JP2017112081A - Method for manufacturing separator of pp-pe composite structure by unidirectionally stretching by inflation film method - Google Patents

Method for manufacturing separator of pp-pe composite structure by unidirectionally stretching by inflation film method Download PDF

Info

Publication number
JP2017112081A
JP2017112081A JP2016019576A JP2016019576A JP2017112081A JP 2017112081 A JP2017112081 A JP 2017112081A JP 2016019576 A JP2016019576 A JP 2016019576A JP 2016019576 A JP2016019576 A JP 2016019576A JP 2017112081 A JP2017112081 A JP 2017112081A
Authority
JP
Japan
Prior art keywords
film
stretching
separator
temperature
inflation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016019576A
Other languages
Japanese (ja)
Other versions
JP2017112081A5 (en
Inventor
ジェングゥォ ファン
Jianguo Fan
ジェングゥォ ファン
ウェイジェン スン
Weijian Sun
ウェイジェン スン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangmen Dragon Century Co Ltd
Jiangmen Dragon-Century Co Ltd
Original Assignee
Jiangmen Dragon Century Co Ltd
Jiangmen Dragon-Century Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangmen Dragon Century Co Ltd, Jiangmen Dragon-Century Co Ltd filed Critical Jiangmen Dragon Century Co Ltd
Publication of JP2017112081A publication Critical patent/JP2017112081A/en
Publication of JP2017112081A5 publication Critical patent/JP2017112081A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

PROBLEM TO BE SOLVED: To disclose a method for manufacturing a separator of a PP-PE composite structure by unidirectionally stretching by an inflation film method.SOLUTION: A method for manufacturing a separator of a PP-PE composite structure comprises a base film preparation step, a thermal treatment step, a cold drawing step, a hot drawing step and a setting step in this order. A microporous film manufactured according to the invention is arranged to utilize characteristics, such as a low self-closing temperature of PE and a high film collapse temperature of PP, and it has a pore closing temperature of 128-133°C, and a film collapse temperature of 168-180°C. A PE microporous film melts between 120 and 130°C. The microporous film serves to suppress the rise in temperature accompanying the closing of micropores because of its early closing property, and suits characteristics of a lithium ion battery.SELECTED DRAWING: None

Description

本発明は、リチウム電池用セパレータに関し、特にインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法に関する。   The present invention relates to a separator for a lithium battery, and particularly to a method for producing a PP / PE composite structure separator by stretching in one direction by an inflation film method.

電動工具やバックアップ電源、電動自転車、電気自動車などの大型装置でのリチウムイオン電池の応用は、ますます広く注目されている。これらの装置には、バッテリーの大容量や高効率などの条件が求められている。リチウムイオン電池が高い安全性、高効率、長寿命などの基本的な要件を満たすかどうかは、専門家や学者たちが検討している重要な課題である。   The application of lithium-ion batteries in large devices such as electric tools, backup power supplies, electric bicycles, and electric vehicles is gaining more and more attention. These devices are required to have conditions such as a large battery capacity and high efficiency. Whether lithium-ion batteries meet basic requirements such as high safety, high efficiency, and long life is an important issue that experts and scholars are considering.

インフレーションフィルム法で片方向に引き伸ばすことで製造されたPP・PE複合構造のセキュリティセパレータは、工業生産に広く使用されている。このようなセパレータは、高いイオン伝導度でバッテリーの内部抵抗を低減でき、低い電子導電性で電極間の確実な分離を確保でき、内部短絡が発生する場合にはより良い保護を提供でき、電解質層が薄く、過充電の場合には十分な安全性があり、それから比較的優れた機械的性質及び熱安定性もある。ポリエチレン・ポリプロピレンフィルムは特別な構造と性能を持つので、インフレーションフィルム法で片方向に引き伸ばすことで製造されたPP・PE複合構造のセキュリティセパレータにおいて、イオン電池用セパレータは重要な地位を占めている。   PP / PE composite structure security separators manufactured by stretching in one direction by the inflation film method are widely used in industrial production. Such a separator can reduce the internal resistance of the battery with high ionic conductivity, can ensure reliable separation between the electrodes with low electronic conductivity, can provide better protection when internal short circuit occurs, The layers are thin and there is sufficient safety in the case of overcharging, as well as relatively good mechanical properties and thermal stability. Polyethylene / polypropylene film has a special structure and performance, so the ion battery separator occupies an important position in the PP / PE composite structure security separator manufactured by stretching in one direction by the inflation film method.

