JP2017115166A - Anodic oxidation method for aluminum based member - Google Patents

Anodic oxidation method for aluminum based member Download PDF

Info

Publication number
JP2017115166A
JP2017115166A JP2015248176A JP2015248176A JP2017115166A JP 2017115166 A JP2017115166 A JP 2017115166A JP 2015248176 A JP2015248176 A JP 2015248176A JP 2015248176 A JP2015248176 A JP 2015248176A JP 2017115166 A JP2017115166 A JP 2017115166A
Authority
JP
Japan
Prior art keywords
aluminum
current density
current
based member
anodizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248176A
Other languages
Japanese (ja)
Other versions
JP6539200B2 (en
Inventor
俊男 堀江
Toshio Horie
俊男 堀江
清水 富美男
Fumio Shimizu
富美男 清水
脇坂 佳史
Yoshifumi Wakizaka
佳史 脇坂
西川 直樹
Naoki Nishikawa
直樹 西川
暁生 川口
Akio Kawaguchi
暁生 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2015248176A priority Critical patent/JP6539200B2/en
Publication of JP2017115166A publication Critical patent/JP2017115166A/en
Application granted granted Critical
Publication of JP6539200B2 publication Critical patent/JP6539200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anodic oxidation method for an aluminum based member capable of forming a really thick anode oxidation film in a short time.SOLUTION: Provided is an anode oxidation method for an aluminum based member comprising an electrolytic process where, while contacting the face to be treated made of pure aluminum or an aluminum alloy with an electrolytic solution, the face to be treated is subjected to energization, and an anode oxidation film is formed on the face to be treated. The electrolytic process is performed by current control of energizing AC current of periodically repeating the maximum current density and the minimum current density. The minimum current density is preferably -0.4 to 0.3 A/cm. The frequency of the AC current is preferably 2 Hz to 9 kHz. The maximum current density is preferably 1 A/cmor more. By using the anode oxidation method in this invention, a thick heat insulation layer made of an anode oxidation film can be efficiently formed at least on a part of the tip of the piston for an internal combustion engine.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム系部材の少なくとも一部の表面に陽極酸化膜を形成する陽極酸化方法に関する。   The present invention relates to an anodizing method for forming an anodized film on at least a part of a surface of an aluminum-based member.

アルミニウム系部材は、耐食性、耐摩耗性、絶縁性等を目的として陽極酸化処理がなされることが多い。陽極酸化処理は、アルミニウム系部材の被処理部を電解液浴(硫酸浴、シュウ酸浴等)に浸漬等して、その被処理部を陽極として通電することによりなされる酸化処理であり、これにより被処理部の表面(被処理面)に基材が酸化して生成された酸化アルミニウム(Al等)からなる陽極酸化膜(アルマイト皮膜)が形成される。このように陽極酸化処理は、基体自体の酸化を伴う点でめっき処理等とは異なる。 Aluminum-based members are often anodized for the purposes of corrosion resistance, wear resistance, insulation, and the like. Anodizing treatment is an oxidation treatment performed by immersing a treated portion of an aluminum-based member in an electrolytic bath (sulfuric acid bath, oxalic acid bath, etc.) and energizing the treated portion as an anode. As a result, an anodic oxide film (alumite film) made of aluminum oxide (Al 2 O 3 or the like) generated by oxidizing the base material is formed on the surface (surface to be processed) of the processed portion. Thus, the anodizing treatment is different from the plating treatment or the like in that it involves oxidation of the substrate itself.

こうして形成された陽極酸化膜は、通常、緻密で薄い(数十nm程度)バリヤー層(活性層)と、このバリヤー層上に成長するポーラス層とからなる。一般的な陽極酸化膜の厚さは、数〜数十μm以上であり、その大部分はポーラス層からなる。なお、ポーラス層は、通常、表面側に開口した多数の直管状の微細孔からなるため、それを封孔する封孔処理または孔全体を埋める封止処理がなされることも多い。   The anodic oxide film thus formed usually comprises a dense and thin (several tens of nm) barrier layer (active layer) and a porous layer grown on the barrier layer. The thickness of a general anodic oxide film is several to several tens of μm or more, and most of it consists of a porous layer. In addition, since the porous layer is usually composed of a large number of straight tubular fine holes opened on the surface side, a sealing process for sealing the porous layer or a sealing process for filling the entire hole is often performed.

ところで、陽極酸化処理を効率的に行うために、従来から種々の通電方法が提案されており、例えば下記の特許文献に関連する記載がある。   By the way, in order to efficiently perform the anodizing treatment, various energization methods have been conventionally proposed. For example, there are descriptions related to the following patent documents.

特開昭62−253797号公報JP-A-62-253797 特開2000−282294号公報JP 2000-282294 A 特開2004−35930号公報JP 2004-35930 A 特開2006−83467号公報JP 2006-83467 A 特開2007−204831号公報JP 2007-204831 A 特開2009−235539号公報JP 2009-235539 A 特開2015−124400号公報JP2015-124400A

特許文献1では、単相の商用周波数(60Hz)の交流電流と12Hzの正(プラス)側の矩形パルス波形電流とを重畳して通電している。もっとも特許文献1には、電流密度に関する記載があるものの、重畳させる各電流値または各電圧値について具体的な記載がない。また、そこに示されている交流の周波数は、商用周波数のみである。   In Patent Document 1, a single-phase commercial frequency (60 Hz) alternating current and a positive (plus) rectangular pulse waveform current of 12 Hz are superposed and energized. However, although Patent Document 1 has a description regarding the current density, there is no specific description about each current value or each voltage value to be superimposed. Moreover, the alternating frequency shown there is only the commercial frequency.

特許文献2では、試料(被処理物)に負(マイナス)の電圧が印加されないように、交流電圧と直流電圧を重畳して通電している。もっとも特許文献2では、交流周波数に関して具体的な記載がなく、単に高い周波数側(100Hz以上)が好ましい旨の記載があるに過ぎない([0022])。   In Patent Document 2, the AC voltage and the DC voltage are superimposed and energized so that a negative (minus) voltage is not applied to the sample (object to be processed). However, in Patent Document 2, there is no specific description regarding the AC frequency, and there is merely a description that the higher frequency side (100 Hz or higher) is preferable ([0022]).

特許文献3では、被処理物に実質的に正の電圧が印加されるように(重畳電圧の下限値が実質的に0Vとなるように)交流電圧と直流電圧を重畳して通電し、その交流の周波数を比較的高く(200〜2000Hz)設定している。もっとも特許文献3に記載されている陽極酸化膜の成膜速度は非常に小さく、2μm/min未満に過ぎない(表1参照)。   In Patent Document 3, an AC voltage and a DC voltage are superposed and energized so that a substantially positive voltage is applied to the object to be processed (so that the lower limit value of the superimposed voltage is substantially 0 V), The AC frequency is set relatively high (200 to 2000 Hz). However, the deposition rate of the anodic oxide film described in Patent Document 3 is very small and is only less than 2 μm / min (see Table 1).

特許文献4では、高周波数(10kHz以上を推奨)で正の電圧の印加と電荷の除去(マイナス電圧の印加)を行う通電をしている。もっとも、このような通電を4分間行っても、得られる陽極酸化膜の膜厚は高々15〜20μm(成膜速度でいうと4〜5μm/分)程度に過ぎない([0061]参照)。   In Patent Document 4, energization is performed to apply a positive voltage and remove charges (apply a negative voltage) at a high frequency (10 kHz or more recommended). However, even if such energization is performed for 4 minutes, the thickness of the anodic oxide film obtained is only about 15 to 20 μm (4 to 5 μm / min in terms of film formation speed) (see [0061]).

特許文献5では、基底電流密度を電解開始から増加→減少→一定と変化させる交直重畳通電を行い、膜厚が150μm以上の陽極酸化膜を形成している。具体的には、150分間処理して、膜厚が約300μmの陽極酸化膜を形成している。しかし、そのときの成膜速度は高々2μm/分程度に過ぎない。これは、最大電流密度が11A/dm(=0.11A/cm)と非常に小さいためと考えられる([0041]、[0042]、図5等参照)。このように特許文献1〜5にあるような陽極酸化方法では、得られる成膜速度は高々数μm/分に過ぎない。 In Patent Document 5, AC / DC superposition energization is performed to change the base current density from the start of electrolysis to increase → decrease → constant, and an anodic oxide film having a thickness of 150 μm or more is formed. Specifically, an anodic oxide film having a thickness of about 300 μm is formed by processing for 150 minutes. However, the deposition rate at that time is only about 2 μm / min. This is presumably because the maximum current density is as small as 11 A / dm 2 (= 0.11 A / cm 2 ) (see [0041], [0042], FIG. 5 etc.). As described above, in the anodic oxidation methods as disclosed in Patent Documents 1 to 5, the film forming speed obtained is only a few μm / min.

