JP2017110577A - Heat transition flow pump device - Google Patents

Heat transition flow pump device Download PDF

Info

Publication number
JP2017110577A
JP2017110577A JP2015246024A JP2015246024A JP2017110577A JP 2017110577 A JP2017110577 A JP 2017110577A JP 2015246024 A JP2015246024 A JP 2015246024A JP 2015246024 A JP2015246024 A JP 2015246024A JP 2017110577 A JP2017110577 A JP 2017110577A
Authority
JP
Japan
Prior art keywords
transition flow
flow pump
cooling
plate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015246024A
Other languages
Japanese (ja)
Other versions
JP6406236B2 (en
Inventor
恒 釘本
Tsune Kugimoto
恒 釘本
靖樹 廣田
Yasuki Hirota
靖樹 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015246024A priority Critical patent/JP6406236B2/en
Publication of JP2017110577A publication Critical patent/JP2017110577A/en
Application granted granted Critical
Publication of JP6406236B2 publication Critical patent/JP6406236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat transition flow pump device that is configured to efficiently cool or heat a porous material, and whose contour is made small.SOLUTION: Cooling plates 12 and heating plates 14 are alternately laminated, and a porous material 16 is arranged between the cooling plate 12 and the heating plate 14. A single pump 26 formed by the porous material 16 and the cooling plate 12 and heating plate 14 positioned at both ends of the porous material. The respective single pumps 26 are connected in parallel. Temperature difference between the front and rear of the porous material 16 occurs, and then heat transition flow occurs in the porous material 16. Consequently, gas to be handled is suctioned from a suction port 28, and then discharged from a discharge port 30. By arranging the porous material 16 on each of the front and rear of the cooling plate 12 and heating plate 14, surfaces of the cooling plates 12 and heating plate 14 are effectively utilized.SELECTED DRAWING: Figure 1

Description

本発明は、熱遷移流を利用したポンプ装置に関し、特にその構造に関する。   The present invention relates to a pump device using a thermal transition flow, and more particularly to its structure.

希薄気体においては、希薄気体中に温度勾配がある面が存在すると、この面に沿って低温部から高温部に向かう流れが誘起される。この流れは熱遷移流と呼ばれている。気体が希薄かどうかは、気体分子の平均自由行程と取り扱う系の代表長との比で決まるため、大気圧下のような濃い気体でも、孔径が数十nm程度のナノ多孔質体内では、気体は希薄気体として振る舞う。多孔質体の表裏に温度差を生じさせると、多孔質体内の気体が温度の低い面から高い面に向けて流れる。このような熱遷移流を誘起させる多孔質体を用いた熱遷移流ポンプ装置が下記非特許文献1に記載されている。   In a rare gas, when a surface with a temperature gradient exists in the rare gas, a flow from the low temperature part to the high temperature part is induced along this surface. This flow is called a thermal transition flow. Whether a gas is dilute or not is determined by the ratio of the mean free path of gas molecules to the representative length of the system to be handled. Therefore, even in a dense gas such as under atmospheric pressure, Behaves as a dilute gas. When a temperature difference is generated between the front and back surfaces of the porous body, the gas in the porous body flows from a low temperature surface to a high surface. Non-Patent Document 1 below discloses a thermal transition flow pump device using a porous body that induces such a thermal transition flow.

Naveen K.Gupta and Yogesh B.Gianchandani、“Thermal transpiration in zeolites:A mechanism for motionless gas pumps”、APPLIED PHYSICS LETTERS 93、[online]、2008年11月14日、American Institute of Phsics、<URL:http://dx.doi.org/10.1063/1.3025304>Naveen K. Gupta and Yogesh B. Gianchandani, “Thermal transpiration in zeolites: A mechanism for motionless gas pumps”, APPLIED PHYSICS LETTERS 93, [online], November 14, 2008, American Institute of Phsics, <URL: http: //dx.doi.org/10.1063/1.3025304>

熱遷移流ポンプ装置において、多孔質体の表裏に温度差を生じさせるための冷却器または加熱器が装置の外形を大きくする。   In the thermal transition flow pump device, a cooler or a heater for generating a temperature difference between the front and back surfaces of the porous body enlarges the outer shape of the device.

本発明は、冷却器または加熱器を有効に利用して多孔質体の冷却または加熱を効率良く行い、また装置外形を小形とすることを目的とする。   An object of the present invention is to efficiently cool or heat a porous body by effectively using a cooler or a heater, and to reduce the outer shape of the apparatus.

本発明の熱遷移流ポンプ装置は、交互に積層されている複数の冷却板および複数の加熱板と、冷却板と加熱板の各間に位置し、冷却板との間に第1室を画定し、加熱板との間に第2室を画定する多孔質体を含む。多孔質体の冷却板に対面する第1面と加熱板に対面する第2面の間に温度差があると多孔質体中に第1面から第2面に向かう熱遷移流が生じる。第1室に通じる吸込み口と第2室に通じる吐出口とが設けられ、熱遷移流により生じた流れにより気体が吸込み口から第1室に吸い込まれ、また第2室から吐出口を通じて気体が吐出される。一つの多孔質体とこの多孔質体に隣接する冷却板および加熱板とにより単ポンプが形成され、この熱遷移流ポンプ装置は、単ポンプが積層された構造をなし、各単ポンプは並列接続されている。   The thermal transition flow pump device according to the present invention includes a plurality of cooling plates and a plurality of heating plates that are alternately stacked, and is positioned between each of the cooling plates and the heating plate, and defines a first chamber between the cooling plates. And a porous body defining a second chamber with the heating plate. If there is a temperature difference between the first surface facing the cooling plate of the porous body and the second surface facing the heating plate, a thermal transition flow from the first surface to the second surface is generated in the porous body. A suction port leading to the first chamber and a discharge port leading to the second chamber are provided, and gas is sucked into the first chamber from the suction port due to the flow generated by the thermal transition flow, and gas is sucked from the second chamber through the discharge port. Discharged. A single pump is formed by one porous body and a cooling plate and a heating plate adjacent to the porous body. This thermal transition flow pump device has a structure in which single pumps are stacked, and each single pump is connected in parallel. Has been.