既存技術の欠陥について、本発明は、良好な機械的強度を持ちながら、リチウムイオン電池により良い保護を提供できる、インフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法を提供する。   For defects in existing technology, the present invention provides a method for producing a PP / PE composite structure separator by stretching in one direction by an inflation film method, which can provide better protection to a lithium ion battery while having good mechanical strength. To do.

上記の目的を達成するために、本発明に係るインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法は、PP材料にPE材料を入れ、押出成形機を使用しダイに材料を同時に送り、混合・共押出し成膜し、共押出インフレーションフィルム機でフィルムを多層構造のある基材フィルムに合成する基材フィルム作製と、前記基材フィルムをオーブンに入れて熱処理を行い、材料を弾性インデックスが50%〜90%である高弾性状態にする熱処理と、前記高弾性状態にある基材フィルムに冷間引抜を行いシルバーストリークを形成する冷間引抜と、前記冷間引抜後の基材フィルムに熱間引抜を行い微孔構造を形成し、80%の孔径が32〜36nmである時に処理を中止する熱間引抜と、前記熱間引抜で得られた基材フィルムを微多孔膜に作製するセッティングのプロセスとを含む。   In order to achieve the above object, a PP / PE composite structure separator manufacturing method by stretching in one direction by the inflation film method according to the present invention is a method of putting a PE material in a PP material and using an extruder to form a die. Feeding materials at the same time, mixing and co-extrusion to form a film, and co-extrusion blown film machine to synthesize the film into a base film with a multilayer structure, heat treatment by placing the base film in an oven, Heat treatment to bring the material into a highly elastic state with an elastic index of 50% to 90%, cold drawing to form a silver streak by cold drawing the base film in the highly elastic state, and after the cold drawing Hot drawing to form a microporous structure on the base film of the film, the hot drawing to stop the treatment when the 80% pore diameter is 32 to 36 nm, and the base film obtained by the hot drawing The and a setting of the process of making the microporous membrane.

好ましくは、前記基材フィルム作製のプロセスでは、PPとPEの質量比が7:3である。   Preferably, in the process for producing the base film, the mass ratio of PP and PE is 7: 3.

好ましくは、前記熱処理のプロセスでは、温度が110〜130℃であり、時間が5〜24時間である。   Preferably, in the heat treatment process, the temperature is 110 to 130 ° C. and the time is 5 to 24 hours.

好ましくは、前記冷間引抜のプロセスでは、加工温度が20〜50℃であり、引抜速度が2〜20m/minであり、引き抜き比が0.2〜1.5である。   Preferably, in the cold drawing process, the processing temperature is 20 to 50 ° C., the drawing speed is 2 to 20 m / min, and the drawing ratio is 0.2 to 1.5.

好ましくは、前記熱間引抜のプロセスでは、加工温度が100〜125℃であり、引抜速度が2〜20m/minであり、引き抜き比が0.5〜3である。   Preferably, in the hot drawing process, the processing temperature is 100 to 125 ° C., the drawing speed is 2 to 20 m / min, and the drawing ratio is 0.5 to 3.

好ましくは、前記熱間引抜のプロセスでは、微孔構造の孔径が20〜50nmである。   Preferably, in the hot drawing process, the pore diameter of the microporous structure is 20 to 50 nm.

好ましくは、前記セッティングのプロセスでは、セッティングの温度が90〜140℃であり、速度が2〜20m/minであり、セッティング比が0.5〜2.5である。   Preferably, in the setting process, the setting temperature is 90 to 140 ° C., the speed is 2 to 20 m / min, and the setting ratio is 0.5 to 2.5.

本発明の良好な効果として、本発明により製造された微多孔膜は、PEの低い自己閉鎖温度及びPPの高いフィルム圧壊温度という特性を利用し、孔の閉鎖温度が128〜133℃であり、フィルム圧壊温度が168〜180℃であり、PE微多孔膜が120〜130℃の間で溶解する。その早期閉鎖の特徴により、微多孔の閉鎖に関連する温度の上昇の抑えに役立ち、リチウムイオン電池の特性を満たす。   As a good effect of the present invention, the microporous membrane produced according to the present invention utilizes the characteristics of low self-closing temperature of PE and high film crushing temperature of PP, and has a pore closing temperature of 128 to 133 ° C. The film crushing temperature is 168 to 180 ° C., and the PE microporous film is dissolved between 120 to 130 ° C. Its early closure feature helps to reduce the temperature rise associated with microporous closure and meets the characteristics of lithium ion batteries.

以下、具体的な実施形態とともに本発明についてさらに説明する。   Hereinafter, the present invention will be further described together with specific embodiments.

<実施形態1>
200kgのPPと200kgのPEを原材料とする。
<Embodiment 1>
200kg PP and 200kg PE are used as raw materials.

複数の押出成形機でPP及びPEをそれぞれ溶解・可塑化してから、同じのダイに入れ、温度を180℃に設定し、インフレーションフィルム法で基材フィルムを作製する。   PP and PE are respectively melted and plasticized by a plurality of extruders, placed in the same die, the temperature is set to 180 ° C., and a base film is produced by an inflation film method.

インフレーションフィルム法で得られた基材フィルムに熱処理を行い、オーブン温度を110℃に設定し、処理時間を5時間に設定し、材料を高弾性状態にすることにより、孔構造にする要件を満たす。基材フィルムの弾性が70%に達する。   The base film obtained by the inflation film method is heat-treated, the oven temperature is set to 110 ° C, the processing time is set to 5 hours, and the material is made into a highly elastic state, thereby satisfying the requirement for a pore structure . The elasticity of the base film reaches 70%.

加工温度が20℃であり、引抜速度が2m/minであり、引き抜き比が0.2である条件で冷間引抜を行い、シルバーストリークを形成する。   Cold drawing is performed under the conditions that the processing temperature is 20 ° C., the drawing speed is 2 m / min, and the drawing ratio is 0.2 to form a silver streak.

加工温度が100℃であり、引抜速度が2m/minであり、引き抜き比が0.5である条件で熱間引抜を行い、微孔構造を形成する。微孔構造の孔径は30nmである。   Hot drawing is performed under the conditions that the processing temperature is 100 ° C., the drawing speed is 2 m / min, and the drawing ratio is 0.5 to form a microporous structure. The pore diameter of the microporous structure is 30 nm.

温度が90℃であり、セッティングの速度が2m/minであり、セッティング比が1.5である条件で微多孔膜を作製する。   A microporous membrane is produced under the conditions that the temperature is 90 ° C., the setting speed is 2 m / min, and the setting ratio is 1.5.

<実施形態2>
200kgのPPと200kgのPEを原材料とする。
<Embodiment 2>
200kg PP and 200kg PE are used as raw materials.

押出成形機でPP、PEを溶解・可塑化してから、同じのダイに入れ、温度を200℃に設定し、インフレーションフィルム法で基材フィルムを作製する。   After PP and PE are melted and plasticized with an extruder, they are placed in the same die, the temperature is set to 200 ° C., and a base film is produced by the inflation film method.

インフレーションフィルム法で得られた基材フィルムに熱処理を行い、オーブン温度を120℃に設定し、処理時間を15時間に設定し、材料を高弾性状態にすることにより、孔構造にする要件を満たす。基材フィルムの弾性が70%に達する。   The base film obtained by the inflation film method is heat-treated, the oven temperature is set to 120 ° C, the processing time is set to 15 hours, and the material is made into a highly elastic state, thereby satisfying the requirements for a pore structure. . The elasticity of the base film reaches 70%.

熱処理後の基材フィルムに冷間引抜を行い、加工温度が35℃であり、引抜速度が10m/minであり、引き抜き比が0.8である条件でシルバーストリークを形成する。   The base film after the heat treatment is subjected to cold drawing, and a silver streak is formed under the conditions that the processing temperature is 35 ° C., the drawing speed is 10 m / min, and the drawing ratio is 0.8.

加工温度が110℃であり、引抜速度が10m/minである条件で熱間引抜を行い、微孔構造を形成する。微孔構造の孔径は35nmである。   Hot drawing is performed under the conditions that the processing temperature is 110 ° C. and the drawing speed is 10 m / min to form a microporous structure. The pore diameter of the microporous structure is 35 nm.

温度が120℃であり、セッティングの速度が10m/minであり、セッティング比が1である条件で微多孔膜を作製する。   A microporous membrane is produced under the conditions that the temperature is 120 ° C., the setting speed is 10 m / min, and the setting ratio is 1.

<実施形態3>
200kgのPPと200kgのPEを原材料とする。
<Embodiment 3>
200kg PP and 200kg PE are used as raw materials.

押出成形機でPP、PEを溶解・可塑化してから、同じのダイに入れ、温度を250℃に設定し、インフレーションフィルム法で基材フィルムを作製する。   After PP and PE are melted and plasticized with an extruder, they are placed in the same die, the temperature is set to 250 ° C., and a base film is produced by the inflation film method.

インフレーションフィルム法で得られた基材フィルムに熱処理を行い、オーブン温度を130℃に設定し、処理時間を24時間に設定し、材料を高弾性状態にすることにより、孔構造にする要件を満たす。基材フィルムの弾性が70%に達する。   The base film obtained by the inflation film method is heat treated, the oven temperature is set to 130 ° C, the processing time is set to 24 hours, and the material is made into a highly elastic state, thereby satisfying the requirement for a pore structure . The elasticity of the base film reaches 70%.

熱処理後の基材フィルムに冷間引抜を行い、加工温度が50℃であり、引抜速度が20m/minであり、引き抜き比が1.5である条件でシルバーストリークを形成する。   The base film after the heat treatment is subjected to cold drawing, and a silver streak is formed under the conditions that the processing temperature is 50 ° C., the drawing speed is 20 m / min, and the drawing ratio is 1.5.

加工温度が125℃であり、引抜速度が20m/minである条件で熱間引抜を行い、微孔構造を形成する。微孔構造の孔径は45nmである。   Hot drawing is performed under the conditions that the processing temperature is 125 ° C. and the drawing speed is 20 m / min to form a microporous structure. The pore diameter of the microporous structure is 45 nm.

温度が140℃であり、セッティングの速度が20m/minであり、セッティング比が2.5である条件で、微多孔膜を作製する。   A microporous membrane is produced under the conditions that the temperature is 140 ° C., the setting speed is 20 m / min, and the setting ratio is 2.5.

上述した内容はあくまでも本発明による好ましい実施形態であり、本発明の限定にはならない。当業者には、本発明は様々な修正、変更および変形を有することができる。本発明の精神及び原則の範囲内に限り、修正、同等置換、改良などのすべては本発明による保護範囲内に含まれるべきである。   The contents described above are merely preferred embodiments according to the present invention, and do not limit the present invention. For those skilled in the art, the present invention may have various modifications, changes and variations. All modifications, equivalent substitutions, improvements and the like should be included within the protection scope of the present invention only within the spirit and principle of the present invention.

Claims (7)

PP材料にPE材料を入れ、押出成形機を使用しダイに材料を同時に送り、混合・共押出し成膜し、共押出インフレーションフィルム機でフィルムを多層構造のある基材フィルムに合成する基材フィルム作製と、
前記基材フィルムをオーブンに入れて熱処理を行い、材料を弾性インデックスが50%〜90%である高弾性状態にする熱処理と、
前記高弾性状態にある基材フィルムに冷間引抜を行いシルバーストリークを形成する冷間引抜と、
前記冷間引抜後の基材フィルムに熱間引抜を行い微孔構造を形成し、80%の孔径が32〜36nmである時に処理を中止する熱間引抜と、
前記熱間引抜で得られた基材フィルムを微多孔膜に作製するセッティングのプロセスとを含むことを特徴とする、インフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。
A base material film in which a PE material is put into a PP material, the materials are simultaneously fed to a die using an extruder, mixed and co-extruded to form a film, and the film is synthesized into a base film having a multilayer structure by a co-extrusion inflation film machine. Making and
Heat treatment by placing the base film in an oven and heat-treating the material to a highly elastic state with an elastic index of 50% to 90%;
Cold drawing to form a silver streak by cold drawing to the base film in the highly elastic state,
Hot drawing to form a microporous structure by hot drawing on the base film after cold drawing, and hot drawing to stop the treatment when 80% of the hole diameter is 32-36 nm,
A method for producing a PP / PE composite structure separator by stretching in one direction by an inflation film method, comprising a setting process for producing a base film obtained by hot drawing into a microporous film.
前記基材フィルム作製のプロセスでは、PPとPEの質量比が7:3であることを特徴とする、請求項1に記載のインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。   The PP / PE composite structure separator by stretching in one direction by the inflation film method according to claim 1, wherein the mass ratio of PP and PE is 7: 3 in the base film production process. Production method. 前記熱処理のプロセスでは、温度が110〜130℃であり、時間が5〜24時間であることを特徴とする、請求項1に記載のインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。   2. The PP / PE composite structure by stretching in one direction by the inflation film method according to claim 1, wherein the heat treatment process has a temperature of 110 to 130 ° C. and a time of 5 to 24 hours. Separator manufacturing method. 前記冷間引抜のプロセスでは、加工温度が20〜50℃であり、引抜速度が2〜20m/minであり、引き抜き比が0.2〜1.5であることを特徴とする、請求項1に記載のインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。   2. The inflation according to claim 1, wherein in the cold drawing process, the processing temperature is 20 to 50 ° C., the drawing speed is 2 to 20 m / min, and the drawing ratio is 0.2 to 1.5. A PP / PE composite separator manufacturing method by stretching in one direction using the film method. 前記熱間引抜のプロセスでは、加工温度が100〜125℃であり、引抜速度が2〜20m/minであり、引き抜き比が0.5〜3であることを特徴とする、請求項1に記載のインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。   2. The inflation according to claim 1, wherein in the hot drawing process, the processing temperature is 100 to 125 ° C., the drawing speed is 2 to 20 m / min, and the drawing ratio is 0.5 to 3. 3. A PP / PE composite separator manufacturing method by stretching in one direction using the film method. 前記熱間引抜のプロセスでは、微孔構造の孔径が20〜50nmであることを特徴とする請求項1に記載のインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。   The method for producing a PP / PE composite structure separator by stretching in one direction by an inflation film method according to claim 1, wherein in the hot drawing process, the pore diameter of the microporous structure is 20 to 50 nm. 前記セッティングのプロセスでは、セッティングの温度が90〜140℃であり、速度が2〜20m/minであり、セッティング比が0.5〜2.5であることを特徴とする、請求項1に記載のインフレーションフィルム法で片方向に引き伸ばすことによるPP・PE複合構造セパレータの製造方法。   The inflation film method according to claim 1, wherein in the setting process, the setting temperature is 90 to 140 ° C, the speed is 2 to 20 m / min, and the setting ratio is 0.5 to 2.5. A method for manufacturing a PP / PE composite separator by stretching in one direction.
JP2016019576A 2015-12-17 2016-02-04 Method for manufacturing separator of pp-pe composite structure by unidirectionally stretching by inflation film method Pending JP2017112081A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510956694.0 2015-12-17
CN201510956694.0A CN105470434A (en) 2015-12-17 2015-12-17 Preparation method for producing membrane with PP and PE composite structure through uniaxial tension by membrane blowing

Publications (2)

Publication Number Publication Date
JP2017112081A true JP2017112081A (en) 2017-06-22
JP2017112081A5 JP2017112081A5 (en) 2018-03-29

Family

ID=55607935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019576A Pending JP2017112081A (en) 2015-12-17 2016-02-04 Method for manufacturing separator of pp-pe composite structure by unidirectionally stretching by inflation film method

Country Status (3)

Country Link
JP (1) JP2017112081A (en)
KR (1) KR20170072763A (en)
CN (1) CN105470434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638204A (en) * 2018-12-17 2019-04-16 吉林大学 A kind of high-intensitive, compound lithium battery diaphragm and preparation method thereof
KR20220021530A (en) * 2020-08-14 2022-02-22 주식회사 제라브리드 Coating compositions for secondary battery separators with improved nail penetration characteristics and manufacturing method of multicomponent battery separators containing thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152435A (en) * 2019-12-25 2020-05-15 界首市天鸿新材料股份有限公司 Stretching and shaping process of PP/PE/PP three-layer co-extrusion diaphragm of lithium battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181651A (en) * 1990-11-14 1992-06-29 Nitto Denko Corp Manufacture of separator for battery
JPH0618915B2 (en) * 1985-07-19 1994-03-16 ヘキスト セラニーズ コーポレーシヨン Method for producing microporous polyethylene film
JPH10289703A (en) * 1997-04-15 1998-10-27 Hna Holdings Inc Manufacture of three-layer separator
JP2003297330A (en) * 2002-03-27 2003-10-17 Celgard Inc Multilayer battery separator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241299A (en) * 2010-05-13 2011-11-16 上海展骋高分子材料有限公司 Aluminum-plastic co-extrusion high-resistance liquid package membrane material and preparation method thereof
CN102604203A (en) * 2012-01-18 2012-07-25 成都慧成科技有限责任公司 Improved microporous polymer film and preparation method thereof
CN104175544A (en) * 2014-08-26 2014-12-03 天津大学 Preparation method of microporous polypropylene film
CN104476753B (en) * 2014-11-25 2017-01-25 朝阳佛瑞达科技有限公司 Production equipment and preparation method of multilayer co-extrusion high-barrier film
CN105161654B (en) * 2015-09-29 2017-08-25 范建国 The method that simple tension triggers production PP/PE/PE/PP barrier films
CN105161653A (en) * 2015-09-29 2015-12-16 范建国 Method for triggering production of PE/PE/PE structure high-strength diaphragm through unilateral stretching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618915B2 (en) * 1985-07-19 1994-03-16 ヘキスト セラニーズ コーポレーシヨン Method for producing microporous polyethylene film
JPH04181651A (en) * 1990-11-14 1992-06-29 Nitto Denko Corp Manufacture of separator for battery
JPH10289703A (en) * 1997-04-15 1998-10-27 Hna Holdings Inc Manufacture of three-layer separator
JP2003297330A (en) * 2002-03-27 2003-10-17 Celgard Inc Multilayer battery separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638204A (en) * 2018-12-17 2019-04-16 吉林大学 A kind of high-intensitive, compound lithium battery diaphragm and preparation method thereof
KR20220021530A (en) * 2020-08-14 2022-02-22 주식회사 제라브리드 Coating compositions for secondary battery separators with improved nail penetration characteristics and manufacturing method of multicomponent battery separators containing thereof
KR102406698B1 (en) * 2020-08-14 2022-06-08 주식회사 제라브리드 Coating compositions for secondary battery separators with improved nail penetration characteristics and manufacturing method of multicomponent battery separators containing thereof

Also Published As

Publication number Publication date
KR20170072763A (en) 2017-06-27
CN105470434A (en) 2016-04-06

Similar Documents

Publication Publication Date Title
Wu et al. Progresses in manufacturing techniques of lithium‐ion battery separators in China
CN107732100B (en) Three-layer co-extrusion lithium ion battery diaphragm and preparation method thereof
JP6306019B2 (en) Method for producing porous separation membrane containing elastic substance, porous separation membrane (separator) produced by the method, and secondary battery comprising the separation membrane
JP2023516348A (en) Battery Separator, Method of Preparation for Battery Separator, Battery, and Terminal
JP2010538097A5 (en)
CN107210407A (en) Improved multilayer microporous film dividing plate and correlation technique for lithium rechargeable battery
JPH04181651A (en) Manufacture of separator for battery
JP2008255202A (en) Composite microporous membrane, separator for battery, and method for producing composite microporous membrane
JP2017112081A (en) Method for manufacturing separator of pp-pe composite structure by unidirectionally stretching by inflation film method
JP2010202828A5 (en)
CN107958981B (en) Composite diaphragm for lithium ion power battery and preparation method
CN105428574A (en) Lithium battery microporous membrane and preparation method thereof
CN103730619A (en) Preparation method of high-strength membrane for lithium ion battery
Zhang et al. Facile preparation of a lithium-ion battery separator with thermal shutdown function based on polypropylene/polyethylene microsphere composites
CN106751043A (en) A kind of high intensity, amylene microporous barrier of poly- 4 methyl 1 of high thermal stability and preparation method thereof
US20160172645A1 (en) Multi-layered porous film and method for preparing the same
TWI638718B (en) Composite film and manufacturing method for the same and battery comprising composite film
CN203910923U (en) High-performance flexible package lithium ion battery cell
CN203528010U (en) Electrode lug glue for soft-packing lithium ion battery and electrode lug
CN109742300B (en) Lithium battery diaphragm and preparation method thereof
KR20150145309A (en) Manufacturing method for separator including filler and electro-chemical device having the same
CN204991768U (en) High performance lithium cell composite packaging plastic -aluminum membrane
CN105161653A (en) Method for triggering production of PE/PE/PE structure high-strength diaphragm through unilateral stretching
CN105390641B (en) Manufacturing process of multilayer composite lithium ion microporous membrane
CN102683632B (en) The method of producing microcellular structure blowout disk is brought out in simple tension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180316