JP2017113719A - Partial oxidation catalyst, and method for producing carbon monoxide using the same - Google Patents

Partial oxidation catalyst, and method for producing carbon monoxide using the same Download PDF

Info

Publication number
JP2017113719A
JP2017113719A JP2015253397A JP2015253397A JP2017113719A JP 2017113719 A JP2017113719 A JP 2017113719A JP 2015253397 A JP2015253397 A JP 2015253397A JP 2015253397 A JP2015253397 A JP 2015253397A JP 2017113719 A JP2017113719 A JP 2017113719A
Authority
JP
Japan
Prior art keywords
partial oxidation
zeolite
oxidation catalyst
carbon monoxide
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015253397A
Other languages
Japanese (ja)
Other versions
JP6678450B2 (en
Inventor
福岡 淳
Atsushi Fukuoka
淳 福岡
小林 広和
Hirokazu Kobayashi
広和 小林
紗衣 染谷
Sai Someya
紗衣 染谷
哲夫 淺川
Tetsuo Asakawa
哲夫 淺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Tosoh Corp
Original Assignee
Hokkaido University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Tosoh Corp filed Critical Hokkaido University NUC
Priority to JP2015253397A priority Critical patent/JP6678450B2/en
Publication of JP2017113719A publication Critical patent/JP2017113719A/en
Application granted granted Critical
Publication of JP6678450B2 publication Critical patent/JP6678450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a partial oxidation catalyst with which the partial oxidation reaction of light hydrocarbon progresses in a lower temperature region also at high activity and high selectivity, and to provide a method for producing carbon monoxide remarkably reducing heat energy consumption compared with the conventional synthetic gas production method and achieving the reduction of an environmental load and reduced cost.SOLUTION: Provided is a partially oxidation catalyst for performing the partial oxidation of light hydrocarbon, including transition metal-carried zeolite.SELECTED DRAWING: None

Description

本発明は、炭化水素の部分酸化触媒に関する。   The present invention relates to a hydrocarbon partial oxidation catalyst.

近年、天然ガスやシェールガスの採掘規模が拡大していることから、メタンをはじめとする軽質炭化水素の資源としての重要性が増している。また、エネルギー消費の大きな化学製造業では省エネルギー対策は重要な課題である。そのため、軽質炭化水素をより温和な条件で有用化合物へ転換する手法の開発へ注目が集まっている。   In recent years, the scale of mining natural gas and shale gas has increased, and the importance of methane and other light hydrocarbons has increased. In addition, energy conservation measures are an important issue in the chemical manufacturing industry where energy consumption is large. Therefore, attention has been focused on the development of a method for converting light hydrocarbons into useful compounds under milder conditions.

そして、軽質炭化水素の工業的利用法としては、例えば水蒸気改質によるメタンの合成ガス(一酸化炭素、水素混合ガス)への変換が代表的であり、得られた合成ガスはフィッシャー・トロプシュ反応によるアルカン製造やメタノール製造の原料として利用されている。水蒸気改質の一般式を以下に示す。
+nHO → nCO+(m/2+n)H
And, as an industrial utilization method of light hydrocarbons, for example, conversion of methane to synthesis gas (carbon monoxide, hydrogen mixed gas) by steam reforming is typical, and the obtained synthesis gas is Fischer-Tropsch reaction. It is used as a raw material for alkane production and methanol production. The general formula for steam reforming is shown below.
C n H m + nH 2 O → nCO + (m / 2 + n) H 2

しかしながら、該水蒸気改質の反応は、吸熱反応であるため約800℃〜1000℃の高温条件が必要であり、そのプラント規模と相まって膨大な熱エネルギー消費が課題となっていた。   However, since the steam reforming reaction is an endothermic reaction, high temperature conditions of about 800 ° C. to 1000 ° C. are necessary, and enormous heat energy consumption has been a problem in combination with the plant scale.

また、メタンから合成ガスを得る方法としては、メタンの部分酸化が知られている。部分酸化は以下の通り進行する。該部分酸化反応は発熱反応であるため、水蒸気改質と比較して熱効率が良い。
2m+(n/2)O → nCO+mH
Moreover, partial oxidation of methane is known as a method for obtaining synthesis gas from methane. Partial oxidation proceeds as follows. Since the partial oxidation reaction is an exothermic reaction, it has better thermal efficiency than steam reforming.
C n H 2m + (n / 2) O 2 → nCO + mH 2