冷却板、加熱板および多孔質体は、積層されて積層構造物を形成する。この積層構造物の積層方向に対して側方の第1側面に吸込み口を設けることができ、第1側面の反対側の第2側面に吐出口を設けることができる。   The cooling plate, the heating plate, and the porous body are laminated to form a laminated structure. The suction port can be provided on the first side surface lateral to the stacking direction of the laminated structure, and the discharge port can be provided on the second side surface opposite to the first side surface.

冷却板は、冷却板を冷やす冷却流体が内部を流れるものとすることができ、加熱板は、加熱板を温める加熱流体が内部を流れるものとすることができる。冷却流体と加熱流体は、積層構造物の第1側面と第2側面が対向する方向と交差する方向に流れるようにできる。   The cooling plate can be a cooling fluid that cools the cooling plate, and the heating plate can be a heating fluid that warms the heating plate. The cooling fluid and the heating fluid can flow in a direction intersecting with a direction in which the first side surface and the second side surface of the laminated structure are opposed to each other.

熱遷移流ポンプ装置が、複数の吸込み口に接続され、各吸込み口に取扱い気体を分配する分配室と、複数の吐出口に接続され、各吐出口からの取扱い気体を集合させる集合室とを有するようにできる。   A thermal transition flow pump device is connected to a plurality of suction ports, and a distribution chamber that distributes the handling gas to each suction port, and a collecting chamber that is connected to the plurality of discharge ports and collects the handling gas from each discharge port. You can have it.

複数の熱遷移流ポンプ装置を直列に接続し、多段熱遷移流ポンプ装置を形成することができる。このとき、直列接続された隣接する熱遷移流ポンプ装置の集合室と分配室が接続される。   A plurality of thermal transition flow pump devices can be connected in series to form a multistage thermal transition flow pump device. At this time, the collection chamber and the distribution chamber of the adjacent thermal transition flow pump devices connected in series are connected.

冷却板、加熱板および多孔質体を積層することにより、冷却板および加熱板の表裏にそれぞれ多孔質体を配置することができ、冷却板、加熱板の表面積を有効に利用することができる。また、これにより装置を小形化することができる。   By laminating the cooling plate, the heating plate, and the porous body, the porous body can be disposed on the front and back of the cooling plate and the heating plate, respectively, and the surface areas of the cooling plate and the heating plate can be used effectively. In addition, this makes it possible to reduce the size of the apparatus.

本実施形態の熱遷移流ポンプ装置10の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the thermal transition flow pump apparatus 10 of this embodiment. 冷却器48を示す図である。It is a figure which shows the cooler. 冷却器48の断面図を示す図である。3 is a cross-sectional view of a cooler 48. FIG. 加熱器56を示す図である。It is a figure which shows the heater 56. FIG. 加熱器56の断面を示す図である。It is a figure which shows the cross section of the heater. 冷却器48に多孔質体16を取り付けた状態を示す図である。It is a figure which shows the state which attached the porous body 16 to the cooler 48. FIG. 図6の冷却器48と多孔質体16に加熱器56を取り付けた状態を示す図である。It is a figure which shows the state which attached the heater 56 to the cooler 48 and the porous body 16 of FIG. 冷却流体および加熱流体の配管の一例を示す図である。It is a figure which shows an example of piping of a cooling fluid and a heating fluid. 多段の熱遷移流ポンプ装置の例を示す図である。It is a figure which shows the example of a multistage thermal transition flow pump apparatus.

以下、本発明の実施形態を図面に従って説明する。図1は、熱遷移流ポンプ装置10の概略構成を示す断面図である。熱遷移流ポンプ装置10は、冷却板12、加熱板14および板状の多孔質体16を積層して形成された積層構造体18を有する。冷却板12と加熱板14は交互に積層され、これらの間に多孔質体16が位置する。したがって、多孔質体16は、一方の面が冷却板12に対面し、この面と反対側の面が加熱板14に対面する。冷却板12と多孔質体16は、これらの間に第1室20を画定する。また、加熱板14と多孔質体16は、これらの間に第2室22を画定する。多孔質体16と、冷却板12または加熱板14の隙間はシール材24にて封止され、第1室20と第2室22は隔離される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating a schematic configuration of the thermal transition flow pump device 10. The thermal transition flow pump device 10 has a laminated structure 18 formed by laminating a cooling plate 12, a heating plate 14, and a plate-like porous body 16. The cooling plate 12 and the heating plate 14 are alternately stacked, and the porous body 16 is located between them. Therefore, one surface of the porous body 16 faces the cooling plate 12, and the surface opposite to this surface faces the heating plate 14. The cooling plate 12 and the porous body 16 define a first chamber 20 therebetween. The heating plate 14 and the porous body 16 define a second chamber 22 between them. A gap between the porous body 16 and the cooling plate 12 or the heating plate 14 is sealed with a sealing material 24, and the first chamber 20 and the second chamber 22 are isolated.

