JP2017110805A - Friction transmission belt and manufacturing method of the same - Google Patents

Friction transmission belt and manufacturing method of the same Download PDF

Info

Publication number
JP2017110805A
JP2017110805A JP2016227974A JP2016227974A JP2017110805A JP 2017110805 A JP2017110805 A JP 2017110805A JP 2016227974 A JP2016227974 A JP 2016227974A JP 2016227974 A JP2016227974 A JP 2016227974A JP 2017110805 A JP2017110805 A JP 2017110805A
Authority
JP
Japan
Prior art keywords
friction transmission
layer
rubber
conductive metal
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016227974A
Other languages
Japanese (ja)
Other versions
JP6797647B2 (en
Inventor
博樹 武市
Hiroki Takechi
博樹 武市
学 光冨
Manabu Mitsutomi
学 光冨
原 浩孝
Hirotaka Hara
浩孝 原
崇 西尾
Takashi Nishio
崇 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Publication of JP2017110805A publication Critical patent/JP2017110805A/en
Application granted granted Critical
Publication of JP6797647B2 publication Critical patent/JP6797647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a friction transmission belt capable of enhancing heat radiation from a belt even under a severe condition easily causing thermal deterioration, and suppressing temperature rise of the belt.SOLUTION: A friction transmission belt is manufactured by coating a friction transmission face with a heat radiation layer including heat conductive metallic particles. Heat conductive metallic particles may exist on a surface of the heat radiation layer. Heat conductivity of the heat conductive metallic particles may be 100 W/m L or more. An average particle diameter of the heat conductive metallic particles may be about 1-100 μm. The friction conductive belt 1 includes an extension layer 4 forming a belt back face, a compression layer 2 disposed at one face side of the extension layer, and a core body 3 buried between the extension layer 4 and the compression layer 2 and extended in a belt circumferential direction. A friction conductive face of the compression layer 2 may be coated with a heat radiation layer 5 composed of vulcanizate of a rubber composition including a rubber component and the heat conductive metallic particles.SELECTED DRAWING: Figure 1

Description

本発明は、自動車エンジン補機駆動などに用いられる摩擦伝動ベルト(Vリブドベルトなど)及びその製造方法に関し、詳しくは、ベルトから放熱が促進され、ベルトの温度上昇が抑制される摩擦伝動ベルト及びその製造方法に関する。   The present invention relates to a friction transmission belt (such as a V-ribbed belt) used for driving an automobile engine accessory and the like, and more particularly to a friction transmission belt in which heat dissipation is promoted from the belt and temperature rise of the belt is suppressed, and It relates to a manufacturing method.

動力を伝達する伝動ベルトとしてVベルト、Vリブドベルト、平ベルトなどの摩擦伝動ベルトが広く知られているが、特に自動車用においては高機能、高性能化が求められている。このような自動車用に用いられる摩擦伝動ベルトの一つとして、ベルト周長方向に伸びる複数のV字状リブを形成したVリブドベルトがあり、自動車のエアーコンプレッサーやオルタネータなどの、補機駆動の動力伝達に広く用いられている。このようなVリブドベルトの製造方法としては、リブ部を研削で形成する方法と、リブ部を金型で成形する方法とに大別できる。   Frictional power transmission belts such as V-belts, V-ribbed belts, and flat belts are widely known as power transmission belts for transmitting power, and high performance and high performance are demanded particularly for automobiles. As one of such friction transmission belts used for automobiles, there is a V-ribbed belt formed with a plurality of V-shaped ribs extending in the circumferential direction of the belt. Power for driving auxiliary equipment such as an air compressor and an alternator of an automobile Widely used for transmission. Such a V-ribbed belt manufacturing method can be roughly classified into a method of forming the rib portion by grinding and a method of forming the rib portion by a mold.

近年のエンジンの高出力化とエンジンルームのコンパクト化でエンジンルームは非常に高温になっている。また、プーリの小径化による巻き付け角度が広くなり、多軸化により屈曲回数が増加傾向にあるため、屈曲による自己発熱が高くなる傾向にある。Vリブドベルトが発熱すると、熱劣化によるゴムの硬度上昇が促進され、一次故障のクラックが早期に発生して、二次故障であるリブの破壊へ短期に移行して寿命までの走行時間が短くなる。また、熱劣化はベルトを構成する部材間(例えば心線とゴム層との間)の接着力の低下を促進させ、部材間剥離が早期に発生して短寿命となる。このように、高出力とエンジンルームのコンパクト化により、Vリブドベルトは現行仕様に比べ、更に耐熱性を求められており、要求品質に合致したベルトの提供が必要である。   The engine room has become extremely hot due to the recent high engine output and compact engine room. In addition, since the winding angle is increased by reducing the diameter of the pulley and the number of bends tends to increase due to the increase in the number of axes, the self-heating due to the bending tends to increase. When the V-ribbed belt generates heat, the hardness of the rubber increases due to thermal deterioration, cracks of the primary failure occur early, transition to the failure of the rib, which is a secondary failure, in a short time, and the running time to the life is shortened. . Further, the thermal deterioration promotes a decrease in the adhesive force between the members constituting the belt (for example, between the core wire and the rubber layer), and the separation between the members occurs early, resulting in a short life. As described above, due to the high output and the compact engine room, the V-ribbed belt is required to have higher heat resistance than the current specification, and it is necessary to provide a belt that matches the required quality.

特開2003−340934号公報(特許文献1)には、研削や研磨といった表面処理を施さなくとも、高い耐摩耗性、耐寒性を有するVリブドベルトとして、ベルト内周面に金属及び/又はセラミックス補強層を設けた圧縮ゴム層を備えたVリブドベルトが開示されている。この文献の実施例では、表面にニッケル粉を配合したゴム組成物を積層したクロロプレンゴムシート、又は表面にニッケル粉を溶射被覆したクロロプレンゴムシートに、V形溝が刻設された外型を用いて加硫成形している。   Japanese Patent Laid-Open No. 2003-340934 (Patent Document 1) discloses a metal and / or ceramic reinforcement on the inner peripheral surface of a belt as a V-ribbed belt having high wear resistance and cold resistance without performing surface treatment such as grinding and polishing. A V-ribbed belt comprising a compressed rubber layer provided with a layer is disclosed. In the examples of this document, an outer mold in which V-shaped grooves are engraved on a chloroprene rubber sheet laminated with a rubber composition containing nickel powder on the surface or a chloroprene rubber sheet thermally sprayed with nickel powder on the surface is used. Vulcanized and molded.

国際公開WO2009/011414号パンフレット(特許文献2)には、耐クラック性に優れ、異音防止効果に優れたVリブドベルトとして、プーリに当接される表面を構成する表面層とこの表面層の内側を構成する内層との二層構造がリブに形成され、かつ前記表面層を形成するゴム組成物が樹脂粒子及び/又は無機物粒子を含むVリブドベルトが開示されている。この文献には、無機物粒子として、グラファイト粒子、二硫化モリブデン粒子、雲母粒子、タルク粒子、三酸化アンチモン粒子、二セレン化モリブデン粒子、二硫化タングステン粒子が例示されている。この文献の実施例では、加硫後に検索して形成したリブの表面に、ポリテトラフルオロエチレン(PTFE)粒子、超高分子量ポリエチレン粒子、シリカ粒子、カーボンブラックを含む液状ウレタンゴム組成物をスプレーコートして架橋させている。   International Publication WO2009 / 011414 (Patent Document 2) describes a surface layer constituting a surface abutting against a pulley as an V-ribbed belt having excellent crack resistance and excellent noise prevention effect, and an inner side of the surface layer. A V-ribbed belt is disclosed in which a two-layer structure with an inner layer constituting the surface layer is formed on a rib, and the rubber composition forming the surface layer includes resin particles and / or inorganic particles. This reference exemplifies graphite particles, molybdenum disulfide particles, mica particles, talc particles, antimony trioxide particles, molybdenum diselenide particles, and tungsten disulfide particles as inorganic particles. In the examples of this document, a liquid urethane rubber composition containing polytetrafluoroethylene (PTFE) particles, ultrahigh molecular weight polyethylene particles, silica particles, and carbon black is spray-coated on the surface of a rib formed by searching after vulcanization. And cross-linked.

しかし、これらの文献には、Vリブドベルトの熱劣化については記載されていない。さらに、特許文献2では、金属粒子は配合されていない上に、加硫後に研削して形成したリブの表面に、表面層を付着させているので、一体化し難く、表面層が脱落し易い。   However, these documents do not describe thermal deterioration of the V-ribbed belt. Further, in Patent Document 2, since the metal particles are not blended and the surface layer is adhered to the surface of the rib formed by vulcanization and grinding, it is difficult to integrate and the surface layer is likely to fall off.

特開2003−340934号公報(特許請求の範囲、実施例)JP 2003-340934 A (Claims, Examples) 国際公開WO2009/011414号パンフレット(請求の範囲、段落[0038]、実施例)International Publication WO2009 / 011414 Pamphlet (Claims, Paragraph [0038], Examples)

従って、本発明の目的は、熱劣化し易い過酷な条件であっても、ベルトからの放熱を促進でき、ベルトの温度上昇を抑制できる摩擦伝動ベルト及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a friction transmission belt that can promote heat dissipation from the belt even under harsh conditions that are likely to be thermally deteriorated, and can suppress an increase in the temperature of the belt, and a method for manufacturing the same.

本発明の他の目的は、長期間走行しても、クラックの発生、リブの破壊、及び部材間の剥離を抑制でき、長寿命化できる摩擦伝動ベルト及びその製造方法を提供することにある。   Another object of the present invention is to provide a friction transmission belt that can suppress the generation of cracks, breakage of ribs, and peeling between members even when running for a long period of time, and a method for manufacturing the same.

本発明者らは、前記課題を達成するため鋭意検討した結果、熱伝導性金属粒子を含む放熱層で摩擦伝動ベルトの摩擦伝動面を被覆することにより、熱劣化し易い過酷な条件であっても、ベルトからの放熱を促進でき、ベルトの温度上昇を抑制できることを見いだし、本発明を完成した。   As a result of intensive investigations to achieve the above-mentioned problems, the present inventors have found that harsh conditions are likely to cause thermal degradation by covering the friction transmission surface of the friction transmission belt with a heat dissipation layer containing thermally conductive metal particles. However, the present inventors have found that heat dissipation from the belt can be promoted and the temperature rise of the belt can be suppressed, and the present invention has been completed.

