JP2017112816A - Inverter circuit having self-boosting function - Google Patents

Inverter circuit having self-boosting function Download PDF

Info

Publication number
JP2017112816A
JP2017112816A JP2015257831A JP2015257831A JP2017112816A JP 2017112816 A JP2017112816 A JP 2017112816A JP 2015257831 A JP2015257831 A JP 2015257831A JP 2015257831 A JP2015257831 A JP 2015257831A JP 2017112816 A JP2017112816 A JP 2017112816A
Authority
JP
Japan
Prior art keywords
inv
voltage
inverter
point
link voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2015257831A
Other languages
Japanese (ja)
Inventor
英司 大石
Eiji Oishi
英司 大石
景樹 松井
Kageki Matsui
景樹 松井
正義 梅野
Masayoshi Umeno
正義 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minna Denryoku Co Ltd
Original Assignee
Minna Denryoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minna Denryoku Co Ltd filed Critical Minna Denryoku Co Ltd
Priority to JP2015257831A priority Critical patent/JP2017112816A/en
Publication of JP2017112816A publication Critical patent/JP2017112816A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To construct a circuit capable of rising a DC pressure of an inverter only by changing a DC input point without increasing the number of switching elements in the inverter that converts a DC into an AC.SOLUTION: In the conventional inverter INV, there is two stage of a BC and INV, a circuit combined with a control circuit becomes complication and is increased in cost. Although an input DC voltage is normally applied to between lines of an A point 51 and a C point 53, the voltage is changed to a line between a B point 52 and the C point 53. A signal for driving an AC load of Lo19 and Ro20 is inputted to a switch S14, and the signal is also used as the signal for the BC. In a triangular wave to sine wave comparison system of the most general as an INV signal, a mean conductive rate (On rate of one period) is equal to 0.5. Therefore, on the basis of a theory of the BC relating to pressure rising, a line DC voltage of the INV is increased about two times, and the INV of which the voltage is increased can be realized without the BC to be conventionally desired to be provided.SELECTED DRAWING: Figure 1

Description

インバータ(INV)では直流電圧を昇圧して使う用途が多く、その場合一段目に昇圧コンバータ(BC)を用いている。系統連系を行う太陽光発電や電気自動車などの交流モータの駆動用電源などがそれである。通常回路をBCとINVの2段構成として昇圧して使用している。図1において一般にはINVの入力直流電圧はA点51とC点53の線間に印加されるが、発明ではB点52とC点53の線間に接続する。スイッチS14はLo 19、Ro20の交流負荷を駆動するための信号が入力されており、制御において例えば最も一般的な三角波‐正弦波比較方式では平均の通電率(一周期のオンの割合)が0.5となるためBCの理論より線間のINVの電圧は約2倍に昇圧され追加のBCは不必要となる。このため1台のINVで目的の昇圧した電圧の交流電力を得る事ができる。The inverter (INV) has many uses for boosting a DC voltage. In that case, a boost converter (BC) is used in the first stage. This includes power sources for driving AC motors such as photovoltaic power generation and electric vehicles that perform grid interconnection. A normal circuit is boosted and used as a two-stage configuration of BC and INV. In FIG. 1, the input DC voltage of INV is generally applied between the line between the point A 51 and the point C 53, but in the invention, it is connected between the line between the point B 52 and the point C 53. The switch S 2 14 is supplied with a signal for driving the AC load of Lo 19 and Ro 20, and for example, in the most general triangular wave-sine wave comparison method in control, an average energization rate (ON ratio of one cycle) Therefore, according to the theory of BC, the voltage of INV between lines is boosted by about twice, and an additional BC is unnecessary. For this reason, it is possible to obtain AC power of a target boosted voltage with one INV.

従来の問題点Conventional problems

INVにおいて直流電圧を昇圧して使う理由は太陽光発電では昇圧による送電効率の改善の他、ピーク値の高い系統電圧波形以上の昇圧電圧が必要なためであり、電気自動車では同様な送電効率向上の他、高圧モータを使用することで大幅な効率改善が認められるためである。このため昇圧用のBC設置が必然的となりINVと合わせた2段構成となる。これに伴う制御回路も倍増し回路を構成する素子の増設だけでなく互いの連携制御の為に相手出力の検出器なども設ける必要があり、回路は複雑且つ高コスト化することは避けられない。  The reason for boosting the DC voltage in INV is that in solar power generation, boosting voltage beyond boosted system voltage waveform is required in addition to boosting power transmission efficiency by boosting. In addition, the use of a high voltage motor allows a significant improvement in efficiency. This necessitates the installation of a boosting BC, resulting in a two-stage configuration combined with INV. Along with this, the control circuit must be doubled, and it is necessary not only to increase the number of elements constituting the circuit, but also to provide a detector for the other party's output for mutual control, and it is inevitable that the circuit is complicated and expensive. .