多孔質体16は、第1室20と第2室22を連通する多数の細孔を有し、この細孔の孔径は、取扱い対象となる気体(以下、取扱い気体と記す。)の分子の平均自由行程(大気圧下では60〜70nm程度)の5倍以下、例えば60nm程度に形成されている。多孔質体16の材料としては、ゼオライトを用いることができ、また二酸化ケイ素材料の内部に細孔が多数形成されたシリカエアロジェルを用いることもできる。前記の細孔を有する多孔質体16内においては、気体は希薄気体として振る舞い、多孔質体16の表裏に温度差が生じると、温度の低い側から高い側に向けて、熱遷移流と呼ばれる気体の流れが発生する。多孔質体16の一方の面が、この面に対向する冷却板12により冷やされ、また、この面と反対側の面がこの面に対向する加熱板14に温められる。これにより、多孔質体16の表裏の面に温度差が生じ、多孔質体内に熱遷移流が発生する。この流れにより気体が第1室20から多孔質体16を通って第2室22に送られ、一つの多孔質体16と、これを挟んで位置する冷却板12および加熱板14が、一つのポンプとして機能する。このポンプを単ポンプ26と記す。冷却板12、加熱板14および多孔質体16が積層された積層構造体18は、単ポンプ26が積層された構造体でもある。   The porous body 16 has a large number of pores communicating with the first chamber 20 and the second chamber 22, and the pore diameter of the pores is a molecule of a gas to be handled (hereinafter referred to as a handling gas). It is formed to be 5 times or less of the mean free path (about 60 to 70 nm under atmospheric pressure), for example, about 60 nm. As the material of the porous body 16, zeolite can be used, and silica airgel in which a large number of pores are formed inside the silicon dioxide material can also be used. In the porous body 16 having the pores, the gas behaves as a rare gas, and when a temperature difference occurs between the front and back of the porous body 16, it is called a thermal transition flow from the lower temperature side to the higher temperature side. A gas flow is generated. One surface of the porous body 16 is cooled by the cooling plate 12 facing this surface, and the surface opposite to this surface is heated by the heating plate 14 facing this surface. Thereby, a temperature difference arises in the surface of the front and back of the porous body 16, and a thermal transition flow generate | occur | produces in a porous body. By this flow, gas is sent from the first chamber 20 through the porous body 16 to the second chamber 22, and one porous body 16, the cooling plate 12 and the heating plate 14 positioned therebetween, form one Functions as a pump. This pump is referred to as a single pump 26. The laminated structure 18 in which the cooling plate 12, the heating plate 14 and the porous body 16 are laminated is also a structure in which the single pump 26 is laminated.

第1室20に対応して吸込み口28が設けられ、単ポンプ26は吸込み口28を介して取扱い気体を吸い込む。第2室22に対応して吐出口30が設けられ、単ポンプ26は吐出口30を介して取扱い気体を吐出する。この熱遷移流ポンプ装置10においては、吸込み口28は、隣接する2個の単ポンプ26に対して1個が設けられ、吐出口30も、隣接する2個の単ポンプ26に対して1個が設けられている。吸込み口28は、積層構造体18の、積層方向に対して側方の1つの側面に設けられ、吐出口30は、吸込み口28が設けられた側面とは反対側の側面に設けられている。積層構造体18の、吸込み口28が設けられた側面を吸込み側側面32、吐出口30が設けられた側面を吐出側側面34と記す。   A suction port 28 is provided corresponding to the first chamber 20, and the single pump 26 sucks the handling gas through the suction port 28. A discharge port 30 is provided corresponding to the second chamber 22, and the single pump 26 discharges the handling gas through the discharge port 30. In this thermal transition flow pump device 10, one suction port 28 is provided for two adjacent single pumps 26, and one discharge port 30 is also provided for two adjacent single pumps 26. Is provided. The suction port 28 is provided on one side surface of the laminated structure 18 that is lateral to the stacking direction, and the discharge port 30 is provided on the side surface opposite to the side surface on which the suction port 28 is provided. . The side surface of the laminated structure 18 provided with the suction port 28 is referred to as a suction side surface 32 and the side surface provided with the discharge port 30 is referred to as a discharge side surface 34.

積層構造体18を構成する単ポンプ26は並列接続され、取扱い気体は各吸込み口28に分配して供給され、各吐出口30から吐出された取扱い気体は集合される。   The single pumps 26 constituting the laminated structure 18 are connected in parallel, the handling gas is distributed and supplied to the suction ports 28, and the handling gases discharged from the discharge ports 30 are collected.