すなわち、本発明の摩擦伝動ベルトは、摩擦伝動面が熱伝導性金属粒子を含む放熱層で被覆されている。前記放熱層の表面に熱伝導性金属粒子が存在していてもよい。前記熱伝導性金属粒子の100℃での熱伝導率は100W/m・K以上であってもよい。前記熱伝導性金属粒子の平均粒径が1〜100μm程度であってもよい。前記熱伝導性金属粒子の形状は略球状であってもよい。前記摩擦伝動面全体に対して前記熱伝導性金属粒子が占める面積割合は5〜95%程度であってもよい。前記放熱層の平均厚みは10〜300μm程度であってもよい。前記放熱層は、ゴム成分及び熱伝導性金属粒子を含むゴム組成物の加硫物で形成されていてもよい。前記熱伝導性金属粒子の割合は、ゴム成分100質量部に対して10〜2000質量部程度であってもよい。本発明の摩擦伝動ベルトは、ゴム成分を含むゴム組成物の加硫物で形成された圧縮層を備え、この圧縮層に摩擦伝動面が形成された摩擦伝動ベルトであって、前記圧縮層のゴム成分と、放熱層のゴム成分とが、同一のゴム成分であってもよい。本発明の摩擦伝動ベルトは、ベルト周長方向に延びる複数のV字状リブ部を有するVリブドベルトであってもよい。   That is, in the friction transmission belt of the present invention, the friction transmission surface is covered with a heat dissipation layer containing thermally conductive metal particles. Thermally conductive metal particles may be present on the surface of the heat dissipation layer. The thermal conductivity at 100 ° C. of the thermally conductive metal particles may be 100 W / m · K or more. The heat conductive metal particles may have an average particle size of about 1 to 100 μm. The heat conductive metal particles may have a substantially spherical shape. The area ratio of the thermally conductive metal particles to the entire friction transmission surface may be about 5 to 95%. The average thickness of the heat dissipation layer may be about 10 to 300 μm. The heat dissipation layer may be formed of a vulcanized product of a rubber composition containing a rubber component and thermally conductive metal particles. About 10-2000 mass parts may be sufficient as the ratio of the said heat conductive metal particle with respect to 100 mass parts of rubber components. The friction transmission belt of the present invention includes a compression layer formed of a vulcanized rubber composition containing a rubber component, and a friction transmission belt having a friction transmission surface formed on the compression layer. The rubber component and the rubber component of the heat dissipation layer may be the same rubber component. The friction transmission belt of the present invention may be a V-ribbed belt having a plurality of V-shaped rib portions extending in the belt circumferential direction.

本発明には、熱伝導性金属粒子を含む放熱層前駆体で摩擦伝動面を被覆する被覆工程を含む前記摩擦伝動ベルトの製造方法も含まれる。   The present invention also includes a method for producing the friction transmission belt including a coating step of covering the friction transmission surface with a heat radiation layer precursor containing thermally conductive metal particles.

特に、前記放熱層がゴム成分及び熱伝導性金属粒子を含むゴム組成物の加硫物で形成されている摩擦伝動ベルトは、ゴム成分及び熱伝導性金属粒子を含むゴム組成物で摩擦伝動面を被覆する被覆工程、及び摩擦伝動面を被覆した前記ゴム組成物を加硫する加硫工程を含む製造方法で得られてもよい。前記被覆工程において、ゴム成分及び熱伝導性金属粒子を含む液状ゴム組成物を摩擦伝動面に付着させてもよい。また、前記被覆工程において、ゴム成分及び熱伝導性金属粒子を含むゴム組成物で形成されたシートを摩擦伝動面に積層してもよい。   In particular, the friction transmission belt in which the heat dissipation layer is formed of a vulcanized product of a rubber composition containing a rubber component and thermally conductive metal particles is a frictional transmission surface made of a rubber composition containing a rubber component and thermally conductive metal particles. It may be obtained by a production method including a coating step for coating the rubber composition and a vulcanization step for vulcanizing the rubber composition coated on the friction transmission surface. In the coating step, a liquid rubber composition containing a rubber component and thermally conductive metal particles may be attached to the friction transmission surface. In the coating step, a sheet formed of a rubber composition containing a rubber component and heat conductive metal particles may be laminated on the friction transmission surface.

本発明では、熱伝導性金属粒子を含む放熱層で摩擦伝動ベルトの摩擦伝動面が被覆されているため、熱劣化し易い過酷な条件であっても、ベルトからの放熱を促進でき、ベルトの温度上昇を抑制できる。そのため、長期間走行しても、クラックの発生、リブの破壊、及び部材間の剥離を抑制でき、長寿命化できる。   In the present invention, since the friction transmission surface of the friction transmission belt is covered with the heat dissipation layer containing the heat conductive metal particles, the heat dissipation from the belt can be promoted even under severe conditions that are likely to be thermally deteriorated. Temperature rise can be suppressed. Therefore, even if it runs for a long period of time, generation | occurrence | production of a crack, destruction of a rib, and peeling between members can be suppressed, and lifetime can be extended.

図1は、本発明の摩擦伝動ベルト(Vリブドベルト)の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a friction transmission belt (V-ribbed belt) according to the present invention. 図2は、実施例及び比較例で得られたベルトの放熱特性の測定方法を説明するための概略図である。FIG. 2 is a schematic diagram for explaining a method of measuring the heat dissipation characteristics of the belts obtained in the examples and comparative examples.

以下に、必要により添付図面を参照しつつ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings as necessary.

本発明の摩擦伝動ベルトは、プーリと接触可能な摩擦伝動面を備えていれば特に限定されず、Vベルト、Vリブドベルト、平ベルトなどであってもよい。また、摩擦伝動ベルトは、摩擦伝動部(リブなど)が形成されたベルトであってもよく、代表的な伝動ベルトは、ベルト周長方向に延びる複数のV字状リブ部が形成され、伝動効率の高いVリブドベルトである。   The friction transmission belt of the present invention is not particularly limited as long as it has a friction transmission surface that can come into contact with a pulley, and may be a V belt, a V-ribbed belt, a flat belt, or the like. Further, the friction transmission belt may be a belt in which a friction transmission portion (rib or the like) is formed, and a typical transmission belt is formed with a plurality of V-shaped rib portions extending in the belt circumferential length direction. It is a highly efficient V-ribbed belt.

図1に示すように、このような摩擦伝動ベルト(Vリブドベルト)1は、ベルト背面(ベルトの外周面)を形成し、かつカバー帆布(織物、編物、不織布など)で構成された伸張層4と、この伸張層4の片面側(一方の面側)に形成され、摩擦伝動面(摩擦伝動部の表面)を有する圧縮層(圧縮ゴム層)2と、この圧縮層(圧縮ゴム層)2の摩擦伝動面に被覆(積層)されてベルト内周面を形成し、プーリに接触可能な放熱層5と、前記伸張層4と圧縮層2との間にベルト長手方向(周長方向)に沿って埋設された芯体3とを備えている。この例では、芯体3は、ベルト幅方向に所定間隔で配列した心線(撚りコード)であり、伸張層4と圧縮層2とに接して、両層の間に介在している。   As shown in FIG. 1, such a friction transmission belt (V-ribbed belt) 1 forms a belt back surface (the outer peripheral surface of the belt) and is composed of a cover canvas (woven fabric, knitted fabric, non-woven fabric, etc.). A compression layer (compression rubber layer) 2 having a friction transmission surface (surface of the friction transmission portion) formed on one side (one surface side) of the stretch layer 4, and this compression layer (compression rubber layer) 2 The inner surface of the belt is coated (laminated) on the friction transmission surface of the belt, and between the heat-dissipating layer 5 that can come into contact with the pulley and the stretch layer 4 and the compression layer 2 in the belt longitudinal direction (circumferential direction) And a core body 3 buried along. In this example, the core body 3 is a core wire (twisted cord) arranged at a predetermined interval in the belt width direction, and is in contact with the stretch layer 4 and the compression layer 2 and is interposed between both layers.

圧縮層2には、ベルト長手方向に伸びる複数の断面V字状溝が形成され、この溝の間には断面V字形(逆台形)の複数のリブが形成されており、リブの二つの傾斜面(表面)が摩擦伝動面を形成している。そして、摩擦伝動面は、放熱層5を介して、プーリと接触可能であり、前記放熱層5の表面及び内部には熱伝導性金属粒子が保持されている。   A plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compression layer 2, and a plurality of ribs having a V-shaped section (inverted trapezoid) are formed between the grooves. The surface (surface) forms a friction transmission surface. The friction transmission surface can come into contact with the pulley via the heat dissipation layer 5, and thermally conductive metal particles are held on the surface and inside of the heat dissipation layer 5.

なお、本発明は、圧縮層2にプーリとの摩擦伝動面(又は摩擦伝動部)が形成された伝動ベルトに好適に適用される。本発明の摩擦伝動ベルトは上記構造に限定されず、例えば、伸張層4をゴム組成物で形成してもよく、圧縮層2と伸張層4との間には、芯体3と伸張層4又は圧縮層2との接着性を向上させるため、接着層を介在させてもよい。芯体3は、伸張層4と圧縮層2との間に埋設できればよく、例えば、圧縮層2に埋設させてもよく、伸張層4に接触させつつ圧縮層2に埋設させてもよい。さらに、芯体3は前記接着層に埋設させてもよく、圧縮層2と接着層又は接着層と伸張層4との間に芯体3を埋設してもよい。   In addition, this invention is applied suitably for the power transmission belt in which the friction transmission surface (or friction power transmission part) with the pulley was formed in the compression layer 2. FIG. The friction transmission belt of the present invention is not limited to the above structure. For example, the stretch layer 4 may be formed of a rubber composition, and the core 3 and the stretch layer 4 are interposed between the compression layer 2 and the stretch layer 4. Or in order to improve adhesiveness with the compression layer 2, you may interpose an adhesive layer. The core 3 may be embedded between the stretch layer 4 and the compression layer 2. For example, the core body 3 may be embedded in the compression layer 2 or may be embedded in the compression layer 2 while being in contact with the stretch layer 4. Furthermore, the core body 3 may be embedded in the adhesive layer, or the core body 3 may be embedded between the compression layer 2 and the adhesive layer or between the adhesive layer and the stretch layer 4.

以下に、ベルトを構成する各部材、及びベルトの製造方法の詳細を説明する。   Below, the detail of each member which comprises a belt, and the manufacturing method of a belt is demonstrated.

[放熱層]
放熱層は、熱伝導性金属粒子を含み、摩擦伝動面に熱伝導性金属粒子が存在することにより、放熱効果を発現し、摩擦ベルトの温度上昇を抑制できる。
[Heat dissipation layer]
The heat dissipation layer includes thermally conductive metal particles, and the presence of the thermally conductive metal particles on the friction transmission surface can exhibit a heat dissipation effect and suppress an increase in the temperature of the friction belt.