特許文献6では、ヤケ発生電圧付近まで直流電圧を印加する通電をした後、負側のピーク電流値が正側のピーク電流値の10%以下となるように、高周波域(5〜15kHz)の交流と直流を重畳させて通電している。具体的にいうと、電圧制御により、最初の10秒間は直流通電(電流密度:100A/dm)し、その後の5秒間はその直流に高周波電流(周波数:15kHz/電流密度:120A/dm)を重畳させて通電している。このときの成膜速度は65μm/分となる旨が記載されている。しかし、特許文献6では、ヤケが発生するまでの極短時間(15秒間)の処理を行っているに過ぎず、得られた陽極酸化膜の膜厚は高々16.2μmに過ぎない([0033]参照)。 In Patent Document 6, after energization to apply a DC voltage to the vicinity of the burn generation voltage, the negative peak current value is 10% or less of the positive peak current value in a high frequency range (5 to 15 kHz). It is energized with AC and DC superimposed. Specifically, the voltage control, the first 10 seconds DC application (current density: 100A / dm 2), and subsequent 5 seconds high frequency current (frequency to the DC: 15 kHz / current density: 120A / dm 2 ) Is superimposed and energized. It is described that the film forming speed at this time is 65 μm / min. However, in Patent Document 6, only an extremely short time (15 seconds) until the occurrence of burns is performed, and the thickness of the obtained anodic oxide film is only 16.2 μm at most ([0033 ]reference).

特許文献7は、交直重畳させる直流成分と交流成分の電圧比と、その交流成分の周波数とを特定範囲内とすることにより、厚い陽極酸化膜を短時間で得ることができる陽極酸化方法を提案している。本発明者の最近の研究に依れば、特許文献7に規定されている条件外でも、また、複雑な電圧制御を行わなくても、厚い陽極酸化膜を短時間で得ることが可能であることがわかった。   Patent Document 7 proposes an anodic oxidation method capable of obtaining a thick anodic oxide film in a short time by setting the voltage ratio between the DC component and AC component to be AC / DC superimposed and the frequency of the AC component within a specific range. doing. According to the present inventor's recent research, it is possible to obtain a thick anodic oxide film in a short time even outside the conditions defined in Patent Document 7 and without performing complicated voltage control. I understood it.

本発明は、このような事情に鑑みて為されたものであり、従来の陽極酸化方法とは異なる条件下で電解を行うことにより、膜厚の大きな陽極酸化膜も短時間で形成できるアルミニウム系部材の陽極酸化方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an aluminum-based film which can form a large anodic oxide film in a short time by performing electrolysis under conditions different from those of conventional anodic oxidation methods. An object is to provide a method for anodizing a member.

本発明者は、上記の課題を解決すべく鋭意研究した結果、最小電流密度と周波数が所定範囲内にある交流電流を通電することにより、比較的容易に、膜厚が非常に大きい陽極酸化膜でも、短時間に形成できることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of earnest research to solve the above-mentioned problems, the present inventor conducted an anodic oxide film having a very large thickness relatively easily by passing an alternating current having a minimum current density and frequency within a predetermined range. However, it was newly found that it can be formed in a short time. By developing this result, the present invention described below has been completed.

《アルミニウム系部材の陽極酸化方法》
(1)本発明のアルミニウム系部材の陽極酸化方法(適宜、単に「陽極酸化方法」という。)は、純アルミニウムまたはアルミニウム合金からなる被処理面を電解液に接触させつつ該被処理面に対して通電を行い、該被処理面に陽極酸化膜を形成する電解工程を備えるアルミニウム系部材の陽極酸化方法であって、前記電解工程は、最大電流密度と最小電流密度を周期的に繰り返す交流電流を通電する電流制御によりなされ、該最小電流密度は、 −0.4〜0.3A/cmであり、該交流電流の周波数は、2Hz〜9kHzであることを特徴とする。
<< Anodic oxidation method for aluminum-based members >>
(1) The anodizing method for an aluminum-based member of the present invention (simply referred to as “anodic oxidation method” as appropriate) is applied to the surface to be processed while contacting the surface to be processed made of pure aluminum or an aluminum alloy with the electrolytic solution. An anodizing method for an aluminum-based member comprising an electrolysis process for forming an anodic oxide film on the surface to be processed, wherein the electrolysis process is an alternating current that periodically repeats a maximum current density and a minimum current density The minimum current density is −0.4 to 0.3 A / cm 2 and the frequency of the alternating current is 2 Hz to 9 kHz.

(2)本発明の陽極酸化方法によれば、高い成膜速度が安定して得られるため、複雑な電圧制御による通電を行うまでもなく、アルミニウム系部材の被処理面(基材表面)に厚い陽極酸化膜を短時間で確実に形成できる。本発明の陽極酸化方法が、このような優れた成膜性を発揮するメカニズム等は必ずしも定かではないが、現状では次のように考えられる。 (2) According to the anodic oxidation method of the present invention, a high film formation rate can be stably obtained, so that it is not necessary to energize by complicated voltage control, and the surface to be treated (base material surface) of the aluminum-based member A thick anodic oxide film can be reliably formed in a short time. The mechanism etc. by which the anodic oxidation method of the present invention exhibits such excellent film forming properties are not necessarily clear, but at present, it is considered as follows.

先ず、陽極酸化膜は絶縁体であると共に誘電体であることが知られており、陽極酸化膜の近傍には電気抵抗(R)と静電容量(C)からなる擬似回路(等価回路)が形成されていると考えられる。このため、交流電流の通電(単に「交流通電」という。)により陽極酸化処理すると、その周波数が大きくなるほど、陽極酸化膜近傍のインピーダンスは小さくなり、被処理面を流れる電流密度は大きくなるため、陽極酸化膜の成膜速度が向上するように考えられる。   First, it is known that the anodic oxide film is an insulator as well as a dielectric, and a pseudo circuit (equivalent circuit) comprising an electric resistance (R) and a capacitance (C) is provided in the vicinity of the anodic oxide film. It is thought that it is formed. For this reason, when anodizing is performed by energizing alternating current (simply referred to as “alternating current energizing”), as the frequency increases, the impedance near the anodized film decreases, and the current density flowing through the surface to be processed increases. It can be considered that the deposition rate of the anodized film is improved.

しかし、本発明者が鋭意研究したところ意外にも、従来よりかなり低い周波数域で交流通電することにより、成膜速度が極大を示すことが明らかとなった。この理由は定かではないが、被処理面上に形成された陽極酸化膜と電解液との界面近傍において、酸素イオンの吸着サイトの電位依存性や電気二重層の存在などが影響しているためと推察される。   However, as a result of diligent research by the present inventors, it has been surprisingly revealed that the film formation rate exhibits a maximum when AC current is applied in a considerably lower frequency range than before. The reason for this is not clear, but is affected by the potential dependence of oxygen ion adsorption sites and the presence of an electric double layer in the vicinity of the interface between the anodized film formed on the surface to be treated and the electrolyte. It is guessed.

ちなみにここでいう電気二重層は、上述した界面近傍の電解液中において、陽極酸化膜側にアニオン(OH-、SO42-等)が層状に整列し、それに対向して対をなすようにカチオン(H+等)が層状に整列した状態を意味する。このように電解液を介在して形成される電気二重層も、陽極酸化膜の場合と同様に、電気抵抗(R’)と静電容量(C’)からなる擬似回路(等価回路)として考えることができる。つまり、被処理面の近傍は、陽極酸化膜近傍に構成される第1擬似回路と電気二重層により構成される第2擬似回路が接続された等価回路として把握できることになる。従って、上述したように、陽極酸化膜の成膜性は、陽極酸化膜近傍の第1擬似回路だけでは把握され得ず、電気二重層による第2擬似回路の存否さらにはその特性をも加味することにより、初めて全体的な把握が可能になると考えられる。 Incidentally, the electric double layer referred to here is a cation in which the anions (OH , SO 4 2−, etc.) are arranged in layers on the anodic oxide film side in the electrolyte solution in the vicinity of the above-mentioned interface, and form a pair opposite thereto. (H + etc.) means a state in which the layers are aligned. The electric double layer formed by interposing the electrolytic solution as described above is also considered as a pseudo circuit (equivalent circuit) including an electric resistance (R ′) and a capacitance (C ′), as in the case of the anodic oxide film. be able to. That is, the vicinity of the surface to be processed can be grasped as an equivalent circuit in which the first pseudo circuit configured in the vicinity of the anodized film and the second pseudo circuit configured of the electric double layer are connected. Therefore, as described above, the film formability of the anodic oxide film cannot be grasped only by the first pseudo circuit in the vicinity of the anodic oxide film, and the presence or absence of the second pseudo circuit by the electric double layer and the characteristics thereof are also taken into consideration. For the first time, it will be possible to obtain an overall understanding.