積層構造体18の吸込み側側面32に対向して分配箱36が配置され、分配箱36と吸込み側側面32により分配室38が画定される。各単ポンプ26の吸込み口28が分配室38に対向する。分配箱36には吸込み管40が接続され、吸込み管40から分配室38に送られた取扱い気体が吸込み口28を介して各単ポンプ26に分配される。積層構造体18の吐出側側面34に対向して集合箱42が配置され、集合箱42と吐出側側面34により集合室44が画定される。各単ポンプ26の吐出口30が集合室44に対向する。各単ポンプ26の吐出口30から吐出された取扱い気体が集合室44で集合し、集合箱42に接続されている吐出管46から吐出される。   A distribution box 36 is disposed opposite to the suction side surface 32 of the laminated structure 18, and a distribution chamber 38 is defined by the distribution box 36 and the suction side surface 32. The suction port 28 of each single pump 26 faces the distribution chamber 38. A suction pipe 40 is connected to the distribution box 36, and the handling gas sent from the suction pipe 40 to the distribution chamber 38 is distributed to each single pump 26 through the suction port 28. A collection box 42 is disposed opposite to the discharge side surface 34 of the laminated structure 18, and a collection chamber 44 is defined by the collection box 42 and the discharge side surface 34. The discharge port 30 of each single pump 26 faces the collecting chamber 44. The handling gas discharged from the discharge port 30 of each single pump 26 gathers in the collecting chamber 44 and is discharged from the discharge pipe 46 connected to the collecting box 42.

図2,3は、冷却板12を含む冷却器48の構成を示す図である。図2は、冷却器48を吸込み側側面32から視た図であり、図3は、図2中のA−A線による断面図である。この熱遷移流ポンプ装置10においては、冷却器48は冷却板12から構成される。冷却器48および冷却板12の外形は、長方形(正方形を含む。以下同じ。)の板形状であり、長方形の一辺に、この辺に沿って延びる細長い吸込み口28が形成されている。冷却板12内には、吸込み口28から延び、途中で分岐し、冷却板12の表裏に開口する吸込み流路50が形成されている。吸込み流路50は、吸込み口28の形状とほぼ同じ断面形状を有する。冷却板12内には、冷却流体が流れる冷却流体流路52が設けられ、冷却流体流路52は外部の冷却流体配管54,55に接続されている。冷却流体流路52は、直線状の複数本が並行に配置されてもよく、また1本または複数本が冷却板12内で蛇行するように配置されてもよい。また、冷却板12内を空洞とし、冷却流体配管54からこの空洞内に冷却流体が供給され、空洞内から冷却流体配管55へと排出されるようにしてもよい。冷却板12の材質として、熱伝導性の良い材料、例えば金属、好ましくはアルミニウムを採用することができる。   2 and 3 are diagrams showing the configuration of the cooler 48 including the cooling plate 12. 2 is a view of the cooler 48 viewed from the suction side surface 32, and FIG. 3 is a cross-sectional view taken along the line AA in FIG. In the heat transition flow pump device 10, the cooler 48 is constituted by the cooling plate 12. The outer shape of the cooler 48 and the cooling plate 12 is a rectangular (including a square, the same applies hereinafter) plate shape, and an elongated suction port 28 extending along this side is formed on one side of the rectangle. In the cooling plate 12, a suction channel 50 is formed that extends from the suction port 28, branches in the middle, and opens on the front and back of the cooling plate 12. The suction channel 50 has substantially the same cross-sectional shape as the shape of the suction port 28. A cooling fluid passage 52 through which a cooling fluid flows is provided in the cooling plate 12, and the cooling fluid passage 52 is connected to external cooling fluid pipes 54 and 55. A plurality of linear cooling fluid channels 52 may be arranged in parallel, or one or a plurality of cooling fluid channels 52 may be arranged to meander in the cooling plate 12. Alternatively, the inside of the cooling plate 12 may be a cavity, and the cooling fluid may be supplied from the cooling fluid pipe 54 into the cavity and discharged from the cavity to the cooling fluid pipe 55. As the material of the cooling plate 12, a material having good thermal conductivity, for example, a metal, preferably aluminum can be adopted.