そして、メタンからの部分酸化に用いることができる触媒としてはこれまでに、マグネシアを担体としてロジウム及び/又はルテニウムを担持した触媒(例えば特許文献1参照。)や、熱的安定性を向上させるためにペロブスカイト化合物にニッケル及び/又はロジウムを担持させた触媒(例えば特許文献2参照。)、熱伝導度の高い炭化ケイ素を担体とした触媒(例えば特許文献3参照。)等が報告されている。
また、CeOで被覆したAlを担体とし、活性金属としてニッケルを担持した触媒(例えば特許文献4参照。)が報告されている。
As a catalyst that can be used for partial oxidation from methane, a catalyst that supports rhodium and / or ruthenium using magnesia as a carrier (see, for example, Patent Document 1), and thermal stability are improved. In addition, a catalyst in which nickel and / or rhodium is supported on a perovskite compound (see, for example, Patent Document 2), a catalyst using silicon carbide having a high thermal conductivity as a carrier (see, for example, Patent Document 3), and the like have been reported.
In addition, a catalyst having Al 2 O 3 coated with CeO 2 as a support and nickel supported as an active metal (see, for example, Patent Document 4) has been reported.

特開平11−130404号公報JP 11-130404 A 特開2004−167485号公報JP 2004-167485 A 特表平11−517176号公報Japanese National Patent Publication No. 11-517176 特開2007−237084号公報JP 2007-237084 A

特許文献1〜3に提案の触媒系においては、いずれも温度条件が1000℃に近い、または1000℃以上であり、水蒸気改質と同等の高温が必要となるものであった。また、特許文献4に提案の触媒系においては、反応温度は600〜700℃と低いものであったが、一酸化炭素の選択率が低く、生産効率に課題を有するものであった。   In the catalyst systems proposed in Patent Documents 1 to 3, all of the temperature conditions are close to 1000 ° C. or 1000 ° C. or higher, and a high temperature equivalent to steam reforming is required. Further, in the catalyst system proposed in Patent Document 4, the reaction temperature was as low as 600 to 700 ° C., but the selectivity for carbon monoxide was low and there was a problem in production efficiency.

そのため、従来の合成ガス製造手法に比べ熱エネルギー消費を大幅に削減でき、環境負荷の低減と大幅な省コストを達成できることが好ましい。
本発明は、従来の水蒸気改質や部分酸化反応に比べより低温領域で部分酸化反応の進行が可能、かつ高活性・高選択的に軽質炭化水素の部分酸化反応を進行できる技術を提供することを目的とする。
Therefore, it is preferable that the heat energy consumption can be greatly reduced as compared with the conventional synthesis gas production method, and the environmental load can be reduced and the cost can be significantly reduced.
The present invention provides a technique that allows a partial oxidation reaction to proceed in a lower temperature region than conventional steam reforming and partial oxidation reactions, and allows a light oxidation partial oxidation reaction to proceed with high activity and high selectivity. With the goal.

本発明者らは、上記の課題を解決するため鋭意検討を行った結果、遷移金属担持ゼオライトを含む触媒が300℃付近という従来にない低温条件でも軽質炭化水素の部分酸化の活性を示すことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have shown that a catalyst containing a transition metal-supported zeolite exhibits the activity of partial oxidation of light hydrocarbons even at an unprecedented low temperature condition of around 300 ° C. The headline and the present invention were completed.

即ち、本発明は、軽質炭化水素の部分酸化を行うための触媒であって、遷移金属担持ゼオライトを含むことを特徴とする部分酸化触媒及びそれを用いてなる軽質炭化水素の部分酸化による一酸化炭素の製造方法に関するものである。
以下に、本発明を詳細に説明する。
That is, the present invention is a catalyst for partial oxidation of light hydrocarbons, comprising a transition metal-supported zeolite, and monooxidation by partial oxidation of light hydrocarbons using the catalyst. The present invention relates to a method for producing carbon.
The present invention is described in detail below.

本発明の部分酸化触媒は、遷移金属担持ゼオライトを含み、軽質炭化水素と酸素から部分酸化により一酸化炭素と水素を製造するのに適している。そして、該部分酸化触媒によれば、軽質炭化水素から一酸化炭素と水素を製造する際に、従来に比べより低温条件での進行が可能となると共に、高活性・高選択性での製造を可能とするものである。   The partial oxidation catalyst of the present invention contains a transition metal-supported zeolite and is suitable for producing carbon monoxide and hydrogen from a light hydrocarbon and oxygen by partial oxidation. And, according to the partial oxidation catalyst, when producing carbon monoxide and hydrogen from light hydrocarbons, it is possible to proceed at a lower temperature condition than before, and to produce with high activity and high selectivity. It is possible.