ところで、本発明に係る電解工程では、通電する交流電流の最小電流密度およびその周波数を特定範囲内に限定している。この場合、電気二重層の維持が困難となり、陽極酸化膜と電解液の界面近傍において、各イオン(特にアニオン)の濃度や移動が所望状態に近くなり、その結果、効率的な通電が可能となって、高い成膜速度が安定的に得られるようになったと推察される。   By the way, in the electrolysis process according to the present invention, the minimum current density of the alternating current to be energized and the frequency thereof are limited within a specific range. In this case, it becomes difficult to maintain the electric double layer, and the concentration and movement of each ion (especially anion) are close to the desired state in the vicinity of the interface between the anodic oxide film and the electrolytic solution, and as a result, efficient energization is possible. Thus, it is presumed that a high film forming speed can be stably obtained.

ちなみに、最小電流密度だけを上述したよう範囲内にしても、本発明のように優れた成膜性は得られない。この理由は次のように考えられる。電気二重層は電子よりも遙かに質量の大きいイオン粒子で形成されている。このような電気二重層へ、高周波数の交流電流を通電すると、質量の大きなイオン粒子はその周波数変化に殆ど追従できない。この場合、電気二重層は実質的に残存したままとなり、成膜速度の向上等はあまり望めない。いずれにしても、本発明の陽極酸化方法の場合、通電する交流電流の最小電流密度と周波数とが連携または相乗することにより、非常に優れた成膜性が発揮されるようになったことは確かである。   Incidentally, even if only the minimum current density is within the above-mentioned range, the excellent film formability as in the present invention cannot be obtained. The reason is considered as follows. The electric double layer is formed of ion particles having a mass much larger than that of electrons. When a high-frequency alternating current is passed through such an electric double layer, ion particles having a large mass can hardly follow the frequency change. In this case, the electric double layer remains substantially remaining, and an improvement in the film formation rate cannot be expected. In any case, in the case of the anodic oxidation method of the present invention, a very excellent film forming property has been exhibited by cooperation or synergy between the minimum current density and the frequency of the alternating current to be applied. Certainly.

《アルミニウム系部材》
本発明は、陽極酸化方法としてのみならず、それにより形成された陽極酸化膜を有するアルミニウム系部材としても把握できる。
<< Aluminum-based parts >>
The present invention can be grasped not only as an anodic oxidation method but also as an aluminum-based member having an anodic oxide film formed thereby.

《その他》
(1)本明細書でいう「交流」とは、電流値または電圧値が周期的に変動することをいい、その波形、振幅値、中央値(平均値)、ピーク値等は問わない。「直流」とは、その交流以外を意味し、電流値または電圧値は一定でも、周期的でなければ経時的に変化してもよく、その波形、極性(正負)等は問わない。
<Others>
(1) The term “alternating current” as used in this specification means that the current value or voltage value fluctuates periodically, and the waveform, amplitude value, median value (average value), peak value, etc. are not limited. “Direct current” means other than the alternating current, and the current value or voltage value may be constant or may change over time if it is not periodic, and its waveform, polarity (positive or negative), etc. are not questioned.

「交流成分」とは、周期的に変動する電流成分または電圧成分であり、「直流成分」とは、バイアス電流またはバイアス電圧である。交直重畳する場合、周期的に変動する電流値または電圧値の平均値を直流成分とする。ここでいう「平均値」とは、実効値ではなく、電流値または電圧値の上下ピーク値(上下限値)の相加平均値とする。なお、本発明に係る電解工程は電流制御によりなされるため、特に断らない限り、交流(成分)または直流(成分)は電流に関するものとする。   The “alternating current component” is a current component or a voltage component that varies periodically, and the “direct current component” is a bias current or a bias voltage. When AC / DC superimposition is performed, an average value of periodically changing current values or voltage values is set as a DC component. The “average value” here is not an effective value, but an arithmetic average value of upper and lower peak values (upper and lower limit values) of a current value or a voltage value. Since the electrolysis process according to the present invention is performed by current control, alternating current (component) or direct current (component) is related to current unless otherwise specified.

本発明でいう「電流制御」は、最小電流密度(または最小電流値)、最大電流密度(または最小電流値)および周波数を、所定値または所定範囲内に予め設定した状態を維持しつつ、電解液に接触している陽極(基材側)と陰極との間に交流通電することをいう。最小電流密度(さらには最大電流密度)は、本発明で規定する範囲内にある限り、必ずしも一定でなくてもよい。例えば、交流成分と重畳させる直流成分が時間と共に(一次関数的に)変化する場合、最小電流密度も変化し得る。   In the present invention, “current control” means that the minimum current density (or minimum current value), maximum current density (or minimum current value), and frequency are maintained while maintaining a predetermined value or a predetermined range within a predetermined range. AC current is applied between the anode (base material side) in contact with the liquid and the cathode. The minimum current density (and the maximum current density) is not necessarily constant as long as it is within the range defined by the present invention. For example, when the DC component to be superimposed on the AC component changes with time (in a linear function), the minimum current density can also change.

このような場合も考慮して、本発明でいう最小電流密度または最大電流密度は、通電期間中の各サイクルにおけるピーク値(極小値または極大値)の相加平均値とする。また、交流電流の周波数が電解過程中に変動するときは、通電期間中の総サイクル数をその通電時間で除した平均値を、本発明でいう周波数とする。   Considering such a case, the minimum current density or the maximum current density in the present invention is an arithmetic average value of peak values (minimum value or maximum value) in each cycle during the energization period. When the frequency of the alternating current fluctuates during the electrolysis process, an average value obtained by dividing the total number of cycles during the energization period by the energization time is defined as the frequency referred to in the present invention.

ちなみに、本明細書でいう「電流密度」とは、印加電流を電解液に接触させる被処理面(陽極電極面)の面積で除して求まる。その面積は、実測またはアルミニウム系部材の設計値に基づいて定める。   Incidentally, the “current density” in the present specification is obtained by dividing the applied current by the area of the surface to be treated (anode electrode surface) in contact with the electrolytic solution. The area is determined based on actual measurement or a design value of an aluminum-based member.

(2)本発明の陽極酸化方法では、陽極酸化膜の成膜速度やその膜厚を問わない。敢えて言うと、成膜速度は、例えば、50μm/分以上さらには65μm/分以上、膜厚は、例えば、50μm以上、75μm以上さらには100μm以上となり得る。また、このように厚い陽極酸化膜を得るために必要な処理時間(電解時間)は、例えば、1〜10分間、1.5〜5分間さらには2〜3分間程度でもよい。 (2) In the anodic oxidation method of the present invention, the film formation speed and the film thickness of the anodic oxide film are not questioned. Speaking daringly, the film formation rate may be, for example, 50 μm / min or more, further 65 μm / min or more, and the film thickness may be, for example, 50 μm or more, 75 μm or more, further 100 μm or more. Further, the processing time (electrolysis time) necessary for obtaining such a thick anodic oxide film may be, for example, about 1 to 10 minutes, 1.5 to 5 minutes, or even about 2 to 3 minutes.

膜厚は、陽極酸化膜の断面を走査型電子顕微鏡(SEM)で観察したり、渦電流式膜厚計で計測することで求まるが、特に断らない限り、渦電流式膜厚計の計測値に基づく。なお、SEM観察により膜厚の特定は、成膜面に直交する断面を観察して、陽極酸化膜(酸化アルミニウム)と基材(純アルミニウムまたはアルミニウム合金)の界面から、最表面までの距離を測定して行う。   The film thickness can be obtained by observing the cross section of the anodized film with a scanning electron microscope (SEM) or by measuring it with an eddy current film thickness meter. Unless otherwise noted, the measured value of the eddy current film thickness meter based on. The film thickness can be specified by SEM observation by observing a cross section orthogonal to the film formation surface and determining the distance from the interface between the anodized film (aluminum oxide) and the base material (pure aluminum or aluminum alloy) to the outermost surface. Measure and do.