図4,5は、加熱板14を含む加熱器56の構成を示す図である。図4は、加熱器56を吸込み側側面32から視た図であり、図5は、図4中のB−B線による断面図である。この熱遷移流ポンプ装置10においては、加熱器56は、加熱板14と加熱板の周囲を囲むように設けられた周囲壁58から構成される。加熱板14は、長方形の板形状であり、一辺に吐出口30が形成されている。吐出口30は、図2に示す吸込み口28と同様、一辺に沿って延びる細長い形状を有する。加熱板14内には、吐出口30から延び、途中で分岐し、加熱板14の表裏に開口する吐出流路60が形成されている。吐出流路60は、吐出口30の形状とほぼ同じ断面形状を有する。加熱板14内には、加熱流体が流れる加熱流体流路62が設けられ、加熱流体流路62は外部の加熱流体配管64,65に接続されている。加熱流体流路62は、直線状の複数本が並行に配置されてもよく、また1本または複数本が加熱板14内で蛇行するように配置されてもよい。また、加熱板14内を空洞とし、加熱流体配管64からこの空洞内に加熱流体が供給され、空洞内から加熱流体配管65へと排出されるようにしてもよい。加熱板14の材質として、熱伝導性の良い材料、例えば金属、好ましくはアルミニウムを採用することができる。周囲壁58は、加熱板14の表裏両側に設けられ、それぞれの側において、加熱板14と共に、1面が開放した空間を画定する。周囲壁58は、断熱性の高い材料、例えば樹脂材料とすることができる。また、周囲壁58を高い熱伝導性の材料で形成した場合には、加熱板14からの熱伝導を抑制するために、樹脂材料等の断熱性の高い材料を介して加熱板14と周囲壁58を接続することが好ましい。   4 and 5 are diagrams showing the configuration of the heater 56 including the heating plate 14. 4 is a view of the heater 56 viewed from the suction side surface 32, and FIG. 5 is a cross-sectional view taken along line BB in FIG. In the heat transition flow pump device 10, the heater 56 includes a heating plate 14 and a peripheral wall 58 provided so as to surround the periphery of the heating plate. The heating plate 14 has a rectangular plate shape, and a discharge port 30 is formed on one side. The discharge port 30 has an elongated shape extending along one side, like the suction port 28 shown in FIG. In the heating plate 14, a discharge channel 60 is formed that extends from the discharge port 30, branches in the middle, and opens on the front and back of the heating plate 14. The discharge channel 60 has substantially the same cross-sectional shape as the shape of the discharge port 30. A heating fluid channel 62 through which heating fluid flows is provided in the heating plate 14, and the heating fluid channel 62 is connected to external heating fluid pipes 64 and 65. The heating fluid channel 62 may be arranged in parallel with a plurality of straight lines, or may be arranged so that one or more meanders in the heating plate 14. Further, the inside of the heating plate 14 may be a cavity, and the heating fluid may be supplied from the heating fluid pipe 64 into the cavity and discharged from the cavity to the heating fluid pipe 65. As the material of the heating plate 14, a material having good thermal conductivity, for example, a metal, preferably aluminum can be adopted. The peripheral wall 58 is provided on both the front and back sides of the heating plate 14, and on each side, together with the heating plate 14, defines a space where one surface is open. The peripheral wall 58 can be made of a highly heat-insulating material such as a resin material. In addition, when the surrounding wall 58 is formed of a highly heat conductive material, the heating plate 14 and the surrounding wall are interposed via a highly heat insulating material such as a resin material in order to suppress heat conduction from the heating plate 14. 58 is preferably connected.

図6,7は、単ポンプ26の組み立てに関する説明図である。図6は、冷却器48(冷却板12)に多孔質体16を取り付けた状態を示す図である。多孔質体16は、冷却板12より一回り小さい長方形である。冷却板12の表裏両側に多孔質体16がシール材24を介して取り付けられる。シール材24は、多孔質体16の周囲を巡るように配置され、全周において多孔質体16と冷却板12の間を封止する。シール材24は、接着剤であってよい。多孔質体16は、冷却板12に対して隙間を設けて取り付けられ、この隙間が第1室20となる。吸込み口28から延びる吸込み流路50は、第1室20に対して開口する。   6 and 7 are explanatory diagrams relating to the assembly of the single pump 26. FIG. 6 is a view showing a state in which the porous body 16 is attached to the cooler 48 (cooling plate 12). The porous body 16 has a rectangular shape that is slightly smaller than the cooling plate 12. The porous body 16 is attached to both the front and back sides of the cooling plate 12 via the sealing material 24. The sealing material 24 is arranged so as to go around the porous body 16 and seals between the porous body 16 and the cooling plate 12 in the entire periphery. The sealing material 24 may be an adhesive. The porous body 16 is attached to the cooling plate 12 with a gap, and this gap becomes the first chamber 20. The suction flow path 50 extending from the suction port 28 opens to the first chamber 20.

図7は、図6の状態からさらに加熱器56を取り付けた状態を示す図である。冷却器48に加熱器56の周囲壁58の端面を当接して、冷却器48に加熱器56を取り付ける。冷却板12と加熱板14は、ほぼ同じ形状であり、周囲壁58は冷却器48(冷却板12)の周縁に当接する。また、周囲壁58と冷却器48の接合部分は、接着剤などにより封止される。多孔質体16は、加熱板14と周囲壁58により画定された空間に収容され、周囲壁58により周囲を囲まれる。冷却器48に加熱器56を取り付けた状態で、加熱板14と多孔質体16の間には、隙間が形成され、この隙間が第2室22となる。吐出口30から延びる吐出流路60は、第2室22に対して開口する。多孔質体16と、これの両側に位置する冷却器48および加熱器56により単ポンプ26が形成される。   FIG. 7 is a view showing a state where the heater 56 is further attached from the state of FIG. 6. The end face of the peripheral wall 58 of the heater 56 is brought into contact with the cooler 48, and the heater 56 is attached to the cooler 48. The cooling plate 12 and the heating plate 14 have substantially the same shape, and the peripheral wall 58 contacts the peripheral edge of the cooler 48 (cooling plate 12). Further, the joint portion between the peripheral wall 58 and the cooler 48 is sealed with an adhesive or the like. The porous body 16 is accommodated in a space defined by the heating plate 14 and the peripheral wall 58, and is surrounded by the peripheral wall 58. With the heater 56 attached to the cooler 48, a gap is formed between the heating plate 14 and the porous body 16, and this gap becomes the second chamber 22. A discharge channel 60 extending from the discharge port 30 opens to the second chamber 22. The single pump 26 is formed by the porous body 16 and the cooler 48 and the heater 56 located on both sides thereof.

