JP2017111778A - Corrective forming method for gear molds - Google Patents

Corrective forming method for gear molds Download PDF

Info

Publication number
JP2017111778A
JP2017111778A JP2015257456A JP2015257456A JP2017111778A JP 2017111778 A JP2017111778 A JP 2017111778A JP 2015257456 A JP2015257456 A JP 2015257456A JP 2015257456 A JP2015257456 A JP 2015257456A JP 2017111778 A JP2017111778 A JP 2017111778A
Authority
JP
Japan
Prior art keywords
mold
tooth
correction
gear
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015257456A
Other languages
Japanese (ja)
Inventor
ワン チー チャン
Wan-Chi Chang
ワン チー チャン
ツァン シュン チャン
Can-Xun Chang
ツァン シュン チャン
ション チー ツァイ
Sheng-Chi Tsai
ション チー ツァイ
イー ペイ シー
Yi-Pei Shih
イー ペイ シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metal Industries Research and Development Centre
Original Assignee
Metal Industries Research and Development Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metal Industries Research and Development Centre filed Critical Metal Industries Research and Development Centre
Publication of JP2017111778A publication Critical patent/JP2017111778A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gear mold of which the cost is restrained and the production efficiency is high.SOLUTION: By a corrective forming method for gear molds to form a desired mold by correcting deformation by affecting factors, simulation is conducted by a process involving designing of a standard mold having a tooth profile of a standard mold for manufacturing such a gear to satisfy the dimensional precision of the gear, a comparative corrective step of forming a tooth profile of a deformed mold having suffered elastic deformation by the affecting factors by using the standard mold obtained at the designing step, comparing the tooth profile of the deformed mold and the tooth profile of the standard mold and obtaining a corrected tooth profile for the tooth profile of the standard mold on the basis of the result of this comparison, and a contrastive verification step of obtaining a dimensional difference between the two tooth profiles including tooth profile of the deformed mold and the corrected tooth profile and repeating the difference seeking until the dimensional difference satisfies the required dimensional precision.SELECTED DRAWING: Figure 1

Description

本発明は、成形補正方法に関し、特にギア金型の補正成形方法に関する。   The present invention relates to a molding correction method, and more particularly to a correction molding method for a gear mold.

ギアは一般的に利用される駆動用部品であり、駆動する機械の性能に対して大きな影響をもたらすため、所望の寸法精度を有するギアを製造する歯型の精密性が要求される。多くの場合専門の工具を用いて、所望の標準ギアの歯面を形成するように、加工元となる所望の標準ギアを削ることによって所望の標準ギアを成形するための歯型が形成される。
また、鍛造方法によって最終的な歯型を直接生成する加工方法もある。この鍛造方法による加工は、標準ギアを削り取る作業が不要であり、所望の標準ギアに基づいて先ず金型を製造し、この金型から所望のギアを製造する。
A gear is a commonly used driving component, and has a great influence on the performance of a machine to be driven. Therefore, the precision of a tooth mold for producing a gear having a desired dimensional accuracy is required. In many cases, using a specialized tool, a tooth mold for forming a desired standard gear is formed by cutting a desired standard gear as a processing source so as to form a tooth surface of a desired standard gear. .
There is also a processing method for directly generating a final tooth shape by a forging method. Processing by this forging method does not require the work of scraping the standard gear, and a mold is first manufactured based on the desired standard gear, and a desired gear is manufactured from the mold.

しかし、専門の工具を用いて所望のギア寸法精度を満たす歯面を形成する方法は、歯型の精密性は比較的高いが、所望の標準ギアを削り取ることにより加工されるので、材料の利用効率が比較的低く、また歯面を形成するために削り取る作業は製造工程上多くの手間が必要となる。更に、上述した削り取るための専門の工具は使用工数につれて磨耗するため、専門の工具を繰り返し取り替える必要があり、ギアを製造するのにコスト高となると共に製造効率も低い。   However, a method of forming a tooth surface that satisfies a desired gear dimensional accuracy using a specialized tool has a relatively high tooth mold accuracy, but is processed by scraping the desired standard gear. The efficiency is relatively low, and the work of scraping to form the tooth surface requires a lot of labor in the manufacturing process. Furthermore, since the above-mentioned specialized tool for scraping wears as the number of man-hours used, it is necessary to repeatedly replace the specialized tool, which increases the cost and manufacturing efficiency of the gear.

一方、鍛造方法による加工は、加工工程で金型に圧力がかかるので、金型には製造中の応力が加わる上、鍛造用部品による反発の影響も相俟って、これらの影響因子によって弾性変形し、該弾性変形した金型を利用して成形した製品ギアも、標準ギアとは誤差(寸法差)が発生する原因となり、製品ギアと標準ギアとの間で誤差がどの程度あるか分析することが必要となる。また、分析の結果如何によっては、誤差がギア寸法精度を満たす許容範囲となるように金型を再度作り直す必要があり、作り直した後の金型を用いて再度上述した製造方法でギアを製造し、誤差がギア寸法精度を満たす許容範囲となるまでこれらの作業を繰り返す必要がある。このような金型を再度作り直す作業は、機械加工及び金型成形工程が煩雑となり、製造効率が低下しコスト高となり、金型の作り直しは材料資源の浪費を招くことにもなる。   On the other hand, processing by the forging method applies pressure to the mold during the processing process, so that the mold is subjected to stress during manufacturing, and due to the influence of repulsion by the forging parts, it is elastic due to these influencing factors. The product gear that is deformed and molded using the elastically deformed mold also causes an error (dimension difference) from the standard gear, and analyzes how much the error is between the product gear and the standard gear It is necessary to do. Depending on the result of the analysis, it is necessary to remake the mold so that the error is within the allowable range that satisfies the gear dimensional accuracy, and the gear is re-manufactured by the above-described manufacturing method using the re-made mold. These operations need to be repeated until the error is within an allowable range that satisfies the gear dimensional accuracy. Such an operation for remanufacturing the mold again complicates the machining process and the mold forming process, lowers the production efficiency and increases the cost, and the remodeling of the mold causes waste of material resources.

本発明は、上記問題に鑑みてなされたものであり、製造コストを抑制すると共に製造効率が高いギア金型を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing a gear metal mold | die with high manufacturing efficiency while suppressing manufacturing cost.

上述した問題を解決するため、本願発明は以下の工程を含む。
ギアの製造中の影響因子によって弾性変形をした変形金型に対して前記影響因子をもって補正して所望の金型を成形するギア金型の補正成形方法において、
前記ギアの寸法精度の要求を満たすように、該ギアを製造するための標準金型の歯型を有する標準金型を設計するシュミレーションを行なう設計ステップと、
前記設計ステップで得られた該標準金型を用い、前記影響因子をもって弾性変形した前記変形金型の歯型を成形するシュミレーションを行なう成形ステップと、
前記変形金型の歯型と前記標準金型の歯型を比較して、この比較の結果に基づいて、前記標準金型の歯型に対して補正して補正歯型を得るシュミレーションを行なう比較補正ステップと、
前記変形金型の歯型及び前記補正歯型に対して、両歯型間の寸法差を求め、前記寸法差が前記寸法精度の要求を満たす場合には終了し、前記寸法精度の要求を満たさない場合には、該寸法差に基づいて、該補正歯型に対して幾何学的補正を行ってモデル歯型を成形するシュミレーションを行うと共に、該モデル歯型が前記寸法精度の要求を満たす場合には終了し、該モデル歯型が前記寸法精度の要求を満たさない場合には、該モデル歯型を前記標準金型の歯型として前記成形ステップに戻る対比検証ステップとを含み、
該対比検証ステップは、前記寸法精度の要求を満たすまで繰り返される。
In order to solve the above-described problem, the present invention includes the following steps.
In the correction molding method of the gear mold, which corrects the deformation mold elastically deformed by the influencing factor during the manufacture of the gear and molds the desired mold by correcting with the influencing factor,
A design step for performing a simulation for designing a standard mold having a standard mold for producing the gear so as to satisfy the dimensional accuracy requirement of the gear;
Using the standard mold obtained in the design step, a molding step for performing a simulation to mold a tooth mold of the deformed mold elastically deformed with the influence factor;
Comparison of comparing the tooth mold of the deformed mold and the tooth mold of the standard mold, and performing a simulation to obtain a correction tooth mold by correcting the tooth mold of the standard mold based on the result of this comparison A correction step;
A dimensional difference between both tooth dies is obtained for the deformed mold tooth mold and the correction tooth mold, and the process ends when the dimensional difference satisfies the dimensional accuracy requirement, and the dimensional accuracy requirement is satisfied. In the case where there is not, a simulation is performed in which a model tooth mold is formed by performing geometric correction on the correction tooth mold based on the dimensional difference, and the model tooth mold satisfies the dimensional accuracy requirement. And when the model tooth mold does not satisfy the requirements for the dimensional accuracy, the model tooth mold is used as a tooth mold of the standard mold, and the verification step returns to the molding step.
The comparison verification step is repeated until the dimensional accuracy requirement is satisfied.

本発明は、影響因子による変形を補正して所望の金型を成形するギア金型の補正成形方法において、前記ギアの寸法精度の要求を満たすように、該ギアを製造するための標準金型の歯型を有する標準金型を設計し、前記設計ステップで得られた該標準金型を用い、前記影響因子をもって弾性変形した前記変形金型の歯型を成形し、前記変形金型の歯型と前記標準金型の歯型を比較して、この比較の結果に基づいて、前記標準金型の歯型に対して補正して補正歯型を得る比較補正ステップと、前記変形金型の歯型及び前記補正歯型に対して、両歯型間の寸法差を求め、前記寸法差が前記精度の要求を満たすまで繰り返される対比検証ステップとを含むシュミレーションを行うので、従来より実際の金型を作り直す回数を減らすことができ、加工元となる部品と標準品の間の誤差を小さくでき、コストを抑制することができると共に生産効率が高いギア金型を提供することができる。   The present invention provides a standard mold for manufacturing a gear so as to satisfy the requirement of the dimensional accuracy of the gear in a correction method of a gear mold for forming a desired mold by correcting deformation due to an influencing factor. The standard mold having the tooth mold is designed, the tooth mold of the deformed mold elastically deformed with the influence factor is molded using the standard mold obtained in the design step, and the teeth of the deformed mold are formed. A comparison correction step of comparing the mold with the tooth mold of the standard mold and correcting the tooth mold of the standard mold based on the result of the comparison to obtain a correction tooth mold; and Since a simulation including a step of obtaining a dimensional difference between both tooth dies and a verification verification step repeated until the dimensional difference satisfies the accuracy requirement is performed on the tooth shape and the correction tooth shape, the actual gold Reduces the number of mold rework and processing Become possible to reduce the error between the component and the standard, it is possible to provide a gear mold high production efficiency can be suppressed cost.

本発明のギア金型の補正成形を説明するためのフローチャートである。It is a flowchart for demonstrating correction | amendment shaping | molding of the gear metal mold | die of this invention. 歯形の輪郭の対比を説明する図面である。It is drawing explaining contrast of a tooth profile outline. 輪郭補正前の歯型を説明する幾何学的図面である。It is a geometric drawing explaining the tooth type before outline correction. 輪郭補正後の歯型を説明する幾何学的図面である。It is a geometric drawing explaining the tooth type after outline amendment. 対比検証ステップにおいて歯形の輪郭の補正を説明する図面である。It is drawing explaining correction | amendment of the outline of a tooth profile in a contrast verification step.

(第1の実施例)
図1を参照して本発明のギア金型の補正成形方法を説明する。図1は本発明のギア金型の補正成形を説明するフローチャートである。フローチャートは設計ステップS11と、成形ステップS12と、比較補正ステップS13と、対比検証ステップS14を含む。
(First embodiment)
The gear mold correction molding method of the present invention will be described with reference to FIG. FIG. 1 is a flowchart for explaining correction molding of a gear mold according to the present invention. The flowchart includes a design step S11, a molding step S12, a comparison correction step S13, and a comparison verification step S14.

設計ステップS11においては、ギアの寸法精度の要求を満たすように、該ギアを製造するための標準金型の歯型を有する標準金型を設計するシュミレーションを行なう。具体的には、コンピュータプログラムを利用して、標準金型をシュミレーションによって設計する。本実施例において、該標準金型は螺旋状のギアを成形するためのものである。上述したコンピュータプログラムはSolidworks若しくはDform 3Dであり、例えばこれらのプログラムはコンピュータのハードディスクにインストールされ、用いられる。なお、標準金型は一般的な非螺旋状のギアを形成するたものものでも差し支えなく、上述したプログラム以外のものを用いても差し支えない。   In the design step S11, simulation is performed to design a standard mold having a standard mold for manufacturing the gear so as to satisfy the requirement of the dimensional accuracy of the gear. Specifically, a standard mold is designed by simulation using a computer program. In this embodiment, the standard mold is for forming a helical gear. The above-described computer program is Solidworks or Dform 3D. For example, these programs are installed on a hard disk of a computer and used. The standard mold may be one that forms a general non-spiral gear, or other than the program described above.

成形ステップS12では、例えば上述したプログラムをCPUを用いて、標準金型のデータに対して有限要素法(FEM、Finite Element Method)によって鍛造成形を行うシュミレーションを行ない、シュミレーションの結果に基づいて成形的分析、応力分析、及び弾性変形分析を行い、反発後の弾性変形した歯型、即ち変形金型の歯型(対応するギア金型の空洞部分)を取得してコンピュータの記憶装置に記憶する。本実施例において、それはDform 3Dによって出力される有限要素法のギアのモデルSTL(Standard Template Library)となり、材質パラメータはクロムモリブデン鋼(SCM415)であり、加工元となる部品の材料のメッシュの数は15万個であり、金型のメッシュの数は20万個〜30万個であり、上パンチ速度は150mm/sであり、下パンチ速度は1mm/sであり、下パンチの角速度は1.192rad/sであり、摩擦係数は0.08である。   In the molding step S12, for example, the above-described program is simulated by using the CPU to perform forging molding on a standard mold data by a finite element method (FEM), and molding is performed based on the simulation result. Analysis, stress analysis, and elastic deformation analysis are performed to obtain the elastically deformed tooth mold after rebound, that is, the deformed mold tooth mold (the corresponding gear mold cavity) and store it in the storage device of the computer. In this embodiment, it is a finite element method gear model STL (Standard Template Library) output by Dform 3D, the material parameter is chrome molybdenum steel (SCM415), and the number of meshes of the material of the part to be processed Is 150,000 pieces, the number of meshes of the mold is 200,000 to 300,000, the upper punch speed is 150 mm / s, the lower punch speed is 1 mm / s, and the angular speed of the lower punch is 1 192 rad / s and the coefficient of friction is 0.08.

該比較補正ステップS13においては、該設計ステップS11において設計された標準金型の歯型と、該成形ステップS12において取得された変形金型の歯型のデータを記憶装置からバスを介して取得して、CPUでこれらの比較を行う。まず、平面で位置決めした後の両者のX-Y方向の位置を確認するために、外観の比較を行い、上述した2個のモデルの歯型を前端面の軸孔の位置を以って基準とする。続いて、軸方向に位置決めした後の両者のZ方向の位置を確認するために、平らな表面で比較を行い、2個の歯型を軸孔内の平らな表面を以って基準とする。ここで、平らな表面とはバリや凹凸等の障害物が両者の比較の障害とならない程度に少ない平面を言う。   In the comparison and correction step S13, the data of the standard mold tooth mold designed in the design step S11 and the deformed mold tooth mold acquired in the molding step S12 are acquired from the storage device via a bus. The CPU performs these comparisons. First, in order to confirm the position in the X and Y directions after positioning on a plane, the appearances are compared, and the tooth models of the two models described above are used as a reference based on the position of the shaft hole on the front end surface. And Subsequently, in order to confirm the position in the Z direction after positioning in the axial direction, a comparison is made on a flat surface, and two tooth types are used as a reference with the flat surface in the shaft hole. . Here, the flat surface refers to a plane that is so small that obstacles such as burrs and irregularities do not obstruct the comparison between the two.

最後に、回転軸の方向で位置決めした後の両者の径方向の位置を確認するために、両者の歯型の比較を行い、両者の歯型を各歯の歯型の外輪郭を以って基準とする。   Finally, in order to confirm the radial position of both after positioning in the direction of the rotation axis, a comparison of both tooth types is performed, and both tooth types are compared with the outer contour of each tooth type. The standard.

該対比検証ステップS14においては、補正歯型が寸法の精度の要求を満たすか否か確認するために、変形金型の歯型と補正歯型を変形させて、CPUを用いて歯面の幾何学的な比較を行なうことにより、寸法差を求めて、寸法の精度の要求を満足する場合には、該対比検証ステップS14を終了すると共に、モデル歯型のデータとしてコンピュータの記憶装置に記憶する。寸法の精度の要求が満たされていない場合には、補正歯型に対して幾何学的補正を行う。幾何学的補正を行う方法は以下の通りである。   In the comparison verification step S14, in order to confirm whether or not the correction tooth mold satisfies the requirement of dimensional accuracy, the tooth mold of the deformation mold and the correction tooth mold are deformed, and the geometry of the tooth surface using the CPU. When a dimensional difference is obtained by performing a morphological comparison and the requirement for dimensional accuracy is satisfied, the comparison verification step S14 is terminated and stored in the storage device of the computer as model tooth type data. . If the dimensional accuracy requirements are not met, geometric correction is performed on the correction tooth profile. The method of performing geometric correction is as follows.

(1)補正歯型を設定する。補正歯型の設定は、変形金型の歯型及び補正歯型に対して、両歯型間の寸法差を得るものであり、この寸法差はコンピュータの記憶装置に記憶される。図2を参照すると、寸法差はギアのピッチ差と歯面の寸法差を含む。DEFORM3Dシュミレーションで集められた物をSTL(Standard Triangulated Language)ファイルとして出力し、再び歯面の幾何学的誤差の仮想測定を行う。STL歯面は、仮想測定比較のドイツのクリンゲルンベルグ(Klingelnberg)のP40のギア専用測定機の測定方法を行い、P40の測定解析は2つの部分からなり、ギアのピッチ差と歯面の寸法差の測定を含み、P40のギア測定はまず図2の標準歯型Eの幾何学的な点の位置と各幾何学的な点における単位ベクトルを定義する。まず、補正歯型の歯面Aの幾何学的な点の位置及び各幾何学的な点の単位ベクトルBは、測定の最初にギア軸線Cに対してある角度ΔTaに旋回し、幾何学的な点の集合における中点Dを標準の歯面Eの参考点Fに貼り付けるようにさせ(このため後述する図3において中点D、参考点Fは基準となるので、これらに相当する図3のF6はゼロを示している。)、この旋回角度を即ちピッチ誤差の計算の根拠として、歯面誤差の測定は、定められた各幾何学的な点に対して歯面の間の形状の誤差を測定してCPUを用いて計算する。本実施例において、得られた最も大きな歯型誤差の値は0.037mm(図3の歯面前端より下側のA1に36.9746(なお、図3の単位はμmである。)と記載されており、約0.037である。)である。   (1) A correction tooth type is set. The setting of the correction tooth type is to obtain a dimensional difference between both tooth types with respect to the tooth type and the correction tooth type of the deformed mold, and this dimensional difference is stored in the storage device of the computer. Referring to FIG. 2, the dimensional difference includes a gear pitch difference and a tooth surface dimensional difference. The objects collected by the DEFORM3D simulation are output as an STL (Standard Triangulated Language) file, and a virtual measurement of the geometric error of the tooth surface is performed again. The STL tooth surface is measured by the P40 gear dedicated measuring machine of Klingelnberg in Germany, which is a virtual measurement comparison. The P40 measurement analysis consists of two parts, the gear pitch difference and the tooth surface dimension. Including the difference measurement, the gear measurement at P40 first defines the position of the geometric point of the standard tooth profile E in FIG. 2 and the unit vector at each geometric point. First, the position of the geometric point of the tooth surface A of the correction tooth shape and the unit vector B of each geometric point are swung at an angle ΔTa with respect to the gear axis C at the beginning of the measurement, The middle point D in the set of various points is pasted to the reference point F of the standard tooth surface E (for this reason, the middle point D and the reference point F in FIG. F6 of 3 indicates zero.) Using this swivel angle, ie the basis for calculating the pitch error, the measurement of the tooth surface error is the shape between the tooth surfaces for each defined geometric point. The error is measured and calculated using the CPU. In the present example, the largest tooth type error value obtained is 0.037 mm (36.9746 in A1 below the front end of the tooth surface in FIG. 3 (the unit in FIG. 3 is μm). It is about 0.037.).

(2)幾何学的補正を行うときの必要な制限的条件は2つあり、第1にギア端面の輪郭は軸方向に一致するように保持されるものであり、第2に端面の輪郭は標準的な徐々に線が広がる歯型であり、このため補正後のギア金型はなおも正規の円柱のヘリカルインターナルギア(内歯車)である。   (2) There are two necessary limiting conditions when performing geometric correction. First, the contour of the gear end surface is held so as to coincide with the axial direction, and secondly, the contour of the end surface is This is a standard tooth profile with a gradually expanding line, so that the corrected gear mold is still a regular cylindrical helical internal gear (internal gear).

(3)上述した(2)における制限的条件に基づいて、前記補正目標の歯型は最小2乗法によって曲面に戻され、その誤差関数は標本点と再帰関数の最短距離の二乗和であり、そして補正目標の歯型に近い最適化された係数を計算する。本実施例においては、生成したいギアはヘリカルインターナルギアなので、最適化された係数は圧力角、移動係数、及び螺旋角であり、生産したいギアが一般の螺旋ギアでない場合には、最適化係数は圧力角、及び移動係数である。図2、図3、及び図4を参照すると、図3は変形金型の歯面Aの各点における誤差値であり、図4は補正金型の歯面Gの各点における誤差値であり、図3及び図4における数値は標準値との間でどれだけの距離が離れているかを表すものであり、マイナス(−)は標準値より低いことを意味する。   (3) Based on the restrictive condition in (2) described above, the correction target tooth shape is returned to the curved surface by the least square method, and its error function is the sum of squares of the shortest distance between the sample point and the recursive function, Then, an optimized coefficient close to the correction target tooth shape is calculated. In this embodiment, since the gear to be generated is a helical internal gear, the optimized coefficients are the pressure angle, the movement coefficient, and the spiral angle. When the gear to be produced is not a general spiral gear, the optimization coefficient is Pressure angle, and transfer coefficient. 2, 3, and 4, FIG. 3 shows error values at each point of the tooth surface A of the modified mold, and FIG. 4 shows error values at each point of the tooth surface G of the correction mold. The numerical values in FIGS. 3 and 4 represent how far away from the standard value, and minus (−) means lower than the standard value.

本実施例において、第1回目の輪郭補正は圧力角20度を19.9029度に変更することであり、等価移動係数0.41869は0.475069に変更する。螺旋角20度は左に旋回させるように20.06456度に修正して、補正歯面Gを得て、図3と図4を比較すると、補正歯型の歯面Gは変形金型の歯面Aに比べて標準の歯面Eに近いことが分かる。   In the present embodiment, the first contour correction is to change the pressure angle 20 degrees to 19.9029 degrees, and the equivalent movement coefficient 0.41869 is changed to 0.475069. The correction tooth surface G is obtained by correcting the spiral angle 20 degrees to 20.06456 degrees so as to turn to the left, and comparing FIG. 3 and FIG. 4, the tooth surface G of the correction tooth mold is the tooth of the deformed mold. It can be seen that it is closer to the standard tooth surface E than the surface A.

例えば、上述した最大誤差であるA1は36.9746であるが、図4の補正歯型の歯面GにおけるA1は−15.3668であり、絶対値が標準の歯面Eに近い(つまり、誤差が小さい)ことが分かる。一方、図3の歯面後端の下側におけるK11は2.54546であり、図4の補正歯型の歯面GにおけるK11は14.353なので、部分的には標準の歯面Eからの距離が却って離れてしまっている(つまり、誤差が大きくなる)ものも存在するが、全体としてみれば、図3と図4を比較すると、最大誤差及び平均誤差は図4の方が標準金型の歯形に近いことが分かる。   For example, A1 which is the maximum error described above is 36.9746, but A1 in the tooth surface G of the correction tooth mold of FIG. 4 is −15.3668, and the absolute value is close to the standard tooth surface E (that is, It can be seen that the error is small. On the other hand, K11 on the lower side of the rear end of the tooth surface in FIG. 3 is 2.54546, and K11 in the tooth surface G of the correction tooth mold in FIG. 4 is 14.353, so that partly from the standard tooth surface E. Although there are some that are far apart (that is, the error becomes larger), when compared with FIG. 3 and FIG. 4 as a whole, the maximum error and the average error in FIG. It can be seen that it is close to the tooth profile.

(4)モジュラス、歯数、歯面幅、歯底円(dedendum circle, root circle)直径等の最適化係数以外の設計パラメータを固定値とし、圧力角、移動係数、及び螺旋角を調整することにより、該補正歯型を該補正目標の歯型に近づけさせる。補正最小二乗法に基づいてピーク値を求め、誤差関数を圧力角、移動係数、及び螺旋角の三者の関数とみなすと共に、答えを求めるこれら三者のパラメータの偏微分はいずれもゼロのピーク値であり、その答えは、誤差関数に最小の最適化係数の組み合わせを達成させることができるものである。   (4) Adjust design parameters other than optimization factors such as modulus, number of teeth, width of tooth surface, diameter of root circle (dedendum circle, root circle), etc., and adjust pressure angle, movement coefficient, and spiral angle. Thus, the correction tooth pattern is brought close to the correction target tooth pattern. The peak value is calculated based on the corrected least square method, the error function is regarded as a function of the three of the pressure angle, the transfer coefficient, and the spiral angle, and the partial differentiation of these three parameters for obtaining the answer is a peak of all zero. The answer is that the error function can achieve the minimum combination of optimization factors.

(5)図1及び図5を参照すると、補正された値に基づいて、CPUで標準のギアの輪郭のパラメータ21をギア金型の歯型の湾曲した輪郭22上に逆補正して対応させ、フィッティングさせた後に補正後の歯型曲線23を取得して記憶装置に記憶する。ここで、補正後の歯型曲線23は収縮するので最終的には標準ギアの輪郭パラメータ21に近い値となる。なお、図5では、シュミレーションの結果を踏まえて、補正後の歯型曲線23が予め収縮されることを前提として所望の金型の輪郭パラメータ21よりも補正後の歯型曲線23が大きく形成されている。一方、シュミレーションの結果を踏まえて、補正後の歯型曲線23が予め膨張されることが予想されるときは、所望の金型の輪郭パラメータ21よりも補正後の歯型曲線23小さく形成することが必要である。   (5) Referring to FIG. 1 and FIG. 5, based on the corrected value, the CPU 21 reversely corrects the standard gear contour parameter 21 on the curved contour 22 of the gear mold tooth profile to correspond to it. After the fitting, the corrected tooth profile curve 23 is acquired and stored in the storage device. Here, since the corrected tooth profile curve 23 contracts, it finally becomes a value close to the contour parameter 21 of the standard gear. In FIG. 5, based on the simulation results, the corrected tooth profile curve 23 is formed larger than the desired mold contour parameter 21 on the assumption that the corrected tooth profile curve 23 is contracted in advance. ing. On the other hand, when it is predicted that the corrected tooth profile curve 23 is expanded in advance based on the simulation result, the corrected tooth profile curve 23 should be smaller than the desired contour parameter 21 of the mold. is necessary.

寸法の精度の要求を満足するか否か確定するように、例えばCPUで該幾何学的補正したモデル歯型に対して検証し、寸法の精度の要求が満足していたら、該対比検証ステップS14を終了すると共に、該幾何学的補正された歯形をモデル歯型として記憶装置に記憶する。寸法の精度の要求を満足しない場合には、該幾何学的補正したモデル歯型を標準金型の歯型に置き換え、寸法の精度の要求を満足するまで、該成形ステップS12から該対比検証ステップS14を複数回に繰り返す。   For example, the CPU verifies the geometrically corrected model tooth shape so as to determine whether or not the dimensional accuracy requirement is satisfied. If the dimensional accuracy requirement is satisfied, the comparison verification step S14 is performed. And the geometrically corrected tooth profile is stored in the storage device as a model tooth profile. If the dimensional accuracy requirement is not satisfied, the geometrically corrected model tooth mold is replaced with a standard mold tooth shape, and from the molding step S12 to the comparison verification step until the dimensional accuracy requirement is satisfied. S14 is repeated a plurality of times.

本実施例において、該寸法の精度の要求は精密性の誤差が0.02ミリより小さく、前記ステップを経ることにより多大な時間とコストをかけずに、モールド及び加工を行ない、精度がJIS4級で要求されるものより優れた螺旋ギア金型を取得することができ、材料の浪費を抑制してコスト安とすることができ、製品の精密性が高いという優れた効果を得ることができる。   In this embodiment, the accuracy of the dimension is required to be less than 0.02 mm in accuracy, and through the above steps, molding and processing are performed without much time and cost. Thus, it is possible to obtain a helical gear mold that is superior to that required by the above-mentioned method, to suppress the waste of materials and to reduce the cost, and to obtain an excellent effect that the precision of the product is high.

以上のように、該成形補正方法は、各シュミレーションを例えばプログラミング化して、例えばコンピュータで実行することにより行うことができるので、寸法の精度の要求を満たす所望の金型のデータを取得する前に、大量の標準金型を実際に製造すると共に加工元となる部品を複数回鍛造する必要がなく、標準金型を生産する準備のプロセスを簡略化することができ、生産効率を高め、材料の消費を減少できるので、本発明の目的を確実に達成できる。   As described above, since the molding correction method can be performed by programming each simulation, for example, and executing the simulation by a computer, for example, before acquiring data of a desired mold that satisfies the requirements of dimensional accuracy. This eliminates the need to forge a large number of standard molds and forge the parts to be processed multiple times, simplify the preparation process for producing standard molds, increase production efficiency, Since the consumption can be reduced, the object of the present invention can be reliably achieved.

なお、上述したものは本発明の実施例にすぎず、本発明の範囲はこれに限られず、本発明の明細書及び特許請求の範囲に基づいて簡単な変化を加えてなし得るようなものは、均等の範囲に含まれるものであり、本発明の技術的範囲に属するものである。   The above is only an example of the present invention, and the scope of the present invention is not limited to this, and what can be easily modified based on the specification and claims of the present invention is not limited to this. Are included in an equivalent range and belong to the technical scope of the present invention.

S11 設計ステップ
S12 成形ステップ
S13 比較補正ステップ
S14 対比検証ステップ
22 ギア金型の歯型の湾曲した輪郭
23 補正後の歯型曲線
A ギア金型の歯面
B 単位ベクトル
C ギア軸線
D 中点
E 標準の歯面
F 参考点
G 補正歯面
ΔTa 角度
S11 Design step S12 Molding step S13 Comparison correction step S14 Comparison verification step 22 Curved contour of gear mold tooth mold 23 Corrected tooth mold curve A Gear tooth surface B Unit vector C Gear axis D Middle point E Standard Tooth surface F Reference point G Correction tooth surface ΔTa Angle

Claims (8)

ギアの製造中による影響因子によって弾性変形をした変形金型に対して前記影響因子をもって補正して所望金型を成形するギア金型の補正成形方法において、
前記ギアの寸法精度の要求を満たすように、該ギアを製造するための標準金型の歯型を有する標準金型を設計するシュミレーションを行なう設計ステップと、
前記設計ステップで得られた該標準金型を用い、前記影響因子をもって弾性変形した前記変形金型の歯型を成形するシュミレーションを行なう成形ステップと、
前記変形金型の歯型と前記標準金型の歯型を比較して、この比較の結果に基づいて、前記標準金型の歯型に対して補正して補正歯型を得るシュミレーションを行なう比較補正ステップと、
前記変形金型の歯型及び前記補正歯型に対して、両前記歯型間の寸法差を求め、前記寸法差が前記寸法精度の要求を満たす場合には終了し、前記寸法精度の要求を満たさない場合には、該寸法差に基づいて、該補正歯型に対して幾何学的補正を行ってモデル歯型を成形するシュミレーションを行うと共に、該モデル歯型が前記寸法精度の要求を満たす場合には終了し、該モデル歯型が前記寸法精度の要求を満たさない場合には、該モデル歯型を前記標準歯型として前記成形ステップに戻る対比検証ステップとを含み、
該対比検証ステップは、前記寸法精度の要求を満たすまで繰り返されることを特徴とするギア金型の補正成形方法。
In the correction molding method of the gear mold, which corrects the deformation mold elastically deformed by the influential factor during the manufacture of the gear and molds the desired mold by correcting with the influential factor,
A design step for performing a simulation for designing a standard mold having a standard mold for producing the gear so as to satisfy the dimensional accuracy requirement of the gear;
Using the standard mold obtained in the design step, a molding step for performing a simulation to mold a tooth mold of the deformed mold elastically deformed with the influence factor;
Comparison of comparing the tooth mold of the deformed mold and the tooth mold of the standard mold, and performing a simulation to obtain a correction tooth mold by correcting the tooth mold of the standard mold based on the result of this comparison A correction step;
The dimensional difference between both the tooth dies is determined for the deformed mold tooth mold and the correction tooth mold, and the process ends when the dimensional difference satisfies the dimensional accuracy requirement. If not, based on the dimensional difference, a simulation is performed to form a model tooth mold by performing geometric correction on the correction tooth mold, and the model tooth mold satisfies the requirement for dimensional accuracy. And if the model tooth mold does not satisfy the dimensional accuracy requirement, the model tooth mold is used as the standard tooth mold, and a comparison verification step returns to the molding step.
The correction verification method for a gear mold, wherein the comparison verification step is repeated until the requirement for the dimensional accuracy is satisfied.
該対比検証ステップにおいて、幾何学的補正を行なうとき、前記標準金型の歯形と前記変形金型の歯型の寸法差に基づいて、補正目標の歯型を設定し、前記補正目標の歯型に基づいて最小二乗法で最適化した係数を取得し、補正した幾何学的歯型の輪郭を構成し、補正修正を経て該幾何学的補正した前記モデル歯型を取得することを特徴とする請求項1に記載のギア金型の補正成形方法。   In the comparison verification step, when geometric correction is performed, a correction target tooth shape is set based on a dimensional difference between the tooth shape of the standard die and the tooth shape of the deformed die, and the correction target tooth shape The coefficient optimized by the least square method is acquired based on the above, the contour of the corrected geometric tooth shape is formed, and the geometrically corrected model tooth shape is acquired through correction correction. The correction molding method for a gear mold according to claim 1. 該対比検証ステップにおいて、該標準金型は非螺旋状のギアを生成するのに適しており、該最適化した係数は圧力角及び移動係数であり、前記圧力角及び前記移動係数を調整することにより、該幾何学的補正した前記モデル歯型を前記補正目標の歯型に近づけさせることを特徴とする請求項2に記載のギア金型の補正成形方法。   In the contrast verification step, the standard mold is suitable for generating a non-spiral gear, the optimized coefficient is a pressure angle and a movement coefficient, and the pressure angle and the movement coefficient are adjusted. 3. The gear mold correction molding method according to claim 2, wherein the geometrically corrected model tooth mold is brought close to the correction target tooth mold. 該対比検証ステップにおいて、該標準金型は螺旋状のギアを生成するのに適しており、該最適化した係数は圧力角、移動係数、及び螺旋角であり、前記圧力角、前記移動係数、及び前記螺旋角を調整することにより、該幾何学的補正した前記モデル歯型を前記補正目標の歯型に近づけさせることを特徴とする請求項2に記載のギア金型の補正成形方法。   In the comparison verification step, the standard mold is suitable for generating a helical gear, and the optimized coefficients are a pressure angle, a movement coefficient, and a helix angle, and the pressure angle, the movement coefficient, 3. The gear mold correction molding method according to claim 2, wherein the geometrically corrected model tooth shape is brought closer to the correction target tooth shape by adjusting the spiral angle. 該対比検証ステップにおいて、該寸法精度の要求はベクトル精度の誤差が精密性の誤差より0.02ミリ小さいことを特徴とする請求項1〜4のいずれか1項に記載のギア金型の補正成形方法。   5. The gear mold correction according to claim 1, wherein in the comparison verification step, the dimensional accuracy requirement is that the vector accuracy error is 0.02 mm smaller than the precision error. Molding method. 該比較補正ステップにおいて、該変形金型の歯型及び該標準金型の歯型に対して、平面で位置決めした後の両者のX-Y方向の位置を確認するように、それぞれの前記歯型を前端面の軸孔の位置を以って基準とする外観の対比をし、軸方向に位置決めした後の両者のZ方向の位置を確認するように、軸孔内の平らな表面を以って基準とする平らな表面での対比をし、前記歯型の輪郭の対比を行うことを特徴とする請求項1〜5のいずれか1項に記載のギア金型の補正成形方法。   In the comparison and correction step, each of the tooth molds is confirmed so as to confirm the positions in the X and Y directions after positioning in a plane with respect to the tooth mold of the deformed mold and the tooth mold of the standard mold. Compare the appearance with reference to the position of the shaft hole on the front end surface, and check the position in the Z direction after positioning in the axial direction with a flat surface in the shaft hole. 6. The correction method for a gear mold according to claim 1, wherein a comparison is made on a flat surface as a reference, and a contour of the tooth mold is compared. 該成形テップにおいて、該標準金型対して有限要素法で分析を行い、前記有限要素法の分析の結果により、成形的分析、応力分析、及び弾性変形分析を行い、該変形金型の歯型を取得することを特徴とする請求項1〜6のいずれか1項に記載のギア金型の補正成形方法。   In the molding step, the standard mold is analyzed by a finite element method, and a molding analysis, a stress analysis, and an elastic deformation analysis are performed based on the analysis result of the finite element method, and the tooth mold of the deformation mold The correction molding method for a gear mold according to any one of claims 1 to 6, wherein: 該設計ステップ、該成形ステップ、前記比較補正ステップ、及び該対比検証ステップはいずれもプログラムで計算及び分析を行なうことを特徴とする請求項1〜7のいずれか1項に記載のギア金型の補正成形方法。   8. The gear mold according to claim 1, wherein the design step, the molding step, the comparison correction step, and the comparison verification step are all calculated and analyzed by a program. Correction molding method.
JP2015257456A 2015-12-14 2015-12-28 Corrective forming method for gear molds Pending JP2017111778A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104141854 2015-12-14
TW104141854A TWI557586B (en) 2015-12-14 2015-12-14 Compensation forming method for gear molds

Publications (1)

Publication Number Publication Date
JP2017111778A true JP2017111778A (en) 2017-06-22

Family

ID=57851547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015257456A Pending JP2017111778A (en) 2015-12-14 2015-12-28 Corrective forming method for gear molds

Country Status (2)

Country Link
JP (1) JP2017111778A (en)
TW (1) TWI557586B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116429047A (en) * 2023-05-04 2023-07-14 扬州保来得科技实业有限公司 Gear profile measuring and evaluating method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714098B (en) * 2019-05-24 2020-12-21 國立虎尾科技大學 Gear forming method
CN114734213B (en) * 2022-06-10 2022-09-09 眉山博雅新材料股份有限公司 Mould processing method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239676A (en) * 2001-02-19 2002-08-27 Yutaka Seimitsu Kogyo Ltd Manufacturing method of die for forging bevel gear
JP2008246569A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Method for manufacturing die for forging
JP2008287468A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Design method for molding die and device and program to be used for the same
JP2016203216A (en) * 2015-04-23 2016-12-08 トヨタ自動車株式会社 Correction method of forging die

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI267412B (en) * 2004-07-21 2006-12-01 M H Ct Ltd Method of manufacturing part with internal gear and rolling machine
SG162633A1 (en) * 2008-12-22 2010-07-29 Helios Applied Systems Pte Ltd Integrated system for manufacture of sub-micron 3d structures using 2-d photon lithography and nanoimprinting and process thereof
JP5524914B2 (en) * 2011-07-21 2014-06-18 日精樹脂工業株式会社 Waveform monitoring device for injection molding machine
CN102728646B (en) * 2012-05-23 2015-04-01 重庆理工大学 Control method for tooth shape size precision of cold forming straight bevel gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239676A (en) * 2001-02-19 2002-08-27 Yutaka Seimitsu Kogyo Ltd Manufacturing method of die for forging bevel gear
JP2008246569A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Method for manufacturing die for forging
JP2008287468A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Design method for molding die and device and program to be used for the same
JP2016203216A (en) * 2015-04-23 2016-12-08 トヨタ自動車株式会社 Correction method of forging die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116429047A (en) * 2023-05-04 2023-07-14 扬州保来得科技实业有限公司 Gear profile measuring and evaluating method
CN116429047B (en) * 2023-05-04 2023-10-13 扬州保来得科技实业有限公司 Gear profile measuring and evaluating method

Also Published As

Publication number Publication date
TW201721485A (en) 2017-06-16
TWI557586B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
CN105739440A (en) Adaptive machining method of wide-chord hollow fan blade
JP6257796B2 (en) Tool path generation method and machine tool
US8000942B2 (en) Broach tool design methodology and systems
JP2017111778A (en) Corrective forming method for gear molds
JP5867657B2 (en) Forming method of plate material and setting method of preformed shape
CN104392052A (en) S-section sag-free aircraft frame and rib sheet metal part springback compensation calculation method
CN109828535B (en) NURBS curve interpolation method based on fourth-order Runge-Kutta algorithm
JP2016175404A (en) Lamination shaping method using lamination shaping device
JP2005040863A (en) Method for producing precision forged part
JP2010253558A (en) Method of designing tool
CN103577635A (en) Fitting method of blade surface data
JP2011133921A (en) Design support method for die surface shape
JP4705423B2 (en) A method to generate flashland geometry in forging complex parts
CN110773699B (en) Method for controlling extrusion forming residual stress of forged blade
CN106803282B (en) three-dimensional space special-shaped thin curved plate unfolding modeling method
CN110826160A (en) Rapid three-dimensional modeling method for designing numerical control pipe bending die
JP6046366B2 (en) Incremental forming method of metal plate
US20150370923A1 (en) System and Methods of Generating a Computer Model of a Composite Component
JP2020017097A (en) Design support system, design support method, and design support program
CN105880332A (en) Hydraulic hollow tube springback control method and device
JP2016203216A (en) Correction method of forging die
CN110695118B (en) Method for reducing residual stress of high-speed extrusion forming blade
CN104148397A (en) Method for flexible design of spiral groove skew rolling roller
CN115170734A (en) Three-dimensional revolution structure reconstruction method and system based on section slices
JP2009211255A (en) Die working data changing method

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181023