成膜速度は、その膜厚を処理時間(通電時間)で除することで求められる。但し、膜厚自体が小さいと、成膜速度が大きく算出される傾向がある。そこで本発明に係る成膜速度は、膜厚40μm以上の陽極酸化膜を成膜したときの値とする。   The film formation speed is obtained by dividing the film thickness by the processing time (energization time). However, when the film thickness itself is small, the film forming speed tends to be calculated to be large. Therefore, the film forming speed according to the present invention is a value when an anodic oxide film having a film thickness of 40 μm or more is formed.

(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (3) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

交流電流の最小電流密度と成膜速度の関係を示すグラフである。It is a graph which shows the relationship between the minimum current density of alternating current, and the film-forming speed | rate. 交流電流の周波数と成膜速度の関係を示すグラフである。It is a graph which shows the relationship between the frequency of alternating current, and the film-forming rate. デューティ比を調整した矩形波電流の周波数と成膜速度の関係を示すグラフである。It is a graph which shows the relationship between the frequency of the rectangular wave current which adjusted the duty ratio, and the film-forming speed | rate. 最大電流密度とデューティ比の関係を示すグラフである。It is a graph which shows the relationship between a maximum current density and a duty ratio.

本明細書で説明する内容は、本発明の陽極酸化方法のみならず、陽極酸化処理されたアルミニウム系部材にも適宜該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。この際、方法に関する構成要素は、一定の場合(構造または特性により「物」を直接特定することが不可能であるかまたは非実際的である事情(不可能・非実際的事情)等がある場合)、プロダクトバイプロセスとして「物」に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be appropriately applied not only to the anodizing method of the present invention but also to an anodized aluminum-based member. One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. In this case, the components related to the method are fixed (for example, it is impossible or impractical to directly identify the “object” by structure or characteristics (impossible / unpractical circumstances), etc.) ), It can also be a component for “things” as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《陽極酸化方法》
(1)交流電流
本発明に係る電解工程は、電流密度と周波数が所定範囲内に制御された交流電流を通電してなされる。最小電流密度は、−0.4〜0.3A/cm、−0.3〜0.2A/cmさらには−0.2〜0.1A/cmであると好ましい。最小電流密度は過小でも過大でも、成膜速度が低下し得る。特に最小電流密度が過大になると、いわゆるヤケ(焼け)が陽極酸化膜に生じ易くなる。
《Anodic oxidation method》
(1) AC Current The electrolysis process according to the present invention is performed by applying an AC current whose current density and frequency are controlled within a predetermined range. Minimum current density, -0.4~0.3A / cm 2, preferably -0.3~0.2A / cm 2 and even more are -0.2~0.1A / cm 2. Whether the minimum current density is too low or too high, the deposition rate can be reduced. In particular, when the minimum current density is excessive, so-called burn (burning) is likely to occur in the anodic oxide film.

最大電流密度は、例えば、1A/cm以上、1.5A/cm以上さらには1.8A/cm以上であると好ましい。最大電流密度が過小では成膜速度の向上を図れない。最大電流密度が過大になると、ヤケ(焼け)が陽極酸化膜に生じ易くなる。 Maximum current density is, for example, 1A / cm 2 or more, the 1.5A / cm 2 or more further is a 1.8A / cm 2 or more preferred. If the maximum current density is too low, the deposition rate cannot be improved. If the maximum current density is excessive, burns (burns) are likely to occur in the anodic oxide film.

交流電流の周波数は、2Hz〜9kHz、5Hz〜1kHz、10〜1000Hz、20〜900Hzさらには30〜200Hzであると好ましい。周波数は過小でも過大でも、成膜速度が低下し得る。ちなみに、陽極酸化膜の界面近傍に形成される擬似回路を直列の交流回路と考えると、そのインピーダンス(Z)は、Z={R+(ωL−1/ωC)1/2 (R:抵抗、L:インダクタンス、C:キャパシタンス、ω:角周波数(=2πf)、f:交流電流の周波数)と表される。このように考えると、周波数が過小では、反応層、電気二重層の生成に伴う容量成分に起因してインピーダンスが大きくなり、周波数が過大になると、陽極酸化反応に伴う誘導成分に起因してインピーダンスが大きくなり、いずれにしても電流値が低下して成膜の抑制または停滞が生じ得ることが説明される。なお、具体的なR、L、Cの特定は容易ではないが、上式に基づけば、ω=(1/LC)1/2のとき、つまりf=(1/LC)1/2/2πのときに、Zが最小値(極小値)となり得る。逆にいえば、Zを最小とするようなfの存在が予想され、上述した範囲内にある周波数がそのようなfを与えると考えられる。 The frequency of the alternating current is preferably 2 Hz to 9 kHz, 5 Hz to 1 kHz, 10 to 1000 Hz, 20 to 900 Hz, and further 30 to 200 Hz. Whether the frequency is too low or too high, the deposition rate can be reduced. By the way, if the pseudo circuit formed near the interface of the anodized film is considered as a series AC circuit, the impedance (Z) is Z = {R 2 + (ωL−1 / ωC) 2 } 1/2 (R : Resistance, L: inductance, C: capacitance, ω: angular frequency (= 2πf), f: frequency of alternating current). Considering this, when the frequency is too low, the impedance increases due to the capacitive component associated with the generation of the reaction layer and the electric double layer, and when the frequency is excessive, the impedance increases due to the induced component associated with the anodic oxidation reaction. In any case, it is explained that the current value can be reduced and the film formation can be suppressed or stagnated. Although it is not easy to specify specific R, L, and C, based on the above formula, when ω = (1 / LC) 1/2 , that is, f = (1 / LC) 1/2 / 2π. In this case, Z can be a minimum value (minimum value). Conversely, the existence of f 0 that minimizes Z is expected, and a frequency within the above range is considered to give such f 0 .

なお、本発明に係る電流密度や周波数の最適値は、基材の材質、電解液の濃度、温度(浴温)、浴内の流動性(例えば撹拌の程度)等の状況変化に応じて、上述した範囲内で多少変動し得る。もっとも、本発明に係る基本的な考え方(原理)は変わらず、電流密度および周波数が既述した数値範囲内にある限り、成膜性に優れた陽極酸化処理を行い得る。   In addition, the optimum value of the current density and frequency according to the present invention depends on the situation change such as the material of the base material, the concentration of the electrolytic solution, the temperature (bath temperature), the fluidity in the bath (for example, the degree of stirring), There may be some variation within the above range. However, the basic idea (principle) according to the present invention is not changed, and as long as the current density and the frequency are within the numerical ranges described above, anodization with excellent film forming properties can be performed.

電解工程で印加される交流電流の波形は、種々考えられ、例えば、正弦波の他、矩形波、三角波、のこぎり波、パルス波等がある。交流成分と直流成分を重畳(合成)させて交流電流を得る場合、その波形は、交流成分により調整でき、交流電流の平均電流(密度)は直流成分(バイアス電流)により調整できる。特に、周波数およびピーク電流値(最小電流値と最大電流値)が一定な交流成分と、電流値が一定な直流成分とを重畳させた交流電流を用いて電解工程を行うと好ましい。   Various waveforms of the alternating current applied in the electrolysis process are conceivable, such as a rectangular wave, a triangular wave, a sawtooth wave, and a pulse wave in addition to a sine wave. When an alternating current is obtained by superimposing (combining) an alternating current component and a direct current component, the waveform can be adjusted by the alternating current component, and the average current (density) of the alternating current can be adjusted by the direct current component (bias current). In particular, the electrolysis process is preferably performed using an alternating current in which an alternating current component having a constant frequency and peak current value (minimum current value and maximum current value) and a direct current component having a constant current value are superimposed.

特に、交流電流は、1周期(T)内で最大電流密度となる通電時間(τ)の割合であるデューティ比(τ/T)が0.05〜0.5、0.1〜0.3さらには0.15〜0.25である矩形波電流であると好ましい。デューティ比が過小では成膜速度の向上を図れないが、デューティ比を相対的に小さくすることにより、ヤケ等の不良を生じることなく、成膜速度の向上を図れる。特に、デューティ比を小さくしつつ、最大電流密度を大きくすることにより、良好な陽極酸化膜を高速に成膜できる。例えば、デューティ比を0.5以下としつつ、最大電流密度を2A/cm以上、3A/cm以上さらには4A/cm以上とするとよい。加えて、そのときの交流電流の周波数が20〜900Hzさらには50〜500Hzであると、成膜速度のさらなる向上を図れる。 In particular, the alternating current has a duty ratio (τ / T) of 0.05 to 0.5, 0.1 to 0.3, which is a ratio of the energization time (τ) at which the maximum current density is reached in one cycle (T). Furthermore, a rectangular wave current of 0.15 to 0.25 is preferable. If the duty ratio is too small, the film forming speed cannot be improved. However, by reducing the duty ratio relatively, the film forming speed can be improved without causing defects such as burns. In particular, a good anodic oxide film can be formed at high speed by increasing the maximum current density while reducing the duty ratio. For example, while the duty ratio to 0.5 or less, the maximum current density 2A / cm 2 or more, or equal to 3A / cm 2 or more further 4A / cm 2 or more. In addition, when the frequency of the alternating current at that time is 20 to 900 Hz, further 50 to 500 Hz, the film formation rate can be further improved.