図7に示される1個の冷却器48と1個の加熱器56からなるユニットを積層することにより、図1に示される積層構造体18を形成することができる。ただし、最上段に位置する冷却器48は、下側にのみ多孔質体16が取り付けられ、最下段に位置する冷却器48は、上側にのみ多孔質体16が取り付けられる。前述のように、この熱遷移流ポンプ装置10においては、冷却板12および加熱板14が長方形であるので、これらを積層した積層構造体18は直方体または四角柱となる。吸込み口28と吐出口30は、直方体の積層構造体18の、積層方向(各図において上下方向)に対して側方の側面のうち、対向する2つの側面にそれぞれ設けられる。したがって、取扱い気体は、吸込み口28から吐出口30へと流れ、概略的に、積層方向に対して直交する方向に流れる。冷却流体配管54,55は、吸込み口28および吐出口30が設けられた側面以外の2つの側面に対して設けられ、冷却流体は、概略的に、一方の側面から他方の側面へと流れ、積層方向に対して直交し、かつ取扱い気体の流れに対しても直交する方向に流れる。加熱流体配管64,65は、吸込み口28および吐出口30が設けられた側面以外の2つの側面に対して設けられ、加熱流体は、概略的に、一方の側面から他方の側面へと流れ、積層方向に対して直交し、かつ取扱い気体の流れに対しても直交する方向に流れる。   By laminating a unit composed of one cooler 48 and one heater 56 shown in FIG. 7, the laminated structure 18 shown in FIG. 1 can be formed. However, the cooler 48 located on the uppermost stage has the porous body 16 attached only on the lower side, and the cooler 48 located on the lowermost stage has the porous body 16 attached only on the upper side. As described above, in this thermal transition flow pump device 10, the cooling plate 12 and the heating plate 14 are rectangular, and thus the laminated structure 18 in which these are laminated is a rectangular parallelepiped or a rectangular column. The suction port 28 and the discharge port 30 are respectively provided on two opposite side surfaces of the rectangular parallelepiped stacked structure 18 in the side surfaces with respect to the stacking direction (vertical direction in each drawing). Therefore, the handling gas flows from the suction port 28 to the discharge port 30 and generally flows in a direction orthogonal to the stacking direction. The cooling fluid pipes 54 and 55 are provided on two side surfaces other than the side surface on which the suction port 28 and the discharge port 30 are provided, and the cooling fluid generally flows from one side surface to the other side surface, It flows in a direction perpendicular to the stacking direction and also perpendicular to the flow of the handling gas. The heating fluid pipes 64 and 65 are provided on two side surfaces other than the side surface on which the suction port 28 and the discharge port 30 are provided, and the heating fluid generally flows from one side surface to the other side surface, It flows in a direction perpendicular to the stacking direction and also perpendicular to the flow of the handling gas.

図8は、各冷却器48および各加熱器56に冷却流体または加熱流体を送る配管を示す図である。積層構造体18は、吸込み口28が設けられた吸込み側側面32が正面を向いた状態で示されている。入口側の冷却流体配管54には、冷却流体分配管66が接続され、冷却流体が分配されて各冷却器48に供給される。出口側の冷却流体配管55には、冷却流体集合管68が接続され、各冷却器48からの冷却流体を集合させる。入口側の加熱流体配管64には、加熱流体分配管70が接続され、加熱流体が分配されて各加熱器56に供給される。出口側の加熱流体配管65には、加熱流体集合管72が接続され、各加熱器56からの加熱流体を集合させる。   FIG. 8 is a diagram showing piping for sending a cooling fluid or a heating fluid to each cooler 48 and each heater 56. The laminated structure 18 is shown with the suction side surface 32 provided with the suction port 28 facing the front. A cooling fluid distribution pipe 66 is connected to the cooling fluid pipe 54 on the inlet side, and the cooling fluid is distributed and supplied to each cooler 48. A cooling fluid collecting pipe 68 is connected to the cooling fluid pipe 55 on the outlet side, and the cooling fluid from each cooler 48 is collected. A heating fluid distribution pipe 70 is connected to the heating fluid pipe 64 on the inlet side, and the heating fluid is distributed and supplied to each heater 56. A heating fluid collecting pipe 72 is connected to the heating fluid pipe 65 on the outlet side, and the heating fluid from each heater 56 is collected.

冷却板12と加熱板14によって、多孔質体16の表裏に温度差が生じると多孔質体16内に冷やされた面の側の第1室20から、温められた面の側の第2室22に向かう熱遷移流が発生する。この熱遷移流に駆動されて、吸込み口28から取扱い気体が第1室20に吸い込まれ、第2室22内の取扱い気体が吐出口30から吐出される。1つの吸込み口28から吸い込まれた取扱い気体は、分岐して冷却板12の表裏に形成された2つの第1室20それぞれ流入する。また、加熱板14の表裏に形成された2つの第2室22内の取扱い気体は、合流して1つの吐出口30から吐出される。   When a temperature difference is generated between the front and back surfaces of the porous body 16 by the cooling plate 12 and the heating plate 14, the second chamber on the heated surface side is changed from the first chamber 20 on the side cooled in the porous body 16. A thermal transition flow toward 22 is generated. Driven by this heat transition flow, the handling gas is sucked into the first chamber 20 from the suction port 28, and the handling gas in the second chamber 22 is discharged from the discharge port 30. The handling gas sucked from one suction port 28 branches and flows into each of the two first chambers 20 formed on the front and back of the cooling plate 12. In addition, the handling gases in the two second chambers 22 formed on the front and back surfaces of the heating plate 14 merge and are discharged from one discharge port 30.

図9は、図1に示す熱遷移流ポンプ装置10を2個繋げた多段熱遷移流ポンプ装置74を示す図である。2個の熱遷移流ポンプ装置10A,10Bの構成は、前述の熱遷移流ポンプ装置10と同一の構成を有する。前段の熱遷移流ポンプ装置10Aの吐出管46に後段の熱遷移流ポンプ装置10Bを接続して2段構成とする。さらに、段を増やしてもよい。   FIG. 9 is a diagram showing a multistage heat transition flow pump device 74 in which two heat transition flow pump devices 10 shown in FIG. 1 are connected. The configuration of the two thermal transition flow pump devices 10A and 10B has the same configuration as the thermal transition flow pump device 10 described above. A downstream thermal transition flow pump device 10B is connected to the discharge pipe 46 of the upstream thermal transition flow pump device 10A to form a two-stage configuration. Further, the number of steps may be increased.

熱遷移流ポンプ装置10,10A,10Bにおいて、各冷却板12(ただし、上端、下端の冷却板は除く)および各加熱板14のそれぞれについて表裏両面に多孔質体16を配置したことで、冷却板12および加熱板14の表裏両面を有効に利用することができ、装置の体積を減らすことができる。   In the heat transition flow pump devices 10, 10 </ b> A, 10 </ b> B, the porous body 16 is disposed on both the front and back surfaces of each cooling plate 12 (excluding the upper and lower cooling plates) and each heating plate 14. Both the front and back surfaces of the plate 12 and the heating plate 14 can be used effectively, and the volume of the apparatus can be reduced.

冷却板、加熱板および多孔質体は、長方形板形状に限らず、他の多角形、円形などの板形状とすることもできる。また、冷却板、加熱板および多孔質体は、それぞれ異なる形状とすることができる。例えば、冷却板、加熱板は長方形とし、多孔質体は円形とすることができる。   The cooling plate, the heating plate, and the porous body are not limited to the rectangular plate shape, and may be other plate shapes such as a polygonal shape and a circular shape. In addition, the cooling plate, the heating plate, and the porous body can have different shapes. For example, the cooling plate and the heating plate can be rectangular, and the porous body can be circular.

周囲壁は、加熱板でなく冷却板に設けてもよく、また加熱板の一方の面と冷却板の一方の面に設けてもよい。多孔質体を取り付けるのは、冷却板でなく加熱板であってもよく、また冷却板と加熱板に1つずつ取り付けてもよい。   The peripheral wall may be provided not on the heating plate but on the cooling plate, or on one surface of the heating plate and one surface of the cooling plate. The porous body may be attached to the heating plate instead of the cooling plate, or may be attached to the cooling plate and the heating plate one by one.

冷却流体および加熱流体は、液体であっても、気体であってもよい。一方が液体で、他方が気体であってもよい。   The cooling fluid and the heating fluid may be liquid or gas. One may be liquid and the other gas.

10,10A,10B 熱遷移流ポンプ装置、12 冷却板、14 加熱板、16 多孔質体、18 積層構造体、20 第1室、22 第2室、24 シール材、26 単ポンプ、28 吸込み口、30 吐出口、32 吸込み側側面、34 吐出側側面、36 分配箱、38 分配室、40 管、42 集合箱、44 集合室、46 吐出管、48 冷却器、50 吸込み流路、52 冷却流体流路、54,55 冷却流体配管、56 加熱器、58 周囲壁、60 吐出流路、62 加熱流体流路、64,65 加熱流体配管、66 冷却流体分配管、68 冷却流体集合管、70 加熱流体分配管、72 加熱流体集合管、74 多段熱遷移流ポンプ装置。   10, 10A, 10B Thermal transition flow pump device, 12 cooling plate, 14 heating plate, 16 porous body, 18 laminated structure, 20 first chamber, 22 second chamber, 24 sealing material, 26 single pump, 28 inlet 30 Discharge port, 32 Suction side surface, 34 Discharge side surface, 36 Distribution box, 38 Distribution chamber, 40 pipe, 42 Collection box, 44 Collection chamber, 46 Discharge pipe, 48 Cooler, 50 Suction flow path, 52 Cooling fluid Flow path, 54, 55 Cooling fluid pipe, 56 Heater, 58 Perimeter wall, 60 Discharge flow path, 62 Heating fluid flow path, 64, 65 Heating fluid pipe, 66 Cooling fluid distribution pipe, 68 Cooling fluid collecting pipe, 70 Heating Fluid distribution pipe, 72 Heating fluid collecting pipe, 74 Multistage heat transition flow pump device.