本発明の部分酸化触媒を構成する遷移金属担持ゼオライトは、ゼオライトを構成する金属を遷移金属にイオン交換することにより調製することが可能である。その際の遷移金属としては、遷移金属の範疇に属するものであれば如何なるものであってもよく、得られる遷移金属担持ゼオライトがメタン又はメタンを主成分とする軽質炭化水素の部分酸化により優れた(より低温条件での進行が可能となると共に、より高活性・高選択性)触媒となることから、ニッケル、イリジウム、パラジウム、ロジウム、コバルト、プラチナ、ユーロピウム、ランタン、レニウムおよびルテニウムからなる群から1種以上選択される遷移金属であることが好ましく、特にニッケル、ロジウム、またはその両方が当該遷移金属として用いられることが好ましい。
また、骨格を構成するゼオライトとしては、ゼオライトと称される範疇に属するものであれば如何なるものであってもよく、特に限定されない。一方で、得られる遷移金属担持ゼオライトがメタン又はメタンを主成分とする軽質炭化水素の部分酸化により優れた(より低温条件での進行が可能となると共に、より高活性・高選択性)触媒となることから、モルデナイト型ゼオライト、ベータ型ゼオライト、Y型ゼオライト、およびMFI型ゼオライトからなる群から選択される1種または2種以上の混合物であることが好ましい。より好ましくは、モルデナイト型ゼオライト、ベータ型ゼオライト、およびY型ゼオライトからなる群から選択される1種または2種以上の混合物である。これらゼオライトは、市販のゼオライトであってもよい。
The transition metal-supported zeolite constituting the partial oxidation catalyst of the present invention can be prepared by ion exchange of the metal constituting the zeolite with the transition metal. The transition metal at that time may be any transition metal as long as it belongs to the category of transition metal, and the resulting transition metal-supported zeolite is excellent in partial oxidation of methane or light hydrocarbons mainly composed of methane. From the group consisting of nickel, iridium, palladium, rhodium, cobalt, platinum, europium, lanthanum, rhenium and ruthenium (because it can proceed at lower temperature conditions and is more active and highly selective) One or more transition metals are preferably selected, and nickel, rhodium, or both are particularly preferably used as the transition metal.
Further, the zeolite constituting the framework may be any zeolite as long as it belongs to the category called zeolite, and is not particularly limited. On the other hand, the obtained transition metal-supported zeolite is superior to the partial oxidation of methane or light hydrocarbons mainly composed of methane (it is possible to proceed at lower temperature conditions, and has higher activity and selectivity) and Therefore, it is preferably one or a mixture of two or more selected from the group consisting of mordenite-type zeolite, beta-type zeolite, Y-type zeolite, and MFI-type zeolite. More preferably, it is one or a mixture of two or more selected from the group consisting of mordenite-type zeolite, beta-type zeolite, and Y-type zeolite. These zeolites may be commercially available zeolites.

本発明の部分酸化触媒を構成する遷移金属担持ゼオライトの製造方法としては、該遷移金属担持ゼオライトを製造することが可能であれば如何なる方法をも用いることは可能であり、特に限定されない。例えばゼオライトと遷移金属溶液とを接触させることによりゼオライトを構成する金属と遷移金属とのイオン交換を行い、その後、乾燥・焼成を行う方法により遷移金属担持ゼオライトとする方法や、ゼオライトを遷移金属溶液に含浸させ、乾燥・焼成によりゼオライト表面に金属種を担持し遷移金属担持ゼオライトとする方法を挙げることができる。また、得られる遷移金属担持ゼオライトに対する遷移金属の量としては、特に限定されないが、範囲内にあることでより低温条件での進行が可能となると共により高活性・高選択性となることから、0.01重量%以上が好ましく、より好ましくは0.01重量%以上10.0重量%以下、さらに好ましくは0.01重量%以上3.0重量%以下である。   As a method for producing the transition metal-supported zeolite constituting the partial oxidation catalyst of the present invention, any method can be used as long as the transition metal-supported zeolite can be produced, and is not particularly limited. For example, a method of making a transition metal-supported zeolite by a method of performing ion exchange between a metal constituting the zeolite and the transition metal by bringing the zeolite into contact with a transition metal solution, and then drying and calcining, or a zeolite as a transition metal solution And a transition metal-supported zeolite by supporting a metal species on the zeolite surface by drying and firing. Further, the amount of transition metal relative to the obtained transition metal-supported zeolite is not particularly limited, but because it is within the range, it becomes possible to proceed at a lower temperature condition, and it becomes more active and highly selective, It is preferably 0.01% by weight or more, more preferably 0.01% by weight or more and 10.0% by weight or less, and still more preferably 0.01% by weight or more and 3.0% by weight or less.

本発明の部分酸化触媒は、該遷移金属担持ゼオライトを含んでなるものであり、該遷移金属担持ゼオライト単独を無論のこと、バインダー、希釈剤等を含むものであってもよい。   The partial oxidation catalyst of the present invention comprises the transition metal-supported zeolite, and of course, the transition metal-supported zeolite alone may include a binder, a diluent and the like.