(2)電解液
電解液(陽極酸化処理液)は、その種類を問わず、例えば、硫酸水溶液、燐酸水溶液、クロム酸水溶液等の無機酸液でも、蓚酸水溶液等の有機酸液でもよい。但し、経済性等の観点から電解液は硫酸水溶液であると好ましい。この硫酸水溶液は、濃度が5〜40質量%さらには10〜30質量%程度であると好ましい。濃度が過小では十分な成膜速度が得られず、濃度が過大では陽極酸化膜の耐食性が低下し得る。電解液の温度(浴温)は0〜40℃さらには10〜30℃程度であると好ましい。この温度が過小または過大になると、十分な成膜速度が得られない。ちなみに、電解液中に設ける対極には、通常、白金電極や黒鉛電極等が用いられるが、他の導電材からなる電極を用いてもよい。
(2) Electrolyte Solution Regardless of the type of the electrolyte solution (anodizing treatment solution), for example, an inorganic acid solution such as a sulfuric acid aqueous solution, a phosphoric acid aqueous solution, or a chromic acid aqueous solution, or an organic acid solution such as an oxalic acid aqueous solution may be used. However, the electrolytic solution is preferably a sulfuric acid aqueous solution from the viewpoint of economy and the like. The sulfuric acid aqueous solution preferably has a concentration of about 5 to 40% by mass, more preferably about 10 to 30% by mass. If the concentration is too low, a sufficient film formation rate cannot be obtained, and if the concentration is too high, the corrosion resistance of the anodic oxide film may be lowered. The temperature (bath temperature) of the electrolytic solution is preferably 0 to 40 ° C, more preferably about 10 to 30 ° C. If this temperature is too low or too high, a sufficient film formation rate cannot be obtained. Incidentally, a platinum electrode, a graphite electrode, or the like is usually used as the counter electrode provided in the electrolytic solution, but an electrode made of another conductive material may be used.

(3)後処理
本発明に係る陽極酸化膜は、陽極酸化処理のままでも良いが、封孔処理、封止処理、熱処理、塗装等の後処理が適宜なされてもよい。例えば、封孔処理を行うと、陽極酸化膜(多孔質層)の細孔が封じられ、アルミニウム系部材の耐食性が向上し得る。ちなみに封孔処理方法は周知であり、例えば、陽極酸化膜を沸騰水や高圧蒸気に曝すことにより行われる。この他、陽極酸化膜を遮熱膜として用いるような場合、例えば、高耐熱性のシリカやアルミナ等からなる封止層を陽極酸化膜の表面に形成して封止処理を行ってもよい。具体的にいうと、例えば、陽極酸化膜の表面にポリシラザン、ポリシロキサン等を塗布し、それを焼成してシリカに転化させた強化層を、多孔質層中またはその最表面に形成して封止処理してもよい。
(3) Post-treatment The anodized film according to the present invention may be anodized as it is, but post-treatment such as sealing treatment, sealing treatment, heat treatment, and coating may be appropriately performed. For example, when the sealing treatment is performed, the pores of the anodized film (porous layer) are sealed, and the corrosion resistance of the aluminum-based member can be improved. Incidentally, the sealing treatment method is well known, for example, performed by exposing the anodized film to boiling water or high-pressure steam. In addition, when an anodic oxide film is used as the heat shield film, for example, a sealing layer made of high heat-resistant silica, alumina, or the like may be formed on the surface of the anodic oxide film to perform the sealing process. Specifically, for example, a reinforcing layer formed by applying polysilazane, polysiloxane or the like on the surface of the anodic oxide film and firing it to convert to silica is formed in the porous layer or on the outermost surface thereof and sealed. You may stop processing.

《アルミニウム系部材》
(1)陽極酸化膜
陽極酸化膜は、主に酸化アルミニウム(Al)からなるが、陽極酸化処理の条件によりその形態(特に多孔質層の形態)は変化し得る。用途や要求仕様に応じて、適切な陽極酸化膜が選択されるとよい。例えば、耐摩耗性を目的とする場合なら密な陽極酸化膜が好ましいが、遮熱性を目的とする場合なら疎な陽極酸化膜でもよい。
<< Aluminum-based parts >>
(1) Anodized film The anodized film is mainly composed of aluminum oxide (Al 2 O 3 ), but its form (particularly the form of the porous layer) can be changed depending on the conditions of the anodizing treatment. An appropriate anodic oxide film may be selected according to the application and required specifications. For example, a dense anodic oxide film is preferable for the purpose of wear resistance, but a sparse anodic oxide film may be used for the purpose of heat shielding.

さらに、内燃機関の燃焼室面(例えば、内燃機関用ピストンの頂面やシリンダーヘッドの燃焼室壁面)等に形成される陽極酸化膜は、ポーラス層とは別に、微細な空孔(ポア)を積極的に内包したものであると好ましい。高空孔率の陽極酸化膜は、本来有する耐熱性と共に、低熱伝導性を発現するため、高温環境下に曝される部材の断熱層として有効である。また陽極酸化膜は、厚さ(膜厚)が高々数十μm〜数百μmで熱容量も十分に小さいため、温度追従性にも優れる。なお、熱伝導性と温度追従性を併せて、「スイング特性」という(特許5642640号公報、特開2015−31226号公報等参照)。   Furthermore, the anodized film formed on the combustion chamber surface of the internal combustion engine (for example, the top surface of the piston for the internal combustion engine or the combustion chamber wall surface of the cylinder head) has fine pores (pores) separately from the porous layer. It is preferable that it is positively included. An anodic oxide film having a high porosity exhibits low heat conductivity in addition to the inherent heat resistance, and is therefore effective as a heat insulating layer for members exposed to high temperature environments. Moreover, since the anodic oxide film has a thickness (film thickness) of several tens μm to several hundreds μm at most and a heat capacity is sufficiently small, the temperature followability is excellent. The thermal conductivity and the temperature followability are collectively referred to as “swing characteristics” (see Japanese Patent No. 5642640, Japanese Patent Application Laid-Open No. 2015-3226, etc.).

(2)基材
本発明に係るアルミニウム系部材は、純アルミニウムまたはアルミニウム合金からなる基材を少なくとも一部に有し、その基材の少なくとも一部の表面(被処理面)に陽極酸化膜が形成されるものであれば足る。基材の組成や組織は種々あり得るが、基材が純アルミニウムに近いほど、緻密な陽極酸化膜が得られ易い。一方、ポーラス層とは別な空孔を内包した陽極酸化膜を形成する場合であれば、基材はSiやCuを含むアルミニウム合金からなると好ましい。被処理面にSi(結晶粒等)があると、その近傍では陽極酸化膜が成長し難い。また、被処理面にあるCu化合物粒等は溶出し易い。こうして、被処理面にSiやCuがあると、陽極酸化膜中に空孔が形成され易くなる。さらに、被処理面近傍でSi(結晶粒等)またはCu(化合物粒等)が微細に分散していると、陽極酸化膜中の空孔も微細に分散したものとなり易い。微細な空孔は略球状に近くなるため、破壊起点ともなり難い。従って、基材がSiやCuを含むアルミニウム合金からなると、断熱性(低熱伝導性)、温度追従性、機械的特性(強度、靱性等)等に優れた高空孔率の陽極酸化膜の形成が可能となる。
(2) Substrate The aluminum-based member according to the present invention has a substrate made of pure aluminum or an aluminum alloy at least in part, and an anodized film is formed on at least a part of the surface (surface to be treated). Anything that is formed is sufficient. The composition and structure of the substrate can be various, but the closer the substrate is to pure aluminum, the easier it is to obtain a dense anodic oxide film. On the other hand, in the case of forming an anodic oxide film containing pores different from the porous layer, the base material is preferably made of an aluminum alloy containing Si or Cu. When Si (crystal grains or the like) is present on the surface to be processed, the anodic oxide film is difficult to grow in the vicinity thereof. Further, Cu compound particles and the like on the surface to be processed are easily eluted. Thus, if Si or Cu is present on the surface to be processed, vacancies are easily formed in the anodized film. Furthermore, if Si (crystal grains or the like) or Cu (compound grains or the like) is finely dispersed in the vicinity of the surface to be processed, the vacancies in the anodized film tend to be finely dispersed. Fine pores are almost spherical, so they are unlikely to be a starting point for fracture. Therefore, when the base material is made of an aluminum alloy containing Si or Cu, it is possible to form an anodic oxide film having a high porosity that is excellent in heat insulation (low thermal conductivity), temperature followability, mechanical properties (strength, toughness, etc.), etc. It becomes possible.