Claims (5)

交互に積層されている複数の冷却板および複数の加熱板と、
冷却板と加熱板の各間に位置し、冷却板との間に第1室を画定し、加熱板との間に第2室を画定する多孔質体であって、冷却板に対面する第1面と加熱板に対面する第2面の間に温度差があると当該多孔質体中に第1面から第2面に向かう熱遷移流が生じる、多孔質体と、
第1室に通じる吸込み口と、
第2室に通じる吐出口と、
を有し、
多孔質体のそれぞれは、当該多孔質体の両側の冷却板および加熱板と共に単ポンプを形成し、各単ポンプが並列接続されている、
熱遷移流ポンプ装置。
A plurality of cooling plates and a plurality of heating plates stacked alternately,
A porous body positioned between each of the cooling plate and the heating plate, defining a first chamber between the cooling plate and a second chamber between the heating plate and facing the cooling plate. A porous body in which a thermal transition flow from the first surface to the second surface occurs in the porous body when there is a temperature difference between the first surface and the second surface facing the heating plate;
A suction port leading to the first chamber;
A discharge port leading to the second chamber;
Have
Each of the porous bodies forms a single pump together with a cooling plate and a heating plate on both sides of the porous body, and each single pump is connected in parallel.
Thermal transition flow pump device.
請求項1に記載の熱遷移流ポンプ装置であって、冷却板、加熱板および多孔質体が積層されている積層構造物の、積層方向に対して側方の第1側面に吸込み口が設けられ、第1側面の反対側の第2側面に吐出口が設けられている、熱遷移流ポンプ装置。   2. The heat transition flow pump device according to claim 1, wherein a suction port is provided on a first side surface lateral to a stacking direction of a stacked structure in which a cooling plate, a heating plate, and a porous body are stacked. The thermal transition flow pump device is provided with a discharge port on the second side surface opposite to the first side surface. 請求項2に記載の熱遷移流ポンプ装置であって、冷却板内に冷却流体が流れ、加熱板内に加熱流体が流れ、冷却流体と加熱流体は、積層構造物の第1側面と第2側面の対向方向と交差する方向に流れる、熱遷移流ポンプ装置。   It is a thermal transition flow pump apparatus of Claim 2, Comprising: A cooling fluid flows in a cooling plate, a heating fluid flows in a heating plate, and a cooling fluid and a heating fluid are the 1st side surface and 2nd of a laminated structure. A thermal transition flow pump device that flows in a direction intersecting the opposite direction of the side surface. 請求項3に記載の熱遷移流ポンプ装置であって、複数の吸込み口に接続されており、吸込み口に取扱い気体を分配する吸気室と、複数の吐出口に接続されており、吐出口からの取扱い気体を集合させる排気室と、を有する、熱遷移流ポンプ装置。   The heat transition flow pump device according to claim 3, wherein the heat transition flow pump device is connected to a plurality of suction ports, and is connected to an intake chamber for distributing a handling gas to the suction ports, and to a plurality of discharge ports. And an exhaust chamber for collecting the handling gas. 請求項4に記載された熱遷移流ポンプ装置を複数備え、ある熱遷移流ポンプ装置の排気室と別の熱遷移流ポンプ装置の吐出室が接続され、複数の熱遷移流ポンプ装置が直列接続されている、多段熱遷移流ポンプ装置。   A plurality of thermal transition flow pump devices according to claim 4 are provided, an exhaust chamber of one thermal transition flow pump device and a discharge chamber of another thermal transition flow pump device are connected, and a plurality of thermal transition flow pump devices are connected in series Multistage heat transition flow pump device.
JP2015246024A 2015-12-17 2015-12-17 Thermal transition flow pump device Expired - Fee Related JP6406236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246024A JP6406236B2 (en) 2015-12-17 2015-12-17 Thermal transition flow pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246024A JP6406236B2 (en) 2015-12-17 2015-12-17 Thermal transition flow pump device

Publications (2)

Publication Number Publication Date
JP2017110577A true JP2017110577A (en) 2017-06-22
JP6406236B2 JP6406236B2 (en) 2018-10-17

Family

ID=59081730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246024A Expired - Fee Related JP6406236B2 (en) 2015-12-17 2015-12-17 Thermal transition flow pump device

Country Status (1)

Country Link
JP (1) JP6406236B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130519A (en) * 1983-09-05 1984-07-27 Mitsutoshi Kashiwajima Device for transporting and compressing gas by using porous material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130519A (en) * 1983-09-05 1984-07-27 Mitsutoshi Kashiwajima Device for transporting and compressing gas by using porous material

Also Published As

Publication number Publication date
JP6406236B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6597892B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
US9638471B2 (en) Balanced heat exchanger systems and methods
US10342159B2 (en) Liquid heat-dissipating assembly
US20060011326A1 (en) Heat-exchanger device and cooling system
US7909583B2 (en) Pump apparatus and pump unit thereof
US20180192545A1 (en) Heat dissipation apparatus
JP2013155971A (en) Laminated type heat exchanger and heat exchange system
JP2016525670A5 (en)
JP2018189352A (en) Heat exchanger
WO2020054506A1 (en) Magnetic refrigeration module
JP6406236B2 (en) Thermal transition flow pump device
TWI576551B (en) Vortex tube device
JP6087713B2 (en) Compression device
JP2018105535A5 (en)
US11448469B2 (en) Heat-wing
JP2021063472A5 (en)
JP2017141979A (en) Heat exchanger and heat pump system
JP2016017737A (en) TED heat exchanger
CN104768354A (en) Piezoelectric driving type heat dissipation module
US11959708B2 (en) Plate heat exchanger for heating or cooling bulk solids
JP2009075801A (en) Liquid cooling system
KR20210024634A (en) Heat exchanger plate tube and heat exchanger having the same
TW200532425A (en) Heat dissipation module
WO2016123997A1 (en) Sintered heat pipe and semi-conductor cooling refrigerator provided with same
JP6658239B2 (en) Thermal transition flow pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6406236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees