2, the control signal for closing the port de of SV4 and opening the port df) is output to shift to normal operation. As a result, before the shift to the normal operation mode and the shift to the full load operation, the pressure in the receiver tank 60 is reduced from the pressure (P1) in the start load reducing mode to the fluidity in the cold time. Even in the case of lubricating oil, the pressure is increased to a pressure (P2) that can be pumped to the compressor body 40.

この場合,エンジン速度指令手段35は,エンジン運転状態判定手段31が安定運転状態であることの判定を行った後,従って運転モード選択手段33が通常運転モードの選択をした後,前記第三の所定時間が経過して通常運転モードに移行する迄,始動回転速度N3でのエンジン50の回転速度制御を継続し,前記第三の所定時間が経過して通常運転モードに移行した後,圧力検出手段65によって検出されたレシーバタンク60内の圧力に応じて,無負荷回転速度(N2)と定格回転速度(N4)間での速度制御を開始するように構成する(図5参照)。   In this case, the engine speed command means 35 determines that the engine operation state determination means 31 is in a stable operation state, and accordingly, after the operation mode selection means 33 selects the normal operation mode, the third operation mode is selected. The engine 50 continues to be controlled at the starting rotational speed N3 until the predetermined time elapses and the normal operation mode is entered. After the third predetermined time elapses and the normal operation mode is entered, the pressure detection is performed. In accordance with the pressure in the receiver tank 60 detected by the means 65, speed control between the no-load rotational speed (N2) and the rated rotational speed (N4) is started (see FIG. 5).

なお,本実施形態では,この第三の所定時間を,通常運転移行準備中にレシーバタンク60内の圧力がP1からP2まで昇圧に要する時間と,レシーバタンク60内の圧力がP2に到達した後,再びECUがエンジン50の運転状態を自己診断するに要する時間,または,潤滑油が各機器を循環するに要する時間等を考慮し,一例として60秒に設定した。   In the present embodiment, the third predetermined time is the time required for the pressure in the receiver tank 60 to be increased from P1 to P2 during preparation for transition to normal operation, and after the pressure in the receiver tank 60 reaches P2. Considering the time required for the ECU to self-diagnose the operating state of the engine 50 again or the time required for the lubricating oil to circulate through each device, the time is set to 60 seconds as an example.

このように,通常運転移行準備によって吸引流路23を閉じると共に前記吸排気流路22を開くことで,補助受圧室114内の負圧が解消される。   Thus, the negative pressure in the auxiliary pressure receiving chamber 114 is eliminated by closing the suction flow path 23 and opening the intake / exhaust flow path 22 in preparation for transition to normal operation.

その結果,受圧体119を閉弁方向(図1,図2中の紙面右側)に移動させるように作用していた力が弱まることで,スプリング114aの付勢力によって受圧体119は,図中の紙面左側に移動され,受圧体119に対し弁軸116aを介して連結された弁体116が弁座115aより離間されて吸気調整弁11が僅かに開く。   As a result, the force acting to move the pressure receiving body 119 in the valve closing direction (the right side in FIG. 1 and FIG. 2) is weakened, so that the pressure receiving body 119 is urged by the urging force of the spring 114a. The valve body 116 moved to the left side of the drawing and connected to the pressure receiving body 119 via the valve shaft 116a is separated from the valve seat 115a, and the intake adjustment valve 11 is slightly opened.

このようにして吸気調整弁11が開くと,圧縮機本体40は吸気を開始すると共に,吸入した気体を圧縮して吐出することで,レシーバタンク60内の圧力が上昇する。   When the intake adjustment valve 11 is opened in this way, the compressor body 40 starts intake and compresses and discharges the sucked gas, thereby increasing the pressure in the receiver tank 60.

この通常運転移行準備段階では,未だ,強制閉弁流路21による閉弁受圧室113とレシーバタンク60間の連通は維持されていると共に,逃がし流路14が閉じた状態にあるため,レシーバタンク60内の圧力が所定圧力(P2)迄上昇すると,閉弁受圧室113内の圧力も同一圧力に上昇して,再度,吸気調整弁11を閉じることで,レシーバタンク60内の圧力が,前述した所定の圧力(P2)に維持される。   In this normal operation transition preparation stage, the communication between the valve closing pressure receiving chamber 113 and the receiver tank 60 by the forced valve closing flow path 21 is still maintained and the relief flow path 14 is closed. When the pressure in 60 rises to a predetermined pressure (P2), the pressure in the valve closing pressure receiving chamber 113 also rises to the same pressure, and the pressure in the receiver tank 60 is changed by closing the intake adjustment valve 11 again. The predetermined pressure (P2) is maintained.

このときのレシーバタンク内の圧力(P2)は,逃がし流路314を開放した状態の始動負荷軽減状態で運転を行う従来のエンジン駆動型圧縮機(図7参照)におけるレシーバタンク内圧力(P3)に比較して低い圧力とすることができる。   The pressure (P2) in the receiver tank at this time is the pressure (P3) in the receiver tank in a conventional engine-driven compressor (see FIG. 7) that operates in a reduced starting load state with the relief passage 314 opened. The pressure can be made lower than

このようにして,第3の所定時間(一例として60秒),通常運転移行準備を行うことで,レシーバタンク60内の圧力を所定の圧力(P2)に上昇させた後,逃がし流路14を開くと共に,強制閉弁流路21を閉じて通常運転に移行することで,吸気調整弁11が全開となって全負荷運転に移行した際,所定の圧力(P2)までレシーバタンク60内の圧力が既に上昇しているために,圧縮機本体40に対する潤滑油の供給を確実に行うことができ,その結果,吐出空気温度の異常上昇による非常停止の発生を防止することが可能となる。   In this way, by preparing for the transition to the normal operation for the third predetermined time (for example, 60 seconds), the pressure in the receiver tank 60 is increased to the predetermined pressure (P2), and then the escape passage 14 is opened. When the intake valve 11 is fully opened and shifted to full load operation by closing the forced valve closing flow path 21 and shifting to normal operation, the pressure in the receiver tank 60 reaches a predetermined pressure (P2). Has already risen, it is possible to reliably supply the lubricating oil to the compressor body 40, and as a result, it is possible to prevent an emergency stop due to an abnormal increase in the discharge air temperature.

1 エンジン駆動型圧縮機
10 吸気調整装置
11 吸気調整弁
111 ボディ(弁箱)
112 気密室(シリンダ)
113 閉弁受圧室
114 補助受圧室(スプリング室)
114a スプリング
115 吸入流路
115a 弁座
116 弁体
116a,116a’ 弁軸
116b 弁体閉鎖用スプリング
117 スリーブ
118 端板
119 受圧体(ピストン)
119a ピストンロッド
12 制御流路
13 圧力調整弁
14 逃がし流路
15 絞り
21 強制閉弁流路
22 吸排気流路
23 吸引流路
30 コントローラ
31 エンジン運転状態判定手段
32 運転モード切替手段
33 運転モード選択手段
34 電磁弁制御手段
35 エンジン速度指令手段
36 タイマ
40 圧縮機本体
41 吸気口
50 エンジン
51 回転速度制御手段(ECU)
52 冷却水温検出手段
53 回転速度検出手段
60 レシーバタンク
61 逆止弁
62 吐出流路
63 オイルクーラ
64 給油流路
65 圧力検出手段
70 キースイッチ
SV1.SV2 電磁弁(2方)
SV3,SV4 電磁弁(3方)
300 エンジン駆動型圧縮機
310 吸気調整装置
311 吸気調整弁
312 制御流路
313 圧力調整弁
314 逃がし流路
315 絞り
316 アンローダレギュレータ
320 始動負荷軽減装置
321 バイパス流路
325 始動アンローダバルブ
340 圧縮機本体
341 吸気口
350 エンジン
360 レシーバタンク
363 オイルクーラ
364 給油流路
366 オイルセパレータ
367 オイルフィルタ
DESCRIPTION OF SYMBOLS 1 Engine drive type compressor 10 Intake adjusting device 11 Intake adjusting valve 111 Body (valve box)
112 Airtight chamber (cylinder)
113 Valve closed pressure receiving chamber 114 Auxiliary pressure receiving chamber (spring chamber)
114a Spring 115 Suction passage 115a Valve seat 116 Valve body 116a, 116a 'Valve shaft 116b Valve body closing spring 117 Sleeve 118 End plate 119 Pressure receiving body (piston)
119a Piston rod 12 Control flow path 13 Pressure adjusting valve 14 Relief flow path 15 Restriction 21 Forced closed flow path 22 Intake and exhaust flow path 23 Suction flow path 30 Controller 31 Engine operation state determination means 32 Operation mode switching means 33 Operation mode selection means 34 Solenoid valve control means 35 Engine speed command means 36 Timer 40 Compressor body 41 Inlet 50 Engine 51 Rotational speed control means (ECU)
52 Cooling water temperature detection means 53 Rotational speed detection means 60 Receiver tank 61 Check valve 62 Discharge flow path 63 Oil cooler 64 Oil supply flow path 65 Pressure detection means 70 Key switch SV1. SV2 solenoid valve (two-way)
SV3, SV4 solenoid valve (3 way)
DESCRIPTION OF SYMBOLS 300 Engine drive type compressor 310 Intake adjustment device 311 Intake adjustment valve 312 Control flow path 313 Pressure adjustment valve 314 Relief flow path 315 Restriction 316 Unloader regulator 320 Start load reducing device 321 Bypass flow path 325 Start unloader valve 340 Compressor body 341 Intake Port 350 Engine 360 Receiver tank 363 Oil cooler 364 Oil supply passage 366 Oil separator 367 Oil filter

Claims (12)

エンジン,前記エンジンによって駆動される圧縮機本体,及び前記圧縮機本体に対する吸気を制御する吸気調整装置を備え,前記吸気調整装置が,前記圧縮機本体の吸気口を開閉する吸気調整弁と,前記吸気調整弁の閉弁受圧室と前記圧縮機本体の前記吐出側間を連通する制御流路と,前記圧縮機本体の吐出側圧力が所定の定格圧力以上のときに前記制御流路を開き,前記定格圧力未満のとき前記制御流路を閉じる圧力調整弁を備えたエンジン駆動型圧縮機において,
前記吸気調整弁に気密室を設け,該気密室内を,弁体の動作を制御する受圧体によって仕切ることで,一方を前記閉弁受圧室と成すと共に,他方を補助受圧室とし,前記閉弁受圧室内の圧縮気体を逃がす逃がし流路と,前記補助受圧室内への外気の導入及び排出を可能とする吸排気流路を設け,
前記逃がし流路と前記吸排気流路を閉じ,かつ,前記閉弁受圧室と前記圧縮機本体の吐出側とを連通すると共に,前記補助受圧室を前記吸気調整弁の二次側に連通した状態でエンジンを始動させる,始動負荷軽減モードでの始動を行い,
前記エンジンの始動が判定され,かつ,前記エンジンが所定の安定運転状態になったと判定されるまで,前記始動負荷軽減モードでの運転を維持すると共に,その後,前記吸気調整装置による吸気調整を行う通常運転モードに移行することを特徴とするエンジン駆動型圧縮機の始動制御方法。
An engine, a compressor main body driven by the engine, and an intake air adjusting device that controls intake air to the compressor main body, the intake air adjusting device opening and closing an intake port of the compressor main body, A control flow path communicating between the closed pressure receiving chamber of the intake adjustment valve and the discharge side of the compressor body, and opening the control flow path when the discharge side pressure of the compressor body is equal to or higher than a predetermined rated pressure, In an engine-driven compressor provided with a pressure regulating valve that closes the control flow path when the pressure is lower than the rated pressure,
The intake regulating valve is provided with an airtight chamber, and the airtight chamber is partitioned by a pressure receiving body that controls the operation of the valve body, so that one is formed as the valve closing pressure receiving chamber and the other is the auxiliary pressure receiving chamber. A relief passage for escaping the compressed gas in the pressure receiving chamber, and an intake / exhaust passage that enables introduction and discharge of outside air into the auxiliary pressure receiving chamber,
The relief passage and the intake / exhaust passage are closed, the closed pressure receiving chamber communicates with the discharge side of the compressor body, and the auxiliary pressure receiving chamber communicates with the secondary side of the intake control valve Start the engine with the start load reduction mode,
Until the engine is determined to be started and the engine has been determined to be in a predetermined stable operating state, the operation in the starting load reduction mode is maintained, and then the intake air adjustment by the intake air adjusting device is performed. A start control method for an engine-driven compressor, characterized in that a transition is made to a normal operation mode.
前記エンジンが前記安定運転状態になったと判定された後,前記逃がし流路と前記吸排気流路を開き,かつ,前記補助受圧室と前記吸気調整弁の二次側との連通を遮断すると共に,前記圧縮機本体の吐出側と前記閉弁受圧室間を遮断して,前記通常運転モードに切り替えることを特徴とする請求項1記載のエンジン駆動型圧縮機の始動制御方法。   After it is determined that the engine is in the stable operation state, the relief passage and the intake / exhaust passage are opened, and communication between the auxiliary pressure receiving chamber and the secondary side of the intake adjustment valve is interrupted, 2. The engine-driven compressor start control method according to claim 1, wherein the discharge side of the compressor body and the valve-closing pressure receiving chamber are shut off to switch to the normal operation mode. 前記エンジンの運転状態が所定の始動判定条件を満たしたときに,前記エンジンの始動を判定し,
前記エンジンの始動判定後,第一の所定時間が経過し,かつ,前記エンジンの冷却水温度が所定の暖機完了温度を超えるか,又は,前記第一の所定時間の経過から更に第二の所定時間が経過するかの,いずれかの条件が満たされたとき,前記エンジンが前記安定運転状態となったことを判定する請求項1又は2記載のエンジン駆動型圧縮機の始動制御方法。
When the engine operating state satisfies a predetermined start determination condition, determine the start of the engine,
After the engine start determination, a first predetermined time elapses and the engine coolant temperature exceeds a predetermined warm-up completion temperature, or the second predetermined time elapses after the first predetermined time elapses. 3. The engine-driven compressor start control method according to claim 1, wherein when the predetermined time elapses or any condition is satisfied, it is determined that the engine is in the stable operation state.
前記安定運転状態となったことの判定により,前記吸排気流路を開くと共に,前記補助受圧室と前記吸気調整弁の二次側との連通を遮断する通常運転移行準備を行い,
前記安定運転状態となったことの判定より更に第三の所定時間が経過したとき,前記逃がし流路を開くと共に,前記圧縮機本体の吐出側と前記閉弁受圧室間を遮断して,前記通常運転モードに移行することを特徴とする請求項1〜3いずれか1項記載のエンジン駆動型圧縮機の始動制御方法。
Based on the determination that the stable operation state has been established, the intake / exhaust flow path is opened, and preparation for transition to normal operation is performed to block communication between the auxiliary pressure receiving chamber and the secondary side of the intake control valve,
When a third predetermined time has passed since the determination that the stable operation state has been reached, the relief passage is opened, and the discharge side of the compressor body and the valve-closing pressure receiving chamber are shut off, The start control method for an engine-driven compressor according to any one of claims 1 to 3, wherein the operation mode is shifted to a normal operation mode.
前記通常運転モードによる運転時,前記圧縮機本体の吐出側圧力に応じて無負荷回転速度と定格回転速度間で前記エンジンの回転速度を制御する速度制御を行うと共に,
前記通常運転モードへの移行前,前記通常運転モードにおける前記無負荷回転速度よりも高い回転速度である始動回転速度での定速運転となるよう前記エンジンの回転速度を制御することを特徴とする請求項1〜4いずれか1項記載のエンジン駆動型圧縮機の始動制御方法。
During operation in the normal operation mode, performing speed control for controlling the rotational speed of the engine between the no-load rotational speed and the rated rotational speed according to the discharge side pressure of the compressor body,
Before the transition to the normal operation mode, the rotational speed of the engine is controlled to be a constant speed operation at a starting rotational speed that is higher than the no-load rotational speed in the normal operation mode. The start control method of the engine drive type compressor according to any one of claims 1 to 4.
前記エンジンの始動判定を,前記エンジンの回転速度が所定の始動判定回転速度を超えたとき,前記エンジンに設けた発電装置の発電電圧又は電流が所定の始動判定値を超えたとき,又は,前記エンジンの油圧が所定の始動判定圧力を超えたときのいずれかの条件を満たしたときに行うことを特徴とする請求項1〜5いずれか1項記載のエンジン駆動型圧縮機の始動制御方法。   The engine start determination is performed when the engine rotation speed exceeds a predetermined start determination rotation speed, when the power generation voltage or current of a power generator provided in the engine exceeds a predetermined start determination value, or The start control method for an engine driven compressor according to any one of claims 1 to 5, wherein the start control method is performed when any of the conditions when the engine oil pressure exceeds a predetermined start determination pressure is satisfied. エンジン,前記エンジンによって駆動される圧縮機本体,及び前記圧縮機本体に対する吸気を制御する吸気調整装置を備え,前記吸気調整装置が,前記圧縮機本体の吸気口を開閉する吸気調整弁と,前記吸気調整弁の閉弁受圧室と前記圧縮機本体の前記吐出側間を連通する制御流路と,前記圧縮機本体の前記吐出側圧力が所定の定格圧力以上のときに前記制御流路を開き,前記定格圧力未満のとき前記制御流路を閉じる圧力調整弁を備えたエンジン駆動型圧縮機において,
前記吸気調整弁に気密室を設け,該気密室内を,弁体の動作を制御する受圧体によって仕切ることで,一方を前記閉弁受圧室と成すと共に,他方を補助受圧室とし,前記閉弁受圧室内の圧縮気体を逃がす逃がし流路,前記補助受圧室内への外気の導入及び排出を可能とする吸排気流路,前記吸気調整弁の前記閉弁受圧室を前記圧縮機本体の吐出側と連通させる強制閉弁流路,及び,前記補助受圧室を前記吸気調整弁の二次側に連通する吸引流路をそれぞれ設けると共に,前記各流路を開閉する電磁弁を設け,
前記エンジンの運転状態を判定するエンジン運転状態判定手段と,前記エンジン運転状態判定手段の判定結果に従い,運転モードを切り替える運転モード切替手段を設け,
前記運転モード切替手段に,前記電磁弁の開閉動作を制御する電磁弁制御手段を更に設けると共に,
前記電磁弁制御手段が,
前記エンジン運転状態判定手段が,前記エンジンが始動待機状態にあると判定したとき,前記逃がし流路と前記吸排気流路を閉じ,前記強制閉弁流路と前記吸引流路を開く制御信号を前記各電磁弁に出力した始動負荷軽減モードで前記エンジンの始動を待機し,
前記エンジン運転状態判定手段が,前記エンジンが始動したことを判定し,かつ,前記エンジンが所定の安定運転状態になったと判定する迄,前記始動負荷軽減モードを維持すると共に,その後,前記吸気調整装置による吸気調整を行う通常運転モードに移行することを特徴とするエンジン駆動型圧縮機。
An engine, a compressor main body driven by the engine, and an intake air adjusting device that controls intake air to the compressor main body, the intake air adjusting device opening and closing an intake port of the compressor main body, A control flow path communicating between the closed pressure receiving chamber of the intake adjustment valve and the discharge side of the compressor body, and the control flow path is opened when the discharge side pressure of the compressor body is equal to or higher than a predetermined rated pressure. , An engine driven compressor having a pressure regulating valve that closes the control flow path when the pressure is lower than the rated pressure;
The intake regulating valve is provided with an airtight chamber, and the airtight chamber is partitioned by a pressure receiving body that controls the operation of the valve body, so that one is formed as the valve closing pressure receiving chamber and the other is the auxiliary pressure receiving chamber. An escape passage for escaping compressed gas in the pressure receiving chamber, an intake / exhaust passage that allows introduction and discharge of outside air into the auxiliary pressure receiving chamber, and a closed pressure receiving chamber of the intake adjustment valve communicate with the discharge side of the compressor body A forced valve closing flow path, and a suction flow path that connects the auxiliary pressure receiving chamber to the secondary side of the intake control valve, and an electromagnetic valve that opens and closes each flow path,
An engine operating state determining unit for determining the operating state of the engine, and an operation mode switching unit for switching an operating mode according to a determination result of the engine operating state determining unit;
The operation mode switching means is further provided with a solenoid valve control means for controlling the opening / closing operation of the solenoid valve,
The solenoid valve control means is
When the engine operating state determining means determines that the engine is in a start standby state, a control signal for closing the relief flow path and the intake / exhaust flow path and opening the forced valve closing flow path and the suction flow path is provided. Wait for the engine to start in the start load reduction mode output to each solenoid valve,
Until the engine operating state determining means determines that the engine has started and determines that the engine has entered a predetermined stable operating state, the engine start load reducing mode is maintained, and then the intake air adjustment is performed. 1. An engine-driven compressor that shifts to a normal operation mode in which intake adjustment is performed by the device.
前記電磁弁制御手段は,前記エンジン運転状態判定手段が前記安定運転状態になったことを判定した後,前記逃がし流路と前記吸排気流路の開放と,前記強制閉弁流路と前記吸引流路の閉塞を行う制御信号を前記各電磁弁に出力することにより,前記通常運転モードへ移行することを特徴とする請求項7記載のエンジン駆動型圧縮機。   The electromagnetic valve control means determines that the engine operation state determination means has reached the stable operation state, and then opens the relief flow path, the intake / exhaust flow path, the forced valve close flow path, and the suction flow. 8. The engine-driven compressor according to claim 7, wherein the normal operation mode is shifted by outputting a control signal for closing the road to each of the solenoid valves. 前記エンジン運転状態判定手段は,前記エンジンの運転状態が所定の始動判定条件を満たしたときに,前記エンジンの始動を判定すると共に,前記エンジンの始動判定後,第一の所定時間が経過し,かつ,前記エンジンの冷却水温度が所定の暖機完了温度を超えるか,又は,前記第一の所定時間の経過から更に第二の所定時間が経過するかの,いずれかの条件が満たされたとき,前記エンジンが前記安定運転状態となったことを判定する請求項7又は8記載のエンジン駆動型圧縮機。   The engine operating state determining means determines that the engine starts when the engine operating state satisfies a predetermined start determination condition, and after the engine start determination, a first predetermined time has elapsed, In addition, the condition that either the cooling water temperature of the engine exceeds a predetermined warm-up completion temperature or a second predetermined time elapses after the first predetermined time elapses is satisfied. The engine driven compressor according to claim 7 or 8, wherein the engine is determined to be in the stable operation state. 前記電磁弁制御手段は,
前記エンジン運転状態判定手段が,前記エンジンが前記安定運転状態になったことを判定したとき,前記吸排気流路を開くと共に,前記吸引流路を閉じる制御信号を出力する,通常運転移行準備を実行すると共に,
前記安定運転状態の判定後,更に第三の所定時間が経過したとき,前記逃がし流路を開くと共に,前記強制閉弁流路を閉じる制御信号を出力して,前記通常運転モードへ移行することを特徴とする請求項7〜9いずれか1項記載のエンジン駆動型圧縮機。
The solenoid valve control means includes:
When the engine operating state determining means determines that the engine is in the stable operating state, the engine operating state preparation is made to open the intake / exhaust flow path and output a control signal for closing the suction flow path. As well as
When the third predetermined time has passed after the determination of the stable operation state, the control circuit outputs a control signal for opening the relief flow path and closing the forced valve closing flow path to shift to the normal operation mode. The engine drive type compressor according to any one of claims 7 to 9.
前記運転モード切替手段が,エンジンに対し回転速度を指令する速度指令を出力するエンジン速度指令手段を更に備え,
前記エンジン速度指令手段が,
前記通常運転モードによる運転時,前記圧縮機本体の吐出側圧力に応じて無負荷回転速度と定格回転速度間で前記エンジンの回転速度を制御する速度指令を出力すると共に,
前記通常運転モードへの移行前,前記エンジンの回転速度を,前記通常運転モードにおける前記無負荷回転速度よりも高い回転速度である始動回転速度による定速運転とする速度指令を出力することを特徴とする請求項7〜10いずれか1項記載のエンジン駆動型圧縮機。
The operation mode switching means further comprises engine speed command means for outputting a speed command for commanding the rotational speed to the engine,
The engine speed command means is
During operation in the normal operation mode, a speed command for controlling the rotational speed of the engine between the no-load rotational speed and the rated rotational speed according to the discharge side pressure of the compressor body is output.
Before the transition to the normal operation mode, a speed command for outputting the engine rotation speed to a constant speed operation at a start rotation speed that is higher than the no-load rotation speed in the normal operation mode is output. The engine driven compressor according to any one of claims 7 to 10.
前記エンジン運転状態判定手段が,前記エンジンの始動判定を,前記エンジンの回転速度が所定の始動判定回転速度を超えたとき,前記エンジンに設けた発電装置の発電電圧又は電流が所定の始動判定値を超えたとき,又は,前記エンジンの油圧が所定の始動判定圧力を超えたときのいずれかの条件を満たしたときに行うことを特徴とする請求項7〜11いずれか1項記載のエンジン駆動型圧縮機。   When the engine operating state determination means determines whether or not the engine has started, when the engine speed exceeds a predetermined start determination rotation speed, the power generation voltage or current of the power generator provided in the engine is a predetermined start determination value. The engine drive according to any one of claims 7 to 11, wherein the engine drive is performed when any of the conditions when the hydraulic pressure of the engine exceeds a predetermined start determination pressure is satisfied. Mold compressor.
JP2015248948A 2015-12-21 2015-12-21 Engine-driven compressor start control method and engine-driven compressor Active JP6618347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248948A JP6618347B2 (en) 2015-12-21 2015-12-21 Engine-driven compressor start control method and engine-driven compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248948A JP6618347B2 (en) 2015-12-21 2015-12-21 Engine-driven compressor start control method and engine-driven compressor

Publications (2)

Publication Number Publication Date
JP2017115598A true JP2017115598A (en) 2017-06-29
JP6618347B2 JP6618347B2 (en) 2019-12-11

Family

ID=59233614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248948A Active JP6618347B2 (en) 2015-12-21 2015-12-21 Engine-driven compressor start control method and engine-driven compressor

Country Status (1)

Country Link
JP (1) JP6618347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016185A (en) * 2018-07-25 2020-01-30 北越工業株式会社 Compressor operation control method and compressor
CN114352533A (en) * 2022-01-24 2022-04-15 南通市红星空压机配件制造有限公司 Control method for electric air inlet valve of movable air compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132310U (en) * 1976-04-02 1977-10-07
JP2003222081A (en) * 2002-01-30 2003-08-08 Hokuetsu Kogyo Co Ltd Apparatus of reducing start load of compressor
JP2014020267A (en) * 2012-07-17 2014-02-03 Hokuetsu Kogyo Co Ltd Structure of intake portion of compressor
JP2014196718A (en) * 2013-03-29 2014-10-16 北越工業株式会社 Compressor air intake portion structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132310U (en) * 1976-04-02 1977-10-07
JP2003222081A (en) * 2002-01-30 2003-08-08 Hokuetsu Kogyo Co Ltd Apparatus of reducing start load of compressor
JP2014020267A (en) * 2012-07-17 2014-02-03 Hokuetsu Kogyo Co Ltd Structure of intake portion of compressor
JP2014196718A (en) * 2013-03-29 2014-10-16 北越工業株式会社 Compressor air intake portion structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016185A (en) * 2018-07-25 2020-01-30 北越工業株式会社 Compressor operation control method and compressor
JP7075305B2 (en) 2018-07-25 2022-05-25 北越工業株式会社 Compressor operation control method and compressor
CN114352533A (en) * 2022-01-24 2022-04-15 南通市红星空压机配件制造有限公司 Control method for electric air inlet valve of movable air compressor
CN114352533B (en) * 2022-01-24 2023-11-21 南通市红星空压机配件制造有限公司 Control method for electric air inlet valve of mobile air compressor

Also Published As

Publication number Publication date
JP6618347B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
CN108397368B (en) Method for controlling engine-driven compressor and engine-driven compressor
US10288094B2 (en) Hydrostatic drive
JP2010281432A (en) Hydraulic pressure supply device of automatic transmission
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
JP6082300B2 (en) Compressor air intake structure
JP5312272B2 (en) Control method for engine-driven air compressor and engine-driven air compressor
JP7075305B2 (en) Compressor operation control method and compressor
JP5033400B2 (en) Method for reducing load of oil-cooled screw compressor and oil-cooled screw compressor
US20130243611A1 (en) Hydraulic fan drive for an internal combustion engine
JP4470138B2 (en) Control method of rotary blower
JP2006017111A (en) Device for adjusting pressure/flow in internal combustion engine fuel injection device
JP5325701B2 (en) Control method of air compressor and air compressor
JP4077206B2 (en) Compressor starting load reduction device
JP7427523B2 (en) Operation control method for engine-driven compressor and engine-driven compressor
JP2014020267A (en) Structure of intake portion of compressor
CN115434888A (en) Method for controlling operation of engine-driven compressor and engine-driven compressor
JP4941269B2 (en) Hydraulic control device for engine
JP3039941U (en) Compressor starting load reduction device
JPH0146708B2 (en)
JP4674561B2 (en) Valve device
JP2010174927A (en) Idling stop system
JP3413783B2 (en) Compressor starting load reduction device
JPH09242673A (en) Starting load reducing device for compressor
JP2529118B2 (en) Operation control method for engine-driven compressor
JPH11101192A (en) Compressor control method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191112

R150 Certificate of patent or registration of utility model

Ref document number: 6618347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250