このような場合、本発明に係るアルミニウム合金は、Siを5〜60%、8〜58%、11〜55%、12〜50%、13〜40%さらに17〜30%含むと好ましい。また、そのアルミニウム合金は、Cuを0.5〜10%、1.5〜9%、2.5〜8%、3〜7%、4〜6.5%さらには5〜6%含むと好ましい。勿論、そのアルミニウム合金は、SiとCuを同時に含んでもよい。そして、SiとCuは、結晶粒や化合物粒として、アルミニウム合金中に独立して分散していると好ましい。   In such a case, the aluminum alloy according to the present invention preferably contains 5 to 60%, 8 to 58%, 11 to 55%, 12 to 50%, 13 to 40%, and further 17 to 30% of Si. The aluminum alloy preferably contains 0.5 to 10%, 1.5 to 9%, 2.5 to 8%, 3 to 7%, 4 to 6.5%, and further 5 to 6% of Cu. . Of course, the aluminum alloy may contain Si and Cu simultaneously. Si and Cu are preferably dispersed independently in the aluminum alloy as crystal grains and compound grains.

アルミニウム合金は、Al、Si、Cu以外に、種々の合金元素を含み得る。例えば、Mgを0.5〜3%さらには0.7〜2%含んでもよい。また、アルミニウム合金は、機械的特性を改善する他の改質元素や金属組織(特にSi結晶粒またはCu化合物粒)を微細化する微細化剤等を少量(例えば0.01〜1%程度)含んでもよい。一例を挙げると、Siを13%以上含む過共晶アルミニウム合金の場合なら、微細化剤としてPを含むと好ましい。   The aluminum alloy can contain various alloy elements in addition to Al, Si, and Cu. For example, Mg may be included in an amount of 0.5 to 3%, further 0.7 to 2%. In addition, the aluminum alloy has a small amount (for example, about 0.01 to 1%) of other modifying elements that improve mechanical properties and a finer that refines the metal structure (especially Si crystal grains or Cu compound grains). May be included. For example, in the case of a hypereutectic aluminum alloy containing 13% or more of Si, it is preferable to contain P as a finer.

基材となるアルミニウム合金は、鋳造材、鍛造や展伸加工等の塑性加工が施された加工材、溶射材、貼着材等のいずれでもよい。溶射材には、例えば、Si:40〜70%含むアルミニウム合金粉末を用いることができる。貼着材には、例えば、JIS規格やAA規格の4000番系の展伸用アルミニウム合金(例えば、Si量:8〜20%さらには10〜17%)を用いることができる。   The aluminum alloy used as the base material may be any of a cast material, a processed material subjected to plastic processing such as forging and extension processing, a thermal spray material, and an adhesive material. As the thermal spray material, for example, an aluminum alloy powder containing Si: 40 to 70% can be used. As the adhesive material, for example, a JIS standard or AA standard # 4000 series aluminum alloy for extension (for example, Si content: 8 to 20%, or 10 to 17%) can be used.

《用途》
本発明に係るアルミニウム系部材または陽極酸化膜は、その用途を問わない。例えば、内燃機関用ピストン(アルミニウム系部材)の頂面部(ピストンリングのランド部および溝部を含む)を被覆する遮熱膜、コイルや配線(アルミニウム系部材)の外表面を被覆する絶縁膜等に本発明の陽極酸化膜が用いられると好ましい。なお、内燃機関用ピストンは、例えば、Si:5〜24%さらには11〜13%、Cu:0.5〜4%さらには0.8〜1.3%、Mg:0.7〜2%さらには1〜1.3%を含む鋳造用アルミニウム合金からなる。勿論、種々の改質元素(例えば合計で3%以下さらには1%以下)をさらに含んでもよく、それら以外の残部はAlおよび不可避不純物である。改質元素は、例えば、基材の結晶粒(特にα−Al粒)を微細化するTiまたはB、Si粒を微細化(球状化)するSr、NaまたはSb、耐熱性等を向上させるZn、Fe、Mn、Ni、Pb、SnまたはCr等である。
<Application>
The use of the aluminum-based member or the anodic oxide film according to the present invention is not limited. For example, a heat shield film that covers the top surface part (including the piston ring land part and groove part) of an internal combustion engine piston (aluminum member), an insulating film that covers the outer surface of a coil or wiring (aluminum member), etc. The anodic oxide film of the present invention is preferably used. The piston for the internal combustion engine is, for example, Si: 5 to 24%, further 11 to 13%, Cu: 0.5 to 4%, further 0.8 to 1.3%, Mg: 0.7 to 2% Furthermore, it consists of an aluminum alloy for casting containing 1 to 1.3%. Of course, various modifying elements (for example, 3% or less or 1% or less in total) may be further included, and the remainder other than these is Al and inevitable impurities. Examples of the modifying element include Ti or B for refining crystal grains (particularly α-Al grains) of the base material, Sr, Na or Sb for refining (spheroidizing) Si grains, and Zn for improving heat resistance. Fe, Mn, Ni, Pb, Sn or Cr.

内燃機関用ピストンの頂面に厚い陽極酸化膜を形成することを想定して、最小電流密度と周波数が種々異なる交流電流を用いて、電流制御による電解工程を行った。こうしてアルミニウム合金からなる基材の表面(被処理面)に陽極酸化膜を形成した多数の試料を製造した。これら試料に基づいて、陽極酸化膜の成膜条件(最小電流密度、周波数)とその成膜速度との関係を明らかにした。このような具体例を挙げつつ、以下に本発明をさらに詳しく説明する。   Assuming that a thick anodic oxide film is formed on the top surface of the piston for an internal combustion engine, an electrolysis process by current control was performed using alternating currents having different minimum current densities and different frequencies. In this way, a large number of samples in which an anodized film was formed on the surface (surface to be treated) made of an aluminum alloy were manufactured. Based on these samples, the relationship between the deposition conditions (minimum current density, frequency) of the anodized film and the deposition rate was clarified. The present invention will be described in more detail below with specific examples.

《試料の製造》
(1)基材
陽極酸化膜を形成する基材(アルミニウム系部材)として、鋳造用アルミニウム合金(JIS AC8A/Al−12%Si−1%Cu−1%Mg)からなる供試材を用意した。
<Production of sample>
(1) Base material As a base material (aluminum-based member) for forming an anodized film, a test material made of an aluminum alloy for casting (JIS AC8A / Al-12% Si-1% Cu-1% Mg) was prepared. .

(2)陽極酸化処理(電解工程)
硫酸水溶液(電解液)中に供試材(被処理面)を浸し、それを陽極、白金電極を陰極として通電した。この際、被処理面を除く供試材の他面はマスキングして、被処理面と白金電極の間で通電がされるようにした。また電解液は、硫酸濃度(質量%):20%、温度(浴温):10℃とした。通電は、電解液を撹拌しつつ行った。
(2) Anodizing treatment (electrolysis process)
A test material (surface to be treated) was immersed in an aqueous sulfuric acid solution (electrolytic solution), and the sample was energized with the anode and the platinum electrode as a cathode. At this time, the other surface of the test material excluding the surface to be processed was masked so that current was supplied between the surface to be processed and the platinum electrode. The electrolytic solution was sulfuric acid concentration (mass%): 20% and temperature (bath temperature): 10 ° C. The energization was performed while stirring the electrolytic solution.

通電には、電流制御された交流電流(矩形波電流)を用いた。この矩形波電流は、半サイクル毎の電流値(電流密度)が一定(デューティ比:0.5)で、正側波形と負側波形が対称となる矩形波からなる交流成分と、電流値(電流密度)が一定な直線波形の直流成分とを重畳させて形成した。   A current-controlled alternating current (rectangular wave current) was used for energization. This rectangular wave current has a constant current value (current density) every half cycle (duty ratio: 0.5), an AC component composed of a rectangular wave in which the positive side waveform and the negative side waveform are symmetrical, and the current value ( It was formed by superimposing a DC component of a linear waveform with a constant current density.

最大電流密度、最小電流密度または周波数を変更して陽極酸化処理を行った。こうして、陽極酸化膜が形成された試料を多数得た。なお、電流密度は、印加電流値を供試材の表面積で除して求めた。   Anodization was performed by changing the maximum current density, minimum current density or frequency. Thus, a large number of samples on which an anodized film was formed were obtained. The current density was obtained by dividing the applied current value by the surface area of the test material.