熱伝導性金属粒子を構成する熱伝導性金属としては、例えば、アルカリ金属(例えば、ナトリウム、カリウムなど)、アルカリ土類金属(例えば、ベリリウム、マグネシウムなど)、遷移金属(例えば、チタンなどの周期表第4A族金属;タンタルなどの周期表第5A族金属;クロム、モリブデン、タングステンなどの周期表第6A族金属;レニウムなどの周期表第7A族金属;ニッケル、鉄、コバルト、ロジウム、パラジウム、イリジウム、白金などの周期表第8族金属;銅、銀、金などの周期表第1B族金属など)、周期表第2B族金属(例えば、亜鉛、カドミウムなど)、周期表第3B族金属(例えば、アルミニウム、ガリウム、インジウムなど)、周期表第4B族金属(例えば、スズ、鉛など)、周期表第5B族金属(例えば、アンチモンなど)などが挙げられる。これらの導電性金属は、単独で又は二種以上組み合わせて使用できる。さらに、導電性金属は、黄銅などの合金であってもよい。   Examples of the heat conductive metal constituting the heat conductive metal particles include alkali metals (for example, sodium, potassium, etc.), alkaline earth metals (for example, beryllium, magnesium, etc.), transition metals (for example, titanium, etc.) Table 4A metal; Periodic table Group 5A metal such as tantalum; Periodic table Group 6A metal such as chromium, molybdenum and tungsten; Group 7A metal such as rhenium; Nickel, iron, cobalt, rhodium, palladium, Periodic Table Group 8 metals such as iridium and platinum; Periodic Table Group 1B metals such as copper, silver and gold), Periodic Table Group 2B metals (eg, zinc, cadmium, etc.), Periodic Table Group 3B metals ( For example, aluminum, gallium, indium, etc.), periodic table group 4B metal (eg, tin, lead, etc.), periodic table group 5B metal (eg, anne) Mont, etc.), and the like. These conductive metals can be used alone or in combination of two or more. Further, the conductive metal may be an alloy such as brass.

これらのうち、熱伝導性が高い金属、例えば、モリブデンやタングステンなどの周期表第6A族金属、ロジウムやイリジウムなどの周期表第8族金属、銅や銀、金などの周期表第1B族金属、亜鉛などの周期表第2B族金属、アルミニウムやインジウムなどの周期表第3B族金属が好ましく、モリブデン、銅、銀、金、アルミニウムが特に好ましい。   Among these, metals having high thermal conductivity, for example, periodic table group 6A metals such as molybdenum and tungsten, periodic table group 8 metals such as rhodium and iridium, and periodic table group 1B metals such as copper, silver and gold A periodic table group 2B metal such as zinc and a periodic table group 3B metal such as aluminum and indium are preferred, and molybdenum, copper, silver, gold and aluminum are particularly preferred.

熱伝導性金属粒子(粒子を構成する熱伝導性金属)の100℃での熱伝導率は10W/m・K以上(特に20W/m・K以上)であってもよいが、放熱性に優れる点から、100W/m・K以上(例えば100〜500W/m・K程度)であってもよく、好ましくは150W/m・K以上、さらに好ましくは200W/m・K以上(特に300〜450W/m・K)であってもよい。さらに、熱伝導性金属粒子は、熱劣化によるベルトの寿命を大きく向上できる点から、銀や銅などの熱伝導率が300W/m・K以上(例えば300〜500W/m・K)の金属で形成された粒子が好ましく、熱伝導率が350W/m・K以上(例えば400〜450W/m・K)の金属で形成された粒子が特に好ましい。   The heat conductivity at 100 ° C. of the heat conductive metal particles (the heat conductive metal constituting the particles) may be 10 W / m · K or more (particularly 20 W / m · K or more), but is excellent in heat dissipation. From the point of view, it may be 100 W / m · K or more (for example, about 100 to 500 W / m · K), preferably 150 W / m · K or more, more preferably 200 W / m · K or more (particularly 300 to 450 W / m · K). Furthermore, the heat conductive metal particle is a metal having a heat conductivity of 300 W / m · K or more (for example, 300 to 500 W / m · K) such as silver and copper because the life of the belt due to thermal deterioration can be greatly improved. The formed particles are preferable, and particles formed of a metal having a thermal conductivity of 350 W / m · K or more (for example, 400 to 450 W / m · K) are particularly preferable.

熱伝導性金属粒子の形状としては、例えば、球状(真球状又は略球状)、楕円体(楕円球)状、多角体状(多角錘状、正方体状や直方体状など多角方形状など)、板状(扁平状、鱗片状、薄片状など)、ロッド状又は棒状、繊維状、樹針状、不定形状などが挙げられる。熱伝導性金属粒子の形状は、通常、球状、楕円体状、多角体状、不定形状などである。これらの形状のうち、放熱層に容易に均一分散かつ高充填でき、放熱性を向上できる点から、略球状が好ましい。   Examples of the shape of the heat conductive metal particles include, for example, a sphere (true sphere or substantially sphere), an ellipsoid (elliptical sphere), a polygon (a polygonal shape such as a polygonal pyramid, a tetragonal shape, and a rectangular parallelepiped) Shape (flat shape, scale shape, flake shape, etc.), rod shape or rod shape, fiber shape, tree needle shape, indefinite shape and the like. The shape of the heat conductive metal particles is usually spherical, ellipsoidal, polygonal, indefinite or the like. Of these shapes, a substantially spherical shape is preferable from the viewpoint that the heat dissipation layer can be easily uniformly dispersed and highly filled, and heat dissipation can be improved.

熱伝導性金属粒子の中心粒径又は平均粒径(D50)は、例えば1〜100μm(例えば2〜50μm)、好ましくは3〜30μm、さらに好ましくは5〜25μm(特に10〜20μm)程度である。最大粒径は、例えば100μm以下、好ましくは50μm以下、さらに好ましくは30μm以下であってもよい。粒径が小さすぎると、放熱層中での均一な分散が困難となり、放熱性が低下する虞があり、大きすぎると、摩擦伝動面への固着性が低下する虞がある。   The central particle diameter or average particle diameter (D50) of the heat conductive metal particles is, for example, about 1 to 100 μm (for example, 2 to 50 μm), preferably 3 to 30 μm, more preferably about 5 to 25 μm (particularly 10 to 20 μm). . The maximum particle size may be, for example, 100 μm or less, preferably 50 μm or less, and more preferably 30 μm or less. If the particle size is too small, uniform dispersion in the heat-dissipating layer becomes difficult and heat dissipation may be reduced. If it is too large, adhesion to the friction transmission surface may be reduced.

なお、本明細書及び特許請求の範囲では、中心粒径及び最大粒径は、レーザー回折散乱式粒度分布測定装置を用いて測定された平均粒径を意味する。   In the present specification and claims, the center particle size and the maximum particle size mean an average particle size measured using a laser diffraction / scattering particle size distribution measuring apparatus.

放熱層は、熱伝導性金属粒子を含んでいればよく、熱伝導性金属粒子のみで形成されていてもよいが、熱伝導性金属粒子を摩擦伝動面に強固に固着できる点から、熱伝導性金属粒子に加えて、バインダー成分を含むのが好ましい。   The heat dissipation layer only needs to contain the heat conductive metal particles, and may be formed of only the heat conductive metal particles. However, since the heat conductive metal particles can be firmly fixed to the friction transmission surface, In addition to the conductive metal particles, a binder component is preferably included.

放熱層がバインダー成分を含む場合、熱伝導性金属粒子は放熱層中に含まれていればよいが、放熱性を向上できる点から、放熱層の表面に熱伝導性金属粒子が存在するのが好ましい。摩擦伝動面全体に対して熱伝導性金属粒子が占める面積割合は、摩擦伝動面全体に対して5%以上であればよく、例えば5〜95%、好ましくは20〜90%、さらに好ましくは40〜85%(特に60〜80%)程度である。熱伝導性金属粒子の面積割合が小さすぎると、放熱性が低下する虞がある。なお、本明細書及び特許請求の範囲では、熱伝導性金属粒子の面積割合は、画像処理機能を備えたカメラ(スマートカメラ)を用いて、摩擦伝動面の画像をコンピュータで画像処理する方法で測定でき、詳しくは、後述する実施例に記載の方法で測定できる。   When the heat dissipation layer contains a binder component, it is sufficient that the heat conductive metal particles are contained in the heat dissipation layer, but from the point that heat dissipation can be improved, the heat conductive metal particles are present on the surface of the heat dissipation layer. preferable. The area ratio of the heat conductive metal particles to the entire friction transmission surface may be 5% or more with respect to the entire friction transmission surface, for example, 5 to 95%, preferably 20 to 90%, more preferably 40. It is about -85% (especially 60-80%). If the area ratio of the heat conductive metal particles is too small, the heat dissipation may be reduced. In the present specification and claims, the area ratio of the thermally conductive metal particles is determined by a method in which an image of a friction transmission surface is image-processed by a computer using a camera (smart camera) having an image processing function. Specifically, it can be measured by the method described in Examples described later.

前記バインダー成分は、接着性樹脂などのポリマー成分であってもよいが、摩擦伝動面との密着性に優れる点から、ゴム成分であるのが好ましい。特に、ゴム成分を含む放熱層は、ゴム成分及び熱伝導性金属粒子を含むゴム組成物の加硫物で形成されているのが好ましく、摩擦伝動面を形成するゴム成分(通常、圧縮層のゴム成分)と同一又は同種(特に同一)のゴム成分及び熱伝導性金属粒子を含むゴム組成物の加硫物で形成されているのが特に好ましい。   The binder component may be a polymer component such as an adhesive resin, but is preferably a rubber component from the viewpoint of excellent adhesion to the friction transmission surface. In particular, the heat dissipation layer containing a rubber component is preferably formed of a vulcanized product of a rubber composition containing a rubber component and thermally conductive metal particles, and a rubber component that forms a friction transmission surface (usually a compression layer). The rubber component is particularly preferably formed of a vulcanized product of a rubber composition containing the same or the same type (particularly the same) rubber component and thermally conductive metal particles.

このようなゴム組成物の加硫物で形成された放熱層は、熱伝導性金属粒子がゴム成分と一体化した状態で固着されており、ベルトの走行初期で摩擦伝動面(リブ表面)のゴム薄膜が飛散されると熱伝導性金属粒子が露出する。その状態で連続してプーリに接触して走行を続けた場合、ベルトの加硫後に摩擦伝動面に熱伝導性金属粒子を付着させた場合に比べ、熱伝導性金属粒子が水に流されて摩擦伝動面から脱離したり、プーリとの接触摩擦により走行初期で欠落して、熱伝導性金属粒子の効果が消失するリスクは大きく低減される。そのため、摩擦伝動面と一体化した状態で固着された熱伝導性金属粒子は、走行経緯の中でも消失することなく保持されて、その放熱効果でベルトの温度上昇を抑制できる。さらに、熱伝導性金属粒子が長時間ベルトに保持されることにより効果の持続が可能になる。ベルトの温度上昇を長時間抑制させることにより得られる効果は、(1)圧縮層を構成するゴム(リブゴムなど)の熱劣化による硬度アップを抑制することにより、ゴムの硬化が原因であるクラック発生を遅らせることが可能になり、(2)部材間(例えば伸張ゴムと心線との間、圧縮層と心線との間等)の熱劣化による接着力低下を抑制することにより、部材間剥離に起因する破損現象を遅らせることが可能になる。その結果、本発明では、破損現象発生までの時間が長くなり、ベルトの長寿命化が可能になる。   The heat radiation layer formed of the rubber composition vulcanizate is fixed in a state where the heat conductive metal particles are integrated with the rubber component, and the friction transmission surface (rib surface) of the belt at the initial stage of running of the belt. When the rubber thin film is scattered, the heat conductive metal particles are exposed. In this state, when the belt continues to run while contacting the pulley, the heat conductive metal particles are caused to flow into the water compared to the case where the heat conductive metal particles are adhered to the friction transmission surface after vulcanization of the belt. The risk that the effect of the thermally conductive metal particles disappears due to detachment from the friction transmission surface or missing due to contact friction with the pulley at the initial stage of travel is greatly reduced. For this reason, the thermally conductive metal particles fixed in an integrated state with the friction transmission surface are held without disappearing in the running process, and the temperature rise of the belt can be suppressed by the heat dissipation effect. Further, the effect can be maintained by holding the heat conductive metal particles on the belt for a long time. The effects obtained by suppressing the temperature rise of the belt for a long time are as follows: (1) Cracking caused by rubber hardening is suppressed by suppressing the hardness increase due to thermal deterioration of rubber (rib rubber, etc.) constituting the compression layer. (2) Separation between members by suppressing a decrease in adhesive force due to thermal deterioration between members (for example, between an elastic rubber and a core wire, between a compression layer and a core wire, etc.) It is possible to delay the damage phenomenon caused by the damage. As a result, in the present invention, the time until the occurrence of the breakage phenomenon becomes longer, and the life of the belt can be extended.

ゴム成分としては、公知のゴム成分及び/又はエラストマー、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム(水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーを含む)など)、エチレン−α−オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらの成分は単独又は組み合わせて使用できる。これらのゴム成分のうち、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン−α−オレフィンエラストマー(エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンゴム(EPDMなど)などのエチレン−α−オレフィン系ゴム)が好ましい。   Examples of the rubber component include known rubber components and / or elastomers such as diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber Examples thereof include silicone rubber, urethane rubber, and fluorine rubber. These components can be used alone or in combination. Among these rubber components, ethylene-α-olefin elastomers (ethylene-propylene rubber (EPR), ethylene-propylene rubber (EPR), free from harmful halogens, have ozone resistance, heat resistance, cold resistance, and are economical. Ethylene-α-olefin rubbers such as ethylene-propylene-diene rubbers (EPDM, etc.) are preferred.

熱伝導性金属粒子の割合は、ゴム成分100質量部に対して、例えば10〜2000質量部、好ましくは20〜1000質量部、さらに好ましくは30〜500質量部(特に40〜100質量部)程度である。熱伝導性金属粒子の割合が少なすぎると、放熱性が低下する虞があり、多すぎると、摩擦伝動面に対する固着性が低下する虞がある。   The ratio of the heat conductive metal particles is, for example, about 10 to 2000 parts by mass, preferably 20 to 1000 parts by mass, and more preferably about 30 to 500 parts by mass (particularly 40 to 100 parts by mass) with respect to 100 parts by mass of the rubber component. It is. If the proportion of the thermally conductive metal particles is too small, the heat dissipation may be reduced, and if too large, the adhesion to the friction transmission surface may be reduced.

ゴム組成物は、熱伝導性金属粒子及びゴム成分に加えて、必要に応じて、例えば、ゴム成分の種類に応じて選択された加硫剤又は架橋剤[例えば、硫黄系加硫剤(硫黄、塩化硫黄など)、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)、金属酸化物(酸化マグネシウム、酸化亜鉛など)など]、加硫助剤、加硫促進剤、加硫遅延剤などを含んでいてもよい。ゴム組成物は、後述する圧縮層に含まれる添加剤をさらに含んでいてもよい。特に、ゴム組成物は、圧縮層との密着性の点から、圧縮層と同一のゴム組成物が好ましい。   In addition to the thermally conductive metal particles and the rubber component, the rubber composition may include, for example, a vulcanizing agent or a crosslinking agent selected according to the type of the rubber component [for example, a sulfur-based vulcanizing agent (sulfur ), Oximes (such as quinone dioxime), guanidines (such as diphenyl guanidine), organic peroxides (such as diacyl peroxide, peroxyester, dialkyl peroxide), metal oxides (magnesium oxide, oxidation) Zinc) and the like], vulcanization aids, vulcanization accelerators, vulcanization retarders, and the like. The rubber composition may further contain an additive contained in the compression layer described later. In particular, the rubber composition is preferably the same rubber composition as the compression layer from the viewpoint of adhesion to the compression layer.

放熱層の平均厚みは、例えば10〜300μm、好ましくは15〜200μm、さらに好ましくは20〜150μm(特に30〜100μm)程度である。放熱層の厚みが薄すぎると、放熱性が低下する虞があり、厚すぎると、ベルトの機械的特性が低下する虞がある。なお、本明細書及び特許請求の範囲では、放熱層の平均厚みは、走査型電子顕微鏡写真(SEM)に基づいて測定でき、任意の5箇所以上の平均値として求める。詳細は、後述する実施例に記載の方法で測定できる。   The average thickness of the heat dissipation layer is, for example, about 10 to 300 μm, preferably 15 to 200 μm, more preferably about 20 to 150 μm (particularly 30 to 100 μm). If the thickness of the heat dissipation layer is too thin, heat dissipation may be reduced, and if it is too thick, the mechanical properties of the belt may be deteriorated. In addition, in this specification and a claim, the average thickness of a thermal radiation layer can be measured based on a scanning electron micrograph (SEM), and calculates | requires it as an average value of arbitrary five or more places. The details can be measured by the method described in Examples described later.

[圧縮層]
圧縮層は、通常、ゴム(又はゴム組成物)で形成できる。ゴム(ゴム組成物を構成するゴム)としては、前記放熱層の項で例示されたゴム成分を例示できる。
[Compression layer]
The compression layer can usually be formed of rubber (or a rubber composition). As rubber (rubber which comprises a rubber composition), the rubber component illustrated by the term of the said thermal radiation layer can be illustrated.

圧縮層全体(又はゴム組成物全量)に対するゴムの割合は、例えば、20質量%以上(例えば25〜80質量%)、好ましくは30質量%以上(例えば35〜75質量%)、さらに好ましくは40質量%以上(特に45〜70質量%)であってもよい。   The ratio of the rubber to the entire compression layer (or the total amount of the rubber composition) is, for example, 20% by mass or more (for example, 25 to 80% by mass), preferably 30% by mass or more (for example, 35 to 75% by mass), and more preferably 40%. It may be not less than mass% (especially 45 to 70 mass%).

圧縮層(又は圧縮ゴム層を形成するゴム又はゴム組成物)は、必要に応じて、各種添加剤を含んでいてもよい。添加剤(配合剤)としては、公知の添加剤、例えば、前記放熱層の項で例示された加硫剤又は架橋剤、加硫助剤、加硫促進剤、加硫遅延剤、補強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、可塑剤、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤(芳香族アミン系老化防止剤、ベンズイミダゾール系老化防止剤など)、接着性改善剤[レゾルシン−ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなどのメラミン樹脂、これらの共縮合物(レゾルシン−メラミン−ホルムアルデヒド共縮合物など)など]、着色剤、粘着付与剤、カップリング剤(シランカップリング剤など)、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などが例示できる。これらの添加剤は単独又は組み合わせて使用でき、これらの添加剤はゴムの種類や用途、性能などに応じて選択できる。   The compression layer (or rubber or rubber composition forming the compression rubber layer) may contain various additives as necessary. Examples of the additive (compounding agent) include known additives, for example, the vulcanizing agent or the crosslinking agent exemplified in the section of the heat dissipation layer, the vulcanization aid, the vulcanization accelerator, the vulcanization retarder, Carbon black, silicon oxide such as hydrous silica), metal oxides (eg, zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide), fillers (clay, carbonic acid, etc.) Calcium, talc, mica, etc.), plasticizers, softeners (paraffin oil, oils such as naphthenic oil), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, etc.), anti-aging Agent (aromatic amine-based anti-aging agent, benzimidazole-based anti-aging agent, etc.), adhesion improver [resorcin-formaldehyde co-condensate, hexamethoxy Melamine resins such as tilmelamine, co-condensates thereof (resorcin-melamine-formaldehyde co-condensate, etc.), colorants, tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (antioxidants, UV absorbers, heat stabilizers, etc.), lubricants, flame retardants, antistatic agents and the like. These additives can be used alone or in combination, and these additives can be selected according to the type, application, performance and the like of the rubber.

添加剤の割合も、ゴムの種類などに応じて適宜選択できる。例えば、補強剤(カーボンブラックなど)割合は、ゴム100質量部に対して、10質量部以上(例えば20〜150質量部)、好ましくは20質量部以上(例えば25〜120質量部)、さらに好ましくは30質量部以上(例えば35〜100質量部)、特に40質量部以上(例えば50〜80質量部)であってもよい。   The proportion of the additive can also be appropriately selected according to the type of rubber. For example, the ratio of the reinforcing agent (carbon black or the like) is 10 parts by mass or more (for example, 20 to 150 parts by mass), preferably 20 parts by mass or more (for example, 25 to 120 parts by mass), more preferably 100 parts by mass of rubber. May be 30 parts by mass or more (for example, 35 to 100 parts by mass), particularly 40 parts by mass or more (for example, 50 to 80 parts by mass).

圧縮層(又はゴム組成物)は、短繊維を含んでいてもよい。短繊維としては、例えば、綿やレーヨンなどのセルロース系繊維、ポリエステル系繊維(PET繊維など)、ポリアミド系繊維(ポリアミド6などの脂肪族ポリアミド系繊維、アラミド繊維など)などが挙げられる。なお、短繊維は、吸水性繊維であってもよい。短繊維は単独で又は2種以上組み合わせてもよい。   The compression layer (or rubber composition) may contain short fibers. Examples of the short fibers include cellulose fibers such as cotton and rayon, polyester fibers (PET fibers, etc.), polyamide fibers (aliphatic polyamide fibers such as polyamide 6, aramid fibers, etc.), and the like. The short fiber may be a water absorbent fiber. The short fibers may be used alone or in combination of two or more.

短繊維の平均繊維長は、例えば0.1〜30mm、好ましくは0.2〜20mm、さらに好ましくは0.3〜15mm(特に0.5〜5mm)程度であってもよい。   The average fiber length of the short fibers may be, for example, about 0.1 to 30 mm, preferably 0.2 to 20 mm, more preferably about 0.3 to 15 mm (particularly 0.5 to 5 mm).

これらの短繊維は、必要に応じて、界面活性剤、シランカップリング剤、エポキシ化合物、イソシアネート化合物などで表面処理してもよい。   These short fibers may be surface-treated with a surfactant, a silane coupling agent, an epoxy compound, an isocyanate compound, or the like, if necessary.

短繊維の割合は、ゴム100質量部に対して、例えば0.5〜50質量部(例えば1〜40質量部)、好ましくは3〜30質量部(特に5〜25質量部)程度であってもよい。   The proportion of short fibers is, for example, about 0.5 to 50 parts by mass (for example, 1 to 40 parts by mass), preferably about 3 to 30 parts by mass (particularly 5 to 25 parts by mass) with respect to 100 parts by mass of rubber. Also good.

圧縮層(圧縮ゴム層など)の厚みは、ベルトの種類などに応じて適宜選択でき、例えば1〜30mm、好ましくは1.5〜25mm、さらに好ましくは2〜20mm程度であってもよい。   The thickness of the compression layer (compression rubber layer or the like) can be appropriately selected according to the type of belt, and may be, for example, 1 to 30 mm, preferably 1.5 to 25 mm, and more preferably about 2 to 20 mm.

(芯体)
芯体としては、特に限定されないが、通常、ベルト幅方向に所定間隔で配列した心線(撚りコード)を使用できる。心線は、特に限定されず、例えば、ポリエステル系繊維(ポリアルキレンアリレート系繊維)、ポリアミド系繊維(アラミド繊維など)などの合成繊維、炭素繊維などの無機繊維などを含んでいてもよい。
(Core)
Although it does not specifically limit as a core, Usually, the core wire (twisted cord) arranged at predetermined intervals in the belt width direction can be used. The core wire is not particularly limited, and may include, for example, synthetic fibers such as polyester fibers (polyalkylene arylate fibers) and polyamide fibers (aramide fibers), inorganic fibers such as carbon fibers, and the like.

心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば0.5〜3mm、好ましくは0.6〜2mm、さらに好ましくは0.7〜1.5mm程度であってもよい。心線は、ベルトの長手方向に埋設されていてもよく、さらにベルトの長手方向に平行に所定のピッチで並列的に埋設されていてもよい。   As the core wire, a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm. The core wire may be embedded in the longitudinal direction of the belt, or may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.

ゴムとの接着性を改善するため、心線には、前記短繊維と同様に、エポキシ化合物、イソシアネート化合物などによる種々の接着処理を施してもよい。   In order to improve adhesiveness with rubber, the core wire may be subjected to various adhesion treatments using an epoxy compound, an isocyanate compound, or the like, similarly to the short fiber.

(伸張層)
伸張層は、圧縮層と同様のゴム組成物で形成してもよく、帆布などの布帛(補強布)で形成してもよい。布帛(補強布)としては、例えば、織布、広角度帆布、編布、不織布などの布材などが挙げられる。これらのうち、平織、綾織、朱子織などの形態で製織した織布や、経糸と緯糸との交差角が90〜120°程度の広角度帆布や編布などが好ましい。補強布を構成する繊維としては、前記繊維部材の項で例示した繊維(吸水性繊維、非吸水性繊維など)などを利用できる。
(Stretch layer)
The stretch layer may be formed of the same rubber composition as the compression layer, or may be formed of a fabric (reinforcing fabric) such as a canvas. Examples of the cloth (reinforcing cloth) include cloth materials such as woven cloth, wide-angle sail cloth, knitted cloth, and non-woven cloth. Among these, a woven fabric woven in the form of plain weave, twill weave, satin weave, or a wide angle canvas or knitted fabric in which the crossing angle between the warp and the weft is about 90 to 120 ° is preferable. As the fibers constituting the reinforcing cloth, the fibers exemplified in the section of the fiber member (water-absorbing fibers, non-water-absorbing fibers, etc.) can be used.

また、補強布には、接着処理[例えば、レゾルシン−ホルマリン−ラテックス液(RFL液)への浸漬処理などの接着処理]を施してもよい。さらに、接着処理した後、ゴム組成物を擦り込むフリクション又は積層(コーティング)してゴム付帆布を形成してもよい。   The reinforcing cloth may be subjected to an adhesion treatment [for example, an adhesion treatment such as a dipping treatment in a resorcin-formalin-latex liquid (RFL liquid)]. Further, after the adhesion treatment, the rubber composition may be formed by friction or rubbing (coating) the rubber composition.

また、伸張層はゴム(ゴム組成物)で形成してもよい。ゴム組成物には、背面駆動時に背面ゴムの粘着により発生する異音を抑制するために、さらに圧縮層と同様の短繊維を含有させてもよい。短繊維は、ゴム組成物中でランダムに配向させてもよい。さらに、短繊維は一部が屈曲した短繊維であってもよい。   The stretch layer may be formed of rubber (rubber composition). The rubber composition may further contain short fibers similar to those in the compression layer in order to suppress abnormal noise generated due to adhesion of the back rubber during back drive. The short fibers may be randomly oriented in the rubber composition. Further, the short fiber may be a short fiber partially bent.

さらに、背面駆動時の異音を抑制するために、伸張層の表面(ベルトの背面)に凹凸パターンを設けてもよい。凹凸パターンとしては、編布パターン、織布パターン、スダレ織布パターン、エンボスパターンなどが挙げられる。これらのパターンのうち、織布パターン、エンボスパターンが好ましい。さらに、繊維樹脂混合層で伸張層の背面の少なくとも一部を被覆してもよい。   Furthermore, an uneven pattern may be provided on the surface of the stretched layer (the back surface of the belt) in order to suppress abnormal noise during back surface driving. Examples of the uneven pattern include a knitted fabric pattern, a woven fabric pattern, a suede woven fabric pattern, and an embossed pattern. Of these patterns, a woven fabric pattern and an embossed pattern are preferable. Furthermore, you may coat | cover at least one part of the back surface of an extending | stretching layer with a fiber resin mixed layer.

伸張層の厚みは、ベルトの種類などに応じて適宜選択できるが、例えば0.5〜10mm、好ましくは0.7〜8mm、さらに好ましくは1〜5mm程度であってもよい。   The thickness of the stretched layer can be appropriately selected according to the type of the belt, but may be, for example, about 0.5 to 10 mm, preferably about 0.7 to 8 mm, and more preferably about 1 to 5 mm.

(接着層)
接着層は、前記の通り、必ずしも必要ではない。接着層(接着ゴム層)は、例えば、前記圧縮層(圧縮ゴム層)と同様のゴム組成物(エチレン−α−オレフィンエラストマーなどのゴム成分を含むゴム組成物)で構成できる。接着層のゴム組成物は、さらに接着性改善剤(レゾルシン−ホルムアルデヒド共縮合物、アミノ樹脂など)を含んでいてもよい。
(Adhesive layer)
As described above, the adhesive layer is not always necessary. The adhesive layer (adhesive rubber layer) can be composed of, for example, a rubber composition (rubber composition containing a rubber component such as ethylene-α-olefin elastomer) similar to the compression layer (compressed rubber layer). The rubber composition of the adhesive layer may further contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).

接着層の厚みは、ベルトの種類などに応じて適宜選択できるが、例えば0.2〜5mm、好ましくは0.3〜3mm、さらに好ましくは0.5〜2mm程度であってもよい。   The thickness of the adhesive layer can be appropriately selected according to the type of belt, but may be, for example, about 0.2 to 5 mm, preferably about 0.3 to 3 mm, and more preferably about 0.5 to 2 mm.

なお、前記伸張層及び接着層のゴム組成物において、ゴム成分としては、前記圧縮ゴム層のゴム組成物のゴム成分と同系統又は同種のゴムを使用する場合が多い。また、これらのゴム組成物において、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤などの添加剤の割合は、それぞれ、前記圧縮層のゴム組成物と同様の範囲から選択できる。   In the rubber composition of the stretch layer and the adhesive layer, the same rubber or the same type of rubber as the rubber component of the rubber composition of the compressed rubber layer is often used as the rubber component. Further, in these rubber compositions, the proportion of additives such as a vulcanizing agent or a crosslinking agent, a co-crosslinking agent or a crosslinking aid, and a vulcanization accelerator is from the same range as the rubber composition of the compression layer, respectively. You can choose.

[摩擦伝動ベルトの製造方法]
本発明では、前記摩擦伝動面(圧縮ゴム層)を、熱伝導性金属粒子を含む放熱層前駆体で摩擦伝動面を被覆する被覆工程を経て得られ、特に、放熱層がゴム成分及び熱伝導性金属粒子を含むゴム組成物の加硫物で形成されている場合、摩擦伝動面を被覆した前記ゴム組成物を加硫する加硫工程をさらに経ることにより、圧縮層の摩擦伝動面に放熱層が形成された摩擦伝動ベルトを製造できる。
[Method of manufacturing friction transmission belt]
In the present invention, the friction transmission surface (compressed rubber layer) is obtained through a coating step of covering the friction transmission surface with a heat dissipation layer precursor containing heat conductive metal particles. When the rubber composition is formed of a vulcanized product of a rubber composition containing conductive metal particles, heat is radiated to the friction transmission surface of the compression layer by further vulcanizing the rubber composition covering the friction transmission surface. A friction transmission belt having a layer formed can be manufactured.

(被覆工程)
前記被覆工程において、前記ゴム組成物で摩擦伝動面を被覆する方法としては、ゴム成分及び熱伝導性金属粒子を含む液状ゴム組成物を摩擦伝動面に付着させる方法(付着処理)、ゴム成分及び熱伝導性金属粒子を含むゴム組成物で形成されたシートを摩擦伝動面に積層する方法(積層処理)などが挙げられる。
(Coating process)
In the coating step, as a method of coating the friction transmission surface with the rubber composition, a method of adhering a liquid rubber composition containing a rubber component and thermally conductive metal particles to the friction transmission surface (adhesion treatment), a rubber component, and Examples thereof include a method of laminating a sheet formed of a rubber composition containing thermally conductive metal particles on a friction transmission surface (lamination treatment).

前記付着処理では、通常、放熱層を形成するためのゴム組成物(未加硫ゴム組成物)を溶媒で希釈して、液状ゴム組成物(ゴム糊)を調製する。   In the adhesion treatment, a rubber composition (unvulcanized rubber composition) for forming a heat radiation layer is usually diluted with a solvent to prepare a liquid rubber composition (rubber paste).

溶媒としては、ゴムの種類に応じて、例えば、炭化水素類(例えば、トルエン、キシレンなどの芳香族炭化水素類)、ハロゲン化炭化水素類(例えば、塩化メチレン、クロロホルムなどのハロアルカン類)、アルコール類(エタノール、プロパノール、イソプロパノールなどのアルカノール類)、エーテル類(例えば、ジオキサン、テトラヒドロフランなどの環状エーテル類)、エステル類(例えば、酢酸エチルなど)、ケトン類(例えば、アセトン、メチルエチルケトンなどの鎖状ケトン、シクロヘキサノンなどの環状ケトン)、セロソルブ類、カルビトール類などが例示できる。溶媒は、単独で又は混合溶媒として使用してもよい。   Examples of the solvent include hydrocarbons (for example, aromatic hydrocarbons such as toluene and xylene), halogenated hydrocarbons (for example, haloalkanes such as methylene chloride and chloroform), alcohols, etc., depending on the type of rubber. (Alkanols such as ethanol, propanol, and isopropanol), ethers (eg, cyclic ethers such as dioxane and tetrahydrofuran), esters (eg, ethyl acetate, etc.), ketones (eg, acetone, methyl ethyl ketone, etc.) Examples thereof include cyclic ketones such as ketone and cyclohexanone), cellosolves, carbitols and the like. The solvent may be used alone or as a mixed solvent.

溶媒の割合は、ゴム1質量部に対して、例えば0.5〜50質量部、好ましくは1〜20質量部程度であってもよい。   The ratio of the solvent may be, for example, about 0.5 to 50 parts by mass, preferably about 1 to 20 parts by mass with respect to 1 part by mass of the rubber.

付着処理において、液状ゴム組成物を付着させる方法としては、圧縮層を形成するためのゴムシートの表面(摩擦伝動面を形成するための表面)及び/又は前記ゴムシートを加硫成形するための金型(外型)の内周面に液状ゴム組成物を塗布する方法や吹き付ける方法などが挙げられる。   In the adhesion treatment, the liquid rubber composition may be adhered by the method of vulcanizing and molding the surface of the rubber sheet for forming the compression layer (surface for forming the friction transmission surface) and / or the rubber sheet. Examples thereof include a method of applying a liquid rubber composition to the inner peripheral surface of a mold (outer mold) and a spraying method.

前記積層処理では、通常、放熱層を形成するためのゴム組成物(未加硫ゴム組成物)をシート状に成形して放熱層用ゴムシートを調製し、圧縮層を形成するための圧縮層用ゴムシートの表面(摩擦伝動面を形成するための表面)に積層する。さらに、放熱層用ゴムシートと圧縮層ゴムシートとの間には、両層の密着性を向上させるために、熱伝導性金属粒子を含まない前記液状ゴム組成物(ゴム糊)を介在させてもよく、両層の接触面を前記溶媒で膨潤させてもよい。   In the lamination process, a rubber layer for forming a heat radiation layer (unvulcanized rubber composition) is usually molded into a sheet shape to prepare a rubber sheet for the heat radiation layer, and a compression layer for forming a compression layer The rubber sheet is laminated on the surface (surface for forming a friction transmission surface). Furthermore, in order to improve the adhesion between the two layers, the liquid rubber composition (rubber paste) containing no thermally conductive metal particles is interposed between the heat radiation layer rubber sheet and the compression layer rubber sheet. Alternatively, the contact surfaces of both layers may be swollen with the solvent.

これらの方法のうち、熱伝導性金属粒子を均一に分散させ易く、放熱効果が高い点から、液状ゴム組成物を摩擦伝動面に付着させる方法が特に好ましい。   Among these methods, the method of adhering the liquid rubber composition to the friction transmission surface is particularly preferable from the viewpoint that the heat conductive metal particles are easily dispersed uniformly and the heat dissipation effect is high.

(加硫工程)
加硫工程では、前記被覆工程において、圧縮層を形成するためのゴムシートを、放熱層を形成するためのゴム組成物で被覆した状態で、両層のゴム組成物を加硫して両層を強固に一体化できればよく、被覆工程を経る以外は公知又は慣用の方法で行うことができ、例えば、Vリブドベルトの場合、圧縮層用シート(前記被覆工程の種類に応じて処理されるシート)と、芯体と、伸張層用シートとを積層し、得られた積層体を成形型で筒状に成形し、加硫してスリーブを成形し、この加硫スリーブを所定幅にカッティングすることにより、摩擦伝動面(圧縮ゴム層)が放熱層で被覆されたVリブドベルトを作製できる。
(Vulcanization process)
In the vulcanization step, in the coating step, the rubber sheet for forming the compression layer is covered with the rubber composition for forming the heat dissipation layer, and the rubber composition of both layers is vulcanized to form both layers. Can be carried out by a known or conventional method other than through a coating step. For example, in the case of a V-ribbed belt, a compressed layer sheet (a sheet processed according to the type of the coating step) And the core and the stretch layer sheet are laminated, the obtained laminate is molded into a cylindrical shape with a molding die, vulcanized to form a sleeve, and the vulcanized sleeve is cut to a predetermined width. Thus, a V-ribbed belt in which the friction transmission surface (compressed rubber layer) is covered with a heat dissipation layer can be produced.

より詳細には、Vリブドベルトは、例えば、以下の方法で製造できる。   More specifically, the V-ribbed belt can be manufactured, for example, by the following method.

(第1の製造方法)
先ず、外周面に可撓性ジャケットを装着した円筒状内型を用い、外周面の可撓性ジャケットに未加硫の伸張層用シートを巻きつけ、このシート上に芯体を形成する心線(撚りコード)を螺旋状にスピニングし、さらに未加硫の圧縮層用シートを巻き付けて積層体を作製する。さらに、前述のように、圧縮層用シートにはさらに前述の被覆工程を経て放熱層を形成するための処理が行われる。次に、前記内型に装着可能な外型として、内周面に複数のリブ型が刻設された筒状外型を用い、この外型内に、前記積層体が巻き付けられた内型を、同心円状に設置する。その後、可撓性ジャケットを外型の内周面(リブ型)に向かって膨張させて積層体(圧縮層)をリブ型に圧入し、加硫する。この場合、前述のように、外型の内周面に、放熱層を形成するための液状ゴム組成物を付着させて加硫してもよい。そして、外型から内型を抜き取り、複数のリブを有する加硫ゴムスリーブを外型から脱型した後、カッターを用いて、加硫ゴムスリーブをベルト長手方向に所定の幅にカットしてVリブドベルトに仕上げる。この第1の製造方法では、伸張層、芯体、圧縮層、放熱層を備えた積層体を一度に膨張させて複数のリブを有するスリーブ(又はVリブドベルト)に仕上げることができる。
(First manufacturing method)
First, using a cylindrical inner mold having a flexible jacket on the outer peripheral surface, an unvulcanized stretch layer sheet is wound around the flexible jacket on the outer peripheral surface, and a core is formed on the sheet (Twist cord) is spun into a spiral shape, and an unvulcanized compression layer sheet is wound around to produce a laminate. Further, as described above, the compression layer sheet is further subjected to the treatment for forming the heat dissipation layer through the above-described covering step. Next, as an outer mold that can be attached to the inner mold, a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically. Thereafter, the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed layer) is pressed into the rib mold and vulcanized. In this case, as described above, the liquid rubber composition for forming the heat radiation layer may be adhered to the inner peripheral surface of the outer mold and vulcanized. Then, after removing the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish the ribbed belt. In this first manufacturing method, a laminated body including an extension layer, a core body, a compression layer, and a heat dissipation layer can be expanded at once to be finished into a sleeve (or V-ribbed belt) having a plurality of ribs.

(第2の製造方法)
第1の製造方法に関連して、例えば、特開2004−82702号公報に開示される方法[放熱層及び圧縮層のみを膨張させて予備成形体(半加硫状態)とし、次いで伸張層と芯体とを膨張させて前記予備成形体に圧着し、加硫一体化してVリブドベルトに仕上げる方法]を採用してもよい。
(Second manufacturing method)
In relation to the first manufacturing method, for example, a method disclosed in JP-A-2004-82702 [only a heat radiation layer and a compression layer are expanded to form a preform (semi-vulcanized state), and then an extension layer] A method in which the core body is expanded and pressure-bonded to the preform, and vulcanized and integrated into a V-ribbed belt] may be employed.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、以下に、ゴム組成物の調製方法、各物性の測定方法又は評価方法などを示す。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the preparation method of a rubber composition, the measuring method or evaluation method of each physical property etc. are shown below.

[ゴム組成物]
表1に示すゴム組成物Aをバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して所定厚みの未加硫圧延ゴムシート(圧縮層用シート)を作製した。また、表1に示すゴム組成物Bを用い、上記と同様にして、伸張層用シートを作製した。なお、表1の成分は下記の通りである。
[Rubber composition]
The rubber composition A shown in Table 1 was kneaded with a Banbury mixer, and the kneaded rubber was passed through a calender roll to prepare an unvulcanized rolled rubber sheet (compression layer sheet) having a predetermined thickness. Further, using the rubber composition B shown in Table 1, a stretch layer sheet was produced in the same manner as described above. In addition, the component of Table 1 is as follows.

EPDM:ダウ・ケミカル社製、「ノーデルIP4640」
酸化亜鉛:正同化学工業(株)製、「酸化亜鉛3種」
カーボンブラック:東海カーボン(株)製、「シーストV」、平均粒子径55nm
軟化剤:パラフィン系オイル、出光興産(株)製、「NS−90」
老化防止剤:大内新興化学工業(株)製、「ノクラックMB」
有機過酸化物:日油(株)製、「パークミルD−40」
共架橋剤:大内新興化学工業(株)製、「バルノックPM」
綿短繊維:デニム、平均繊維径13μm、平均繊維長3mm
EPDM: “Nodel IP4640” manufactured by Dow Chemical
Zinc oxide: manufactured by Shodo Chemical Industry Co., Ltd., "Zinc oxide 3 types"
Carbon black: “Seast V” manufactured by Tokai Carbon Co., Ltd., average particle size 55 nm
Softener: Paraffinic oil, manufactured by Idemitsu Kosan Co., Ltd., “NS-90”
Anti-aging agent: “NOCRACK MB” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Organic peroxide: NOF Corporation, “Park Mill D-40”
Co-crosslinking agent: “Barunok PM” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Cotton short fiber: Denim, average fiber diameter 13μm, average fiber length 3mm

[放熱層用液状ゴム組成物A]
表1に示すゴム組成物A8質量部と、アルミニウム粉(東洋アルミニウム(株)製「ALPASTEP0100」、粒度2〜30μm、球状)4質量部と、トルエン88質量部とを混合して放熱層用液状ゴム組成物(ゴム糊)Aを調製した。
[Liquid rubber composition A for heat radiation layer]
8 parts by mass of rubber composition A shown in Table 1, 4 parts by mass of aluminum powder (“ALPASTEP 0100” manufactured by Toyo Aluminum Co., Ltd., particle size 2 to 30 μm, spherical) and 88 parts by mass of toluene are mixed to obtain a liquid for the heat radiation layer. A rubber composition (rubber paste) A was prepared.

[放熱層用液状ゴム組成物B]
アルミニウム粉の代わりに亜鉛粉(ハクスイテック(株)製、銘柄「F末」、粒径3〜5μm、球状)を用いる以外は放熱層用液状ゴム組成物Aと同一の方法で放熱層用液状ゴム組成物Bを調製した。
[Liquid rubber composition B for heat dissipation layer]
Liquid rubber for heat dissipation layer in the same manner as liquid rubber composition A for heat dissipation layer, except that zinc powder (made by Hakusuitec Co., Ltd., brand “F powder”, particle size 3 to 5 μm, spherical) is used instead of aluminum powder. Composition B was prepared.

[放熱層用液状ゴム組成物C]
アルミニウム粉の代わりに銀粉(三井金属(株)製「SPN10JS」、比表面積0.4m/g、球状)を用いる以外は放熱層用液状ゴム組成物Aと同一の方法で放熱層用液状ゴム組成物Cを調製した。
[Liquid rubber composition C for heat dissipation layer]
Except for using aluminum powder instead of aluminum powder (“SPN10JS” manufactured by Mitsui Kinzoku Co., Ltd., specific surface area 0.4 m 2 / g, spherical), liquid rubber for heat dissipation layer is the same as liquid rubber composition A for heat dissipation layer. Composition C was prepared.

[放熱層用液状ゴム組成物D]
アルミニウム粉の代わりにチタン粉(トーホーテック(株)製「TS−150」、粒径約150μm)を用いる以外は放熱層用液状ゴム組成物Aと同一の方法で放熱層用液状ゴム組成物Dを調製した。
[Liquid rubber composition D for heat dissipation layer]
Except for using aluminum powder instead of aluminum powder (“TS-150” manufactured by Toho Tech Co., Ltd., particle size of about 150 μm), the liquid rubber composition D for the heat dissipation layer is the same as the liquid rubber composition A for the heat dissipation layer. Was prepared.

[放熱層用シート状ゴム組成物]
表1に示すゴム組成物A8質量部と、アルミニウム粉(東洋アルミニウム(株)製「ALPASTEP0100」、粒度2〜30μm、球状)4質量部とをバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して、厚み0.25mmの放熱層用シート状ゴム組成物を調製した。
[Sheet-like rubber composition for heat dissipation layer]
8 parts by mass of rubber composition A shown in Table 1 and 4 parts by mass of aluminum powder (“ALPASTEP0100” manufactured by Toyo Aluminum Co., Ltd., particle size 2 to 30 μm, spherical) are kneaded with a Banbury mixer, and the kneaded rubber is calendered. Then, a sheet-like rubber composition for a heat dissipation layer having a thickness of 0.25 mm was prepared.

[熱伝導性金属粒子の面積割合]
熱伝導性金属粒子の面積割合は、マイクロスコープ((株)キーエンス製、型番:VHX−5000)を用いて、摩擦伝動面を撮影し、計測ソフト(オリンパス(株)製、「Stream」)により、熱伝導性金属粒子がアルミニウムの場合は銀、その他(繊維及びゴム)を黒として認識させて測定した。
[Area ratio of thermally conductive metal particles]
The area ratio of the thermally conductive metal particles was measured using a microscope (manufactured by Keyence Co., Ltd., model number: VHX-5000), and the friction transmission surface was photographed, and measurement software (Olympus Co., Ltd., “Stream”) was used. When the heat conductive metal particles are aluminum, silver and other (fiber and rubber) are recognized as black and measured.

[放熱層の平均厚み]
放熱層の平均厚みは、走査型電子顕微鏡写真(SEM)を用いて、任意の5箇所以上の厚みを測定し、平均した。
[Average thickness of heat dissipation layer]
The average thickness of the heat-dissipating layer was measured and averaged by measuring thicknesses at five or more locations using a scanning electron micrograph (SEM).

[放熱特性]
図2に示すように、2水準(1650N、1350N)の設定張力下で、走行5分後の、ベルト温度(Vリブドベルトのプーリとの接触側表面)を測定した。
[Heat dissipation characteristics]
As shown in FIG. 2, the belt temperature (the surface on the contact side with the pulley of the V-ribbed belt) was measured after 5 minutes of traveling under a set tension of 2 levels (1650N, 1350N).

実施例1
外周面に可撓性ジャケットを装着した円筒状内型を用い、外周面の可撓性ジャケットに未加硫の伸張層用シートを巻きつけ、このシート上に芯体となる心線(撚りコード)を螺旋状にスピニングし、さらに未加硫の圧縮層用シートを巻き付けて積層体を作製した。さらに、圧縮層用シートの表面に、スプレーガンを用いて、乾燥厚み50μmとなるように、放熱層用液状ゴム組成物Aを塗布した。なお、心線には、1100dtex/2×3構成のポリエステルコードを用いた。ゴムとの接着性を向上させるため、予め心線をレゾルシン−ホルマリン−ラテックス液(RFL液)へ浸漬処理した後、EPDMを含むゴム組成物を有機溶媒(トルエン)に溶解させた処理液でコーティング処理を行った。
Example 1
Using a cylindrical inner mold with a flexible jacket on the outer peripheral surface, an unvulcanized stretch layer sheet is wrapped around the flexible jacket on the outer peripheral surface, and a core wire (twisted cord) serving as a core on this sheet ) Was spirally spun and an unvulcanized compression layer sheet was wound around to produce a laminate. Further, the heat radiation layer liquid rubber composition A was applied to the surface of the compression layer sheet using a spray gun so as to have a dry thickness of 50 μm. In addition, the polyester cord of 1100 dtex / 2x3 structure was used for the core wire. In order to improve the adhesion to rubber, the core wire is pre-immersed in resorcin-formalin-latex solution (RFL solution) and then coated with a treatment solution in which a rubber composition containing EPDM is dissolved in an organic solvent (toluene). Processed.

この筒状積層体が巻き付けられた内型を、内周面に複数のリブ型が刻設された筒状外型内に同心円状に設置し、前記可撓性ジャケットを膨張させて積層体をリブ型に圧入し、加硫した。そして、外型から内型を抜き取り、複数のリブを有する加硫ゴムスリーブを外型から脱型し、カッターを用いて、加硫ゴムスリーブをベルト長手方向に所定の幅にカットし、予備Vリブドベルト(リブ数6個、周長1200mm)を作製した。得られたVリブドベルトの熱伝導性金属粒子の面積割合は90%であり、放熱層の平均厚みは30μmであった。   The inner mold around which the cylindrical laminate is wound is placed concentrically in a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface, and the flexible jacket is expanded to obtain the laminate. It was pressed into a rib mold and vulcanized. Then, the inner mold is extracted from the outer mold, the vulcanized rubber sleeve having a plurality of ribs is removed from the outer mold, and the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt by using a cutter. A ribbed belt (6 ribs, circumferential length 1200 mm) was produced. The area ratio of the heat conductive metal particles of the obtained V-ribbed belt was 90%, and the average thickness of the heat dissipation layer was 30 μm.

実施例2
放熱層用液状ゴム組成物Aの代わりに放熱層用液状ゴム組成物Bを用いる以外は実施例1と同様にしてVリブドベルトを作製した。
Example 2
A V-ribbed belt was produced in the same manner as in Example 1 except that the heat radiation layer liquid rubber composition B was used instead of the heat radiation layer liquid rubber composition A.

実施例3
放熱層用液状ゴム組成物Aの代わりに放熱層用液状ゴム組成物Cを用いる以外は実施例1と同様にしてVリブドベルトを作製した。
Example 3
A V-ribbed belt was produced in the same manner as in Example 1 except that the heat radiation layer liquid rubber composition C was used instead of the heat radiation layer liquid rubber composition A.

実施例4
放熱層用液状ゴム組成物Aの代わりに放熱層用液状ゴム組成物Dを用いる以外は実施例1と同様にしてVリブドベルトを作製した。
Example 4
A V-ribbed belt was produced in the same manner as in Example 1 except that the heat radiation layer liquid rubber composition D was used instead of the heat radiation layer liquid rubber composition A.

比較例1
放熱層用液状ゴム組成物Aを塗布する代わりに、接着剤(スリーエムジャパン(株)製「速乾型水性接着剤FT1000NF」)を塗布し、パイル(短繊維、(株)新ニッセン製「ナイロンパイル(繊維長0.4mm)」)を植毛する以外は、実施例1と同様にしてVリブドベルトを作製した。
Comparative Example 1
Instead of applying the liquid rubber composition A for the heat dissipation layer, an adhesive (“Quick Dry Water Adhesive FT1000NF” manufactured by 3M Japan Co., Ltd.) is applied and pile (short fiber, “Nylon” manufactured by Nissen Co., Ltd.) is applied. A V-ribbed belt was produced in the same manner as in Example 1 except that a pile (fiber length 0.4 mm) was planted.

実施例1〜4及び比較例1で得られたVリブドベルトについて、放熱特性(ベルト温度)を評価した結果を表2に示す。   Table 2 shows the results of evaluating the heat radiation characteristics (belt temperature) of the V-ribbed belts obtained in Examples 1 to 4 and Comparative Example 1.

表2の結果から明らかなように、実施例のベルトの温度は、比較例のベルトの温度よりも低く、例えば、実施例1のベルト温度は、比較例1のベルト温度よりも、軸荷重1650Nでは4.3℃低く、軸荷重1350Nでは3.3℃低かった。なかでも、銀粉を含む実施例3のベルトの温度は、特に低かった。   As is apparent from the results in Table 2, the temperature of the belt of the example is lower than the temperature of the belt of the comparative example. Was 4.3 ° C lower, and the axial load was 1350N, 3.3 ° C lower. Especially, the temperature of the belt of Example 3 containing silver powder was particularly low.

実施例5
放熱層用液状ゴム組成物Aを塗布する代わりに放熱層用シート状ゴム組成物を積層する以外は実施例1と同様にしてVリブドベルトを作製した。
Example 5
A V-ribbed belt was produced in the same manner as in Example 1 except that the heat radiation layer liquid rubber composition A was applied instead of the heat radiation layer sheet rubber composition.

表3の結果から明らかなように、シート状ゴム組成物を用いても、液状ゴム組成物を用いて得られたベルトと同様に、ベルトの温度は低かった。   As is apparent from the results in Table 3, even when the sheet-like rubber composition was used, the temperature of the belt was low as in the belt obtained using the liquid rubber composition.

本発明の摩擦伝動ベルトは、平ベルト、Vベルト、Vリブドベルトなどの摩擦伝動ベルトとして利用できる。また、本発明の摩擦伝動ベルトは、長時間走行してもベルト温度の上昇を抑制できるため、自動車、自動二輪車、農業機械など屋外で使用される高負荷伝動機器に好適に利用でき、熱劣化し易い過酷な条件であっても、長寿命化できるため、近年、エンジンルームの高温化が進んでいる自動車エンジン補機駆動に用いられるVリブドベルトに特に好適に利用できる。   The friction transmission belt of the present invention can be used as a friction transmission belt such as a flat belt, a V belt, and a V-ribbed belt. In addition, the friction transmission belt of the present invention can suppress an increase in belt temperature even if it travels for a long time, and thus can be suitably used for high load transmission devices used outdoors such as automobiles, motorcycles, agricultural machines, and thermal degradation. Even under harsh conditions that can be easily performed, the life can be extended, and therefore, it can be particularly suitably used for a V-ribbed belt used for driving an automobile engine accessory whose temperature in an engine room is increasing.

1…摩擦伝動ベルト(Vリブドベルト)
2…圧縮層
3…芯体
4…伸張層
5…放熱層
1 Friction transmission belt (V-ribbed belt)
2 ... Compressed layer 3 ... Core 4 ... Stretch layer 5 ... Heat dissipation layer

Claims (15)

摩擦伝動面が熱伝導性金属粒子を含む放熱層で被覆された摩擦伝動ベルト。   A friction transmission belt having a friction transmission surface coated with a heat dissipation layer containing thermally conductive metal particles. 放熱層の表面に熱伝導性金属粒子が存在する請求項1記載の摩擦伝動ベルト。   The friction transmission belt according to claim 1, wherein thermally conductive metal particles are present on the surface of the heat dissipation layer. 熱伝導性金属粒子の100℃での熱伝導率が100W/m・K以上である請求項1又は2記載の摩擦伝動ベルト。   The frictional power transmission belt according to claim 1 or 2, wherein the thermal conductivity of the thermally conductive metal particles at 100 ° C is 100 W / m · K or more. 熱伝導性金属粒子の平均粒径が1〜100μmである請求項1〜3のいずれかに記載の摩擦伝動ベルト。   The friction transmission belt according to claim 1, wherein the heat conductive metal particles have an average particle diameter of 1 to 100 μm. 熱伝導性金属粒子の形状が略球状である請求項1〜4のいずれかに記載の摩擦伝動ベルト。   The frictional power transmission belt according to any one of claims 1 to 4, wherein the thermally conductive metal particles have a substantially spherical shape. 摩擦伝動面全体に対して熱伝導性金属粒子が占める面積割合が5〜95%である請求項1〜5のいずれかに記載の摩擦伝動ベルト。   The friction transmission belt according to any one of claims 1 to 5, wherein an area ratio of the heat conductive metal particles to the entire friction transmission surface is 5 to 95%. 放熱層の平均厚みが10〜300μmである請求項1〜6のいずれかに記載の摩擦伝動ベルト。   The frictional power transmission belt according to any one of claims 1 to 6, wherein the heat dissipation layer has an average thickness of 10 to 300 µm. 放熱層が、ゴム成分及び熱伝導性金属粒子を含むゴム組成物の加硫物で形成されている請求項1〜7のいずれかに記載の摩擦伝動ベルト。   The frictional power transmission belt according to any one of claims 1 to 7, wherein the heat radiation layer is formed of a vulcanized product of a rubber composition containing a rubber component and thermally conductive metal particles. 熱伝導性金属粒子の割合が、ゴム成分100質量部に対して10〜2000質量部である請求項8記載の摩擦伝動ベルト。   The friction transmission belt according to claim 8, wherein the proportion of the heat conductive metal particles is 10 to 2000 parts by mass with respect to 100 parts by mass of the rubber component. ゴム成分を含むゴム組成物の加硫物で形成された圧縮層を備え、この圧縮層に摩擦伝動面が形成された摩擦伝動ベルトであって、前記圧縮層のゴム成分と、放熱層のゴム成分とが、同一のゴム成分である請求項8又は9記載の摩擦伝動ベルト。   A friction transmission belt comprising a compression layer formed of a vulcanizate of a rubber composition containing a rubber component, and a friction transmission surface formed on the compression layer, the rubber component of the compression layer and the rubber of the heat dissipation layer The friction transmission belt according to claim 8 or 9, wherein the components are the same rubber component. ベルト周長方向に延びる複数のV字状リブ部を有するVリブドベルトである請求項1〜10のいずれかに記載の摩擦伝動ベルト。   The friction transmission belt according to any one of claims 1 to 10, which is a V-ribbed belt having a plurality of V-shaped rib portions extending in a belt circumferential direction. 熱伝導性金属粒子を含む放熱層前駆体で摩擦伝動面を被覆する被覆工程を含む請求項1〜11のいずれかに記載の摩擦伝動ベルトの製造方法。   The manufacturing method of the friction transmission belt in any one of Claims 1-11 including the coating | coated process which coat | covers a friction transmission surface with the thermal radiation layer precursor containing a heat conductive metal particle. ゴム成分及び熱伝導性金属粒子を含むゴム組成物で摩擦伝動面を被覆する被覆工程、及び摩擦伝動面を被覆した前記ゴム組成物を加硫する加硫工程を含む請求項12記載の摩擦伝動ベルトの製造方法。   The friction transmission according to claim 12, further comprising a coating step of coating the friction transmission surface with a rubber composition containing a rubber component and heat conductive metal particles, and a vulcanization step of vulcanizing the rubber composition coated with the friction transmission surface. A method for manufacturing a belt. 被覆工程において、ゴム成分及び熱伝導性金属粒子を含む液状ゴム組成物を摩擦伝動面に付着させる請求項13記載の製造方法。   The manufacturing method according to claim 13, wherein in the covering step, a liquid rubber composition containing a rubber component and thermally conductive metal particles is adhered to the friction transmission surface. 被覆工程において、ゴム成分及び熱伝導性金属粒子を含むゴム組成物で形成されたシートを摩擦伝動面に積層する請求項13記載の製造方法。
The manufacturing method according to claim 13, wherein in the covering step, a sheet formed of a rubber composition containing a rubber component and thermally conductive metal particles is laminated on the friction transmission surface.
JP2016227974A 2015-12-14 2016-11-24 Friction transmission belt and its manufacturing method Active JP6797647B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243103 2015-12-14
JP2015243103 2015-12-14

Publications (2)

Publication Number Publication Date
JP2017110805A true JP2017110805A (en) 2017-06-22
JP6797647B2 JP6797647B2 (en) 2020-12-09

Family

ID=59080567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227974A Active JP6797647B2 (en) 2015-12-14 2016-11-24 Friction transmission belt and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6797647B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280321A (en) * 1996-04-12 1997-10-28 Toyota Motor Corp Toothed belt
JP2004076927A (en) * 2002-06-20 2004-03-11 Mitsuboshi Belting Ltd V-ribbed belt and manufacturing method thereof
WO2009011414A1 (en) * 2007-07-19 2009-01-22 Bando Chemical Industries, Ltd. V-ribbed belt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280321A (en) * 1996-04-12 1997-10-28 Toyota Motor Corp Toothed belt
JP2004076927A (en) * 2002-06-20 2004-03-11 Mitsuboshi Belting Ltd V-ribbed belt and manufacturing method thereof
WO2009011414A1 (en) * 2007-07-19 2009-01-22 Bando Chemical Industries, Ltd. V-ribbed belt

Also Published As

Publication number Publication date
JP6797647B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
TWI604947B (en) V-shaped ribbed belt and method of manufacturing same
JP6342760B2 (en) Friction transmission belt
US9303722B2 (en) Friction transmission belt and method for manufacturing the same
JP6101677B2 (en) Friction transmission belt
JP6612827B2 (en) Various twisted cords, manufacturing method thereof, transmission belt and usage method thereof
WO2013105191A1 (en) Friction transmission belt, manufacturing method thereof, and belt transmission device
JP5926543B2 (en) Friction transmission belt and manufacturing method thereof
JP6654653B2 (en) Transmission V-belt and method of manufacturing the same
JP2007170587A (en) V-ribbed belt
JP2011190916A (en) Friction transmission belt, method of manufacturing the same, and belt transmission using the same
JP2006194322A (en) Frictional transmission belt
JP6795466B2 (en) Transmission belt and its manufacturing method
JP2007170454A (en) V-ribbed belt
JP6748152B2 (en) V-ribbed belt
JP2006194357A (en) Frictional transmission belt
JP6291470B2 (en) Friction transmission belt and manufacturing method thereof
JP6797647B2 (en) Friction transmission belt and its manufacturing method
JP6650545B1 (en) Core wire for friction transmission belt, friction transmission belt, and method of manufacturing the same
KR20230129598A (en) Helically toothed belt power transmitting device
JP6676725B2 (en) Friction transmission belt, cord therefor, and method of manufacturing them
JP6886271B2 (en) Belt transmission device
JP6747945B2 (en) Friction transmission belt and manufacturing method thereof
JP6912180B2 (en) Friction transmission belt and its manufacturing method
JP2021091877A (en) Molding member and application of the same
JP2007120752A (en) Friction transmission belt and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6797647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250