JP2017111045A - Electrochemical measurement device and electrochemical measurement method - Google Patents

Electrochemical measurement device and electrochemical measurement method Download PDF

Info

Publication number
JP2017111045A
JP2017111045A JP2015246481A JP2015246481A JP2017111045A JP 2017111045 A JP2017111045 A JP 2017111045A JP 2015246481 A JP2015246481 A JP 2015246481A JP 2015246481 A JP2015246481 A JP 2015246481A JP 2017111045 A JP2017111045 A JP 2017111045A
Authority
JP
Japan
Prior art keywords
measurement
migration
electrochemical
electrode
target liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015246481A
Other languages
Japanese (ja)
Inventor
澤野 智美
Tomomi Sawano
智美 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2015246481A priority Critical patent/JP2017111045A/en
Publication of JP2017111045A publication Critical patent/JP2017111045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical measurement device and an electrochemical measurement method capable of separating and detecting a biological substance in a common electrophoretic vessel.SOLUTION: An electrochemical measurement device includes : an electrophoretic vessel configured to flow a liquid to be measured including a biological substance in a flow direction being one of directions; migration electrodes 16A, 16B configured to cause the biological substance to migrate in a migration direction crossing the flow direction; a plurality of measurement elements arranged parallel in two-dimensional direction including the flow direction and the migration direction and configured to measure an electrochemical characteristic value regarding the liquid to be measured, in each location in the two-dimensional direction; and a measurement processing part connected to the migration electrodes 16A, 16B and each measurement element, and configured to initiate measurement by each measurement element after inputting a signal for starting migration by the migration electrodes to the migration electrodes 16A, 16B.SELECTED DRAWING: Figure 3

Description

本発明は、生体物質を含む測定対象液のなかで生体物質を分離する電気化学測定装置、および、電気化学測定方法に関する。   The present invention relates to an electrochemical measurement device and an electrochemical measurement method for separating a biological material in a measurement target liquid containing the biological material.

核酸やタンパク質などの生体高分子を測定対象液のなかで分離する方法として、無担体の電気泳動法であるフリーフロー電気泳動法が知られている。フリーフロー電気泳動法は、相互に対向する平板間に測定対象液の流れを形成し、測定対象液の流れと直交する方向である印加方向に直流電圧を印加する。測定対象液のなかの各荷電粒子は、荷電粒子が有する電荷量が大きいほど印加方向へ移動しやすく、また、電荷量が小さいほど印加方向へ移動しにくい。こうしたフリーフロー電気泳動法は、測定対象液に含まれる成分の解析において前処理に用いられ、キャピラリー電気泳動による後処理との組み合わせによって、生体高分子の分離、および、検出を可能としている(例えば、特許文献1を参照)。   As a method for separating biopolymers such as nucleic acids and proteins in a measurement target solution, a free-flow electrophoresis method which is a carrier-free electrophoresis method is known. In the free flow electrophoresis method, a flow of a measurement target liquid is formed between flat plates facing each other, and a DC voltage is applied in an application direction which is a direction orthogonal to the flow of the measurement target liquid. Each charged particle in the liquid to be measured is more likely to move in the application direction as the charge amount of the charged particle is larger, and less likely to move in the application direction as the charge amount is smaller. Such a free-flow electrophoresis method is used for pretreatment in analysis of components contained in a measurement target liquid, and enables separation and detection of biopolymers in combination with post-treatment by capillary electrophoresis (for example, , See Patent Document 1).

特開2004‐514136号公報JP 2004-514136 A

一方、フリーフロー電気泳動法によって分離された各検出対象は、それの後処理において、例えば、赤外活性や紫外活性などの光活性を有した標識と結合される。そして、検出対象ごとに行われるキャピラリー電気泳動法によって、各検出対象のなかで標識の位置が検出される。これらの工程を経る結果、測定対象液に対する前処理である分離では、生体高分子を分離するための泳動槽が用いられる一方で、測定対象液に対する後処理である検出では、生体高分子を検出するための別の装置が用いられる。測定対象液に含まれる成分の解析に時間的な制約を受ける臨床や、その解析が大規模となる開発では、こうした煩わしさを軽減させることが強く望まれている。   On the other hand, each detection target separated by free flow electrophoresis is combined with a label having photoactivity such as infrared activity or ultraviolet activity in the post-treatment thereof. Then, the position of the label is detected in each detection target by capillary electrophoresis performed for each detection target. As a result of these steps, the separation tank, which is a pretreatment for the measurement target liquid, uses an electrophoresis tank for separating the biopolymer, while the detection, which is a post-treatment for the measurement target liquid, detects the biopolymer. Another device is used to do this. It is strongly desired to alleviate such annoyance in clinical situations where time-constrained analysis of components contained in the measurement target solution and in development where the analysis is large-scale.

本発明は、上記課題を解決するためになされたものであり、その目的は、生体物質の分離、および、検出を共通する泳動槽で可能とした電気化学測定装置、および、電気化学測定方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrochemical measurement apparatus and an electrochemical measurement method that enable separation and detection of biological substances in a common electrophoresis tank. It is to provide.

上記課題を解決するための電気化学測定装置は、生体物質を含む測定対象液を1つの方向である流動方向へ流すための泳動槽と、前記流動方向と交差する泳動方向に前記生体物質を泳動させるための泳動電極と、前記流動方向と前記泳動方向とを含む二次元方向に並び、前記測定対象液に関する電気化学的な特性値を前記二次元方向における各位置で測定するための複数の測定素子と、前記泳動電極と前記各測定素子とに接続し、前記泳動電極による泳動を開始させる信号を前記泳動電極に入力した後に、前記各測定素子による測定を開始する測定処理部とを備える。   An electrochemical measurement apparatus for solving the above-described problem includes a migration tank for flowing a measurement target liquid containing a biological material in a flow direction, which is one direction, and the biological material is migrated in a migration direction that intersects the flow direction. A plurality of measurements for measuring an electrochemical characteristic value relating to the measurement target liquid at each position in the two-dimensional direction, arranged in a two-dimensional direction including the migration electrode and the flow direction and the migration direction And a measurement processing unit connected to the migration electrode and each of the measurement elements, and starting measurement by each of the measurement elements after inputting a signal for starting migration by the migration electrode to the migration electrode.

上記課題を解決するための電気化学測定方法は、測定処理部が、生体物質を含む測定対象液が1つの方向である流動方向へ流れる泳動槽において、前記流動方向と交差する泳動方向に前記生体物質を泳動させる信号を泳動電極へ入力することと、前記信号を前記泳動電極へ入力した後に、前記流動方向と前記泳動方向とを含む二次元方向に並ぶ複数の測定素子を用い、前記測定対象液に関する電気化学的な特性値を前記二次元方向における各位置で測定することとを含む。   In the electrochemical measurement method for solving the above-described problem, the measurement processing unit is configured to move the living body in a migration direction intersecting the flow direction in a migration tank in which a measurement target liquid containing a biological substance flows in a flow direction that is one direction. Input a signal for migrating a substance to the electrophoresis electrode, and after inputting the signal to the electrophoresis electrode, using a plurality of measuring elements arranged in a two-dimensional direction including the flow direction and the migration direction, Measuring an electrochemical characteristic value of the liquid at each position in the two-dimensional direction.

上記装置、および、方法によれば、測定対象液中に含まれる生体物質が、その生体物質の大きさに基づく距離で流動方向へ泳動槽内を流動し、かつ、その生体物質が有する電荷量の大きさに基づく距離で泳動方向へ泳動槽内を泳動する。そして、流動方向へ移動する距離と、泳動方向へ泳動する距離との各々の差異に従って分離された生体物質は、二次元に並ぶ測定素子のなかで、その生体物質の近くに位置する測定素子によって、その存在を電気化学的な特性値として検出される。結果として、生体物質の分離、および、検出を、共通する泳動槽で行うことが可能となる。   According to the above apparatus and method, the biological material contained in the liquid to be measured flows in the migration tank in the flow direction at a distance based on the size of the biological material, and the amount of charge that the biological material has In the migration tank in the migration direction at a distance based on the size of The biological material separated according to the difference between the distance moving in the flow direction and the distance moving in the migration direction is measured by a measurement element located near the biological material in the two-dimensional measurement elements. The presence is detected as an electrochemical characteristic value. As a result, it is possible to perform separation and detection of biological substances in a common electrophoresis tank.

上記電気化学測定装置において、複数の前記測定素子は、前記流動方向、および、前記泳動方向にマトリックス状に並んでもよい。
上記構成によれば、流動方向、および、泳動方向にマトリックス状に測定素子が位置するため、流動方向、および、泳動方向に移動した生体物質は、複数の測定素子のなかのいずれか1つと対向しやすい。それゆえに、測定対象液に含まれる各生体物質に対してそれの存在がいずれか1つの測定素子によって検出されやすいため、生体物質の検出漏れを抑えることが可能となる。
In the electrochemical measurement device, the plurality of measurement elements may be arranged in a matrix in the flow direction and the migration direction.
According to the above configuration, since the measurement elements are arranged in a matrix in the flow direction and the migration direction, the biological material moved in the flow direction and the migration direction is opposed to any one of the plurality of measurement elements. It's easy to do. Therefore, since the presence of each biological material contained in the measurement target liquid is easily detected by any one measurement element, it is possible to suppress detection failure of the biological material.

上記電気化学測定装置において、前記泳動槽は、前記流動方向と前記泳動方向とを含む平面であって、相互に対向する一対の平面を備え、一方の前記平面に全ての前記測定素子が位置し、前記一対の平面間に前記測定対象液を流す隙間を備える構成であってもよい。   In the electrochemical measurement apparatus, the migration tank is a plane including the flow direction and the migration direction, and includes a pair of planes facing each other, and all the measurement elements are located on one of the planes. A configuration may be provided in which a gap for flowing the measurement target liquid is provided between the pair of planes.

泳動槽内に位置する生体物質と測定素子との間の距離は、一対の平面が広がる二次元方向と、一対の平面が対向する厚み方向との成分を有する。そして、特定の生体物質の電気化学的な特性値がいずれの測定素子によって測定されるかは、その生体物質と測定素子との間における二次元方向での距離の大きさと、その生体物質と測定素子との間における厚み方向での距離の大きさとに従う。そのため、例えば、相互に近接した測定素子の位置が、厚み方向において相互に異なるとき、厚み方向における生体物質の位置のばらつきによって、それを検出する測定素子の位置にもばらつきが生じる。結果として、厚み方向における生体物質の位置のばらつきが、検出の結果にばらつきを生じさせてしまう。   The distance between the biological substance located in the electrophoresis tank and the measurement element has a component of a two-dimensional direction in which the pair of planes spread and a thickness direction in which the pair of planes face each other. Then, which measurement element is used to measure the electrochemical characteristic value of a specific biological substance depends on the magnitude of the distance in the two-dimensional direction between the biological substance and the measurement element, and the biological substance and measurement. It follows the distance between the element in the thickness direction. Therefore, for example, when the positions of the measurement elements close to each other are different from each other in the thickness direction, the position of the measurement element that detects the variation also occurs due to the variation in the position of the biological material in the thickness direction. As a result, variations in the position of the biological material in the thickness direction cause variations in detection results.

この点、上記構成によれば、1つの平面上に全ての測定素子が位置するため、特定の生体物質と各測定素子との間における厚み方向での距離は、測定素子間においてほぼ等しい。それゆえに、特定の生体物質の電気化学的な特性値がいずれの測定素子によって測定されるかは、上記二次元方向における生体物質と測定素子との間の距離によって定まるため、特定の生体物質の存在を特定の測定素子で検出できる確率を高めることが可能となる。   In this regard, according to the above configuration, since all the measurement elements are located on one plane, the distance in the thickness direction between the specific biological material and each measurement element is substantially equal between the measurement elements. Therefore, the measurement element that determines the electrochemical characteristic value of a specific biological material is determined by the distance between the biological material and the measurement element in the two-dimensional direction. It is possible to increase the probability that the presence can be detected by a specific measuring element.

上記電気化学測定装置は、複数の前記測定素子のなかでの測定結果の分布から前記測定対象液の属性を判定する判定部をさらに備えてもよい。
測定対象液における全生体物質の濃度や、測定対象液が有する酸性度などのようなパラメータは、各測定素子の測定結果に対して共通に影響を及ぼし、各測定素子の測定結果の絶対値に対しては、共通する誤差の要因ともなる。この点、上記構成によれば、複数の測定素子のなかでの測定結果の分布に基づいて1つの液の属性が特定されるため、例えば、1つの測定素子における特性値に基づいて液の属性が特定される構成と比べて、上述した誤差の要因による影響を軽減することが可能である。
The electrochemical measurement apparatus may further include a determination unit that determines an attribute of the measurement target liquid from a distribution of measurement results among the plurality of measurement elements.
Parameters such as the concentration of all biological substances in the liquid to be measured and the acidity of the liquid to be measured have a common influence on the measurement results of each measurement element, resulting in an absolute value of the measurement result of each measurement element. On the other hand, it becomes a cause of a common error. In this regard, according to the above configuration, since the attribute of one liquid is specified based on the distribution of measurement results among the plurality of measuring elements, for example, the attribute of the liquid is determined based on the characteristic value in one measuring element. As compared with the configuration in which is specified, it is possible to reduce the influence of the error factors described above.

上記電気化学測定装置は、前記流動方向において最も下流に位置する前記測定素子である最下素子に前記測定対象液が到達したことを検出する検出部をさらに備えてもよい。
上記構成によれば、全ての測定素子に測定対象液が行きわたったか否かを検出することが可能である。
The electrochemical measurement apparatus may further include a detection unit that detects that the liquid to be measured has reached the lowest element, which is the measurement element located most downstream in the flow direction.
According to the above configuration, it is possible to detect whether or not the measurement target liquid has spread over all the measurement elements.

上記電気化学測定装置において、前記測定処理部は、前記最下素子に前記測定対象液が到達したことを前記検出部が検出したとき、前記各測定素子による測定を開始してもよい。   In the electrochemical measurement device, the measurement processing unit may start measurement by each measurement element when the detection unit detects that the measurement target liquid has reached the lowermost element.

上記構成によれば、全ての測定素子に測定対象液が行きわたった状態で測定を開始させることが可能であるため、生体物質の検出に関わる再現性を高めることが可能である。   According to the above configuration, since measurement can be started in a state in which the measurement target solution is distributed to all the measurement elements, it is possible to improve reproducibility related to detection of a biological substance.

本発明によれば、生体物質の分離、および、検出を、共通する泳動槽で行うことが可能となる。   According to the present invention, it is possible to perform separation and detection of biological substances in a common electrophoresis tank.

電気化学測定装置を具体化した一実施形態における電気化学セルの分解斜視構造を示す分解斜視図。The disassembled perspective view which shows the disassembled perspective structure of the electrochemical cell in one Embodiment which actualized the electrochemical measuring device. 一実施形態における電気化学セルの平面構造を第1基板の図示が省略された状態で示す平面図であって、測定素子を拡大して示す図。It is a top view which shows the planar structure of the electrochemical cell in one Embodiment in the state in which illustration of the 1st board | substrate was abbreviate | omitted, Comprising: The figure which expands and shows a measurement element. 一実施形態における測定素子の分布と生体物質の分布との関係を示す図であって、(a)は生体物質が測定流路に入りはじめたときの状態を示し、(b)は生体物質の一部が測定流路の途中まで到達したときの状態を示し、(c)は生体物質の一部が測定流路の最下流まで到達したときの状態を示す図である。It is a figure which shows the relationship between distribution of the measurement element in one embodiment, and distribution of a biological material, Comprising: (a) shows a state when a biological material begins to enter into a measurement flow path, (b) shows the biological material. FIG. 6C shows a state when a part of the biological material reaches the middle of the measurement channel, and FIG. 5C shows a state when a part of the biological material reaches the most downstream side of the measurement channel. 一実施形態における測定流路のなかの各測定素子の並びを示す配置図。FIG. 3 is a layout diagram illustrating an arrangement of measurement elements in a measurement channel according to an embodiment. 一実施形態における電気化学測定装置の構成を機能的に示すブロック図。The block diagram which shows the structure of the electrochemical measuring device in one Embodiment functionally. 一実施形態における測定素子ごとの特性値の分布の一例を示すグラフ。The graph which shows an example of distribution of the characteristic value for every measuring element in one embodiment. 電気化学測定方法を具体化した一実施形態における電気化学測定方法の各工程の流れを示すフローチャート。The flowchart which shows the flow of each process of the electrochemical measuring method in one Embodiment which actualized the electrochemical measuring method. 電気化学測定方法の他の例における各工程の流れを示すフローチャート。The flowchart which shows the flow of each process in the other example of the electrochemical measuring method.

図1から図7を参照して一実施形態における電気化学測定装置、および、電気化学測定方法を説明する。   An electrochemical measurement apparatus and an electrochemical measurement method according to an embodiment will be described with reference to FIGS.

[電気化学セル]
図1が示すように、電気化学測定装置が備える電気化学セルは、相互に対向する2つの基板である第1基板11と第2基板12とを備える。電気化学セルは、第1基板11と第2基板12との間に、第1基板11の全体にわたりほぼ均一な幅を有した隙間を備える。
[Electrochemical cell]
As shown in FIG. 1, the electrochemical cell included in the electrochemical measurement device includes a first substrate 11 and a second substrate 12 which are two substrates facing each other. The electrochemical cell includes a gap having a substantially uniform width across the entire first substrate 11 between the first substrate 11 and the second substrate 12.

第1基板11と第2基板12との間の隙間は、1つの方向である行方向の両端において封止され、それによって、行方向と直交する列方向を流動方向として、生体物質を含む測定対象液を流動方向へ流す流路として機能する。第1基板11と第2基板12との間の隙間は、例えば、100μm以下の厚みを有する。また、第1基板11、第2基板12、および、これらの隙間の両端を封止する部材は、上記流路を備える泳動槽の一例を構成する。   The gap between the first substrate 11 and the second substrate 12 is sealed at both ends in the row direction, which is one direction, and thereby includes a biological material with the column direction orthogonal to the row direction as the flow direction. It functions as a flow path for flowing the target liquid in the flow direction. The gap between the first substrate 11 and the second substrate 12 has a thickness of 100 μm or less, for example. Moreover, the member which seals the both ends of the 1st board | substrate 11, the 2nd board | substrate 12, and these clearance gaps comprises an example of the electrophoresis tank provided with the said flow path.

泳動槽に流れる液は、例えば、生体物質と緩衝液とを含む測定対象液や、緩衝液である。生体物質は、例えば、核酸、タンパク質、酵素、多糖、脂質などの生体高分子や、アミノ酸、各種の糖、ミネラルなどの無機質を含む生体低分子である。   The liquid flowing in the electrophoresis tank is, for example, a measurement target liquid including a biological material and a buffer solution, or a buffer solution. Biological substances are, for example, biological macromolecules such as nucleic acids, proteins, enzymes, polysaccharides, and lipids, and small biological molecules including inorganic substances such as amino acids, various sugars, and minerals.

電気化学セルは、第1基板11と第2基板12との隙間である流路内に、泳動電極と、複数の測定素子とを備える。本実施形態における泳動電極は、第1泳動電極16A、および、第2泳動電極16Bである。本実施形態における複数の測定素子は、酸化還元電流を測定するための測定素子であって、対極群13、作用電極群14、および、参照電極群15を備える。   The electrochemical cell includes a migration electrode and a plurality of measurement elements in a flow path that is a gap between the first substrate 11 and the second substrate 12. The migration electrodes in this embodiment are the first migration electrode 16A and the second migration electrode 16B. The plurality of measurement elements in the present embodiment are measurement elements for measuring an oxidation-reduction current, and include a counter electrode group 13, a working electrode group 14, and a reference electrode group 15.

対極群13は、第1基板11が備える面のなかで第2基板12と対向する対向面11Aに位置すると共に、複数の対極13Aと、複数の対極配線13Bとを備える。対極群13において、行方向に並ぶ3つの対極13Aが対極行であって、対極群13は、列方向に並ぶ3行の対極行を備える。また、対極群13は、各対極行に1つずつ対極配線13Bを備え、各対極配線13Bは、対極行を構成する3つの対極13Aに並列に接続される。すなわち、対極群13は、3行×3列の対極13Aを備え、1行ずつの対極13Aが、1つの対極配線13Bによって並列に接続される。   The counter electrode group 13 is located on the facing surface 11A facing the second substrate 12 among the surfaces of the first substrate 11, and includes a plurality of counter electrodes 13A and a plurality of counter electrode wirings 13B. In the counter electrode group 13, three counter electrodes 13A arranged in the row direction are counter electrode rows, and the counter electrode group 13 includes three counter electrode rows arranged in the column direction. The counter electrode group 13 includes one counter electrode line 13B for each counter electrode row, and each counter electrode wire 13B is connected in parallel to three counter electrodes 13A constituting the counter electrode row. That is, the counter electrode group 13 includes counter electrodes 13A of 3 rows × 3 columns, and the counter electrodes 13A of each row are connected in parallel by one counter electrode wiring 13B.

作用電極群14は、第1基板11が備える対向面11Aに位置すると共に、複数の作用電極14Aと、複数の作用電極配線14Bとを備える。作用電極群14において、列方向に並ぶ3つの作用電極14Aが作用電極列であって、作用電極群14は、行方向に並ぶ3列の作用電極列を備える。また、作用電極群14は、各作用電極列に1つずつ作用電極配線14Bを備え、各作用電極配線14Bは、作用電極列を構成する3つの作用電極14Aに並列に接続される。すなわち、作用電極群14は、3行×3列の作用電極14Aを備え、1列ずつの作用電極14Aが、1つの作用電極配線14Bによって並列に接続される。なお、対極群13のうちで作用電極群14と重なる部位には、対極群13と作用電極群14とを相互に絶縁する絶縁膜が位置する。   The working electrode group 14 includes a plurality of working electrodes 14A and a plurality of working electrode wirings 14B, as well as being positioned on the facing surface 11A of the first substrate 11. In the working electrode group 14, three working electrodes 14A arranged in the column direction are working electrode columns, and the working electrode group 14 includes three working electrode columns arranged in the row direction. Further, the working electrode group 14 includes one working electrode wiring 14B for each working electrode row, and each working electrode wiring 14B is connected in parallel to the three working electrodes 14A constituting the working electrode row. That is, the working electrode group 14 includes working electrodes 14A of 3 rows × 3 columns, and the working electrodes 14A for each column are connected in parallel by one working electrode wiring 14B. Note that an insulating film that insulates the counter electrode group 13 and the working electrode group 14 from each other is located in a portion of the counter electrode group 13 that overlaps the working electrode group 14.

参照電極群15は、第1基板11が備える対向面11Aに位置すると共に、複数の参照電極15Aと、複数の参照電極配線15Bとを備える。参照電極群15において、行方向に並ぶ3つの参照電極15Aが参照電極行であって、参照電極群15は、列方向に並ぶ3行の参照電極行を備える。また、参照電極群15は、各参照電極行に1つずつ参照電極配線15Bを備え、各参照電極配線15Bは、参照電極行を構成する3つの参照電極15Aに並列に接続される。すなわち、参照電極群15は、3行×3列の参照電極15Aを備え、1行ずつの参照電極15Aが、1つの参照電極配線15Bによって並列に接続される。なお、対極群13、および、作用電極群14のうちで参照電極群15と重なる部位には、対極群13や作用電極群14と、参照電極群15とを相互に絶縁する絶縁膜が位置する。   The reference electrode group 15 includes a plurality of reference electrodes 15A and a plurality of reference electrode wirings 15B, as well as being positioned on the facing surface 11A included in the first substrate 11. In the reference electrode group 15, three reference electrodes 15A arranged in the row direction are reference electrode rows, and the reference electrode group 15 includes three reference electrode rows arranged in the column direction. The reference electrode group 15 includes one reference electrode wiring 15B for each reference electrode row, and each reference electrode wiring 15B is connected in parallel to the three reference electrodes 15A constituting the reference electrode row. That is, the reference electrode group 15 includes reference electrodes 15A of 3 rows × 3 columns, and the reference electrodes 15A for each row are connected in parallel by one reference electrode wiring 15B. In the counter electrode group 13 and the working electrode group 14, an insulating film that insulates the counter electrode group 13, the working electrode group 14, and the reference electrode group 15 from each other is located in a portion overlapping the reference electrode group 15. .

第1泳動電極16A、および、第2泳動電極16Bは、いずれも列方向に沿って、第1基板11のほぼ全体にわたり延びる形状を有すると共に、第1基板11が備える対向面11Aに位置する。第1泳動電極16A、および、第2泳動電極16Bは、行方向において相互に対向し、かつ、第1基板11のほぼ両端に位置する。   The first migration electrode 16 </ b> A and the second migration electrode 16 </ b> B both have a shape extending over the entire first substrate 11 along the column direction, and are positioned on the facing surface 11 </ b> A provided in the first substrate 11. The first migration electrode 16 </ b> A and the second migration electrode 16 </ b> B are opposed to each other in the row direction and are located at substantially both ends of the first substrate 11.

図2が示すように、電気化学セルは、第1泳動電極16Aと第2泳動電極16Bとに挟まれた領域として測定流路16Cを備える。測定流路16Cは、行方向、および、列方向を含む二次元方向へ広がる領域である。測定流路16Cは、上述した測定対象液Lが流れる流路である。測定流路16Cは、電気化学セルの外部に位置するポンプPに接続され、ポンプPは、測定対象液Lを連続的に測定流路16Cへ入れる。測定流路16Cの内部には、行方向、および、列方向に沿って3行×3列のマトリックス状に位置する9つの測定素子20が収納されている。   As shown in FIG. 2, the electrochemical cell includes a measurement channel 16C as a region sandwiched between the first migration electrode 16A and the second migration electrode 16B. The measurement flow channel 16C is a region extending in a two-dimensional direction including a row direction and a column direction. The measurement channel 16C is a channel through which the measurement target liquid L described above flows. The measurement flow path 16C is connected to a pump P located outside the electrochemical cell, and the pump P continuously puts the measurement target liquid L into the measurement flow path 16C. Nine measuring elements 20 positioned in a matrix of 3 rows × 3 columns along the row direction and the column direction are housed inside the measurement flow channel 16C.

各測定素子20は、測定対象液Lに関する電気化学的な特性値を測定する素子であって、特性値の一例である酸化還元電流を測定する。各測定素子20は、1つの対極13A、1つの作用電極14A、および、1つの参照電極15Aから構成される。   Each measuring element 20 is an element that measures an electrochemical characteristic value related to the measurement target liquid L, and measures an oxidation-reduction current that is an example of the characteristic value. Each measuring element 20 includes one counter electrode 13A, one working electrode 14A, and one reference electrode 15A.

第2基板12と対向する方向から見て、対極13Aは逆L字状を有し、作用電極14Aは円形状を有し、参照電極15AはT字状を有する。作用電極14Aは、対極13Aと参照電極15Aとに挟まれ、これらが相互に重ならないように、各電極は位置する。対極13A、および、作用電極14Aを形成する材料は、例えば、酸化インジウム錫(ITO)であり、参照電極15Aは、例えば、ITO膜に銀と塩化銀インクとが塗布された電極である。   When viewed from the direction facing the second substrate 12, the counter electrode 13A has an inverted L shape, the working electrode 14A has a circular shape, and the reference electrode 15A has a T shape. The working electrode 14A is sandwiched between the counter electrode 13A and the reference electrode 15A, and each electrode is positioned so that they do not overlap each other. The material forming the counter electrode 13A and the working electrode 14A is, for example, indium tin oxide (ITO), and the reference electrode 15A is, for example, an electrode in which silver and silver chloride ink are applied to an ITO film.

[生体物質の分布]
次に、測定流路16Cの内部における生体物質の分布についてその推移を説明する。なお、以下では、生体物質の流動と生体物質の泳動とを説明する便宜上、測定対象液Lが、生体物質のなかで大きい分子である高分子MLA,MLBと、生体物質のなかで高分子よりも小さい低分子MSA,MSBと、これら高分子MLA,MLBの大きさと、低分子MSA,MSBの大きさとの間の大きさを有する分子とを含む例を説明する。
[Biomaterial distribution]
Next, the transition of the distribution of the biological material in the measurement channel 16C will be described. In the following, for convenience of explaining the flow of the biological material and the migration of the biological material, the measurement target liquid L is larger than the polymers MLA and MLB, which are large molecules in the biological material, and the polymer in the biological material. An example including small molecules MSA and MSB having a smaller size and molecules having a size between the size of the high molecules MLA and MLB and the size of the low molecule MSA and MSB will be described.

図3(a)が示すように、まず、測定流路16Cに緩衝液のみが流れる状態で、第1泳動電極16Aから第2泳動電極16Bへの電位勾配を形成するための直流定電圧信号が、第1泳動電極16Aと第2泳動電極16Bとに印加される。次いで、緩衝液に生体物質が加えられ、生体物質が液中でほぼ均一に分布する状態で、測定流路16Cの行方向の全体にわたり測定対象液Lが測定流路16Cへ流される。   As shown in FIG. 3A, first, a DC constant voltage signal for forming a potential gradient from the first migration electrode 16A to the second migration electrode 16B in a state where only the buffer solution flows through the measurement channel 16C. , Applied to the first migration electrode 16A and the second migration electrode 16B. Next, the biological material is added to the buffer solution, and the measurement target liquid L is caused to flow to the measurement flow channel 16C over the entire row direction of the measurement flow channel 16C in a state where the biological material is substantially uniformly distributed in the liquid.

図3(b)が示すように、測定対象液Lの流動が進むことに伴い、列方向である流動方向には、生体物質の大きさに応じた生体物質の分布が形成されはじめる。すなわち、低分子MSA,MSBが流動方向へ流動した距離は、高分子MLA,MLBが流動方向へ移動した距離よりも大きくなる。そして、こうした流動距離の差異に追従した分布が、生体物質の分布として形成されはじめる。   As shown in FIG. 3B, as the flow of the measurement target liquid L progresses, a biological material distribution corresponding to the size of the biological material begins to be formed in the flow direction that is the column direction. That is, the distance that the low molecular weight MSA and MSB flow in the flow direction is larger than the distance that the high molecular weight MLA and MLB move in the flow direction. And the distribution which followed the difference of such a flow distance begins to be formed as distribution of a biological material.

また、測定対象液Lの流動が進むことに伴い、行方向である泳動方向には、生体物質の電荷量に応じた分布が形成されはじめる。すなわち、中性である緩衝液のなかで生体物質は通常負電荷を有するため、低電荷量を有する低分子MSAは、高電荷量を有する低分子MSBよりも第1泳動電極16Aの近くへ泳動しはじめ、高電荷量を有する低分子MSBは、低電荷量を有する低分子MSAよりも第2泳動電極16Bの近くへ泳動しはじめる。また、低電荷量を有する高分子MLAは、高電荷量を有する高分子MLBよりも第1泳動電極16Aの近くへ泳動しはじめ、高電荷量を有する高分子MLBは、低電荷量を有する高分子MLAよりも第2泳動電極16Bの近くへ泳動しはじめる。   Further, as the flow of the measurement target liquid L proceeds, a distribution corresponding to the charge amount of the biological material starts to be formed in the migration direction, which is the row direction. That is, since a biological substance usually has a negative charge in a neutral buffer solution, a low molecular weight MSA having a low charge amount migrates closer to the first migration electrode 16A than a low molecular MSB having a high charge amount. The low molecular MSB having a high charge amount starts to move closer to the second migration electrode 16B than the low molecular MSA having a low charge amount. In addition, the polymer MLA having a low charge amount starts to migrate closer to the first migration electrode 16A than the polymer MLB having a high charge amount, and the polymer MLB having a high charge amount has a high charge amount having a low charge amount. The migration starts closer to the second migration electrode 16B than the molecular MLA.

なお、低電荷量を有する低分子MSAや高分子MLAであって第1泳動電極16Aの近くに位置する低分子MSAや高分子MLAは、それの行方向における位置をおよそ保つ。また、高電荷量を有する低分子MSBや高分子MLBであって第2泳動電極16Bの近くに位置する低分子MSBや高分子MLBは、それの行方向における位置をおよそ保つ。そして、この泳動傾向に準じた分布が、生体物質の分布として形成されはじめる。   Note that the low molecular MSA and the high molecular MLA having a low charge amount, which are located in the vicinity of the first migration electrode 16A, keep their positions in the row direction. Further, the low molecular MSB and the high molecular MLB having a high charge amount, which are located near the second migration electrode 16B, keep their positions in the row direction. A distribution according to this migration tendency begins to be formed as a distribution of biological material.

図3(c)が示すように、低分子MSA,MSBの流動が最下流の測定素子20まで進むと、列方向である流動方向には、さらに、生体物質の大きさに応じた広い分布が形成される。すなわち、低分子MSA,MSBは、ほぼ最下流の測定素子20と対向し、高分子MLA,MLBは、ほぼ最上流の測定素子20と対向し、低分子MSA,MSBの大きさと、高分子MLA,MLBの大きさとの間の大きさを有する生体物質は、中間の測定素子20と対向する。   As shown in FIG. 3C, when the flow of the low molecular weight MSA and MSB proceeds to the most downstream measuring element 20, the flow direction which is the column direction further has a wide distribution according to the size of the biological material. It is formed. That is, the low molecular weight MSA and MSB are substantially opposed to the most downstream measuring element 20, and the high molecular weight MLA and MLB are substantially opposed to the most upstream measuring element 20, and the size of the low molecular weight MSA and MSB and the high molecular weight MLA are measured. , The biological material having a size between MLBs is opposed to the intermediate measuring element 20.

また、低分子MSA,MSBの流動が最下流の測定素子20まで進むと、行方向である泳動方向には、さらに、生体物質の電荷量に応じた広い分布が形成される。すなわち、低電荷量を有する低分子MSAは、第1泳動電極16Aの近くに位置し、高電荷量を有する低分子MSBは、第2泳動電極16Bの近くに位置する。また、低電荷量を有する高分子MLAは、第1泳動電極16Aの近くに位置し、高電荷量を有する高分子MLBは、第2泳動電極16Bの近くに位置する。   Further, when the flow of the low molecular weight MSA and MSB proceeds to the measurement element 20 at the most downstream side, a broad distribution corresponding to the charge amount of the biological substance is further formed in the migration direction which is the row direction. That is, the low-molecular MSA having a low charge amount is located near the first migration electrode 16A, and the low-molecular MSB having a high charge amount is located near the second migration electrode 16B. The polymer MLA having a low charge amount is located near the first migration electrode 16A, and the polymer MLB having a high charge amount is located near the second migration electrode 16B.

そして、低分子MSA,MSBが最下流の測定素子20に到達したとき、高分子MLA,MLBは、それの有する電荷量に応じた行方向の位置で、例えば、最上流の測定素子20と対向する。また、低分子MSA,MSBは、それの有する電荷量に応じた行方向の位置で、最下流の測定素子20と対向する。高分子MLA,MLBの大きさと、低分子MSA,MSBの大きさとの間の大きさを有した分子は、それの有する電荷量に応じた行方向の位置で、例えば、中間の測定素子20と対向する。このように、測定流路16Cを流れる生体物質は、それが有する大きさと電荷量とに基づいて、生体物質の種類ごとに分離される。   When the low molecular weight MSA and MSB reach the most downstream measuring element 20, the macromolecules MLA and MLB are opposed to the measuring element 20 at the most upstream position, for example, at a position in the row direction corresponding to the charge amount of the high molecular weight MLA and MLB. To do. Further, the low molecular weight MSA and MSB are opposed to the most downstream measuring element 20 at a position in the row direction corresponding to the charge amount possessed by them. Molecules having a size between the size of the high molecular weight MLA, MLB and the size of the low molecular weight MSA, MSB are arranged at the position in the row direction according to the charge amount of the molecule, for example, the intermediate measuring element 20 opposite. In this way, the biological material flowing through the measurement channel 16C is separated for each type of biological material based on the size and charge amount of the biological material.

ここで、測定流路16Cの内部に位置する生体物質と、測定素子20との間の距離は、第1基板11や第2基板12が広がる二次元方向と、測定流路16Cが有する厚み方向との成分を有する。そして、特定の生体物質の電気化学的な特性値がいずれの測定素子20によって測定されるかは、生体物質と測定素子20との間における二次元方向での距離の大きさと、生体物質と測定素子20との間における厚み方向での距離の大きさとに従う。特に、相互に近接した測定素子20の間に位置する生体物質においては、いずれの測定素子20においてそれの存在が検出されるかが、こうした距離の大小によって変わる。言い換えれば、相互に近接した測定素子20の位置が、厚み方向において相互に異なるとき、厚み方向における生体物質の位置のばらつきによって、それを検出する測定素子20の位置にもばらつきが生じる。   Here, the distance between the biological material located inside the measurement channel 16C and the measurement element 20 is determined in the two-dimensional direction in which the first substrate 11 and the second substrate 12 are spread and the thickness direction of the measurement channel 16C. And have ingredients. Then, which measurement element 20 measures the electrochemical characteristic value of a specific biological substance depends on the magnitude of the distance between the biological substance and the measurement element 20 in the two-dimensional direction, the biological substance and the measurement. The distance between the element 20 and the element 20 in the thickness direction is obeyed. In particular, in a biological substance located between measurement elements 20 that are close to each other, which measurement element 20 the presence of which is detected varies depending on the magnitude of the distance. In other words, when the positions of the measurement elements 20 close to each other are different from each other in the thickness direction, the position of the measurement element 20 that detects the variation also occurs due to the variation in the position of the biological material in the thickness direction.

一方で、上述した電気化学セルでは、第1基板11の一側面に全ての測定素子20が位置するため、特定の生体物質と各測定素子20との間における厚み方向での距離は、各測定素子20においてほぼ等しい。それゆえに、特定の生体物質の電気化学的な特性値がいずれの測定素子20によって測定されるかは、第1基板11や第2基板12が広がる二次元方向における生体物質と測定素子20との間の距離によって、およそ定まる。すなわち、二次元方向において生体物質と最も近い測定素子20が、その生体物質の存在を検出する。そのため、特定の生体物質の存在を予め設定された特定の測定素子20で検出できる確率を高めることが可能となる。   On the other hand, in the electrochemical cell described above, since all the measuring elements 20 are located on one side surface of the first substrate 11, the distance in the thickness direction between the specific biological material and each measuring element 20 is determined by each measurement. In element 20, they are approximately equal. Therefore, which measurement element 20 is used to measure the electrochemical characteristic value of a specific biological material is determined between the biological material and the measurement element 20 in the two-dimensional direction in which the first substrate 11 and the second substrate 12 spread. It is determined by the distance between them. That is, the measuring element 20 closest to the biological material in the two-dimensional direction detects the presence of the biological material. Therefore, it is possible to increase the probability that the presence of a specific biological material can be detected by a specific measurement element 20 set in advance.

なお、流動方向、および、泳動方向を含む二次元方向においてマトリックス状に測定素子20が位置するため、流動方向や泳動方向へ移動した生体物質は、9つの測定素子20のなかのいずれか1つと対向しやすい。それゆえに、生体物質の存在はいずれか1つの測定素子20によって検出されやすいため、生体物質の検出が漏れることを抑えることが可能ともなる。   Since the measurement elements 20 are located in a matrix in the flow direction and the two-dimensional direction including the migration direction, the biological material that has moved in the flow direction or the migration direction is any one of the nine measurement elements 20. Easy to face each other. Therefore, since the presence of the biological material is easily detected by any one of the measurement elements 20, it is possible to suppress leakage of the detection of the biological material.

[測定処理部]
図4が示すように、電気化学測定装置は、測定処理部30を備え、測定処理部30は、第1泳動電極16A、第2泳動電極16B、および、各測定素子20を駆動させると共に、各測定素子20から測定結果を取得して生体物質の存在を検出する。測定処理部30は、3行×3列の測定素子20の駆動に際して、各測定素子20を別々に取り扱う。
[Measurement processing section]
As shown in FIG. 4, the electrochemical measurement apparatus includes a measurement processing unit 30. The measurement processing unit 30 drives the first migration electrode 16A, the second migration electrode 16B, and each measurement element 20, and each The measurement result is acquired from the measurement element 20 to detect the presence of the biological material. The measurement processing unit 30 handles each measurement element 20 separately when driving the measurement elements 20 in 3 rows × 3 columns.

測定処理部30は、最上流に位置する1行目の測定素子20を、第1泳動電極16Aに近い測定素子20から順に、第1測定素子20a、第2測定素子20b、第3測定素子20cとして取り扱う。測定処理部30は、2行目に位置する3つの測定素子20を、第1泳動電極16Aに近い測定素子20から順に、第4測定素子20d、第5測定素子20e、第6測定素子20fとして取り扱う。測定処理部30は、最下流に位置する3行目の測定素子20を、第1泳動電極16Aに近い測定素子20から順に、第7測定素子20g、第8測定素子20h、第9測定素子20iとして取り扱う。   The measurement processing unit 30 sets the first row of measurement elements 20 located in the uppermost stream in order from the measurement element 20 close to the first migration electrode 16A, in order of the first measurement element 20a, the second measurement element 20b, and the third measurement element 20c. Treat as. The measurement processing unit 30 sets the three measurement elements 20 located in the second row as the fourth measurement element 20d, the fifth measurement element 20e, and the sixth measurement element 20f in order from the measurement element 20 close to the first migration electrode 16A. handle. The measurement processing unit 30 sets the measurement elements 20 in the third row located on the most downstream side in order from the measurement element 20 close to the first migration electrode 16A, the seventh measurement element 20g, the eighth measurement element 20h, and the ninth measurement element 20i. Treat as.

上述したように、測定流路16Cの内部に位置する生体物質は、それの大きさと電荷量とに基づいて、生体物質の種類ごとに、いずれか1つの測定素子20の測定範囲へ分離される。測定処理部30は、9つの測定素子20を別々に取り扱うため、測定素子20ごとの生体物質の種類もまた別々に取り扱う。   As described above, the biological material positioned inside the measurement channel 16C is separated into the measurement range of any one measurement element 20 for each type of biological material based on the size and the amount of charge. . Since the measurement processing unit 30 handles the nine measurement elements 20 separately, the type of biological material for each measurement element 20 is also handled separately.

例えば、測定処理部30は、第1測定素子20aの測定結果に基づいて、第1測定素子20aに対応する生体物質が存在するか否かを検出する。また、例えば、測定処理部30は、第9測定素子20iの測定結果に基づいて、第9測定素子20iに対応する別の生体物質が存在するか否かを検出する。さらに、例えば、測定処理部30は、第1測定素子20aの測定結果と、第9測定素子20iの測定結果との比較に基づいて、第1測定素子20aに対応する生体物質が、第9測定素子20iに対応する生体物質よりも多いか否かを検出する。   For example, the measurement processing unit 30 detects whether or not a biological material corresponding to the first measurement element 20a exists based on the measurement result of the first measurement element 20a. For example, the measurement processing unit 30 detects whether another biological material corresponding to the ninth measurement element 20i exists based on the measurement result of the ninth measurement element 20i. Further, for example, the measurement processing unit 30 determines that the biological material corresponding to the first measurement element 20a is the ninth measurement based on the comparison between the measurement result of the first measurement element 20a and the measurement result of the ninth measurement element 20i. It is detected whether there is more than the biological material corresponding to the element 20i.

図5が示すように、測定処理部30は、制御部31、記憶部32、駆動部33、および、出力部34を備える。測定処理部30は、各対極配線13B、各作用電極配線14B、各参照電極配線15B、第1泳動電極16A、および、第2泳動電極16Bに接続される。制御部31は、記憶部32が記憶するデータなどを用い、駆動部33、および、出力部34の駆動を制御する。   As shown in FIG. 5, the measurement processing unit 30 includes a control unit 31, a storage unit 32, a drive unit 33, and an output unit 34. The measurement processing unit 30 is connected to each counter electrode wiring 13B, each working electrode wiring 14B, each reference electrode wiring 15B, the first migration electrode 16A, and the second migration electrode 16B. The control unit 31 controls driving of the drive unit 33 and the output unit 34 using data stored in the storage unit 32.

制御部31は、緩衝液が最下流の測定素子20に到達するまで駆動部33を待機させると共に、緩衝液が最下流の測定素子20に到達して以降に、第1泳動電極16Aと第2泳動電極16Bとを駆動するための信号を、駆動部33へ入力する。駆動部33は、制御部31から入力される信号に従い、緩衝液が最下流の測定素子20に到達して以降に、生体物質を泳動させる電位勾配を、第1泳動電極16Aと第2泳動電極16Bとの間に形成させる。   The control unit 31 causes the drive unit 33 to stand by until the buffer solution reaches the most downstream measurement element 20, and after the buffer solution reaches the most downstream measurement element 20, A signal for driving the electrophoresis electrode 16B is input to the drive unit 33. In accordance with a signal input from the control unit 31, the drive unit 33 generates a potential gradient for migrating a biological substance after the buffer solution reaches the most downstream measurement element 20. The first migration electrode 16 </ b> A and the second migration electrode 16B.

制御部31は、測定対象液Lが最下流の測定素子20に到達したタイミングで、第1泳動電極16Aと第2泳動電極16Bとの駆動を停止するための信号を、駆動部33へ入力する。駆動部33は、制御部31から入力される信号に従い、測定対象液Lが最下流の測定素子20に到達したタイミングで、第1泳動電極16Aと第2泳動電極16Bとに、電位勾配の形成を停止させる。   The control unit 31 inputs a signal for stopping the driving of the first migration electrode 16A and the second migration electrode 16B to the drive unit 33 at the timing when the measurement target liquid L reaches the most downstream measurement element 20. . The drive unit 33 forms a potential gradient on the first migration electrode 16A and the second migration electrode 16B at the timing when the measurement target liquid L reaches the measurement element 20 on the most downstream side in accordance with a signal input from the control unit 31. Stop.

制御部31は、測定対象液Lが最下流の測定素子20に到達したか否かを検出する検出部31Aを備える。検出部31Aは、例えば、第1泳動電極16Aと第2泳動電極16Bとが駆動されて以降に、第1泳動電極16Aや第2泳動電極16Bに流れる電流を監視し、その電流値が所定値よりも小さくなったとき、生体物質の泳動がほぼ終了し、測定対象液Lが最下流の測定素子20に到達したものとみなしてそれを検出する。また、例えば、最下流に位置する測定素子20の近傍に、生体物質を検出するための検出素子を電気化学セルが別途備えてもよい。そして、検出部31Aは、例えば、第1泳動電極16Aと第2泳動電極16Bとが駆動されて以降に、検出素子の検出結果を監視し、検出素子が生体物質を検出したとき、測定対象液Lが最下流の測定素子20に到達したものとみなしてそれを検出してもよい。   The control unit 31 includes a detection unit 31A that detects whether or not the measurement target liquid L has reached the most downstream measurement element 20. For example, the detection unit 31A monitors the current flowing through the first migration electrode 16A and the second migration electrode 16B after the first migration electrode 16A and the second migration electrode 16B are driven, and the current value is a predetermined value. When it becomes smaller than that, the migration of the biological substance is almost finished, and it is assumed that the measurement target liquid L has reached the most downstream measurement element 20 and is detected. Further, for example, an electrochemical cell may be separately provided with a detection element for detecting a biological substance in the vicinity of the measurement element 20 located on the most downstream side. For example, the detection unit 31A monitors the detection result of the detection element after the first migration electrode 16A and the second migration electrode 16B are driven, and when the detection element detects a biological substance, the measurement target liquid It may be detected that L has reached the most downstream measuring element 20.

制御部31は、測定対象液Lが最下流の測定素子20に到達したタイミングで、各測定素子20による測定を順に開始させるためのタイミング信号を、駆動部33へ入力する。駆動部33は、制御部31から入力されるタイミング信号に従い、測定対象液Lが最下流の測定素子20に到達したタイミングで、各対極配線13B、および、各参照電極配線15Bを、1行目から順に線順次走査する。   The control unit 31 inputs a timing signal for sequentially starting the measurement by each measurement element 20 to the drive unit 33 at the timing when the measurement target liquid L reaches the most downstream measurement element 20. The drive unit 33 connects each counter electrode wiring 13B and each reference electrode wiring 15B to the first row at the timing when the measurement target liquid L reaches the most downstream measurement element 20 according to the timing signal input from the control unit 31. Line sequential scanning is performed in order.

すなわち、各測定素子20の近傍に分布する生体物質の種類は、上述した流動距離と泳動傾向とに従って、言い換えれば、生体物質の大きさとそれが有する電荷量とに従って予め定められる。駆動部33は、まず、1行目の測定素子20の近傍に位置すると推定される生体物質に対し、それの酸化還元電流を測定するための電圧信号を、1行目の対極配線13B、および、1行目の参照電極配線15Bに入力する。そして、駆動部33は、全ての作用電極配線14Bを通じて、1行目の各作用電極14Aに流れる酸化還元電流を別々に測定する。次いで、駆動部33は、2行目の測定素子20の近傍に位置すると推定される生体物質に対し、それの酸化還元電流を測定するための電圧信号を、2行目の対極配線13B、および、2行目の参照電極配線15Bに入力する。そして、駆動部33は、全ての作用電極配線14Bを通じて、2行目の各作用電極14Aに流れる酸化還元電流を別々に測定する。最後に、駆動部33は、3行目の測定素子20の近傍に位置すると推定される生体物質に対し、それの酸化還元電流を測定するための電圧信号を、3行目の対極配線13B、および、3行目の参照電極配線15Bに入力する。そして、駆動部33は、全ての作用電極配線14Bを通じて、3行目の各作用電極14Aに流れる酸化還元電流を別々に測定する。   That is, the type of biological material distributed in the vicinity of each measuring element 20 is determined in advance according to the above-described flow distance and migration tendency, in other words, according to the size of the biological material and the amount of charge it has. The drive unit 33 first outputs a voltage signal for measuring the oxidation-reduction current of a biological material estimated to be located in the vicinity of the measurement element 20 in the first row, to the counter electrode wiring 13B in the first row, and Input to the reference electrode wiring 15B in the first row. And the drive part 33 measures separately the oxidation reduction current which flows into each working electrode 14A of the 1st row through all the working electrode wiring 14B. Next, the drive unit 33 sends a voltage signal for measuring the oxidation-reduction current of the biological material estimated to be located in the vicinity of the measurement element 20 in the second row to the counter electrode wiring 13B in the second row, and Input to the second-row reference electrode wiring 15B. Then, the drive unit 33 separately measures the oxidation-reduction current flowing through each working electrode 14A in the second row through all the working electrode wirings 14B. Finally, the drive unit 33 outputs a voltage signal for measuring the oxidation-reduction current of a biological substance estimated to be located in the vicinity of the measurement element 20 in the third row to the counter electrode wiring 13B in the third row, And it inputs into the reference electrode wiring 15B of the 3rd row. And the drive part 33 measures separately the oxidation reduction current which flows into each working electrode 14A of the 3rd row through all the working electrode wiring 14B.

このように、測定処理部30は、最下流の測定素子20に測定対象液Lが行きわたった状態、ひいては、最下流の測定素子20にその存在を検出させるための生体物質が、最下流の測定素子20に到達したタイミングで、それの測定を開始させることが可能である。そのため、生体物質の検出に関わる再現性を高めることが可能である。   In this way, the measurement processing unit 30 is in a state in which the measurement target liquid L has spread over the most downstream measurement element 20, and thus the biological material for causing the most downstream measurement element 20 to detect its presence is the most downstream. The measurement can be started at the timing when the measurement element 20 is reached. Therefore, it is possible to improve the reproducibility related to the detection of the biological material.

制御部31は、測定対象液の属性を判定する判定部31Bを備える。記憶部32は、9つの測定素子20のなかでの特性値の分布から測定対象液Lの属性を判定するための演算式を記憶する。本実施形態において9つの測定素子20における特性値は、9つの測定素子20の各々における酸化還元電流である。本実施形態における液の属性は、例えば、測定対象液Lに基づく健康の度合い、特定の生体物質の量が低いことなどによる疾患の度合いなどである。   The control unit 31 includes a determination unit 31B that determines the attribute of the measurement target liquid. The storage unit 32 stores an arithmetic expression for determining the attribute of the measurement target liquid L from the distribution of characteristic values among the nine measurement elements 20. In the present embodiment, the characteristic value in the nine measuring elements 20 is an oxidation-reduction current in each of the nine measuring elements 20. The attributes of the liquid in the present embodiment are, for example, the degree of health based on the measurement target liquid L, the degree of disease due to a low amount of a specific biological material, and the like.

上述したように、各測定素子20によって測定される酸化還元電流は、測定素子20の測定範囲に存在する生体物質の種類と濃度とに従う値である。各測定素子20の測定範囲に存在する生体物質の種類は、生体物質の大きさとそれが有する電荷量とによって予め定められるため、各測定素子20によって測定される酸化還元電流は、結局のところ、その測定素子20に対応する生体物質が存在するか否か、存在するとすればその濃度はどの程度かを示す値である。判定部31Bは、記憶部32が記憶するデータとこうした測定結果とを用い、例えば、9つの測定素子20の測定結果による多変量解析から、健康の度合いや疾患の度合いを判定する。   As described above, the oxidation-reduction current measured by each measurement element 20 is a value according to the type and concentration of the biological substance existing in the measurement range of the measurement element 20. Since the type of the biological substance existing in the measurement range of each measuring element 20 is determined in advance by the size of the biological substance and the amount of charge that it has, the oxidation-reduction current measured by each measuring element 20 is, after all, This is a value indicating whether or not a biological substance corresponding to the measuring element 20 exists, and if so, what is its concentration. The determination unit 31B uses the data stored in the storage unit 32 and such measurement results to determine the degree of health and the degree of disease from, for example, multivariate analysis based on the measurement results of the nine measurement elements 20.

ここで、測定対象液Lにおける全生体物質の濃度や、測定対象液Lが有する酸性度などのようなパラメータは、各測定素子20の測定結果に対して共通に影響を及ぼし、各測定素子20の測定結果の絶対値に対しては、共通する誤差の要因ともなる。この点、判定部31Bは、各測定素子20のなかでの測定結果の分布に基づいて、測定対象液Lの属性を特定する、すなわち、1つ以上の測定素子20の測定結果に対する他の測定素子20の相対値に基づいて測定対象液Lの属性を特定する。そのため、例えば、1つの測定素子20から得られた特性値に基づいて測定対象液Lの属性が特定される構成と比べて、上述した誤差の要因による影響を軽減することが可能となる。なお、9つの測定素子20のなかでの特性値の分布の一例を図6に示す。   Here, parameters such as the concentration of all biological substances in the measurement target liquid L and the acidity of the measurement target liquid L have a common influence on the measurement result of each measurement element 20. The absolute value of the measurement result is also a common error factor. In this regard, the determination unit 31B specifies the attribute of the measurement target liquid L based on the distribution of the measurement results in each measurement element 20, that is, other measurement for the measurement results of one or more measurement elements 20. The attribute of the measurement target liquid L is specified based on the relative value of the element 20. Therefore, for example, compared to a configuration in which the attribute of the measurement target liquid L is specified based on a characteristic value obtained from one measurement element 20, it is possible to reduce the influence due to the error factor described above. An example of the distribution of characteristic values among the nine measuring elements 20 is shown in FIG.

[電気化学測定方法]
図7が示すように、電気化学測定装置が実行する電気化学測定方法は、測定処理部30が以下の順に各工程を行うことを含む。
まず、測定処理部30は、緩衝液が流れている電気化学セルに対して、第1泳動電極16Aと第2泳動電極16Bとを駆動し、生体物質を泳動させるための電位勾配を第1基板11と第2基板12との隙間に形成する(ステップS11)。次いで、測定処理部30は、測定対象液Lの注入を開始すると共に(ステップS12)、最下流の測定素子20に測定対象液Lが到達するまで、最下流の測定素子20に測定対象液Lが到達したかを判断する(ステップS13,S14)。
[Electrochemical measurement method]
As shown in FIG. 7, the electrochemical measurement method executed by the electrochemical measurement device includes the measurement processing unit 30 performing each step in the following order.
First, the measurement processing unit 30 drives the first migration electrode 16A and the second migration electrode 16B to the electrochemical cell in which the buffer solution flows, and generates a potential gradient for migrating the biological material on the first substrate. 11 and the second substrate 12 (step S11). Next, the measurement processing unit 30 starts injecting the measurement target liquid L (step S12), and until the measurement target liquid L reaches the most downstream measurement element 20, the measurement target liquid L reaches the most downstream measurement element 20. Is reached (steps S13 and S14).

最下流の測定素子20に測定対象液Lが到達すると、測定処理部30は、測定流路16Cの内部における各部位の酸化還元電流を測定するために、各測定素子20を駆動する(ステップS15)。すなわち、測定処理部30は、測定対象液Lが最下流の測定素子20に到達したタイミングで、酸化還元電流を測定するための電圧信号の印加と、酸化還元電流の測定とを、1行目の測定素子20から順に、3行目の測定素子20までを用いて実行する。   When the measurement target liquid L reaches the most downstream measurement element 20, the measurement processing unit 30 drives each measurement element 20 in order to measure the oxidation-reduction current of each part in the measurement flow path 16C (step S15). ). That is, the measurement processing unit 30 applies the voltage signal for measuring the oxidation-reduction current and the measurement of the oxidation-reduction current at the timing when the measurement target liquid L reaches the most downstream measurement element 20 in the first row. The measurement elements 20 are sequentially executed using the measurement elements 20 in the third row.

測定処理部30は、全ての測定素子20から特性値である酸化還元電流を取得すると、全ての測定素子20のなかでの特性値の分布に基づいて測定対象液Lの属性を特定し、その特定された結果を出力部34から出力する(ステップS16)。   When the measurement processing unit 30 acquires the oxidation-reduction current that is the characteristic value from all the measurement elements 20, the measurement processing unit 30 identifies the attribute of the measurement target liquid L based on the distribution of the characteristic values among all the measurement elements 20, The identified result is output from the output unit 34 (step S16).

本実施形態によれば、以下のような効果を得ることができる。
(1)生体物質の分離、および、検出を、共通する泳動槽で行うことが可能である。
(2)測定対象液Lに含まれる各生体物質に対してそれの存在がいずれか1つの測定素子20によって検出されやすいため、生体物質の検出漏れを抑えることが可能となる。
According to this embodiment, the following effects can be obtained.
(1) Separation and detection of biological materials can be performed in a common electrophoresis tank.
(2) Since the presence of each biological substance contained in the measurement target liquid L is easily detected by any one of the measurement elements 20, it is possible to suppress detection failure of the biological substance.

(3)第1基板11が有する1つの側面に全ての測定素子が位置するため、特定の生体物質の存在を特定の測定素子20で検出できる確率を高めることが可能となる。   (3) Since all the measurement elements are located on one side surface of the first substrate 11, it is possible to increase the probability that the presence of the specific biological material can be detected by the specific measurement element 20.

(4)複数の測定素子のなかでの測定結果の相対値に基づいて測定対象液の属性が特定されるため、特定された属性に対する信頼性を高めることが可能でもある。
(5)全ての測定素子20に測定対象液Lが行きわたったか否かを検出できる。
(4) Since the attribute of the liquid to be measured is specified based on the relative value of the measurement results among the plurality of measurement elements, it is possible to increase the reliability of the specified attribute.
(5) It is possible to detect whether or not the measurement target liquid L has spread over all the measurement elements 20.

(6)全ての測定素子20に測定対象液Lが行きわたった状態で測定を開始させることが可能であるため、生体物質の検出に関わる再現性を高めることが可能である。   (6) Since the measurement can be started in a state where the measurement target liquid L is distributed to all the measuring elements 20, it is possible to improve the reproducibility related to the detection of the biological material.

上記実施形態は、以下のように変更して実施することができる。
[特性値の取得]
・測定処理部30は、測定対象液Lが最下流の測定素子20に到達する前に測定を開始してもよいし、測定対象液Lが最下流の測定素子20に到達する前に、全ての測定素子20で測定を繰り返してもよい。
The above embodiment can be implemented with the following modifications.
[Get characteristic value]
The measurement processing unit 30 may start measurement before the measurement target liquid L reaches the most downstream measurement element 20, or before the measurement target liquid L reaches the most downstream measurement element 20, Measurement may be repeated with the measuring element 20.

例えば、図8が示すように、測定処理部30が実行する電気化学測定方法は、測定対象液Lの注入を開始してから、最下流の測定素子20に測定対象液Lが到達するまで、測定処理部30は、測定流路16Cの内部における各部位の酸化還元電流を測定するために、各測定素子20を繰り返し駆動する(ステップS23,24)。すなわち、測定処理部30は、測定対象液Lの注入を開始してから、最下流の測定素子20に測定対象液Lが到達するまでの間に、測定素子20に到達するべき生体物質の到達量の推移を、各測定素子20から取得する。そして、最下流の測定素子20に測定対象液Lが到達したときに、各測定素子20の駆動を停止し、各測定範囲における生体物質の到達量の推移から、測定対象液Lの属性を特定する。   For example, as shown in FIG. 8, the electrochemical measurement method executed by the measurement processing unit 30 starts the injection of the measurement target liquid L until the measurement target liquid L reaches the most downstream measurement element 20. The measurement processing unit 30 repeatedly drives each measurement element 20 in order to measure the oxidation-reduction current at each site in the measurement flow path 16C (steps S23 and S24). That is, the measurement processing unit 30 starts the injection of the measurement target liquid L and arrives at the biological material that should reach the measurement element 20 after the measurement target liquid L arrives at the most downstream measurement element 20. The transition of the quantity is acquired from each measuring element 20. Then, when the measurement target liquid L reaches the most downstream measurement element 20, the driving of each measurement element 20 is stopped, and the attribute of the measurement target liquid L is specified from the transition of the arrival amount of the biological substance in each measurement range. To do.

こうした装置、および、方法によれば、測定対象液Lの属性を特定するための情報量が、測定素子20による測定が繰り返されるごとに増える。そのため、特定された属性の精度を高めることが可能でもある。なお、測定対象液Lの注入を開始してから、所定の時間が経過するまでの間に、測定素子20に到達するべき生体物質の到達量の推移を、各測定素子20から取得する構成であってもよい。こうした装置、および、方法であれば、最下流の測定素子20である最下素子に測定対象液が到達したことを検出する構成を省略でき、電気化学測定装置や電気化学セルの構成について、それの簡素化を図ることが可能である。   According to such an apparatus and method, the amount of information for specifying the attribute of the measurement target liquid L increases each time the measurement by the measurement element 20 is repeated. Therefore, it is possible to increase the accuracy of the identified attribute. In addition, it is the structure which acquires transition of the arrival amount of the biological material which should arrive at the measurement element 20 from each measurement element 20 after starting injection | pouring of the measurement object liquid L until predetermined time passes. There may be. With such an apparatus and method, it is possible to omit the configuration for detecting that the liquid to be measured has reached the lowermost element, which is the most downstream measuring element 20, and for the configurations of the electrochemical measuring apparatus and the electrochemical cell, It is possible to simplify.

・測定素子20が測定する電気化学的な特性値は、酸化還元電流に限らず、例えば、酵素反応によって流れる電流、液中における交流インピーダンス、および、測定対象液と電極との界面電位であってもよく、これらのなかの組み合わせであってもよい。   The electrochemical characteristic value measured by the measuring element 20 is not limited to the oxidation-reduction current. Or a combination of these.

電気化学的な特性値が、酵素反応によって流れる電流の測定であるとき、作用電極14Aは、その表面に酵素が固定化された酵素電極である。こうした構成であれば、酵素反応によってその存在を検出できる生体物質の分離、および、検出に、上記電気化学測定装置を適用することが可能である。   When the electrochemical characteristic value is measurement of a current flowing through an enzyme reaction, the working electrode 14A is an enzyme electrode having an enzyme immobilized on its surface. With such a configuration, the electrochemical measurement apparatus can be applied to separation and detection of a biological substance whose presence can be detected by an enzymatic reaction.

電機化学的な特性値が、液中における交流インピーダンスであるとき、上述した作用電極14Aを、液中に交流電圧を印加することを可能に構成された一対の交流印加電極に変更した構成であればよい。こうした構成であれば、交流インピーダンスによってその存在を検出できる生体物質の分離、および、検出に、上記電気化学測定装置を適用することが可能であって、また、上述した参照電極15Aを省略することもできる。   When the electrochemical characteristic value is an alternating current impedance in the liquid, the working electrode 14A described above may be changed to a pair of alternating current application electrodes configured to be able to apply an alternating voltage to the liquid. That's fine. With such a configuration, the electrochemical measurement device can be applied to the separation and detection of a biological substance whose presence can be detected by AC impedance, and the above-described reference electrode 15A is omitted. You can also.

電気化学的な特性値が、測定対象液Lと電極との界面電位であるとき、上述した作用電極は、電界効果型トランジスタ(FET)である。こうした構成であれば、界面電位によってその存在を検出できる生体物質の分離、および、検出に、上記電気化学測定装置を適用することが可能であって、また、上述した対極13Aを省略することもできる。   When the electrochemical characteristic value is the interface potential between the liquid L to be measured and the electrode, the working electrode described above is a field effect transistor (FET). With such a configuration, it is possible to apply the electrochemical measurement device to the separation and detection of a biological substance whose presence can be detected by the interface potential, and the counter electrode 13A described above may be omitted. it can.

・測定処理部30は、泳動電極による泳動を開始させる信号を泳動電極に入力した後に、各測定素子20による測定を開始する構成であればよく、例えば、泳動電極による泳動を開始させる信号を泳動電極に入力した状態で、各測定素子20による測定を開始してもよい。こうした測定の形態では、電位勾配が形成された状態での特性値の測定となるため、電位勾配が形成されていない状態での特性値の測定とは測定結果が異なる場合がある。一方で、電位勾配が形成された状態での測定結果同士の比較に基づく生体物質の検出は可能であるから、生体物質の分離、および、検出を、単一の泳動槽において行うことは可能である。   The measurement processing unit 30 may be configured to start measurement by each measurement element 20 after inputting a signal for starting migration by the migration electrode to the migration electrode. For example, the measurement processing unit 30 migrates a signal for starting migration by the migration electrode. You may start the measurement by each measuring element 20 in the state input into the electrode. In such a measurement mode, the characteristic value is measured in a state where a potential gradient is formed. Therefore, the measurement result may be different from the measurement of the characteristic value in a state where no potential gradient is formed. On the other hand, since it is possible to detect biological materials based on comparison between measurement results in a state where a potential gradient is formed, it is possible to separate and detect biological materials in a single electrophoresis tank. is there.

[判定部]
・測定対象液Lのなかに既知の濃度で内標準物質が添加される使用の形態では、例えば、電気化学セルは、内標準物質の濃度を測定するための測定素子を備え、判定部31Bは、内標準物質の測定結果に対する、各測定素子20での測定結果の相対値を出力したり、その相対値に基づいて測定対象液Lの属性を判定したりしてもよい。こうした測定の形態によっても、電気化学測定装置による検出の精度を高めることは可能であって、また、電気化学測定装置によって特定された属性の信頼性を高めることも可能である。
[Determining part]
In the form of use in which the internal standard substance is added at a known concentration in the measurement target liquid L, for example, the electrochemical cell includes a measuring element for measuring the concentration of the internal standard substance, and the determination unit 31B The relative value of the measurement result of each measuring element 20 with respect to the measurement result of the internal standard substance may be output, or the attribute of the measurement target liquid L may be determined based on the relative value. Even with such a measurement form, it is possible to increase the accuracy of detection by the electrochemical measurement device, and it is also possible to increase the reliability of the attribute specified by the electrochemical measurement device.

・測定処理部30は、各測定素子20から特性値を取得し、取得された各特性値を検出値として出力部34に出力させる構成であってもよい。こうした測定処理部30であれば、判定部31Bの省略によって、測定処理部30における構成の簡素化を図ることが可能でもある。   The measurement processing unit 30 may be configured to acquire characteristic values from each measurement element 20 and output the acquired characteristic values to the output unit 34 as detection values. With such a measurement processing unit 30, it is possible to simplify the configuration of the measurement processing unit 30 by omitting the determination unit 31B.

[検出部]
・最下流の測定素子20に測定対象液Lが到達したことを検出する機能を、電気化学測定装置から割愛し、最下流の測定素子20に測定対象液Lが到達したことは、測定対象液Lの注入から所定時間が経過したことに基づいて、制御部31が推定してもよい。
[Detection unit]
The function of detecting that the measurement target liquid L has arrived at the most downstream measurement element 20 is omitted from the electrochemical measurement device, and the fact that the measurement target liquid L has reached the most downstream measurement element 20 is The control unit 31 may estimate based on the fact that a predetermined time has elapsed since the injection of L.

・測定処理部30は、最下流の測定素子20に測定対象液Lが到達した後に、各測定素子20を駆動して、各測定素子20に特性値の測定を開始させてもよい。また、測定処理部30は、最下流の測定素子20に測定対象液Lが到達する前に、各測定素子20を駆動して、各測定素子20に特性値の測定を開始させてもよい。これらの測定の開始タイミングによっても、最下流の測定素子20に測定対象液Lが到達したことを検出する機能を、電気化学測定装置から割愛し、それの構成の簡素化を図ることが可能である。   The measurement processing unit 30 may drive each measurement element 20 after the measurement target liquid L has arrived at the most downstream measurement element 20 and cause each measurement element 20 to start measuring the characteristic value. In addition, the measurement processing unit 30 may drive each measurement element 20 and start measurement of the characteristic value before each measurement target liquid L reaches the most downstream measurement element 20. Even with the start timing of these measurements, it is possible to omit the function of detecting that the measurement target liquid L has reached the most downstream measurement element 20 from the electrochemical measurement device, and to simplify the configuration thereof. is there.

[測定素子]
・対極群13、作用電極群14、参照電極群15、第1泳動電極16A、および、第2泳動電極16Bの少なくとも1つは、第2基板12が備える面のなかで第1基板11と対向する面に位置してもよい。こうした電極や配線の配置であれば、全ての電極や配線が第1基板11に位置する構成と比べて、電極や配線の位置に関わる制約を軽減することが可能である。
[Measuring element]
At least one of the counter electrode group 13, the working electrode group 14, the reference electrode group 15, the first migration electrode 16 </ b> A, and the second migration electrode 16 </ b> B is opposed to the first substrate 11 in the surface of the second substrate 12. It may be located on the surface to be. With such an arrangement of electrodes and wirings, it is possible to reduce restrictions on the positions of the electrodes and wirings, compared to a configuration in which all the electrodes and wirings are located on the first substrate 11.

・複数の測定素子20は、3行×3列に限らず、2行×2列であってもよいし、4行以上であってもよいし、4列以上であってもよく、さらには、マトリックス状の配置に限らず、例えば、ペンタイル状の配置や多重環状の配置であってもよく、二次元方向に並ぶ構成であればよい。   The plurality of measuring elements 20 is not limited to 3 rows × 3 columns, may be 2 rows × 2 columns, 4 rows or more, 4 columns or more, and The arrangement is not limited to a matrix shape, and may be, for example, a pen tile-like arrangement or a multi-annular arrangement, as long as the arrangement is two-dimensional.

・複数の測定素子20の一部は、第2基板12が備える面のなかで第1基板11と対向する面に位置してもよい。こうした測定素子20の配置であれば、全ての測定素子20が第1基板11に位置する構成と比べて、測定素子20の位置に関わる制約を軽減することが可能である。   A part of the plurality of measurement elements 20 may be located on a surface facing the first substrate 11 among the surfaces of the second substrate 12. With such an arrangement of the measurement elements 20, it is possible to reduce restrictions on the positions of the measurement elements 20 compared to a configuration in which all the measurement elements 20 are located on the first substrate 11.

[泳動電極]
・電気化学セルが備える泳動電極の数は、3つ以上であってもよく、例えば、3つ以上の泳動電極に対して、泳動電極ごとに位相が異なる進行波電圧を測定処理部30が印加し、それによって、測定流路16Cの内部に位置する生体物質を泳動させてもよい。
[その他の構成]
[Electrophoresis electrode]
The number of electrophoretic electrodes provided in the electrochemical cell may be three or more. For example, the measurement processing unit 30 applies traveling wave voltages having different phases for each electrophoretic electrode to three or more electrophoretic electrodes. Thereby, the biological material located inside the measurement channel 16C may be migrated.
[Other configurations]

・電気化学測定装置は、酸性の測定対象液Lに関しても、また、アルカリ性の測定対象液Lに関しても、生体物質の分離、および、検出を、共通する泳動槽で行うことは可能である。   The electrochemical measurement apparatus can perform separation and detection of biological substances in a common electrophoresis tank for both the acidic measurement target liquid L and the alkaline measurement target liquid L.

・測定処理部が電気化学セルに実行させる生体物質の泳動は、測定処理部が形成させる電位勾配による電気泳動に限らず、例えば、測定処理部が形成させる不均一な電界による誘電泳動であってもよい。この際、電気化学セルが備える泳動電極は、相互に異なる大きさを有する泳動電極であってもよいし、他の泳動電極との距離が泳動電極内において異なる泳動電極であってもよい。   The migration of the biological material that the measurement processing unit performs on the electrochemical cell is not limited to the electrophoresis based on the potential gradient formed by the measurement processing unit, for example, the dielectrophoresis by the non-uniform electric field formed by the measurement processing unit. Also good. In this case, the migration electrodes provided in the electrochemical cell may be migration electrodes having different sizes from each other, or may be migration electrodes having different distances from other migration electrodes within the migration electrode.

・電気化学セルにおける測定対象液Lの流動は、測定対象液Lの自重による泳動であってもよいし、測定流路16Cの一端に接続される吸引部を電気化学測定装置が備え、吸引部による測定対象液Lの吸引によって実現してもよい。   The flow of the measurement target liquid L in the electrochemical cell may be migration due to its own weight, or the electrochemical measurement device includes a suction part connected to one end of the measurement flow path 16C, and the suction part This may be realized by suction of the liquid L to be measured.

・測定流路16Cのなかで測定対象液Lが注入される位置は、測定流路16Cにおける行方向の全体に限らず、測定流路16Cにおける行方向の一端であってもよいし、行方向における中央であってもよい。   The position into which the measurement target liquid L is injected in the measurement channel 16C is not limited to the entire row direction in the measurement channel 16C, but may be one end in the row direction in the measurement channel 16C. May be the center.

L…測定対象液、P…ポンプ、MLA,MLB…高分子、MSA,MSB…低分子、11…第1基板、11A…対向面、12…第2基板、13…対極群、13A…対極、13B…対極配線、14…作用電極群、14A…作用電極、14B…作用電極配線、15…参照電極群、15A…参照電極、15B…参照電極配線、16A…第1泳動電極、16B…第2泳動電極、16C…測定流路、20…測定素子、20a…第1測定素子、20b…第2測定素子、20c…第3測定素子、20d…第4測定素子、20e…第5測定素子、20f…第6測定素子、20g…第7測定素子、20h…第8測定素子、20i…第9測定素子、30…測定処理部、31…制御部、31A…検出部、31B…判定部、32…記憶部、33…駆動部、34…出力部。   L: liquid to be measured, P: pump, MLA, MLB ... polymer, MSA, MSB ... low molecule, 11 ... first substrate, 11A ... opposite surface, 12 ... second substrate, 13 ... counter electrode group, 13A ... counter electrode, 13B ... Counter electrode wiring, 14 ... Working electrode group, 14A ... Working electrode, 14B ... Working electrode wiring, 15 ... Reference electrode group, 15A ... Reference electrode, 15B ... Reference electrode wiring, 16A ... First migration electrode, 16B ... Second Electrophoresis electrode, 16C ... measurement channel, 20 ... measurement element, 20a ... first measurement element, 20b ... second measurement element, 20c ... third measurement element, 20d ... fourth measurement element, 20e ... fifth measurement element, 20f ... 6th measurement element, 20g ... 7th measurement element, 20h ... 8th measurement element, 20i ... 9th measurement element, 30 ... Measurement processing part, 31 ... Control part, 31A ... Detection part, 31B ... Determination part, 32 ... Storage unit 33 ... Drive unit 34 ... Output unit

Claims (7)

生体物質を含む測定対象液を1つの方向である流動方向へ流すための泳動槽と、
前記流動方向と交差する泳動方向に前記生体物質を泳動させるための泳動電極と、
前記流動方向と前記泳動方向とを含む二次元方向に並び、前記測定対象液に関する電気化学的な特性値を前記二次元方向における各位置で測定するための複数の測定素子と、
前記泳動電極と前記各測定素子とに接続し、前記泳動電極による泳動を開始させる信号を前記泳動電極に入力した後に、前記各測定素子による測定を開始する測定処理部とを備える
電気化学測定装置。
An electrophoresis tank for flowing a liquid to be measured containing a biological substance in one direction of flow;
A migration electrode for migrating the biological material in a migration direction that intersects the flow direction;
A plurality of measuring elements arranged in a two-dimensional direction including the flow direction and the migration direction, and for measuring an electrochemical characteristic value related to the measurement target liquid at each position in the two-dimensional direction,
An electrochemical measurement apparatus comprising: a measurement processing unit that is connected to the migration electrode and each of the measurement elements and starts measurement by the measurement elements after inputting a signal for starting migration by the migration electrode to the migration electrode .
複数の前記測定素子は、前記流動方向、および、前記泳動方向にマトリックス状に並ぶ
請求項1に記載の電気化学測定装置。
The electrochemical measurement device according to claim 1, wherein the plurality of measurement elements are arranged in a matrix in the flow direction and the migration direction.
前記泳動槽は、前記流動方向と前記泳動方向とを含む平面であって、相互に対向する一対の平面を備え、一方の前記平面に全ての前記測定素子が位置し、前記一対の平面間に前記測定対象液を流す隙間を備える
請求項1または2に記載の電気化学測定装置。
The migration tank is a plane including the flow direction and the migration direction, and includes a pair of planes facing each other, all the measurement elements are located on one of the planes, and between the pair of planes. The electrochemical measurement device according to claim 1, further comprising a gap through which the measurement target liquid flows.
複数の前記測定素子のなかでの測定結果の分布から前記測定対象液の属性を判定する判定部をさらに備える
請求項1から3のいずれか一項に記載の電気化学測定装置。
The electrochemical measurement device according to any one of claims 1 to 3, further comprising a determination unit that determines an attribute of the measurement target liquid from a distribution of measurement results among the plurality of measurement elements.
前記流動方向において最も下流に位置する前記測定素子である最下素子に前記測定対象液が到達したことを検出する検出部をさらに備える
請求項1から4のいずれか一項に記載の電気化学測定装置。
The electrochemical measurement according to any one of claims 1 to 4, further comprising a detection unit that detects that the measurement target liquid has reached the lowest element, which is the measurement element located most downstream in the flow direction. apparatus.
前記測定処理部は、前記最下素子に前記測定対象液が到達したことを前記検出部が検出したとき、前記各測定素子による測定を開始する
請求項5に記載の電気化学測定装置。
The electrochemical measurement device according to claim 5, wherein the measurement processing unit starts measurement by each measurement element when the detection unit detects that the measurement target liquid has reached the lowermost element.
測定処理部が、
生体物質を含む測定対象液が1つの方向である流動方向へ流れる泳動槽において、
前記流動方向と交差する泳動方向に前記生体物質を泳動させる信号を泳動電極へ入力することと、
前記信号を前記泳動電極へ入力した後に、前記流動方向と前記泳動方向とを含む二次元方向に並ぶ複数の測定素子を用い、前記測定対象液に関する電気化学的な特性値を前記二次元方向における各位置で測定することとを含む
電気化学測定方法。
The measurement processor
In a migration tank in which a liquid to be measured containing a biological substance flows in a flow direction that is one direction,
Inputting a signal for migrating the biological material in the migration direction intersecting the flow direction to the migration electrode;
After inputting the signal to the migration electrode, a plurality of measurement elements arranged in a two-dimensional direction including the flow direction and the migration direction are used, and an electrochemical characteristic value related to the measurement target liquid is measured in the two-dimensional direction. An electrochemical measurement method comprising measuring at each position.
JP2015246481A 2015-12-17 2015-12-17 Electrochemical measurement device and electrochemical measurement method Pending JP2017111045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246481A JP2017111045A (en) 2015-12-17 2015-12-17 Electrochemical measurement device and electrochemical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246481A JP2017111045A (en) 2015-12-17 2015-12-17 Electrochemical measurement device and electrochemical measurement method

Publications (1)

Publication Number Publication Date
JP2017111045A true JP2017111045A (en) 2017-06-22

Family

ID=59081548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246481A Pending JP2017111045A (en) 2015-12-17 2015-12-17 Electrochemical measurement device and electrochemical measurement method

Country Status (1)

Country Link
JP (1) JP2017111045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157711A1 (en) * 2022-02-15 2023-08-24 国立大学法人広島大学 Inspection chip, reaction detection device, and reaction detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157711A1 (en) * 2022-02-15 2023-08-24 国立大学法人広島大学 Inspection chip, reaction detection device, and reaction detection method

Similar Documents

Publication Publication Date Title
Graß et al. A new PMMA-microchip device for isotachophoresis with integrated conductivity detector
He et al. Gate manipulation of DNA capture into nanopores
Khurana et al. Sample zone dynamics in peak mode isotachophoresis
Gillespie et al. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow
Williams et al. Determination of accurate electroosmotic mobility and analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis
Khurana et al. Preconcentration, separation, and indirect detection of nonfluorescent analytes using fluorescent mobility markers
Chambers et al. Imaging and quantification of isotachophoresis zones using nonfocusing fluorescent tracers
Zhang et al. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis
Zangle et al. Effects of constant voltage on time evolution of propagating concentration polarization
Chao et al. Preconcentration of diluted biochemical samples using microchannel with integrated nanoscale Nafion membrane
KR101375547B1 (en) Biomolecule detector based on field effect transistor arrays containing reference electrodes and detection method for biomolecules using the same
Hassan et al. Droplet interfaced parallel and quantitative microfluidic-based separations
Sensale et al. Universal features of non-equilibrium ionic currents through perm-selective membranes: gating by charged nanoparticles/macromolecules for robust biosensing applications
Hsu et al. Electrophoresis of a sphere along the axis of a cylindrical pore: effects of double-layer polarization and electroosmotic flow
Loessberg-Zahl et al. (Almost) stationary isotachophoretic concentration boundary in a nanofluidic channel using charge inversion
Hassan Microchip electrophoresis
JP2017111045A (en) Electrochemical measurement device and electrochemical measurement method
JP6526193B2 (en) Electrode arrangement for electrochemical test elements and method of use thereof
Ross et al. Simple device for multiplexed electrophoretic separations using gradient elution moving boundary electrophoresis with channel current detection
Duncombe et al. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice
Bengtsson et al. Conducting polymer electrodes for gel electrophoresis
Kim et al. Movement of colloidal particles in two-dimensional electric fields
Oukacine et al. Suppression of apparent fluid flow in capillary isotachophoresis without recourse to capillary coating
Keh et al. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness
Hiratsuka et al. Fully automated two-dimensional electrophoresis system for high-throughput protein analysis