(3)電解終了後の供試材は、電解液から取り出した後に蒸留水でよく洗浄し、圧縮空気を吹き付けて水分を除去した後、大気中で十分に乾燥させた。そして、各供試材の被処理面上に形成されている陽極酸化膜の膜厚を渦電流式膜厚計により測定した。なお、各試料の膜厚は、いずれも45μmを超えていた。 (3) The test material after completion of electrolysis was thoroughly washed with distilled water after being taken out from the electrolytic solution, sprayed with compressed air to remove moisture, and then sufficiently dried in the atmosphere. And the film thickness of the anodic oxide film currently formed on the to-be-processed surface of each test material was measured with the eddy current type film thickness meter. The film thickness of each sample exceeded 45 μm.

こうして各試料に係る成膜条件(最小電流密度または周波数)と成膜速度(陽極酸化膜の膜厚/通電時間:μm/分)の関係を明らかにした。   Thus, the relationship between the film formation conditions (minimum current density or frequency) and the film formation speed (film thickness of the anodic oxide film / energization time: μm / min) for each sample was clarified.

《最小電流密度の影響》
(1)交流電流の最大電流密度:2A/cm(一定)、周波数:20Hzとし、最小電流密度を種々変更して、上述した陽極酸化処理を60秒間行った。こうして得られた試料を用いて、通電する交流電流の最小電流密度と成膜速度との関係を明らかにした。この結果を図1に示した。図1中の▲は、陽極酸化膜にヤケが生じた試料であることを示す。
<Effect of minimum current density>
(1) The maximum current density of alternating current: 2 A / cm 2 (constant), the frequency: 20 Hz, the minimum current density was variously changed, and the above-described anodizing treatment was performed for 60 seconds. Using the sample thus obtained, the relationship between the minimum current density of the alternating current to be applied and the film formation rate was clarified. The results are shown in FIG. In FIG. 1, “試 料” indicates that the sample has burned in the anodic oxide film.

(2)図1からわかるように、最小電流密度が0近傍となる付近に、ヤケを生じることなく、陽極酸化膜の成膜速度がピークとなる臨界域が存在することがわかる。具体的には、最小電流密度が−0.4〜0.3A/cmさらには−0.2〜0.2A/cmとなるときに、成膜速度がピークとなった。 (2) As can be seen from FIG. 1, it can be seen that there is a critical region where the deposition rate of the anodic oxide film reaches a peak without causing burns in the vicinity where the minimum current density is near zero. Specifically, when the minimum current density was −0.4 to 0.3 A / cm 2, or −0.2 to 0.2 A / cm 2 , the film formation rate peaked.

《周波数の影響》
(1)交流電流の最大電流密度:2A/cm(一定)、最小電流密度:0.1A/cm(一定)として、周波数を種々変更して、上述した陽極酸化処理を80秒間行った。こうして得られた試料を用いて、通電する交流電流の周波数と成膜速度との関係を明らかにした。この結果を図2に示した。
<< Effect of frequency >>
(1) The maximum current density of alternating current: 2 A / cm 2 (constant), the minimum current density: 0.1 A / cm 2 (constant), the frequency was variously changed, and the above-described anodizing treatment was performed for 80 seconds. . Using the sample thus obtained, the relationship between the frequency of the alternating current to be applied and the film formation rate was clarified. The results are shown in FIG.

(2)交流電流の最大電流密度:2A/cm(一定)、最小電流密度:−0.1A/cm(一定)として、周波数を種々変更して、上述した陽極酸化処理を80秒間行った。こうして得られた試料を用いて、通電する交流電流の周波数と成膜速度との関係を明らかにした。この結果を図3に示した。 (2) The maximum current density of alternating current: 2 A / cm 2 (constant), the minimum current density: −0.1 A / cm 2 (constant), the frequency was changed variously, and the above-described anodizing treatment was performed for 80 seconds. It was. Using the sample thus obtained, the relationship between the frequency of the alternating current to be applied and the film formation rate was clarified. The results are shown in FIG.

(3)図2および図3からわかるように、印加する交流電流の電流密度により多少変動するとしても、周波数が2Hz〜5kHz、5Hz〜1kHz、10〜500Hz、15〜200Hzまたは20〜90Hzとなる付近に、陽極酸化膜の成膜速度がピークとなる臨界域が存在することがわかる。逆に、少なくとも、周波数が1Hz以下または10kHz以上になると、成膜速度の低下が顕著になることがわかる。 (3) As can be seen from FIG. 2 and FIG. 3, the frequency is 2 Hz to 5 kHz, 5 Hz to 1 kHz, 10 to 500 Hz, 15 to 200 Hz, or 20 to 90 Hz even if the current varies slightly depending on the current density of the applied alternating current. It can be seen that there is a critical region in the vicinity where the deposition rate of the anodic oxide film peaks. On the other hand, it can be seen that at least when the frequency is 1 Hz or less or 10 kHz or more, the deposition rate is significantly reduced.

《最大電流密度の影響》
(1)交流電流の最小電流密度:0A/cm(一定)、周波数:20Hzとし、交流電流のデューティ比および最大電流密度を種々変更して、上述した陽極酸化処理を60秒間行った。こうして得られた試料を用いて、通電する交流電流のデューティ比および最大電流密度と、成膜速度との関係を明らかにした。この結果を図4に示した。図4中の×は、陽極酸化膜にヤケ等の不良が生じた試料を示す。また、図4のラインは、各試料について実測された成膜速度と、その各試料に通電した総電気量(クーロン量)とに基づいて描いた成膜速度の等速線である。ちなみに、デューティ比(D):0.6(1周期あたり最小電流密度の通電時間(τ):0.02s)のとき最大成膜速度(Vm):60μm/分、D:0.5(τ:0.025s)のときVm:65μm/分、D:0.3(τ:0.035s)のときVm:75μm/分であった。
<Effect of maximum current density>
(1) The minimum current density of alternating current: 0 A / cm 2 (constant), the frequency: 20 Hz, the duty ratio of the alternating current and the maximum current density were variously changed, and the above-described anodizing treatment was performed for 60 seconds. Using the sample thus obtained, the relationship between the duty ratio and maximum current density of the alternating current to be applied and the film formation rate was clarified. The results are shown in FIG. In FIG. 4, “x” indicates a sample in which a defect such as burn has occurred in the anodic oxide film. The line in FIG. 4 is a constant velocity line of the film formation speed drawn based on the film formation speed actually measured for each sample and the total amount of electricity (coulomb amount) energized in each sample. Incidentally, when the duty ratio (D) is 0.6 (the energization time (τ) of the minimum current density per cycle: 0.02 s), the maximum film formation speed (Vm): 60 μm / min, D: 0.5 (τ : 0.025 s), Vm: 65 μm / min, and D: 0.3 (τ: 0.035 s), Vm: 75 μm / min.

(2)図4からわかるように、デューティ比が小さいほど、不良発生が少なくなることがわかる。そしてデューティ比を小さくしても、最大電流密度を高めることにより、良好な陽極酸化膜を大きな成膜速度で得られることがわかった。特に、デューティ比を0.5〜0.1さらには0.3〜0.2とし、最大電流密度を1.5〜5A/cmさらには2〜4A/cmとすると好ましいといえる。 (2) As can be seen from FIG. 4, it can be seen that the smaller the duty ratio is, the fewer defects are generated. It was found that even if the duty ratio is reduced, a good anodic oxide film can be obtained at a high deposition rate by increasing the maximum current density. In particular, it can be said that it is preferable that the duty ratio is 0.5 to 0.1, more preferably 0.3 to 0.2, and the maximum current density is 1.5 to 5 A / cm 2, further 2 to 4 A / cm 2 .

以上の結果から、本明細書で規定する範囲内の交流電流を用いることにより、陽極酸化膜の成膜速度を大幅に向上させ得ることができ、現実に厚い陽極酸化膜を短時間で効率的に成膜できることが確認された。   From the above results, by using an alternating current within the range specified in this specification, the film formation speed of the anodic oxide film can be greatly improved, and a thick anodic oxide film can be effectively formed in a short time. It was confirmed that a film could be formed on the substrate.