産業上の利用分野Industrial application fields

太陽光発電システムや電気自動車の駆動用電源において従来システムを効率的に動作させるには、太陽電池やバッテリなどの一段目の直流電圧を昇圧して2段目のINVに伝送する2回路より構成されている。系統連系などの太陽光発電システムでは高いピークの系統電圧以上が必要であり、また電気自動車ではモータの小型化に対し高効率で使用できるように高圧化するためでありこれらはBCとINVの2段構成であった。発明ではINV回路1台で昇圧機能を持たせるようにしたものであり、最近の省エネ・高効率を要求するこれらの技術分野が大きく世間の注目を浴びる中、発展した革新技術を提供でき、これらの産業分野に大きく利用されることが期待できる技術である。  In order to operate a conventional system efficiently in a driving power source of a photovoltaic power generation system or an electric vehicle, it is composed of two circuits that boost a first-stage DC voltage such as a solar battery or a battery and transmit it to the second-stage INV. Has been. In solar power generation systems such as grid interconnections, higher peak system voltages are required, and electric vehicles are used to increase the voltage so that they can be used efficiently with respect to motor miniaturization. It was a two-stage configuration. The invention is designed to have a boosting function with a single INV circuit, and while these technological fields requiring recent energy saving and high efficiency have attracted a great deal of public attention, they can provide advanced innovations. This technology can be expected to be widely used in the industrial field.

従来の技術の対応Response to conventional technology

従来太陽光発電や電気自動車ではインバータ(INV)を効果的に使用するために直流電圧を昇圧して利用する必要があった。昇圧コンバータ(BC)とINVはそれぞれ別々の用途での使用が目的のため、BCとINVを合体させる構想は生ずることはなく、“直流電圧はBCで昇圧し、それからINVで交流を得る”この考えから発展することはなかった。初期には変圧器で昇圧することなども提案されていた。その他太陽電池や蓄電池を縦続接続して昇圧する方法も用いられたが高圧線路の引き回しなどから生じるトラブルや、なおかつ電圧調整も必要であることなどから広く採用されてゆくことはなかった。このように種々の方式が模索されたが最近ではBCで昇圧することが一般的になっている。このことは回路をBCとINVの2段で構成することとなり制御回路および両者の連携制御とあわせ回路は複雑およびコスト高をもたらしていた。  Conventionally, solar power generation and electric vehicles have been required to boost the DC voltage in order to use the inverter (INV) effectively. Since the boost converter (BC) and INV are intended to be used in different applications, there is no concept of combining BC and INV. “The DC voltage is boosted by BC and then AC is obtained by INV.” There was no development from the idea. Initially, boosting with a transformer was also proposed. In addition, a method of boosting voltage by connecting cascaded solar cells or storage batteries was used, but it has not been widely adopted because of troubles caused by routing of high-voltage lines and the necessity of voltage adjustment. Various methods have been sought in this way, but recently, boosting with BC has become common. This means that the circuit is composed of two stages of BC and INV, and the control circuit and the combined control of both have brought complexity and cost.

発明が解決しようとする課題Problems to be solved by the invention

BCとINVの2段構成となる従来の方式で仮にBCを用いない場合では低い入力直流電圧が直接INV直流電圧として使用されるため、低い入力直流電圧は系統電圧やモータ電圧に対し不十分となり出力に深刻なひずみをもたらしたり、大幅な効率低下などをもたらすことになる。このため一段目にBCを用いて昇圧することは必然的となる。このため回路はBCとINVの2段構成となり制御回路とあわせ回路は複雑およびコスト高となる。この昇圧機能を発明ではINVだけで実現することで余分なBCやその制御回路及びBCとINVを連携して制御する機能などは不要となり構成およびその制御は極めてシンプルとなる。  If BC is not used in the conventional system with a two-stage configuration of BC and INV, a low input DC voltage is used directly as an INV DC voltage, so the low input DC voltage is insufficient for the system voltage and motor voltage. This will cause severe distortion in the output and a significant reduction in efficiency. For this reason, it is inevitable to boost the voltage using BC in the first stage. Therefore, the circuit has a two-stage configuration of BC and INV, and the circuit together with the control circuit is complicated and expensive. By realizing this boosting function only with INV, an extra BC, its control circuit, and a function for controlling BC and INV in cooperation with each other become unnecessary, and the configuration and control thereof become extremely simple.

課題を解決するための手段Means for solving the problem

上記の問題点を解決する方法を図1のINVの基本原理構成図の詳しい図面をもとに説明する。従来INVでは入力直流電圧はA点51とC点53の線間に印加されるが、発明ではB点52とC点53の線間に変更する。従来方式は2段構成でありINVの昇圧は1段目に設けたBCにより行っていた。発明ではこのBCを省略し従ってBC用のスイッチは存在せずINV用のスイッチS14でこれを兼用する。従来一般にBCでは単調なスイッチングがおこなわれ次段のINVで目的の出力周波数を得るためパルス幅変調のスイッチングが行われる。このようにスイッチS14はLo 19、Ro20の交流負荷を駆動するための信号が入力されており、発明のBCではこれを利用する。最も一般的な三角波‐正弦波比較方式では平均の通電率(一周期のオンの割合)が0.5となるためBCの理論よりINVの線間直流電圧は約2倍に昇圧されBCの働きをこのS14で兼用することができる。A method for solving the above problem will be described with reference to the detailed drawing of the basic principle configuration diagram of INV in FIG. In the conventional INV, the input DC voltage is applied between the line between the point A 51 and the point C 53, but in the invention, it is changed between the line between the point B 52 and the point C 53. The conventional method has a two-stage configuration, and the boosting of INV is performed by the BC provided in the first stage. In the present invention, this BC is omitted. Therefore, there is no switch for BC, and this is also used by the switch S 2 14 for INV. Conventionally, in BC, monotonous switching is generally performed, and pulse width modulation switching is performed in order to obtain a target output frequency at the next stage INV. In this way, the switch S 2 14 receives a signal for driving the AC load of Lo 19 and Ro 20, and this is utilized in the BC of the invention. In the most common triangular wave-sine wave comparison method, the average current-carrying ratio (on ratio of one cycle) is 0.5. Therefore, the line voltage of INV is boosted by about twice from the theory of BC, and the function of BC is increased. Can also be used as S 2 14.

図2に発明を実施するための実用的形態例を示す。単相フルブリッジ形に展開した発明の回路構成である。従来INVでは入力直流電圧はD点61とF点63の線間に印加されるが、発明ではG点62とF点63の線間に変更する。発明ではBCを省略し従ってBC用のスイッチと回路は除去され、INV用のスイッチS24でこれを兼用する。スイッチS24はS25と合わせてLo31、Ro32の交流負荷を駆動するための信号が入力されており、最も一般的な三角波‐正弦波比較方式では平均の通電率(一周期のオンの割合)が0.5となるためBCの理論よりINVの線間直流電圧は約2倍に昇圧されBCの働きをこのS24で兼用することができる。このフルブリッジの場合入力電源入力端は左端側A点33に接続されるが、あわせて入力電源E21は右端側A点34にインダクタL35を介して接続することもでき、スイッチS26と合わせてこの部分の昇圧コンバータ(BC)を構成することになる。この場合も従来のS26に与える信号波形を何ら変更することなくそのままBCの信号として利用できる。更には入力端子をG点62、H点64の2点にも分散して設けることで電力の分担化および流入電流リプルの平滑化が可能となる。FIG. 2 shows a practical embodiment for carrying out the invention. It is the circuit configuration of the invention developed into a single-phase full-bridge type. In the conventional INV, the input DC voltage is applied between the line between the D point 61 and the F point 63, but in the invention, it is changed between the line between the G point 62 and the F point 63. In the invention, BC is omitted, so the BC switch and circuit are eliminated, and the INV switch S 2 24 is also used. The switch S 2 24 receives a signal for driving the AC load of Lo 31 and Ro 32 together with S 3 25, and in the most general triangular wave-sine wave comparison method, the average energization rate (one cycle ON-state) Since the ratio) is 0.5, the direct current line voltage of INV is boosted by about twice from the theory of BC, and the function of BC can be shared by this S 2 24. In the case of this full bridge, the input power source input terminal is connected to the left end side A point 33, but the input power source E21 can also be connected to the right end side A point 34 via the inductor L 2 35, and the switch S 4 26 Together with this, a boost converter (BC) of this part is constituted. Also in this case, the signal waveform given to the conventional S 4 26 can be used as it is as a BC signal without any change. Furthermore, by distributing the input terminals to the two points G point 62 and H point 64, it is possible to share power and smooth the inflow current ripple.

本発明の基本構成となるハーフブリッジ回路である。It is a half bridge circuit which becomes the basic composition of the present invention. 本発明の実用的な単相フルブリッジ回路図である。It is a practical single phase full bridge circuit diagram of the present invention.

〔図1〕
11 直流電源
12 限流インダクタ
13 インバータスイッチ
14 インバータスイッチ
15 環流ダイオード
16 環流ダイオード
17 電源用キャパシタ
18 電源用キャパシタ
19 負荷インダクタ
20 負荷抵抗
51 インバータ直流正電圧端子
52 インバータ直流中性点電圧端子
53 インバータ直流負電圧端子
〔図2〕
21 直流電源
22 限流インダクタ
23 インバータスイッチ
24 インバータスイッチ
25 インバータスイッチ
26 インバータスイッチ
27 環流ダイオード
28 環流ダイオード
29 環流ダイオード
30 環流ダイオード
31 負荷インダクタ
32 負荷抵抗
33 左端インダクタ端子
34 右端インダクタ端子
35 限流インダクタ
41 インバータ直流負電圧端子
42 電源用キャパシタ
61 インバータ直流正電圧端子
62 インバータ直流中性点電圧端子
63 インバータ直流負電圧端子
64 インバータ直流中性点電圧端子
[Figure 1]
11 DC power supply 12 Current limiting inductor 13 Inverter switch 14 Inverter switch 15 Freewheeling diode 16 Freewheeling diode 17 Power supply capacitor 18 Power supply capacitor 19 Load inductor 20 Load resistance 51 Inverter direct current positive voltage terminal 52 Inverter direct current neutral point voltage terminal 53 Inverter direct current Negative voltage terminal (Fig. 2)
21 DC power supply 22 Current limiting inductor 23 Inverter switch 24 Inverter switch 25 Inverter switch 26 Inverter switch 27 Freewheeling diode 28 Freewheeling diode 29 Freewheeling diode 30 Freewheeling diode 31 Load inductor 32 Load resistance 33 Left end inductor terminal 34 Right end inductor terminal 35 Current limiting inductor 41 Inverter DC negative voltage terminal 42 Power supply capacitor 61 Inverter DC positive voltage terminal 62 Inverter DC neutral point voltage terminal 63 Inverter DC negative voltage terminal 64 Inverter DC neutral point voltage terminal

Claims (4)

ハーフブリッジ型インバータ(INV)回路において前段に昇圧コンバータ(BC)を用いることなく、直流電源のINVに対する入力点を、従来のINVの直流リンク電圧の端子に入力する代わりにINVの縦続接続された2個のスイッチを構成する枝路の中点にインダクタを通して接続することでBC使用時のように直流リンク電圧を昇圧できるようにしたインバータ回路構成。  In the half-bridge type inverter (INV) circuit, without using a boost converter (BC) in the previous stage, the input point for the DC of the DC power supply is connected to the INV cascade instead of being input to the terminal of the DC link voltage of the conventional INV. An inverter circuit configuration in which the DC link voltage can be boosted as in the case of using BC by connecting through an inductor to the midpoint of the branches constituting two switches. 単相フルブリッジインバータ(INV)回路において前段に昇圧コンバータ(BC)を用いることなく、直流電源のINVに対する入力点を従来のINVの直流リンク電圧の端子に入力する代わりにINVの縦続接続された2個のスイッチを構成する枝路の中点にインダクタを通して接続することでBC使用時のようにINVの直流リンク電圧を昇圧できるようにしたインバータ回路構成。  In a single-phase full-bridge inverter (INV) circuit, without using a boost converter (BC) in the previous stage, instead of inputting the input point for the INV of the DC power supply to the terminal of the DC link voltage of the conventional INV, the INV is connected in cascade. An inverter circuit configuration in which the DC link voltage of INV can be boosted as in the case of using BC by connecting through inductors to the midpoints of the branches constituting two switches. 単相フルブリッジインバータ(INV)回路において前段に昇圧コンバータ(BC)を用いることなく、直流電源のINVに対する入力点を従来のINVの直流リンク電圧の端子に入力する代わりにINVの縦続接続された2個のスイッチを構成する枝路の中点にインダクタを通して接続すること及びもう一方のスイッチの枝路の中点にも同様にインダクタを通して接続することでBC使用時のようにINVの直流リンク電圧を昇圧できるようにしたインバータ回路構成。  In a single-phase full-bridge inverter (INV) circuit, without using a boost converter (BC) in the previous stage, instead of inputting the input point for the INV of the DC power supply to the terminal of the DC link voltage of the conventional INV, the INV is connected in cascade. By connecting the inductor to the midpoint of the two switches and connecting the midpoint of the other switch through the inductor in the same manner, the DC link voltage of the INV is the same as when using BC. Inverter circuit configuration that can boost the voltage. 三相インバータ(INV)回路において前段に昇圧コンバータ(BC)を用いることなく、直流電源のINVに対する入力点を従来のINVの直流リンク電圧の端子に入力する代わりに縦続接続された2個のスイッチを構成する枝路の中点及び他の2組の枝路のそれぞれの中点にもそれぞれのインダクタを通して接続することでBC使用時のように直流リンク電圧を昇圧できるようにしたインバータ回路構成。  Two switches connected in cascade instead of inputting the input point for the INV of the DC power supply to the terminal of the DC link voltage of the conventional INV without using the boost converter (BC) in the previous stage in the three-phase inverter (INV) circuit An inverter circuit configuration in which the DC link voltage can be boosted as in the case of using BC by connecting through the respective inductors to the midpoint of the branch that constitutes and the midpoint of each of the other two sets of branches.
JP2015257831A 2015-12-16 2015-12-16 Inverter circuit having self-boosting function Abandoned JP2017112816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015257831A JP2017112816A (en) 2015-12-16 2015-12-16 Inverter circuit having self-boosting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015257831A JP2017112816A (en) 2015-12-16 2015-12-16 Inverter circuit having self-boosting function

Publications (1)

Publication Number Publication Date
JP2017112816A true JP2017112816A (en) 2017-06-22

Family

ID=59079865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015257831A Abandoned JP2017112816A (en) 2015-12-16 2015-12-16 Inverter circuit having self-boosting function

Country Status (1)

Country Link
JP (1) JP2017112816A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134776A (en) * 1983-12-23 1985-07-18 Matsushita Electric Works Ltd Power source
JPH07123736A (en) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd Inverter device
JPH10271833A (en) * 1996-08-21 1998-10-09 Origin Electric Co Ltd Boosting bridge inverter circuit and control thereof
JP2001128457A (en) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd Power supply
US20070247123A1 (en) * 2006-04-19 2007-10-25 International Rectifier Corporation Single stage integrated boost inverter motor drive circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134776A (en) * 1983-12-23 1985-07-18 Matsushita Electric Works Ltd Power source
JPH07123736A (en) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd Inverter device
JPH10271833A (en) * 1996-08-21 1998-10-09 Origin Electric Co Ltd Boosting bridge inverter circuit and control thereof
JP2001128457A (en) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd Power supply
US20070247123A1 (en) * 2006-04-19 2007-10-25 International Rectifier Corporation Single stage integrated boost inverter motor drive circuit

Similar Documents

Publication Publication Date Title
US8681522B2 (en) Method for operating an electronically controlled inverter with switches that alternate between being elements of a boost-buck converter and an inverting Cuk converter
CN108702104B (en) Five-level inverter topology circuit and three-phase five-level inverter topology circuit
WO2017157271A1 (en) Multilevel inverters
US20120019230A1 (en) Dc/dc converter circuit and method for controlling a dc/dc converter circuit
US20200295570A1 (en) System and Device for Exporting Power, and Method of Configuring Thereof
JP2017512050A (en) Multi-level hybrid inverter and operation method
CN111555651A (en) Multi-level flying capacitor converter module
US8248828B2 (en) Medium voltage inverter system
Dhara et al. An integrated semi-double stage-based multilevel inverter with voltage boosting scheme for photovoltaic systems
Zhang et al. A hybrid modulation method for single-phase quasi-Z source inverter
JP2020503830A (en) Modulation method and apparatus based on three-phase neutral point clamp inverter
CN107534398B (en) Half-bridge inverter unit and inverter
JP5362657B2 (en) Power converter
KR101697855B1 (en) H-bridge multi-level inverter
US11038436B2 (en) Inverter system
Das et al. A five-level quasi Z-source based NPC inverter for PV applications
JP2017112816A (en) Inverter circuit having self-boosting function
WO2016128819A1 (en) Power conversion device
Shaikh et al. Single phase seven level inverter
Mohamad et al. Simulation analysis of an improved cascaded multilevel inverter topology
Nguyen et al. Input-Parallel Output-Parallel Current-Fed Isolated DC-DC Converters with Double Step-Down Converter
CN103107726B (en) Single-stage buck-boost neutral point clamp type three-level inverter
Heydari et al. Buck-boost reduced switch-count converters based on three-phase six-switch dual-terminal inverter
US20230253879A1 (en) Charger, a multiplexing current conversion circuit and an uninterruptible power supply including the same
Mandekar et al. A-5 Level Inverter For Regulated Power Supply From DC Generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20190318