本発明の部分酸化触媒は、軽質炭化水素の部分酸化用として高選択・高効率で一酸化炭素と水素の製造を可能とするものであり、その際の軽質炭化水素としては、例えばメタン、エタン、エチレン、プロパン、プロピレン、ブテン、またはブタン及びこれを主成分(50容量%以上)とするもの等を挙げることができ、中でも、メタン又はメタンを主成分とするものを特に効率よく部分酸化することが可能となるものである。   The partial oxidation catalyst of the present invention enables the production of carbon monoxide and hydrogen with high selectivity and high efficiency for the partial oxidation of light hydrocarbons. Examples of light hydrocarbons at that time include methane and ethane. , Ethylene, propane, propylene, butene, or butane and those containing the same as a main component (50% by volume or more), among which methane or one containing methane as a main component is particularly efficiently partially oxidized. Is possible.

そして、本発明の部分酸化触媒により、一酸化炭素を製造する際には、該部分酸化触媒の存在下、軽質炭化水素と酸素とを接触させ、軽質炭化水素の部分酸化により、一酸化炭素と水素とを生成する方法を挙げることができる。その際の軽質炭化水素と酸素を含む原料ガスと該部分酸化触媒との接触の際の温度としては、300℃〜1000℃の温度範囲であることが好ましく、特に400℃〜800℃であることが好ましい。   When carbon monoxide is produced by the partial oxidation catalyst of the present invention, the light hydrocarbon and oxygen are brought into contact with each other in the presence of the partial oxidation catalyst, and carbon monoxide is obtained by partial oxidation of the light hydrocarbon. A method for generating hydrogen can be given. In this case, the temperature at the time of contact between the light gas containing light hydrocarbon and oxygen and the partial oxidation catalyst is preferably in the temperature range of 300 ° C to 1000 ° C, particularly 400 ° C to 800 ° C. Is preferred.

また、一酸化炭素を製造する際の反応形式としては、流動床であっても固定床であってもよく、中でも効率的な製造が可能となることから、固定床流通式であることが好ましい。   In addition, the reaction format when producing carbon monoxide may be a fluidized bed or a fixed bed, and among them, an efficient production is possible. .

原料ガスである軽質炭化水素と酸素は、そのまま用いても、不活性ガスで希釈して用いても良い。不活性ガスとしては特に制限されるものではないが、例えば窒素、ヘリウムまたはアルゴン等が挙げられ、これらの不活性ガスは単独で使用するのみならず、二種以上を混合して用いることも可能である。   The light hydrocarbons and oxygen, which are raw material gases, may be used as they are or diluted with an inert gas. Although it does not restrict | limit especially as an inert gas, For example, nitrogen, helium, or argon etc. are mentioned, These inert gases can be used not only independently but in mixture of 2 or more types. It is.

本発明の新規な部分酸化触媒は、従来の水蒸気改質や部分酸化反応に比べ、より低温条件で反応が進行し、かつ高活性・高選択的に一酸化炭素と水素の混合ガスを得ることができる。そのため熱エネルギー消費の大幅な削減により、環境負荷の低減と大きな経済効果が期待され、工業的に極めて有用である。   The novel partial oxidation catalyst of the present invention allows the reaction to proceed at lower temperature conditions than conventional steam reforming and partial oxidation reactions, and obtains a mixed gas of carbon monoxide and hydrogen with high activity and high selectivity. Can do. For this reason, a significant reduction in thermal energy consumption is expected to reduce the environmental burden and achieve a great economic effect, which is extremely useful industrially.

以下に、本発明を実施例により詳細に説明するが、本発明はこれらの実施例により制限されるものではない。
以下に、実施例に用いた測定方法を示す。
<元素分析>
エネルギー分散型蛍光X線分析装置(島津製作所製、(商品名)EDX−720)を用い、遷移金属の分析を行った。試料量は30mgで、試料保持用フィルムにはポリプロピレンフィルム(厚さ: 5μm)を用い、真空条件で測定した。定量にはFP法を用いた。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
Below, the measuring method used for the Example is shown.
<Elemental analysis>
Transition metals were analyzed using an energy dispersive X-ray fluorescence analyzer (manufactured by Shimadzu Corporation, (trade name) EDX-720). The sample amount was 30 mg, and a polypropylene film (thickness: 5 μm) was used as the sample holding film, and measurement was performed under vacuum conditions. The FP method was used for quantification.

[実施例1]
550℃で8時間焼成したY型ゼオライト(東ソー株式会社製、(商品名)HSZ−385HUA(Si/Al比=45))500mgを10mMの塩化ロジウム水溶液100mlに懸濁させ、オイルバス中、90℃で24時間撹拌させた。固体をメンブレンフィルターを用いて濾過し、蒸留水を用いて洗浄した。最後の濾液には硝酸銀水溶液を滴下しても白色沈殿が生成しないことを確認した。その後、110℃のオーブン中で十分に乾燥を行い、ゼオライトの色が淡黄色から白色になることを確認した。そして、400℃で6時間焼成し、灰色のロジウムイオン交換ゼオライトを得ることにより部分酸化触媒(Rh/USY)を得た。得られた部分酸化触媒の元素分析を行いロジウムへのイオン交換(担持と称することもある。)を確認した。組成分析結果を表1に示す。また、元素分析結果を図1に示す。
[Example 1]
Y-type zeolite (Tosoh Corporation, (trade name) HSZ-385HUA (Si / Al ratio = 45)) 500 mg calcined at 550 ° C. for 8 hours was suspended in 100 ml of 10 mM aqueous rhodium chloride solution, and 90 Stir at 24 ° C. for 24 hours. The solid was filtered using a membrane filter and washed with distilled water. It was confirmed that no white precipitate was formed even when an aqueous silver nitrate solution was dropped into the final filtrate. Then, it fully dried in 110 degreeC oven, and it confirmed that the color of the zeolite changed from pale yellow to white. And it calcined at 400 degreeC for 6 hours, and the partial oxidation catalyst (Rh / USY) was obtained by obtaining a gray rhodium ion exchange zeolite. Elemental analysis of the resulting partial oxidation catalyst was performed to confirm ion exchange (sometimes referred to as loading) to rhodium. The composition analysis results are shown in Table 1. The elemental analysis results are shown in FIG.

石英ガラス製反応管(外径10mm、長さ420mm)を有する固定床気相流通式反応装置を用い、該ガラス製反応管の中段に、得られた部分酸化触媒200mgを充填し、ヘリウム流通下(9.2ml/min)で電気炉を150℃まで昇温した。その後、メタンを10ml/min及び酸素を0.8ml/minで導入し、反応温度150〜450℃でメタンの部分酸化を行った。反応器の下流をリボンヒーターにより120℃一定にして、生成物の凝集を防ぎ、オンラインGC分析を行い、生成物の確認を行った。その際のガスクロマトグラフ(GC)は(商品名)GC-8A(島津製作所製)を用い、GCのカラムには(商品名)Shincarbon ST 50/80(信和化工株式会社製、φ3mm×長さ2mm)、TSG−1 15% Shincarbon A 60/80 (信和化工株式会社製,φ3.2mm×長さ3mm)を用い、カラム温度は120℃一定とした。検出器はTCDを用いた。また別途GC−FID、GCMSでも生成物を分析した。GC−FIDのガスクロマトグラフは(商品名)GC-14B(島津製作所製)を用い、カラムには(商品名)ULBON HR2OM(信和化工株式会社製,φ0.25mm×長さ25m、膜厚: 0.25μm)を用いた。GCMSは(商品名)GCMS−QP2010Ultra(島津製作所製)を用い、カラムには(商品名)DB−FFAP(アジレントテクロノジー株式会社製、φ0.25mm×長さ30m、膜厚: 0.25μm)を用いた。その後、さらに電気炉を所定の温度に昇温し、同様にそれぞれの温度での生成物のGC分析を行った。評価装置概略を図4に示す(なお、窒素、一酸化炭素、水素の供給は行っていない。)。反応結果を表2に示す。反応温度350℃〜450℃での一酸化炭素の製造を確認した。   Using a fixed bed gas phase flow reactor having a reaction tube made of quartz glass (outer diameter 10 mm, length 420 mm), 200 mg of the obtained partial oxidation catalyst was filled in the middle stage of the glass reaction tube, The electric furnace was heated up to 150 ° C. at (9.2 ml / min). Thereafter, methane was introduced at 10 ml / min and oxygen at 0.8 ml / min, and partial oxidation of methane was performed at a reaction temperature of 150 to 450 ° C. The downstream of the reactor was kept constant at 120 ° C. with a ribbon heater to prevent the product from agglomerating, and an online GC analysis was performed to confirm the product. At that time, the gas chromatograph (GC) uses (trade name) GC-8A (manufactured by Shimadzu Corporation), and the GC column is (trade name) Shincarbon ST 50/80 (manufactured by Shinwa Kako Co., Ltd., φ3 mm × length 2 mm). ), TSG-1 15% Shincarbon A 60/80 (manufactured by Shinwa Kako Co., Ltd., φ3.2 mm × length 3 mm), and the column temperature was fixed at 120 ° C. The detector used was TCD. Separately, the product was analyzed by GC-FID and GCMS. The GC-FID gas chromatograph uses (trade name) GC-14B (manufactured by Shimadzu Corporation), and the column is (trade name) ULBON HR2OM (manufactured by Shinwa Kako Co., Ltd., φ0.25 mm × length 25 m, film thickness: 0) .25 μm) was used. GCMS uses (trade name) GCMS-QP2010Ultra (manufactured by Shimadzu Corporation), and the column is (trade name) DB-FFAP (manufactured by Agilent Technologies, φ0.25 mm × length 30 m, film thickness: 0.25 μm). ) Was used. Thereafter, the electric furnace was further heated to a predetermined temperature, and the GC analysis of the product at each temperature was similarly performed. An outline of the evaluation apparatus is shown in FIG. 4 (note that nitrogen, carbon monoxide, and hydrogen are not supplied). The reaction results are shown in Table 2. Production of carbon monoxide at a reaction temperature of 350 ° C. to 450 ° C. was confirmed.

[実施例2]
ゼオライトとして、ベータ型ゼオライト(東ソー株式会社製、(商品名)HSZ−960HOA(Si/Al比=50))を用いた以外は、実施例1と同様の方法により、部分酸化触媒(Rh/BEA)を得た。得られた部分酸化触媒の元素分析を行いロジウムへのイオン交換を確認した。組成分析結果を表1に示す。また、元素分析結果を図2に示す。
[Example 2]
As the zeolite, a partial oxidation catalyst (Rh / BEA) was prepared in the same manner as in Example 1 except that beta-type zeolite (manufactured by Tosoh Corporation, (trade name) HSZ-960HOA (Si / Al ratio = 50)) was used. ) Elemental analysis of the obtained partial oxidation catalyst was performed to confirm ion exchange to rhodium. The composition analysis results are shown in Table 1. The results of elemental analysis are shown in FIG.

また、反応温度150〜800℃とした以外は、実施例1と同様の方法によりメタンの部分酸化を行った。反応結果を表2に示す。反応温度350℃〜800℃での一酸化炭素の製造を確認した。   Moreover, the partial oxidation of methane was performed by the same method as Example 1 except having made reaction temperature 150-800 degreeC. The reaction results are shown in Table 2. Production of carbon monoxide at a reaction temperature of 350 ° C. to 800 ° C. was confirmed.

[実施例3]
ゼオライトとして、モルデナイト型ゼオライト(触媒学会参照触媒JRC−Z−HM90(Si/Al比=45)を用いた以外は、実施例1と同様の方法により、部分酸化触媒(Rh/MOR)を得た。得られた部分酸化触媒の元素分析を行いロジウムへのイオン交換を確認した。組成分析結果を表1に示す。また、元素分析結果を図3に示す。
[Example 3]
As a zeolite, a partial oxidation catalyst (Rh / MOR) was obtained in the same manner as in Example 1 except that a mordenite-type zeolite (Catalyst Society Reference Catalyst JRC-Z-HM90 (Si / Al ratio = 45)) was used. Elemental analysis of the obtained partial oxidation catalyst was performed to confirm ion exchange with rhodium, the composition analysis results are shown in Table 1, and the elemental analysis results are shown in FIG.

また、反応温度150〜650℃とした以外は、実施例1と同様の方法によりメタンの部分酸化を行った。反応結果を表2に示す。反応温度350℃〜650℃での一酸化炭素の製造を確認した。   Moreover, the partial oxidation of methane was performed by the same method as Example 1 except having set reaction temperature 150-650 degreeC. The reaction results are shown in Table 2. Production of carbon monoxide at a reaction temperature of 350 ° C. to 650 ° C. was confirmed.

[実施例4]
実施例3により得られた部分酸化触媒を用い、メタンを2ml/min及び酸素を0.8ml/minで導入し、反応温度400〜700℃とした以外は、実施例1と同様の方法によりメタンの部分酸化を行った。反応結果を表2に示す。一酸化炭素の製造を確認した。
[Example 4]
Using the partial oxidation catalyst obtained in Example 3, methane was introduced at 2 ml / min and oxygen at 0.8 ml / min, and the reaction temperature was 400 to 700 ° C. The partial oxidation of was performed. The reaction results are shown in Table 2. Production of carbon monoxide was confirmed.

[比較例1]
ゼオライトして、モルデナイト型ゼオライト(触媒学会参照触媒JRC−Z−HM90(Si/Al比=45)を用い、反応温度150〜650℃とした以外は、実施例1と同様の方法によりメタンの部分酸化を行った。反応結果を表2に示す。一酸化炭素の生成量は僅かなものであった。
[Comparative Example 1]
Part of methane was prepared in the same manner as in Example 1 except that mordenite-type zeolite (Catalyst Society Reference Catalyst JRC-Z-HM90 (Si / Al ratio = 45)) was used and the reaction temperature was 150 to 650 ° C. The reaction results are shown in Table 2. The amount of carbon monoxide produced was slight.

Figure 2017113719
Figure 2017113719

Figure 2017113719
Figure 2017113719

本発明の新規な部分酸化触媒は、従来の水蒸気改質や部分酸化反応に比べ、より低温条件で反応が進行し、かつ高活性・高選択的に一酸化炭素と水素の混合ガスを得ることができる。そのため熱エネルギー消費の大幅な削減により、環境負荷の低減と大きな経済効果が期待され、工業的に極めて有用である。   The novel partial oxidation catalyst of the present invention allows the reaction to proceed at lower temperature conditions than conventional steam reforming and partial oxidation reactions, and obtains a mixed gas of carbon monoxide and hydrogen with high activity and high selectivity. Can do. For this reason, a significant reduction in thermal energy consumption is expected to reduce the environmental burden and achieve a great economic effect, which is extremely useful industrially.

実施例1により得られた部分酸化触媒、Y型ゼオライトの元素分析結果。The elemental analysis result of the partial oxidation catalyst obtained by Example 1 and a Y-type zeolite. 実施例2により得られた部分酸化触媒、ベータ型ゼオライトの元素分析結果。The elemental analysis result of the partial oxidation catalyst and beta-type zeolite obtained by Example 2. FIG. 実施例3により得られた部分酸化触媒、モルデナイト型ゼオライトの元素分析結果。The elemental-analysis result of the partial oxidation catalyst and mordenite type zeolite which were obtained by Example 3. FIG. 実施例に用いた部分酸化の反応装置の概略図。The schematic of the reactor of the partial oxidation used for the Example.

Claims (6)

軽質炭化水素の部分酸化を行うための触媒であって、遷移金属担持ゼオライトを含むことを特徴とする部分酸化触媒。   A catalyst for partial oxidation of light hydrocarbons, comprising a transition metal-supported zeolite. 前記遷移金属担持ゼオライトを構成する遷移金属が、ニッケル、イリジウム、パラジウム、ロジウム、コバルト、プラチナ、ユーロピウム、ランタン、レニウムおよびルテニウムからなる群より選択される1種以上のものであることを特徴とする請求項1に記載の部分酸化触媒。   The transition metal constituting the transition metal-supported zeolite is one or more selected from the group consisting of nickel, iridium, palladium, rhodium, cobalt, platinum, europium, lanthanum, rhenium and ruthenium. The partial oxidation catalyst according to claim 1. 前記遷移金属担持ゼオライトを構成するゼオライトが、モルデナイト型ゼオライト、ベータ型ゼオライトおよびY型ゼオライトからなる群より選択される1種または2種以上の混合物であることを特徴とする請求項1又は2に記載の部分酸化触媒。   The zeolite constituting the transition metal-supported zeolite is one or a mixture of two or more selected from the group consisting of mordenite zeolite, beta zeolite, and Y zeolite. The partial oxidation catalyst as described. 前記軽質炭化水素が、メタン又はメタンを主成分とするものであることを特徴とする請求項1〜3のいずれか1つに記載の部分酸化触媒。   The partial oxidation catalyst according to any one of claims 1 to 3, wherein the light hydrocarbon is mainly composed of methane or methane. 請求項1〜4のいずれか1つに記載の部分酸化触媒の存在下、軽質炭化水素と酸素を接触させ、部分酸化により一酸化炭素と水素を生成することを特徴とする一酸化炭素の製造方法。   5. Production of carbon monoxide characterized by contacting light hydrocarbons with oxygen in the presence of the partial oxidation catalyst according to any one of claims 1 to 4 to produce carbon monoxide and hydrogen by partial oxidation. Method. 300℃〜1000℃の温度範囲で前記軽質炭化水素と前記酸素とを接触させることを特徴とする請求項5に記載の一酸化炭素の製造方法。
6. The method for producing carbon monoxide according to claim 5, wherein the light hydrocarbon is brought into contact with the oxygen in a temperature range of 300 ° C. to 1000 ° C.
JP2015253397A 2015-12-25 2015-12-25 Partial oxidation catalyst and method for producing carbon monoxide using the same Active JP6678450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015253397A JP6678450B2 (en) 2015-12-25 2015-12-25 Partial oxidation catalyst and method for producing carbon monoxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015253397A JP6678450B2 (en) 2015-12-25 2015-12-25 Partial oxidation catalyst and method for producing carbon monoxide using the same

Publications (2)

Publication Number Publication Date
JP2017113719A true JP2017113719A (en) 2017-06-29
JP6678450B2 JP6678450B2 (en) 2020-04-08

Family

ID=59232982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015253397A Active JP6678450B2 (en) 2015-12-25 2015-12-25 Partial oxidation catalyst and method for producing carbon monoxide using the same

Country Status (1)

Country Link
JP (1) JP6678450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198480A1 (en) * 2018-04-11 2019-10-17 国立大学法人北海道大学 Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same
JP7417920B2 (en) 2019-09-19 2024-01-19 国立大学法人北海道大学 Light hydrocarbon partial oxidation catalyst and method for producing carbon monoxide and hydrogen using the catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176820A (en) * 1997-09-05 1999-03-23 Agency Of Ind Science & Technol Catalyst for partial oxidation of hydrocarbon and production of oxygen-containing organic compound
WO2009011133A1 (en) * 2007-07-19 2009-01-22 Toda Kogyo Corporation Catalyst for decomposing hydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176820A (en) * 1997-09-05 1999-03-23 Agency Of Ind Science & Technol Catalyst for partial oxidation of hydrocarbon and production of oxygen-containing organic compound
WO2009011133A1 (en) * 2007-07-19 2009-01-22 Toda Kogyo Corporation Catalyst for decomposing hydrocarbon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENA, M. A. ET AL.: "Partial oxidation of methane to syngas over Ni-loaded ultrastable HY zeolite catalysts", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 107, JPN6019027097, 1997, pages 441 - 446, XP001058996, ISSN: 0004076003, DOI: 10.1016/S0167-2991(97)80374-6 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198480A1 (en) * 2018-04-11 2019-10-17 国立大学法人北海道大学 Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same
JP2019181375A (en) * 2018-04-11 2019-10-24 国立大学法人北海道大学 Partial oxidation catalyst for light hydrocarbon and process for producing carbon monoxide using the same
CN111936232A (en) * 2018-04-11 2020-11-13 国立大学法人北海道大学 Partial oxidation catalyst for light hydrocarbon and process for producing carbon monoxide using the same
US11192791B2 (en) 2018-04-11 2021-12-07 National University Corporation Hokkaido University Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same
JP7100843B2 (en) 2018-04-11 2022-07-14 国立大学法人北海道大学 Partial oxidation catalyst for light hydrocarbons and method for producing carbon monoxide using it
CN111936232B (en) * 2018-04-11 2023-05-30 国立大学法人北海道大学 Light hydrocarbon partial oxidation catalyst and method for producing carbon monoxide using same
JP7417920B2 (en) 2019-09-19 2024-01-19 国立大学法人北海道大学 Light hydrocarbon partial oxidation catalyst and method for producing carbon monoxide and hydrogen using the catalyst

Also Published As

Publication number Publication date
JP6678450B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
Gao et al. Recent advances in intensified ethylene production—a review
Olah et al. Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen
Yu et al. Synthetic natural gas from CO hydrogenation over silicon carbide supported nickel catalysts
Chakrabarti et al. Conversion of CO2 over a co-based Fischer–Tropsch catalyst
NO179140B (en) Process for the preparation of mono-olefins by catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbons having at least two carbon atoms
Solov’ev et al. Tri-reforming of methane on structured Ni-containing catalysts
US7432222B2 (en) High temperature stable non-noble metal catalyst, process for production of syngas using said catalyst
JP6678450B2 (en) Partial oxidation catalyst and method for producing carbon monoxide using the same
US11666879B2 (en) Small channel short fixed bed adiabatic reactor for oxidative coupling of methane
JP7100843B2 (en) Partial oxidation catalyst for light hydrocarbons and method for producing carbon monoxide using it
CN114931968A (en) Catalyst for preparing olefin by low-carbon alkane dehydrogenation and application thereof
Chen et al. Hydrogen production from the steam reforming of liquid hydrocarbons in membrane reactor
US9789471B2 (en) Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same
KR20140087254A (en) Catalysts for the production of higher calorific synthetic natural gas and the preparation method thereof
Marinoiu et al. Carbon dioxide conversion to methane over supported nickel base catalysts
Caro Catalytic Membrane Reactors–Lab Curiosity or Key Enabling Technology?
JP5747326B2 (en) Propylene production method
Oh et al. Multifunctional Reactors for Direct Nonoxidative Methane Conversion
JP5517681B2 (en) Method for producing aromatic compound
Krausser et al. CO2 Hydrogenation to Hydrocarbons over Fe‐Based Catalysts: Status and Recent Developments
EP2542517B1 (en) Process for producing methyl chloride and sulfur dioxide
CN113597422A (en) By CO2Recycled methanol production process with higher carbon utilization
US20200353452A1 (en) Catalyst and Method Related Thereto
ul Hasnain et al. Unlocking the potential of Ni and Co-based catalysts for sustainable syngas production via Bi-reforming of methane: A review of recent advances
US11858886B2 (en) Process of selectively hydrogenating gas mixture having high acetylene content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250