Claims (9)

純アルミニウムまたはアルミニウム合金からなる被処理面を電解液に接触させつつ該被処理面に対して通電を行い、該被処理面に陽極酸化膜を形成する電解工程を備えるアルミニウム系部材の陽極酸化方法であって、
前記電解工程は、最大電流密度と最小電流密度を周期的に繰り返す交流電流を通電する電流制御によりなされ、
該最小電流密度は、−0.4〜0.3A/cmであり、
該交流電流の周波数は、2Hz〜9kHzであることを特徴とするアルミニウム系部材の陽極酸化方法。
An anodizing method for an aluminum-based member comprising an electrolysis step of energizing the surface to be processed made of pure aluminum or an aluminum alloy in contact with an electrolytic solution and forming an anodized film on the surface to be processed Because
The electrolysis step is performed by current control for passing an alternating current that periodically repeats the maximum current density and the minimum current density,
The minimum current density is −0.4 to 0.3 A / cm 2 ,
The method of anodizing an aluminum-based member, wherein the frequency of the alternating current is 2 Hz to 9 kHz.
前記最大電流密度は、1A/cm以上である請求項1に記載のアルミニウム系部材の陽極酸化方法。 The method for anodizing an aluminum-based member according to claim 1, wherein the maximum current density is 1 A / cm 2 or more. 前記交流電流は、交流成分と直流成分を重畳させて形成される請求項1または2に記載のアルミニウム系部材の陽極酸化方法。   The method according to claim 1, wherein the alternating current is formed by superimposing an alternating current component and a direct current component. 前記交流電流は、1周期(T)内で前記最大電流密度となる通電時間(τ)の割合であるデューティ比(τ/T)が0.05〜0.5である矩形波電流からなる請求項1〜3のいずれかに記載のアルミニウム系部材の陽極酸化方法。   The AC current is a rectangular wave current having a duty ratio (τ / T) of 0.05 to 0.5, which is a ratio of energization time (τ) at which the maximum current density is reached in one cycle (T). Item 4. The method for anodizing an aluminum-based member according to any one of Items 1 to 3. 前記交流電流の周波数は20〜900Hzである請求項1または4に記載のアルミニウム系部材の陽極酸化方法。   The method for anodizing an aluminum-based member according to claim 1 or 4, wherein the frequency of the alternating current is 20 to 900 Hz. 前記電解工程は、前記陽極酸化膜の成膜速度が50μm/分以上である請求項1〜5のいずれかに記載のアルミニウム系部材の陽極酸化方法。   The method for anodizing an aluminum-based member according to any one of claims 1 to 5, wherein in the electrolysis step, the deposition rate of the anodized film is 50 µm / min or more. 前記電解工程は、1〜10分間なされる請求項6に記載のアルミニウム系部材の陽極酸化方法。   The method for anodizing an aluminum-based member according to claim 6, wherein the electrolysis step is performed for 1 to 10 minutes. 前記被処理面は、合金全体を100質量%(単に「%」という。)として、Si:5〜60%またはCu:0.5〜10%を含むアルミニウム合金からなる請求項1〜7のいずれかに記載のアルミニウム系部材の陽極酸化方法。   The said to-be-processed surface consists of an aluminum alloy containing Si: 5-60% or Cu: 0.5-10% by making the whole alloy 100 mass% (it is only called "%"). A method for anodizing an aluminum-based member according to claim 1. 前記被処理面は、内燃機関用ピストンの頂面の少なくとも一部である請求項8に記載のアルミニウム系部材の陽極酸化方法。   The method for anodizing an aluminum-based member according to claim 8, wherein the surface to be treated is at least a part of a top surface of a piston for an internal combustion engine.
JP2015248176A 2015-12-21 2015-12-21 Method of anodizing aluminum-based members Expired - Fee Related JP6539200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248176A JP6539200B2 (en) 2015-12-21 2015-12-21 Method of anodizing aluminum-based members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248176A JP6539200B2 (en) 2015-12-21 2015-12-21 Method of anodizing aluminum-based members

Publications (2)

Publication Number Publication Date
JP2017115166A true JP2017115166A (en) 2017-06-29
JP6539200B2 JP6539200B2 (en) 2019-07-03

Family

ID=59233746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248176A Expired - Fee Related JP6539200B2 (en) 2015-12-21 2015-12-21 Method of anodizing aluminum-based members

Country Status (1)

Country Link
JP (1) JP6539200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979569A (en) * 2019-05-24 2020-11-24 丰田自动车株式会社 Thermal barrier coating, coated part and method for manufacturing coated part
JP7516293B2 (en) 2021-03-03 2024-07-16 株式会社東芝 Heat-resistant components and power generation systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302778A (en) * 2001-01-15 2002-10-18 Fuji Kogyo Co Ltd Method of forming electroconductive part on anodic- oxidized film of aluminum alloy
JP2009235539A (en) * 2008-03-28 2009-10-15 Aisin Seiki Co Ltd Method for anodizing aluminum member
WO2017037303A1 (en) * 2015-09-03 2017-03-09 Montupet S.A. Improved method for forming a pipe lining of a cylinder head and cylinder head thus obtained

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302778A (en) * 2001-01-15 2002-10-18 Fuji Kogyo Co Ltd Method of forming electroconductive part on anodic- oxidized film of aluminum alloy
JP2009235539A (en) * 2008-03-28 2009-10-15 Aisin Seiki Co Ltd Method for anodizing aluminum member
WO2017037303A1 (en) * 2015-09-03 2017-03-09 Montupet S.A. Improved method for forming a pipe lining of a cylinder head and cylinder head thus obtained

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979569A (en) * 2019-05-24 2020-11-24 丰田自动车株式会社 Thermal barrier coating, coated part and method for manufacturing coated part
JP2020190023A (en) * 2019-05-24 2020-11-26 株式会社豊田中央研究所 Heat shielding film, coating member and manufacturing method thereof
CN111979569B (en) * 2019-05-24 2023-11-03 丰田自动车株式会社 Thermal barrier coating, coated member, and method of manufacturing coated member
JP7516293B2 (en) 2021-03-03 2024-07-16 株式会社東芝 Heat-resistant components and power generation systems

Also Published As

Publication number Publication date
JP6539200B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
Mohedano et al. PEO of pre-anodized Al–Si alloys: Corrosion properties and influence of sealings
Hakimizad et al. Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4 containing solution: From unipolar to soft-sparking regime
Dehnavi et al. Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy–The effect of the PEO process stage
Hakimizad et al. The effect of pulse waveforms on surface morphology, composition and corrosion behavior of Al2O3 and Al2O3/TiO2 nano-composite PEO coatings on 7075 aluminum alloy
Yu et al. An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles
Li et al. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy
JP6061202B2 (en) Non-metal coating and production method thereof
Akbari et al. Electrochemically-induced TiO2 incorporation for enhancing corrosion and tribocorrosion resistance of PEO coating on 7075 Al alloy
Roknian et al. Plasma electrolytic oxidation coatings on pure Ti substrate: Effects of Na 3 PO 4 concentration on morphology and corrosion behavior of coatings in ringer’s physiological solution
Ghafaripoor et al. The corrosion and tribocorrosion resistance of PEO composite coatings containing α-Al2O3 particles on 7075 Al alloy
Kaseem et al. Corrosion behavior of Al-1wt% Mg-0.85 wt% Si alloy coated by micro-arc-oxidation using TiO2 and Na2MoO4 additives: Role of current density
Tang et al. High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes
Lederer et al. Surface modification of Ti 13Nb 13Zr by plasma electrolytic oxidation
JP2006521473A (en) Composite articles containing ceramic coatings
Sobolev et al. Comparison of plasma electrolytic oxidation coatings on Al alloy created in aqueous solution and molten salt electrolytes
Heydarian et al. The effects of anodic amplitude and waveform of applied voltage on characterization and corrosion performance of the coatings grown by plasma electrolytic oxidation on AZ91 Mg alloy from an aluminate bath
He et al. Ceramic oxide coating formed on beryllium by micro-arc oxidation
Rahmati et al. Corrosion and wear resistance of coatings produced on AZ31 Mg alloy by plasma electrolytic oxidation in silicate-based K2TiF6 containing solution: Effect of waveform
Jangde et al. Evolution of PEO coatings on AM50 magnesium alloy using phosphate-based electrolyte with and without glycerol and its electrochemical characterization
JP6212383B2 (en) Method for anodizing aluminum-based members
Rahmati et al. The multi-effects of K2TiF6 additive on the properties of PEO coatings on AZ31 Mg alloy
RU2591932C1 (en) Method of wear-resistant coating producing
JP2017115166A (en) Anodic oxidation method for aluminum based member
JP6557176B2 (en) Piston for internal combustion engine and manufacturing method thereof
Kim et al. Influence of ZrO2 incorporation into coating layer on electrochemical response of low-carbon steel processed by electrochemical plasma coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees