JP2017110177A - Polishing liquid, polishing liquid set and substrate polishing method - Google Patents

Polishing liquid, polishing liquid set and substrate polishing method Download PDF

Info

Publication number
JP2017110177A
JP2017110177A JP2016081252A JP2016081252A JP2017110177A JP 2017110177 A JP2017110177 A JP 2017110177A JP 2016081252 A JP2016081252 A JP 2016081252A JP 2016081252 A JP2016081252 A JP 2016081252A JP 2017110177 A JP2017110177 A JP 2017110177A
Authority
JP
Japan
Prior art keywords
polishing
acid
polishing liquid
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016081252A
Other languages
Japanese (ja)
Inventor
奈央 山村
Nao Yamamura
奈央 山村
真之 花野
Masayuki Hanano
真之 花野
治彰 桜井
Haruaki Sakurai
治彰 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2017110177A publication Critical patent/JP2017110177A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid which can improve the polishing rate of an SiOC (carbon-containing silicon oxide film).SOLUTION: A polishing liquid for SiOC polishing comprises an abrasive grain comprising cerium, a carboxylic acid compound in which the total of a carboxylic acid group and a carboxylate group is two, and water, and has a pH of 5.0 or more. The carboxylic acid compound preferably comprises at least one selected from the group consisting of adipic acid, 1,3-acetone dicarboxylic acid, α-ketoglutaric acid, iminodiacetic acid, thiomalic acid, diglycolic acid and salt thereof.SELECTED DRAWING: None

Description

本発明は、研磨液、研磨液セット及び基体の研磨方法に関する。   The present invention relates to a polishing liquid, a polishing liquid set, and a method for polishing a substrate.

半導体製造の分野では、超LSIデバイスの高性能化に伴い、従来の延長線上の微細化技術では、上記高性能化に応え得る高集積化と高速化とを両立することが限界となってきている。そのため、半導体素子の微細化も進めつつ、配線を多層化する(垂直方向にも高集積化する)技術が開発されている。このような多層配線化に必要なプロセスにおいて最も重要な技術の一つにケミカルメカニカルポリッシング(化学機械研磨。以下、「CMP」という)技術がある。多層配線化では、リソグラフィの焦点深度を確保するために一層ずつデバイスを平坦化することが不可欠である。デバイスに凹凸がある場合、露光工程において焦点合わせが困難となったり、微細配線構造を形成できなかったりするからである。   In the field of semiconductor manufacturing, along with the higher performance of VLSI devices, the conventional miniaturization technology on the extension line has reached the limit of achieving both higher integration and higher speed that can meet the above-mentioned higher performance. Yes. For this reason, a technology for multilayering wiring (high integration in the vertical direction) has also been developed while further miniaturizing semiconductor elements. One of the most important techniques in the process required for such multilayer wiring is a chemical mechanical polishing (chemical mechanical polishing, hereinafter referred to as “CMP”) technique. In multilayer wiring, it is essential to flatten devices one by one in order to ensure the depth of focus of lithography. This is because when the device has irregularities, it becomes difficult to focus in the exposure process or a fine wiring structure cannot be formed.

このようなCMP技術は、例えば、層間絶縁膜等の平坦化、酸化珪素膜(酸化珪素を含む膜)を金属配線に埋め込んだ後のプラグ(例えば、Al、Cu、Co、W等のプラグ)の平坦化、金属配線の間の絶縁膜(オルガノシリケートグラス、MSQ等のカーボン含有酸化珪素膜(SiOC膜);BPSG、HDP−SiO、p−TEOS等のプラズマ酸化膜など)の平坦化、又は、素子分離構造を形成した後に埋め込むプラズマ酸化膜の平坦化にも適用され、半導体製造には欠かせない技術となっている。   Such CMP technology includes, for example, planarization of an interlayer insulating film, etc., and a plug after a silicon oxide film (film containing silicon oxide) is embedded in a metal wiring (for example, plugs of Al, Cu, Co, W, etc.) Planarization of an insulating film between metal wiring (organosilicate glass, carbon-containing silicon oxide film (SiOC film) such as MSQ; plasma oxide film such as BPSG, HDP-SiO, p-TEOS), or It is also applied to planarization of a plasma oxide film embedded after forming an element isolation structure, and has become an indispensable technique for semiconductor manufacturing.

特許第4564735号公報Japanese Patent No. 4564735

ところで、近年、LSIを高性能化するために、従来プラズマ酸化膜を適用していた箇所に、比誘電率が更に低いSiOCを使用することが検討されている。しかしながら、従来の研磨液を用いてSiOCを研磨した場合、充分な研磨速度が得られない傾向がある。そのため、このような用途の研磨液に対しては、従来に比して、SiOCの研磨速度を向上させることが求められる。   Incidentally, in recent years, in order to improve the performance of LSIs, it has been studied to use SiOC having a lower relative dielectric constant in a place where a plasma oxide film has been conventionally applied. However, when SiOC is polished using a conventional polishing liquid, a sufficient polishing rate tends not to be obtained. Therefore, it is required for the polishing liquid for such applications to improve the polishing rate of SiOC as compared with the conventional case.

本発明は、前記課題に鑑みてなされたものであり、SiOCの研磨速度を向上させることが可能な研磨液を提供することを目的とする。また、本発明は、前記研磨液を得るための研磨液セットを提供することを目的とする。さらに、本発明は、前記研磨液を用いた基体の研磨方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the polishing liquid which can improve the grinding | polishing speed | rate of SiOC. Another object of the present invention is to provide a polishing liquid set for obtaining the polishing liquid. Another object of the present invention is to provide a method for polishing a substrate using the polishing liquid.

本発明に係る研磨液(SiOC研磨用研磨液)は、セリウムを含む砥粒と、カルボン酸基(以下、場合により「カルボキシル基」ともいう)及びカルボン酸塩基の合計が2であるカルボン酸化合物と、水と、を含有し、pHが5.0以上である。   The polishing liquid according to the present invention (SiOC polishing polishing liquid) is a carboxylic acid compound in which the total of cerium-containing abrasive grains, a carboxylic acid group (hereinafter also referred to as “carboxyl group”) and a carboxylic acid group is 2. And water, and the pH is 5.0 or more.

本発明に係る研磨液によれば、SiOCの研磨速度を向上させることができる。   According to the polishing liquid of the present invention, the polishing rate of SiOC can be improved.

ところで、上記特許文献1の技術では、ポリエーテル変性シリコーンを用いてSiOCの研磨速度を向上させることを試みている。しかしながら、特許文献1の技術では、SiOCの充分な研磨速度を得ることができない。これに対し、本発明に係る研磨液によれば、SiOCの充分な研磨速度を得ることができる。   By the way, with the technique of the said patent document 1, it is trying to improve the grinding | polishing speed | rate of SiOC using polyether modified silicone. However, the technique of Patent Document 1 cannot obtain a sufficient polishing rate for SiOC. On the other hand, according to the polishing liquid according to the present invention, a sufficient polishing rate of SiOC can be obtained.

前記砥粒は、酸化セリウム及びセリウム水酸化物からなる群より選ばれる少なくとも一種を含むことが好ましい。   The abrasive preferably contains at least one selected from the group consisting of cerium oxide and cerium hydroxide.

前記カルボン酸化合物は、アジピン酸、1,3−アセトンジカルボン酸、α−ケトグルタル酸、イミノジ酢酸、チオリンゴ酸、ジグリコール酸及びこれらの塩からなる群より選ばれる少なくとも一種を含むことが好ましい。   The carboxylic acid compound preferably contains at least one selected from the group consisting of adipic acid, 1,3-acetone dicarboxylic acid, α-ketoglutaric acid, iminodiacetic acid, thiomalic acid, diglycolic acid, and salts thereof.

本発明に係る研磨液は、pH調整剤を更に含有してもよい。   The polishing liquid according to the present invention may further contain a pH adjuster.

本発明に係る研磨液は、カルボン酸基及びカルボン酸塩基からなる群より選ばれる少なくとも一種を有する高分子化合物を更に含有してもよい。これにより、凹部のSiOC膜のディッシング(研磨終了後の凹部が皿のように凹む現象)を低減させることができる(図1参照)。   The polishing liquid according to the present invention may further contain a polymer compound having at least one selected from the group consisting of a carboxylic acid group and a carboxylic acid group. As a result, dishing of the SiOC film in the recesses (a phenomenon in which the recesses after the completion of polishing are recessed like a dish) can be reduced (see FIG. 1).

前記高分子化合物の含有量は、研磨液の全質量を基準として0.001〜2質量%であることが好ましい。   The content of the polymer compound is preferably 0.001 to 2% by mass based on the total mass of the polishing liquid.

本発明の一態様は、SiOCを含む被研磨面の研磨への前記研磨液の使用に関する。すなわち、本発明に係る研磨液の一態様は、SiOCを含む被研磨面を研磨するために使用されることが好ましい。   One embodiment of the present invention relates to the use of the polishing liquid for polishing a surface to be polished containing SiOC. In other words, one embodiment of the polishing liquid according to the present invention is preferably used for polishing a surface to be polished containing SiOC.

本発明に係る研磨液セットは、前記研磨液の構成成分が第一の液と第二の液とに分けて保存され、前記第一の液が前記砥粒及び水を含み、前記第二の液が前記カルボン酸化合物及び水を含む。本発明に係る研磨液セットによれば、本発明に係る研磨液と同様の上記効果を得ることができる。   In the polishing liquid set according to the present invention, the constituents of the polishing liquid are stored separately in a first liquid and a second liquid, the first liquid contains the abrasive grains and water, and the second liquid The liquid contains the carboxylic acid compound and water. According to the polishing liquid set concerning the present invention, the same effect as the polishing liquid concerning the present invention can be acquired.

本発明に係る基体の研磨方法は、前記研磨液を用いて基体の被研磨面を研磨する工程を備えていてもよい。このような基体の研磨方法によれば、本発明に係る研磨液と同様の上記効果を得ることができる。   The substrate polishing method according to the present invention may comprise a step of polishing a surface to be polished of the substrate using the polishing liquid. According to such a method for polishing a substrate, the same effects as those of the polishing liquid according to the present invention can be obtained.

本発明に係る基体の研磨方法は、前記研磨液セットにおける前記第一の液と前記第二の液とを混合して得られる研磨液を用いて基体の被研磨面を研磨する工程を備えていてもよい。このような基体の研磨方法によれば、本発明に係る研磨液と同様の上記効果を得ることができる。   The substrate polishing method according to the present invention includes a step of polishing a surface to be polished of a substrate using a polishing liquid obtained by mixing the first liquid and the second liquid in the polishing liquid set. May be. According to such a method for polishing a substrate, the same effects as those of the polishing liquid according to the present invention can be obtained.

本発明によれば、SiOCの研磨速度を向上させることが可能な研磨液、研磨液セット及び基体の研磨方法を提供できる。本発明によれば、SiOCを研磨して除去することができる。本発明は、半導体基板のCMPに使用することができる。本発明は、SiOCを含む被研磨面を研磨するために使用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polishing liquid which can improve the grinding | polishing speed | rate of SiOC, a polishing liquid set, and the grinding | polishing method of a base | substrate can be provided. According to the present invention, SiOC can be removed by polishing. The present invention can be used for CMP of a semiconductor substrate. The present invention can be used to polish a surface to be polished containing SiOC.

本発明によれば、SiOCの研磨への研磨液又は研磨液セットの使用を提供できる。本発明によれば、半導体基板のCMPへの研磨液又は研磨液セットの使用を提供できる。本発明によれば、SiOCを含む被研磨面の研磨への研磨液又は研磨液セットの使用を提供できる。   According to the present invention, use of a polishing liquid or a polishing liquid set for polishing SiOC can be provided. According to the present invention, use of a polishing liquid or a polishing liquid set for CMP of a semiconductor substrate can be provided. ADVANTAGE OF THE INVENTION According to this invention, use of the polishing liquid or polishing liquid set for grinding | polishing the to-be-polished surface containing SiOC can be provided.

半導体のSTI構造を形成する際における研磨工程の断面概略図である。It is the cross-sectional schematic of the grinding | polishing process in forming the STI structure of a semiconductor.

以下、本発明の実施形態に係る研磨液、研磨液セット、及び、前記研磨液又は前記研磨液セットを用いた基体の研磨方法について詳細に説明する。   Hereinafter, a polishing liquid, a polishing liquid set, and a substrate polishing method using the polishing liquid or the polishing liquid set according to an embodiment of the present invention will be described in detail.

<定義>
本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「研磨速度(Polishing Rate)」とは、単位時間当たりに材料が除去される速度(除去速度=Removal Rate)を意味する。「被研磨材料」とは、被研磨面に露出している材料を意味する。「研磨対象材料」とは、高い研磨速度で積極的に研磨して除去すべき材料を意味する。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。数値範囲の「A以上」とは、A、及び、Aを超える範囲を意味する。数値範囲の「A以下」とは、A、及び、A未満の範囲を意味する。
<Definition>
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. It is. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. The amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. “Polishing rate” means the rate at which material is removed per unit time (removal rate = removal rate). “Polished material” means a material exposed on the surface to be polished. The “material to be polished” means a material that should be actively polished and removed at a high polishing rate. “A or B” only needs to include either A or B, and may include both. The numerical range “A or more” means A and a range exceeding A. The numerical range “A or less” means A and a range less than A.

<研磨液>
本実施形態に係る研磨液(SiOC研磨用研磨液)は、研磨時に被研磨面に触れる組成物であり、例えばCMP用研磨液である。本実施形態に係る研磨液は、セリウムを含む砥粒と、カルボン酸基及びカルボン酸塩基の合計が2であるカルボン酸化合物と、水と、を含有し、pHが5.0以上である。以下、必須成分、及び、任意に添加できる成分について説明する。
<Polishing liquid>
The polishing liquid (SiOC polishing polishing liquid) according to this embodiment is a composition that touches the surface to be polished during polishing, and is, for example, a CMP polishing liquid. The polishing liquid according to the present embodiment contains abrasive grains containing cerium, a carboxylic acid compound having a total of 2 carboxylic acid groups and carboxylate groups, and water, and has a pH of 5.0 or more. The essential components and components that can be optionally added are described below.

(砥粒)
本実施形態において、砥粒は、SiOCに対する研磨作用が得られる観点から、セリウムを含む。セリウムを含む砥粒の構成成分としては、酸化セリウム(セリア)、セリウム水酸化物、硝酸アンモニウムセリウム、酢酸セリウム、硫酸セリウム水和物、臭素酸セリウム、臭化セリウム、塩化セリウム、シュウ酸セリウム、硝酸セリウム、炭酸セリウム、セリウム変性物等が挙げられる。セリウム変性物としては、酸化セリウム、セリウム水酸化物等を含む粒子の表面をアルキル基で変性したもの、セリウムを含む粒子の表面にその他の粒子を付着させた複合粒子などが挙げられる。砥粒は、SiOCの研磨速度が安定する観点から、酸化セリウム及びセリウム水酸化物からなる群より選ばれる少なくとも一種を含むことが好ましく、酸化セリウムを含むことがより好ましい。セリウムを含む砥粒としては、酸化セリウムを含む粒子(以下、「酸化セリウム粒子」という)、セリウム水酸化物を含む粒子(セリウム水酸化物粒子)等を用いることができる。
(Abrasive grains)
In the present embodiment, the abrasive grains contain cerium from the viewpoint of obtaining a polishing action on SiOC. Constituents of abrasive grains containing cerium include cerium oxide (ceria), cerium hydroxide, ammonium cerium nitrate, cerium acetate, cerium sulfate hydrate, cerium bromate, cerium bromide, cerium chloride, cerium oxalate, nitric acid Examples include cerium, cerium carbonate, and cerium-modified products. Examples of the modified cerium include those obtained by modifying the surface of particles containing cerium oxide, cerium hydroxide and the like with an alkyl group, and composite particles in which other particles are attached to the surface of particles containing cerium. The abrasive grains preferably contain at least one selected from the group consisting of cerium oxide and cerium hydroxide, and more preferably contain cerium oxide, from the viewpoint of stabilizing the polishing rate of SiOC. As abrasive grains containing cerium, particles containing cerium oxide (hereinafter referred to as “cerium oxide particles”), particles containing cerium hydroxide (cerium hydroxide particles), and the like can be used.

酸化セリウム粒子としては、特に制限はなく、公知のものを使用できる。中でも、酸化セリウム粒子は、炭酸塩、硝酸塩、硫酸塩、シュウ酸塩等のセリウム塩を酸化して得ることが好ましい。前記酸化の方法としては、前記セリウム塩を600〜900℃等で焼成する焼成法、過酸化水素等の酸化剤を用いて前記セリウム塩を酸化する化学的酸化法などが挙げられる。   There is no restriction | limiting in particular as a cerium oxide particle, A well-known thing can be used. Among these, cerium oxide particles are preferably obtained by oxidizing cerium salts such as carbonates, nitrates, sulfates, and oxalates. Examples of the oxidation method include a baking method of baking the cerium salt at 600 to 900 ° C., a chemical oxidation method of oxidizing the cerium salt using an oxidizing agent such as hydrogen peroxide, and the like.

酸化セリウム粒子を使用する場合、酸化セリウム粒子の結晶子径(結晶子の直径)が大きく、且つ、結晶歪みが少ないほど(すなわち、結晶性が良いほど)、高速研磨が可能であるが、被研磨材料に研磨傷が入りやすい傾向がある。前記の観点から、好ましい酸化セリウム粒子としては、2個以上の結晶子から構成され、結晶粒界を有する粒子等が挙げられる。中でも、結晶子径が5〜300nmである粒子がより好ましい。また、別の好ましい酸化セリウム粒子としては、結晶子径が5〜300nmであるコロイダルセリア粒子(例えばRhodia社製コロイダルセリア)が挙げられる。   In the case of using cerium oxide particles, the larger the crystallite diameter (crystallite diameter) of the cerium oxide particles and the smaller the crystal distortion (that is, the better the crystallinity), the faster the polishing is possible. There is a tendency that abrasive scratches are likely to enter the abrasive material. From the above viewpoint, preferable cerium oxide particles include particles composed of two or more crystallites and having a crystal grain boundary. Among these, particles having a crystallite diameter of 5 to 300 nm are more preferable. Another preferable cerium oxide particle includes colloidal ceria particles having a crystallite diameter of 5 to 300 nm (for example, colloidal ceria manufactured by Rhodia).

砥粒の平均粒径は、SiOCに対する更に良好な研磨速度が得られる観点から、10nm以上が好ましく、20nm以上がより好ましく、50nm以上が更に好ましい。砥粒の平均粒径は、被研磨材料に傷がつきにくい観点から、500nm以下が好ましく、400nm以下がより好ましく、300nm以下が更に好ましい。これらの観点から、砥粒の平均粒径は、10〜500nmが好ましく、20〜400nmがより好ましく、50〜300nmが更に好ましい。   The average particle diameter of the abrasive grains is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 50 nm or more, from the viewpoint of obtaining a better polishing rate for SiOC. The average particle size of the abrasive grains is preferably 500 nm or less, more preferably 400 nm or less, and still more preferably 300 nm or less, from the viewpoint that the material to be polished is less likely to be damaged. From these viewpoints, the average particle size of the abrasive grains is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 50 to 300 nm.

ここで、砥粒の平均粒径は、レーザ回折式粒度分布計Mastersizer Microplus(Malvern社製、商品名(「Mastersizer」は登録商標))を用いて屈折率:1.93、吸収:0として測定される測定サンプルのD50(体積分布のメジアン径、累積中央値)の値を意味する。平均粒径の測定には、適切な含有量(例えば、He−Neレーザに対する測定時透過率(H)が60〜70%となる含有量)のサンプルを用いる。また、砥粒を含む研磨液が、砥粒を水に分散させたセリウムスラリーと、添加液とに分けて保存されている場合は、セリウムスラリーを適切な含有量に希釈して測定することができる。   Here, the average particle diameter of the abrasive grains was measured as a refractive index of 1.93 and an absorption of 0 using a laser diffraction particle size distribution meter Mastersizer Microplus (manufactured by Malvern, trade name (“Mastersizer” is a registered trademark)). It means the value of D50 (median diameter of volume distribution, cumulative median value) of the measurement sample to be measured. For the measurement of the average particle diameter, a sample having an appropriate content (for example, a content at which the measurement transmittance (H) with respect to a He—Ne laser is 60 to 70%) is used. In addition, when the polishing liquid containing abrasive grains is stored separately in a cerium slurry in which abrasive grains are dispersed in water and an additive liquid, the cerium slurry can be diluted to an appropriate content and measured. it can.

なお、砥粒は、セリウム以外の成分を含有してもよい。このような砥粒の構成成分としては、例えば、シリカ、アルミナ、ジルコニア、酸化マンガン、酸化マグネシウム、チタニア、ゲルマニア、樹脂、ダイヤモンド、炭化ケイ素、立方晶窒化ホウ素及びこれらの変性物からなる群より選ばれる少なくとも一種が挙げられる。砥粒は、一種類単独で又は二種類以上を組み合わせて使用できる。アルミナとしては、コロイダルアルミナを用いることもできる。上記変性物としては、シリカ、アルミナ、ジルコニア、チタニア、ゲルマニア、酸化マンガン、酸化マグネシウム等の粒子の表面をアルキル基で変性したもの、一の粒子の表面に他の粒子を付着させた複合粒子などが挙げられる。   In addition, an abrasive grain may contain components other than cerium. As a constituent component of such abrasive grains, for example, selected from the group consisting of silica, alumina, zirconia, manganese oxide, magnesium oxide, titania, germania, resin, diamond, silicon carbide, cubic boron nitride, and modified products thereof. At least one kind. An abrasive grain can be used individually by 1 type or in combination of 2 or more types. Colloidal alumina can also be used as the alumina. Examples of the modified product include silica, alumina, zirconia, titania, germania, manganese oxide, magnesium oxide, etc. whose surface is modified with an alkyl group, composite particles in which other particles are attached to the surface of one particle, etc. Is mentioned.

砥粒は、どのような製造方法によって得られたものであってもよい。例えば、酸化物の製造方法としては、焼成等を用いる固相法;沈殿法、ゾルゲル法、水熱合成法等の液相法;スパッタ法、レーザ法、熱プラズマ法等の気相法などを用いることができる。   The abrasive grains may be obtained by any manufacturing method. For example, oxide production methods include solid phase methods such as firing; liquid phase methods such as precipitation methods, sol-gel methods, and hydrothermal synthesis methods; gas phase methods such as sputtering methods, laser methods, and thermal plasma methods. Can be used.

砥粒が凝集している場合は、凝集した砥粒を機械的に粉砕してもよい。粉砕方法としては、例えば、ジェットミル等による乾式粉砕方法、及び、遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルには、例えば、「化学工学論文集」、第6巻、第5号、(1980)、527〜532頁に説明されている方法を適用することができる。   When the abrasive grains are aggregated, the aggregated abrasive grains may be mechanically pulverized. As the pulverization method, for example, a dry pulverization method using a jet mill or the like, and a wet pulverization method using a planetary bead mill or the like are preferable. For the jet mill, for example, a method described in “Chemical Engineering Journal”, Vol. 6, No. 5, (1980), pages 527 to 532 can be applied.

砥粒を研磨液に適用する場合には、主な分散媒である水中に砥粒を分散させてスラリを得ることが好ましい。分散方法としては、例えば、通常の攪拌機による分散処理のほか、ホモジナイザ、超音波分散機、湿式ボールミル等を用いた方法が挙げられる。分散方法及び粒径制御方法については、例えば、「分散技術大全集」[株式会社情報機構、2005年7月]第三章「各種分散機の最新開発動向と選定基準」に記述されている方法を用いることができる。また、砥粒を含有する分散液の電気伝導度を下げる(例えば500mS/m以下)ことによっても砥粒の分散性を高めることができる。分散液の電気伝導度を下げる方法としては、砥粒と分散媒とを分けるために遠心分離等で固液分離を行い、上澄み液(分散媒)を捨て、電気伝導度の低い分散媒を加え再分散させる方法;限外ろ過、イオン交換樹脂等を用いた方法などが挙げられる。   When the abrasive grains are applied to the polishing liquid, it is preferable to obtain a slurry by dispersing the abrasive grains in water which is a main dispersion medium. Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a wet ball mill, and the like in addition to a dispersion treatment using a normal stirrer. Regarding the dispersion method and the particle size control method, for example, the method described in Chapter 3 “Latest Development Trends and Selection Criteria of Various Dispersers” in “Dispersion Technology Complete Collection” [Information Organization, July 2005] Can be used. Moreover, the dispersibility of an abrasive grain can also be improved by lowering the electrical conductivity of a dispersion containing abrasive grains (for example, 500 mS / m or less). As a method of lowering the electrical conductivity of the dispersion, solid-liquid separation is performed by centrifugation to separate the abrasive grains from the dispersion medium, the supernatant liquid (dispersion medium) is discarded, and a dispersion medium with low electrical conductivity is added. Examples of the method of redispersing include ultrafiltration, a method using an ion exchange resin, and the like.

上記の方法により分散された砥粒は、更に微粒子化されてもよい。微粒子化の方法としては、例えば、沈降分級法(砥粒を遠心分離機で遠心分離した後、強制沈降させ、上澄み液のみを取り出す方法)が挙げられる。その他、分散媒中の砥粒同士を高圧で衝突させる高圧ホモジナイザを用いてもよい。   The abrasive grains dispersed by the above method may be further finely divided. Examples of the fine particle method include a sedimentation classification method (a method in which abrasive grains are centrifuged with a centrifuge and then forcedly settled, and only the supernatant liquid is taken out). In addition, a high-pressure homogenizer that causes the abrasive grains in the dispersion medium to collide with each other at a high pressure may be used.

セリウムを含む砥粒(例えば酸化セリウム粒子)の含有量は、砥粒の凝集を抑制しやすい観点から、研磨液の全質量を基準として、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましく、3質量%以下が特に好ましく、1質量%以下が極めて好ましい。セリウムを含む砥粒(例えば酸化セリウム粒子)の含有量は、SiOCの研磨速度の向上効果が得られやすい観点から、研磨液の全質量を基準として、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましい。これらの観点から、砥粒(例えば酸化セリウム粒子)の含有量は、研磨液の全質量を基準として、0.01〜20質量%が好ましく、0.1〜10質量%がより好ましく、0.2〜5質量%が更に好ましい。   The content of abrasive grains containing cerium (for example, cerium oxide particles) is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily suppressing aggregation of the abrasive grains. 5 mass% or less is further more preferable, 3 mass% or less is especially preferable, and 1 mass% or less is very preferable. The content of abrasive grains containing cerium (for example, cerium oxide particles) is preferably 0.01% by mass or more, based on the total mass of the polishing liquid, from the viewpoint that an effect of improving the polishing rate of SiOC is easily obtained. 1 mass% or more is more preferable, and 0.2 mass% or more is still more preferable. From these viewpoints, the content of the abrasive grains (for example, cerium oxide particles) is preferably 0.01 to 20% by mass, more preferably 0.1 to 10% by mass, based on the total mass of the polishing liquid. 2-5 mass% is still more preferable.

砥粒の含有量は、砥粒の凝集を抑制しやすい観点から、研磨液の全質量を基準として、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましく、3質量%以下が特に好ましく、1質量%以下が極めて好ましい。砥粒の含有量は、SiOCの研磨速度の向上効果が得られやすい観点から、研磨液の全質量を基準として、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましい。これらの観点から、砥粒の含有量は、研磨液の全質量を基準として、0.01〜20質量%が好ましく、0.1〜10質量%がより好ましく、0.2〜5質量%が更に好ましい。   The content of the abrasive grains is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily suppressing the aggregation of the abrasive grains. 3 mass% or less is especially preferable, and 1 mass% or less is very preferable. The content of the abrasive grains is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the polishing liquid, from the viewpoint that the effect of improving the polishing rate of SiOC is easily obtained. More preferably 2% by mass or more. From these viewpoints, the content of abrasive grains is preferably 0.01 to 20% by mass, more preferably 0.1 to 10% by mass, and 0.2 to 5% by mass based on the total mass of the polishing liquid. Further preferred.

(添加剤)
本実施形態に係る研磨液は、添加剤を含有する。ここで、「添加剤」とは、研磨速度、研磨選択性等の研磨特性;砥粒の分散性、保存安定性等の研磨液特性などを調整するために、砥粒及び水以外に研磨液が含有する物質を指す。
(Additive)
The polishing liquid according to this embodiment contains an additive. Here, the “additive” means a polishing liquid other than abrasive grains and water in order to adjust polishing characteristics such as polishing speed and polishing selectivity; and polishing liquid characteristics such as abrasive dispersibility and storage stability. Refers to the substance contained.

本実施形態に係る研磨液は、添加剤として、カルボン酸基及びカルボン酸塩基の合計が2であるカルボン酸化合物を含有する。当該カルボン酸化合物を用いることで、SiOCの研磨速度を向上させる効果が得られる。このような効果が得られる要因は明らかではないが、例えば下記の要因が挙げられる。すなわち、カルボキシル基がSiOCに作用し、SiOCの表面が親水化する。その結果、砥粒がSiOCへ付着しやすくなり、研磨速度が向上すると考えられる。   The polishing liquid according to this embodiment contains a carboxylic acid compound having a total of 2 carboxylic acid groups and carboxylic acid groups as an additive. By using the carboxylic acid compound, an effect of improving the polishing rate of SiOC can be obtained. Although the factors for obtaining such effects are not clear, for example, the following factors can be mentioned. That is, the carboxyl group acts on SiOC, and the surface of SiOC becomes hydrophilic. As a result, it is considered that the abrasive grains easily adhere to the SiOC and the polishing rate is improved.

前記カルボン酸化合物としては、アジピン酸、アスパラギン酸、アセチレンジカルボン酸、1,3−アセトンジカルボン酸、α−アミノアジピン酸、2−アミノ−3−カルボキシムコン酸セミアルデヒド、2−アミノムコン酸、アルダル酸、α−ケトグルタル酸、イサト酸、イソフタル酸、イソプロピルリンゴ酸、イタコン酸、イミノジ酢酸、オキサロ酢酸、キノリン酸、グルタコン酸、グルタミン酸、グルタル酸、コハク酸、コリスミ酸、ジアミノピメリン酸、ジピコリン酸、シュウ酸、酒石酸、スベリン酸、セバシン酸、タルトロン酸、テレフタル酸、バモ酸、リンゴ酸、チオリンゴ酸、ビシンコニン酸、2−ヒドロキシ−3−オキソコハク酸、ピメリン酸、フタル酸、4−フマリルアセト酢酸、4−マレイルアセト酢酸、マロン酸、ムコン酸、メサコン酸、N−メチル−D−アスパラギン酸、及びジグリコール酸;これらの塩等が挙げられる。   Examples of the carboxylic acid compound include adipic acid, aspartic acid, acetylenedicarboxylic acid, 1,3-acetone dicarboxylic acid, α-aminoadipic acid, 2-amino-3-carboxymuconic acid semialdehyde, 2-aminomuconic acid, and aldaric acid. , Α-ketoglutaric acid, isatoic acid, isophthalic acid, isopropylmalic acid, itaconic acid, iminodiacetic acid, oxaloacetic acid, quinolinic acid, glutaconic acid, glutamic acid, glutaric acid, succinic acid, chorismic acid, diaminopimelic acid, dipicolinic acid, oxalic acid , Tartaric acid, suberic acid, sebacic acid, tartronic acid, terephthalic acid, vamoic acid, malic acid, thiomalic acid, bicinchoninic acid, 2-hydroxy-3-oxosuccinic acid, pimelic acid, phthalic acid, 4-fumarylacetoacetic acid, 4-malelaceto Acetic acid, malonic acid, muco Acid, mesaconic acid, N-methyl-D-aspartic acid, and diglycolic acid; and salts thereof.

前記カルボン酸化合物は、SiOCの研磨速度の向上効果が更に向上する観点から、アジピン酸、1,3−アセトンジカルボン酸、α−ケトグルタル酸、イミノジ酢酸、チオリンゴ酸、ジグリコール酸及びこれらの塩からなる群より選ばれる少なくとも一種を含むことが好ましく、α−ケトグルタル酸、ジグリコール酸及びこれらの塩からなる群より選ばれる少なくとも一種を含むことがより好ましい。   From the viewpoint of further improving the effect of improving the polishing rate of SiOC, the carboxylic acid compound is composed of adipic acid, 1,3-acetone dicarboxylic acid, α-ketoglutaric acid, iminodiacetic acid, thiomalic acid, diglycolic acid and salts thereof. It is preferable to include at least one selected from the group consisting of, and more preferable to include at least one selected from the group consisting of α-ketoglutaric acid, diglycolic acid and salts thereof.

本実施形態に係る研磨液において、前記カルボン酸化合物は、SiOCの研磨速度を調整する目的等で、一種類単独で又は二種類以上を組み合わせて使用できる。   In the polishing liquid according to this embodiment, the carboxylic acid compound can be used alone or in combination of two or more for the purpose of adjusting the polishing rate of SiOC.

前記カルボン酸化合物の含有量の下限は、SiOCの研磨速度の向上効果が更に向上する観点から、研磨液の全質量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましい。前記カルボン酸化合物の含有量の上限は、保存安定性を好適に保つ観点から、研磨液の全質量を基準として、3.0質量%以下が好ましく、1.0質量%以下がより好ましく、0.5質量%以下が更に好ましい。なお、前記カルボン酸化合物として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。   The lower limit of the content of the carboxylic acid compound is preferably 0.005% by mass or more and 0.01% by mass or more based on the total mass of the polishing liquid from the viewpoint of further improving the improvement effect of the polishing rate of SiOC. More preferred is 0.1% by mass or more. The upper limit of the content of the carboxylic acid compound is preferably 3.0% by mass or less, more preferably 1.0% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of suitably maintaining storage stability. More preferably, it is 5 mass% or less. In addition, when using a some compound as said carboxylic acid compound, it is preferable that the sum total of content of each compound satisfy | fills the said range.

[高分子化合物A]
本実施形態に係る研磨液は、カルボン酸基及びカルボン酸塩基からなる群より選ばれる少なくとも一種を有する高分子化合物A(前記カルボン酸化合物を除く)を含有してもよい。高分子化合物Aは、一種類単独で又は二種類以上を組み合わせて使用できる。高分子化合物Aとしては、アクリル酸及びメタクリル酸からなる群より選ばれる少なくとも一種を含む単量体を重合させて得られる重合体又はその塩(以下、これらを「(メタ)アクリル酸系重合体」と総称する)であることが好ましい。前記単量体は、アクリル酸又はメタクリル酸と共重合可能な他の単量体(アクリル酸及びメタクリル酸を除く)を含んでいてもよい。高分子化合物Aを用いることで、SiOCの過研磨によるディッシングを低減させることができる。
[Polymer Compound A]
The polishing liquid according to this embodiment may contain a polymer compound A (excluding the carboxylic acid compound) having at least one selected from the group consisting of a carboxylic acid group and a carboxylic acid group. The high molecular compound A can be used individually by 1 type or in combination of 2 or more types. As the polymer compound A, a polymer obtained by polymerizing a monomer containing at least one selected from the group consisting of acrylic acid and methacrylic acid or a salt thereof (hereinafter referred to as “(meth) acrylic acid polymer”). Are generally referred to as “)”. The said monomer may contain the other monomer (except acrylic acid and methacrylic acid) copolymerizable with acrylic acid or methacrylic acid. By using the polymer compound A, dishing due to SiOC overpolishing can be reduced.

前記他の単量体(アクリル酸又はメタクリル酸と共重合可能な他の単量体)としては、例えば、クロトン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸等の不飽和カルボン酸;エチレン、プロピレン、スチレン等のビニル化合物が挙げられる。   Examples of the other monomers (other monomers copolymerizable with acrylic acid or methacrylic acid) include, for example, crotonic acid, pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, nonenoic acid, decenoic acid, and undecene. Examples thereof include unsaturated carboxylic acids such as acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid and heptadecenoic acid; vinyl compounds such as ethylene, propylene and styrene.

高分子化合物Aの末端は、分子量が小さく、親水性であることが好ましい。   The terminal of the polymer compound A preferably has a low molecular weight and is hydrophilic.

高分子化合物Aの重量平均分子量は、特に制限はないが、100〜150000が好ましく、1000〜80000がより好ましい。高分子化合物Aの重量平均分子量が100以上であると、SiOC等の酸化珪素などの被研磨材料を研磨するときに良好な研磨速度が得られやすい傾向がある。高分子化合物Aの重量平均分子量が150000以下であると、研磨液の保存安定性が低下しにくい傾向がある。   Although the weight average molecular weight of the high molecular compound A does not have a restriction | limiting in particular, 100-150,000 are preferable and 1000-80000 are more preferable. When the weight average molecular weight of the polymer compound A is 100 or more, a good polishing rate tends to be easily obtained when a material to be polished such as silicon oxide such as SiOC is polished. When the weight average molecular weight of the polymer compound A is 150,000 or less, the storage stability of the polishing liquid tends to be difficult to decrease.

高分子化合物Aの重量平均分子量は、下記の条件により測定し、「Mw」として得られる値を読み取ることで測定できる。
{測定条件}
使用機器(検出器):株式会社日立製作所製、「L−3300型」液体クロマトグラフ用示差屈折率計
ポンプ:株式会社日立製作所製、液体クロマトグラフ用「L−7100」
デガス装置:なし
データ処理:株式会社日立製作所製、GPCインテグレーター「D−2520」
カラム:昭和電工株式会社製、「Shodex Asahipak GF−710HQ」、内径7.6mm×300mm
溶離液:50mM−NaHPO水溶液/アセトニトリル=90/10(v/v)
測定温度:25℃
流量:0.6mL/分
測定時間:30分
試料:樹脂分濃度2質量%になるように溶離液と同じ組成の溶液で濃度を調整し、0.45μmのポリテトラフルオロエチレンフィルターでろ過して調製した試料
注入量:0.4μL
標準物質:Polymer Laboratories製、狭分子量ポリアクリル酸ナトリウム
The weight average molecular weight of the polymer compound A can be measured by measuring under the following conditions and reading the value obtained as “Mw”.
{Measurement condition}
Equipment used (detector): Hitachi, Ltd., “L-3300” differential refractometer for liquid chromatograph Pump: Hitachi, Ltd., “L-7100” for liquid chromatograph
Degas equipment: None Data processing: GPC integrator “D-2520” manufactured by Hitachi, Ltd.
Column: “Shodex Asahipak GF-710HQ” manufactured by Showa Denko KK, inner diameter 7.6 mm × 300 mm
Eluent: 50 mM Na 2 HPO 4 aqueous solution / acetonitrile = 90/10 (v / v)
Measurement temperature: 25 ° C
Flow rate: 0.6 mL / min Measurement time: 30 minutes Sample: Adjust the concentration with a solution having the same composition as the eluent so that the resin concentration is 2% by mass, and filter through a 0.45 μm polytetrafluoroethylene filter. Prepared sample Injection volume: 0.4 μL
Reference material: Polymer Laboratories, narrow molecular weight sodium polyacrylate

研磨液における高分子化合物Aの含有量は、研磨液の全質量を基準として、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましい。高分子化合物Aの含有量は、研磨液の全質量を基準として、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。高分子化合物Aの含有量が0.001〜2質量%であると、ディッシング量、配線密度依存性等を低減し、研磨後の表面平坦性を向上させることができる。   The content of the polymer compound A in the polishing liquid is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.1% by mass or more, based on the total mass of the polishing liquid. The content of the polymer compound A is preferably 2% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less, based on the total mass of the polishing liquid. When the content of the polymer compound A is 0.001 to 2 mass%, the dishing amount, wiring density dependency, and the like can be reduced, and the surface flatness after polishing can be improved.

[分散剤]
本実施形態に係る研磨液は、分散剤(前記高分子化合物Aを除く)を含有することができる。分散剤の含有量は、砥粒の全質量を基準として0.001〜4質量%が好ましい。分散剤としては、例えば、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、及び、水溶性両性分散剤が挙げられる。中でも、静電反発力が大きく分散性が良好である観点から、水溶性陰イオン性分散剤又は水溶性陽イオン性分散剤が好ましい。なお、砥粒の分散のために前記高分子化合物Aを用いることもできる。
[Dispersant]
The polishing liquid according to the present embodiment can contain a dispersant (excluding the polymer compound A). The content of the dispersant is preferably 0.001 to 4% by mass based on the total mass of the abrasive grains. Examples of the dispersant include a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant. Among these, a water-soluble anionic dispersant or a water-soluble cationic dispersant is preferable from the viewpoint of high electrostatic repulsion and good dispersibility. The polymer compound A can also be used for dispersing the abrasive grains.

本実施形態に係る研磨液が陽イオン性ポリマを含有する場合、セリウムを含む砥粒(酸化セリウム粒子等)は、正の電荷を有する傾向がある。この場合、窒化珪素(SiN)等の研磨速度を抑制することができる。陽イオン性ポリマとしては、例えば、ジアリルジアルキルアンモニウム塩の単独重合体及び共重合体、ジアリルアルキルアミン塩の単独重合体及び共重合体、ジアリルアミン塩の単独重合体及び共重合等のポリアリルアミンが挙げられる。   When the polishing liquid according to the present embodiment contains a cationic polymer, abrasive grains containing cerium (such as cerium oxide particles) tend to have a positive charge. In this case, the polishing rate of silicon nitride (SiN) or the like can be suppressed. Examples of cationic polymers include homopolymers and copolymers of diallyldialkylammonium salts, homopolymers and copolymers of diallylalkylamine salts, polyallylamines such as homopolymers and copolymers of diallylamine salts, and the like. It is done.

具体的には、ジアリルジアルキルアンモニウム塩としては、例えば、ジアリルジメチルアンモニウムクロライド、ジアリルジメチルアンモニウムブロミド、ジアリルジメチルアンモニウムヨージド、ジアリルジメチルアンモニウムメチルサルフェート、ジアリルジメチルアンモニウムエチルサルフェート、ジアリルエチルメチルアンモニウムクロライド、ジアリルエチルメチルアンモニウムブロミド、ジアリルエチルメチルアンモニウムヨージド、ジアリルエチルメチルアンモニウムメチルサルフェート、ジアリルエチルメチルアンモニウムエチルサルフェート、ジアリルジエチルアンモニウムクロライド、ジアリルジエチルアンモニウムブロミド、ジアリルジエチルアンモニウムヨージド、ジアリルジエチルアンモニウムメチルサルフェート、ジアリルジエチルアンモニウムエチルサルフェート、ジアリルメチルプロピルアンモニウムクロライド、ジアリルメチルプロピルアンモニウムブロミド、ジアリルメチルプロピルアンモニウムヨージド、ジアリルメチルプロピルアンモニウムメチルサルフェート、及び、ジアリルメチルプロピルアンモニウムエチルサルフェートを挙げることができる。   Specifically, diallyldialkylammonium salts include, for example, diallyldimethylammonium chloride, diallyldimethylammonium bromide, diallyldimethylammonium iodide, diallyldimethylammonium methyl sulfate, diallyldimethylammonium ethyl sulfate, diallylethylmethylammonium chloride, diallylethyl Methyl ammonium bromide, diallyl ethyl methyl ammonium iodide, diallyl ethyl methyl ammonium methyl sulfate, diallyl ethyl methyl ammonium ethyl sulfate, diallyl diethyl ammonium chloride, diallyl diethyl ammonium bromide, diallyl diethyl ammonium iodide, diallyl diethyl ammonium methyl sulfate , Diallyl diethyl ammonium ethyl sulfate, diallyl methyl-propyl ammonium chloride, diallyl methyl-propyl ammonium bromide, diallyl methyl-propyl ammonium iodide, diallyl methyl-propyl ammonium methyl sulfate, and, may be mentioned diallyl methylpropyl ammonium ethylsulfate.

ジアリルアルキルアミン塩としては、例えば、ジアリルメチルアミン塩酸塩、ジアリルメチルアミン臭化水素酸塩、ジアリルメチルアミンヨウ化水素酸塩、ジアリルメチルアミン硫酸塩、ジアリルメチルアミンメタンスルホン酸塩、ジアリルエチルアミン塩酸塩、ジアリルエチルアミン臭化水素酸塩、ジアリルエチルアミンヨウ化水素酸塩、ジアリルエチルアミン硫酸塩、ジアリルエチルアミンメタンスルホン酸塩、ジアリルプロピルアミン塩酸塩、ジアリルプロピルアミン臭化水素酸塩、ジアリルプロピルアミンヨウ化水素酸塩、ジアリルプロピルアミン硫酸塩、及び、ジアリルプロピルアミンメタンスルホン酸塩を挙げることができる。   Examples of diallylalkylamine salts include diallylmethylamine hydrochloride, diallylmethylamine hydrobromide, diallylmethylamine hydroiodide, diallylmethylamine sulfate, diallylmethylamine methanesulfonate, diallylethylamine hydrochloride Salt, diallylethylamine hydrobromide, diallylethylamine hydroiodide, diallylethylamine sulfate, diallylethylamine methanesulfonate, diallylpropylamine hydrochloride, diallylpropylamine hydrobromide, diallylpropylamine iodide Mention may be made of hydrogenates, diallylpropylamine sulfate and diallylpropylamine methanesulfonate.

ジアリルアミン塩としては、例えば、ジアリルアミン塩酸塩、ジアリルアミン臭化水素酸塩、ジアリルアミンヨウ化水素酸塩、ジアリルアミン硫酸塩、及び、ジアリルアミンメタンスルホン酸塩を挙げることができる。   Examples of diallylamine salts include diallylamine hydrochloride, diallylamine hydrobromide, diallylamine hydroiodide, diallylamine sulfate, and diallylamine methanesulfonate.

[pH調整剤]
研磨液は、pH調整剤を含有してもよい。ただし、pH調整剤を含まなくても研磨液が所定のpH範囲にある場合は、pH調整剤は特に添加しなくてもよい。
[PH adjuster]
The polishing liquid may contain a pH adjuster. However, if the polishing liquid is in the predetermined pH range even if it does not contain a pH adjuster, the pH adjuster need not be added.

pH調整剤としては、特に制限はなく、無機酸、有機酸、有機塩基、無機塩基等が挙げられる。無機酸としては、硝酸、硫酸、塩酸、リン酸、ホウ酸等が挙げられる。無機塩基としては、アンモニア等が挙げられる。また、pHを安定化させるため、緩衝液を添加してもよい。このような緩衝液としては、酢酸塩緩衝液等が挙げられる。pH調整剤及び緩衝液のそれぞれは、一種類単独で又は二種類以上を組み合わせて使用できる。   There is no restriction | limiting in particular as a pH adjuster, An inorganic acid, an organic acid, an organic base, an inorganic base, etc. are mentioned. Examples of inorganic acids include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, boric acid and the like. Examples of the inorganic base include ammonia. A buffer may be added to stabilize the pH. Examples of such a buffer include an acetate buffer. Each of the pH adjusting agent and the buffer can be used alone or in combination of two or more.

[その他の添加剤]
本実施形態に係る研磨液は、研磨速度等の研磨特性;砥粒の分散性などの特性を調整する目的で、その他の添加剤を更に含有していてもよい。その他の添加剤は、一種類単独で又は二種類以上を組み合わせて使用できる。
[Other additives]
The polishing liquid according to this embodiment may further contain other additives for the purpose of adjusting polishing characteristics such as polishing rate; and characteristics such as dispersibility of abrasive grains. Other additives can be used alone or in combination of two or more.

その他の分散剤としては、例えば、平坦性、面内均一性等の研磨特性の調整などに使用される水溶性高分子が挙げられる。また、研磨液は、必要に応じて、添加剤として、水以外の溶媒(例えば、エタノール、酢酸、アセトン等の極性溶媒)を含有してもよい。   Examples of other dispersants include water-soluble polymers used for adjusting polishing properties such as flatness and in-plane uniformity. Moreover, polishing liquid may contain solvents other than water (for example, polar solvents, such as ethanol, acetic acid, acetone, etc.) as an additive as needed.

水溶性高分子としては、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、グアーガム等の多糖類、ポリビニルアルコール、ポリアクロレイン等のビニル系ポリマなどが挙げられる。ここで、「水溶性高分子」とは、25℃において水100gに対して0.1g以上溶解する高分子として定義する。   Examples of the water-soluble polymer include polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and guar gum, and vinyl polymers such as polyvinyl alcohol and polyacrolein. Here, the “water-soluble polymer” is defined as a polymer that dissolves 0.1 g or more in 100 g of water at 25 ° C.

水溶性高分子を使用する場合、水溶性高分子の含有量の下限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨液の全質量を基準として、0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、0.01質量%以上が更に好ましい。水溶性高分子の含有量の上限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨液の全質量を基準として、5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。水溶性高分子として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。   When using a water-soluble polymer, the lower limit of the content of the water-soluble polymer is based on the total mass of the polishing liquid from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of abrasive grains. 0.0001 mass% or more is preferable, 0.001 mass% or more is more preferable, and 0.01 mass% or more is still more preferable. The upper limit of the content of the water-soluble polymer is preferably 5% by mass or less, preferably 1% by mass based on the total mass of the polishing liquid, from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains. % Or less is more preferable, and 0.5 mass% or less is still more preferable. When using a some compound as water-soluble polymer, it is preferable that the sum total of content of each compound satisfy | fills the said range.

その他の添加剤を使用する場合、その他の添加剤のそれぞれの含有量は、砥粒の沈降を抑制しつつその他の添加剤の添加効果が得られる観点から、研磨液の全質量を基準として0.001〜10質量%が好ましい。その他の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。   When other additives are used, the content of each other additive is 0 on the basis of the total mass of the polishing liquid from the viewpoint of obtaining the effect of addition of other additives while suppressing sedimentation of abrasive grains. 0.001 to 10% by mass is preferable. When using a some compound as another additive, it is preferable that the sum total of content of each compound satisfy | fills the said range.

(水)
研磨液の媒体である水としては、特に制限されないが、脱イオン水、イオン交換水、超純水等が好ましい。
(water)
The water that is the medium of the polishing liquid is not particularly limited, but deionized water, ion exchange water, ultrapure water, and the like are preferable.

(研磨液のpH)
本実施形態に係る研磨液のpHは、SiOCの研磨速度が向上する効果を得る観点から、5.0以上である。本実施形態に係る研磨液のpHは、SiOCの研磨速度が向上する効果が得られやすい観点から、5.5以上が好ましく、6.0以上がより好ましい。本実施形態に係る研磨液のpHは、安全性の観点から、12以下が好ましく、11以下がより好ましく、10以下が更に好ましく、9.5以下が特に好ましい。pHは、液温25℃におけるpHと定義する。
(PH of polishing liquid)
The pH of the polishing liquid according to this embodiment is 5.0 or more from the viewpoint of obtaining the effect of improving the polishing rate of SiOC. The pH of the polishing liquid according to this embodiment is preferably 5.5 or more, and more preferably 6.0 or more, from the viewpoint of easily obtaining the effect of improving the polishing rate of SiOC. The pH of the polishing liquid according to this embodiment is preferably 12 or less, more preferably 11 or less, still more preferably 10 or less, and particularly preferably 9.5 or less from the viewpoint of safety. The pH is defined as the pH at a liquid temperature of 25 ° C.

本実施形態に係る研磨液のpHは、pHメータ(例えば、電気化学計器株式会社製の型番PHL−40)で測定できる。具体的には例えば、フタル酸塩pH緩衝液(pH4.01)と中性リン酸塩pH緩衝液(pH6.86)とホウ酸塩pH緩衝液(pH9.18)とを標準緩衝液として用いてpHメータを3点校正した後、pHメータの電極を研磨液に入れて、2分以上経過して安定した後の値を測定する。このとき、標準緩衝液及び研磨液の液温は共に25℃とする。   The pH of the polishing liquid according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Electrochemical Instruments Co., Ltd.). Specifically, for example, phthalate pH buffer (pH 4.01), neutral phosphate pH buffer (pH 6.86) and borate pH buffer (pH 9.18) are used as standard buffers. After calibrating the pH meter at three points, the electrode of the pH meter is put into the polishing liquid, and the value after 2 minutes has passed and stabilized is measured. At this time, both the standard buffer solution and the polishing solution are set to 25 ° C.

(研磨液の種類)
本実施形態に係る研磨液は、砥粒、前記カルボン酸化合物及び水を少なくとも含む一液式研磨液として保存してもよく、スラリ(第一の液)と添加液(第二の液)とを混合して前記研磨液となるように前記研磨液の構成成分をスラリと添加液とに分けた二液式の研磨液セット(例えばCMP用研磨液セット)として保存してもよい。スラリは、例えば、砥粒及び水を少なくとも含む。添加液は、例えば、前記カルボン酸化合物及び水を少なくとも含む。前記カルボン酸化合物、及び、その他の添加剤は、スラリ及び添加液のうち添加液に含まれることが好ましい。ただし、砥粒の分散性を向上させる効果のある添加剤については、スラリ及び添加液のうちスラリに含まれることが好ましい。例えば、研磨液セットは、前記研磨液の構成成分がスラリ(第一の液)と添加液(第二の液)とに分けて保存され、前記スラリが砥粒及び水を含み、前記添加液が前記カルボン酸化合物及び水を含む態様であってもよい。なお、前記研磨液の構成成分は、三液以上に分けた研磨液セットとして保存してもよい。
(Type of polishing liquid)
The polishing liquid according to this embodiment may be stored as a one-part polishing liquid containing at least abrasive grains, the carboxylic acid compound, and water, and includes a slurry (first liquid) and an additive liquid (second liquid). May be stored as a two-pack type polishing liquid set (for example, a polishing liquid set for CMP) in which the constituents of the polishing liquid are divided into a slurry and an additive liquid so as to be the polishing liquid. The slurry includes at least abrasive grains and water, for example. The additive liquid contains at least the carboxylic acid compound and water, for example. It is preferable that the carboxylic acid compound and other additives are contained in the additive liquid among the slurry and the additive liquid. However, the additive having the effect of improving the dispersibility of the abrasive grains is preferably contained in the slurry of the slurry and the additive liquid. For example, in the polishing liquid set, the constituents of the polishing liquid are stored separately in a slurry (first liquid) and an additive liquid (second liquid), and the slurry contains abrasive grains and water, and the additive liquid The aspect which contains the said carboxylic acid compound and water may be sufficient. The constituents of the polishing liquid may be stored as a polishing liquid set divided into three or more liquids.

前記研磨液セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨液が調製される。また、一液式研磨液は、水の含有量を減じた研磨液用貯蔵液として保存されると共に、研磨直前又は研磨時に水で希釈して用いられてもよい。二液式の研磨液セットは、水の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨直前又は研磨時に水で希釈して用いられてもよい。   In the polishing liquid set, slurry and additive liquid are mixed immediately before polishing or at the time of polishing to prepare a polishing liquid. Further, the one-part polishing liquid is stored as a stock liquid for polishing liquid with a reduced water content, and may be used by diluting with water immediately before polishing or at the time of polishing. The two-pack type polishing liquid set may be stored as a slurry storage liquid and an additive liquid storage liquid with a reduced water content, and may be diluted with water immediately before polishing or at the time of polishing.

一液式研磨液の場合、研磨定盤上への研磨液の供給方法としては、研磨液を直接送液して供給する方法;研磨液用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめ研磨液用貯蔵液及び水を混合しておき供給する方法等を用いることができる。   In the case of a one-pack type polishing liquid, as a method of supplying the polishing liquid onto the polishing surface plate, a method of directly supplying the polishing liquid and supplying it; a storage liquid for polishing liquid and water are supplied through separate pipes; A method in which these are combined and mixed and supplied; a method in which a stock solution for polishing liquid and water are mixed and supplied in advance can be used.

スラリと添加液とに分けた二液式の研磨液セットとして保存する場合、これら二液の配合を任意に変えることにより研磨速度を調整できる。研磨液セットを用いて研磨する場合、研磨定盤上への研磨液の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流、混合させて供給する方法;スラリ用貯蔵液、添加液用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめスラリ及び添加液を混合しておき供給する方法;あらかじめスラリ用貯蔵液、添加液用貯蔵液及び水を混合しておき供給する方法を用いることができる。また、前記研磨液セットにおけるスラリと添加液とをそれぞれ研磨定盤上へ供給する方法を用いることもできる。この場合、研磨定盤上においてスラリ及び添加液が混合されて得られる研磨液を用いて被研磨面が研磨される。   When storing as a two-pack type polishing liquid set divided into slurry and additive liquid, the polishing rate can be adjusted by arbitrarily changing the blend of these two liquids. In the case of polishing using a polishing liquid set, there are the following methods for supplying the polishing liquid onto the polishing surface plate. For example, the slurry and the additive liquid are sent through separate pipes, and these pipes are combined, mixed and supplied; the slurry storage liquid, the additive liquid storage liquid and water are sent through separate pipes, A method in which these are combined and mixed and supplied; a method in which slurry and additive solution are mixed and supplied in advance; and a method in which slurry storage solution, additive solution storage solution and water are mixed in advance and supplied it can. Further, it is possible to use a method of supplying the slurry and the additive liquid in the polishing liquid set onto the polishing surface plate, respectively. In this case, the surface to be polished is polished using a polishing liquid obtained by mixing the slurry and the additive liquid on the polishing surface plate.

<研磨液の製造方法>
本実施形態に係る研磨液の製造方法は、SiOCの少なくとも一部をCMPによって除去するための研磨液の製造方法である。本実施形態に係る研磨液の製造方法は、少なくとも、砥粒と、カルボン酸化合物と、水と、を混合して研磨液を得る研磨液製造工程を備える。研磨液製造工程において、各成分が同時に混合されてもよく、各成分が順次混合されてもよい。本実施形態に係る研磨液の製造方法は、研磨液製造工程の前に、セリウムを含む砥粒を得る工程を備えていてもよい。
<Manufacturing method of polishing liquid>
The method for producing a polishing liquid according to this embodiment is a method for producing a polishing liquid for removing at least a part of SiOC by CMP. The manufacturing method of the polishing liquid according to the present embodiment includes a polishing liquid manufacturing step of obtaining a polishing liquid by mixing at least abrasive grains, a carboxylic acid compound, and water. In the polishing liquid production process, each component may be mixed simultaneously, or each component may be mixed sequentially. The manufacturing method of the polishing liquid according to the present embodiment may include a step of obtaining abrasive grains containing cerium before the polishing liquid manufacturing step.

本実施形態に係る研磨液の製造方法は、砥粒を水中に分散させる分散工程を備えていることが好ましい。分散工程は、例えば、砥粒と分散剤とを混合する工程である。この場合、分散剤は、セリウムスラリー(酸化セリウムスラリ等)を得る工程で添加されることが好ましい。すなわち、前記セリウムスラリーが分散剤を含むことが好ましい。分散工程では、例えば、砥粒と、分散剤と、水とを混合し、前記砥粒を水中に分散させてセリウムスラリーを得る。   The method for producing a polishing liquid according to this embodiment preferably includes a dispersion step of dispersing abrasive grains in water. A dispersion | distribution process is a process of mixing an abrasive grain and a dispersing agent, for example. In this case, the dispersant is preferably added in a step of obtaining a cerium slurry (cerium oxide slurry or the like). That is, it is preferable that the cerium slurry contains a dispersant. In the dispersion step, for example, abrasive grains, a dispersant, and water are mixed, and the abrasive grains are dispersed in water to obtain a cerium slurry.

<基体の研磨方法>
本実施形態に係る研磨方法は、研磨液を用いて、SiOCを含む被研磨面を研磨する工程を備える。本実施形態に係る基体の研磨方法は、前記一液式研磨液を用いて基体の被研磨面を研磨する研磨工程を備えていてもよく、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて基体の被研磨面を研磨する研磨工程を備えていてもよい。また、本実施形態に係る基体の研磨方法は、単独又は複数の被研磨材料を有する基体の研磨方法であってもよく、例えば、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、SiOCをストッパ材料に対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、SiOCを含む部材と、ストッパ材料を含む部材(ストッパ)とを有していてもよい。ストッパ材料としては、窒化珪素、ポリシリコン等の材料が好ましく、窒化珪素がより好ましい。
<Polishing method of substrate>
The polishing method according to the present embodiment includes a step of polishing a surface to be polished containing SiOC using a polishing liquid. The substrate polishing method according to the present embodiment may include a polishing step of polishing the surface to be polished of the substrate using the one-component polishing liquid, and the slurry and the additive liquid in the polishing liquid set are mixed. A polishing step of polishing the surface to be polished of the substrate using the polishing liquid obtained in this manner may be provided. Further, the substrate polishing method according to the present embodiment may be a method for polishing a substrate having a single or a plurality of materials to be polished. For example, the one-component polishing liquid or the slurry in the polishing liquid set You may provide the grinding | polishing process of selectively grind | polishing SiOC with respect to a stopper material using the polishing liquid obtained by mixing an additive liquid. In this case, the base body may have, for example, a member containing SiOC and a member (stopper) containing a stopper material. As the stopper material, materials such as silicon nitride and polysilicon are preferable, and silicon nitride is more preferable.

研磨工程では、例えば、研磨対象材料を有する基体の当該研磨対象材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨液を研磨対象材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして研磨対象材料を研磨する。研磨工程では、例えば、研磨対象材料の少なくとも一部を研磨により除去する。   In the polishing step, for example, the polishing liquid is supplied between the polishing target material and the polishing pad in a state where the polishing target material of the substrate having the polishing target material is pressed against the polishing pad (polishing cloth) of the polishing surface plate. The material to be polished is polished by relatively moving the substrate and the polishing surface plate. In the polishing step, for example, at least a part of the material to be polished is removed by polishing.

図1は、半導体のSTI構造を形成する際における研磨工程の断面概略図である。図1を用いて、本実施形態に係る基体の研磨方法を更に説明する。まず、図1(A)に示すように、凹部(トレンチ部)及び凸部(アクティブ部)により構成される凹凸が表面に形成されたウエハ(シリコン基板等)1と、ウエハ1の凸部上に形成された窒化珪素膜(SiN膜)2と、ウエハ1の表面の凹凸を埋めるように形成されたSiOC膜3と、を有する基体100を準備する。   FIG. 1 is a schematic cross-sectional view of a polishing process in forming a semiconductor STI structure. The substrate polishing method according to the present embodiment will be further described with reference to FIG. First, as shown in FIG. 1 (A), a wafer (silicon substrate or the like) 1 having concave and convex portions (trench portions) and convex portions (active portions) formed on the surface, and a convex portion of the wafer 1 A base 100 having a silicon nitride film (SiN film) 2 formed on the surface of the wafer 1 and a SiOC film 3 formed so as to fill the irregularities on the surface of the wafer 1 is prepared.

次に、前記研磨液を用いてSiOC膜3を研磨し、凸部上のSiOC膜3が完全に除去されて窒化珪素膜2が露出した段階で研磨を停止させることにより、図1(B)に示す基体200を得る。研磨終了後の基体200においては、凹部のSiOC膜3のディッシングを低減させることが好ましい。具体的には、凹部の深さ4から凹部内のSiOC膜3の厚さ5を引いた値であるディッシング量6が小さいことが好ましい。   Next, the SiOC film 3 is polished using the polishing liquid, and the polishing is stopped when the SiOC film 3 on the convex portion is completely removed and the silicon nitride film 2 is exposed, whereby FIG. A substrate 200 shown in FIG. In the substrate 200 after polishing, it is preferable to reduce dishing of the SiOC film 3 in the recess. Specifically, the dishing amount 6 that is a value obtained by subtracting the thickness 5 of the SiOC film 3 in the recess from the depth 4 of the recess is preferably small.

研磨対象である基体としては、基板等が挙げられ、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基板が挙げられる。基体としては、被研磨材料として1種又は2種以上有する基体であってもよく、研磨対象材料を1種又は2種以上有し且つストッパ材料を1種又は2種以上有する基体であってもよい。研磨対象材料としては、例えば、SiOC(カーボン含有酸化珪素。オルガノシリケートグラス、MSQ等)、酸化珪素(SiOCを除く)などの絶縁材料が挙げられる。ストッパ材料としては、窒化珪素、ポリシリコン等が挙げられる。被研磨材料は、膜状(被研磨膜)であってもよい。研磨対象材料及びストッパ材料は、膜状(研磨対象膜及びストッパ膜)であってもよい。   Examples of the substrate to be polished include a substrate. For example, a material to be polished is formed on a substrate for manufacturing a semiconductor element (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed). A substrate is mentioned. The substrate may be a substrate having one or more kinds as a material to be polished, or may be a substrate having one or more kinds of materials to be polished and one or more kinds of stopper materials. Good. Examples of the material to be polished include insulating materials such as SiOC (carbon-containing silicon oxide, organosilicate glass, MSQ, etc.), silicon oxide (excluding SiOC), and the like. Examples of the stopper material include silicon nitride and polysilicon. The material to be polished may be in the form of a film (film to be polished). The material to be polished and the stopper material may be in the form of a film (polishing target film and stopper film).

このような基体上に形成された研磨対象材料(例えばSiOC)を前記研磨液で研磨し、余分な部分を除去することによって、研磨対象材料の表面の凹凸を解消し、研磨対象材料の表面全体にわたって平滑な面が得られる。本実施形態に係る研磨液は、SiOCを含む被研磨面を研磨するために使用されることが好ましい。   By polishing the material to be polished (such as SiOC) formed on such a substrate with the polishing liquid and removing an excess portion, unevenness on the surface of the material to be polished is eliminated, and the entire surface of the material to be polished is removed. A smooth surface can be obtained. The polishing liquid according to this embodiment is preferably used for polishing a surface to be polished containing SiOC.

以下、半導体基板の研磨方法を一例に挙げて、本実施形態に係る研磨方法を更に説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する半導体基板等の基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、例えば、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、APPLIED MATERIALS社製の研磨装置(商品名:Mirra−3400、Reflexion LK)、及び、株式会社荏原製作所製の研磨装置(商品名:F−REX300)が挙げられる。   Hereinafter, the polishing method according to this embodiment will be further described by taking a semiconductor substrate polishing method as an example. In the polishing method according to the present embodiment, as a polishing apparatus, a general polishing apparatus having a holder capable of holding a substrate such as a semiconductor substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached. Can be used. For example, a motor or the like whose rotation speed can be changed is attached to each of the holder and the polishing surface plate. Examples of the polishing apparatus include a polishing apparatus manufactured by APPLIED MATERIALS (trade names: Mira-3400, Reflexion LK), and a polishing apparatus manufactured by Ebara Corporation (trade name: F-REX300).

研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル樹脂、ポリエステル、アクリル−エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、更に優れた研磨速度及び平坦性を得る観点から、発泡ポリウレタン及び非発泡ポリウレタンが好ましい。研磨パッドには、研磨液がたまるような溝加工が施されていてもよい。   As the polishing pad, a general nonwoven fabric, foam, non-foam, or the like can be used. The material of the polishing pad is polyurethane, acrylic resin, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name)) And aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like. As the material of the polishing pad, foamed polyurethane and non-foamed polyurethane are particularly preferable from the viewpoint of obtaining a further excellent polishing rate and flatness. The polishing pad may be grooved so that the polishing liquid accumulates.

研磨条件に制限はないが、研磨定盤の回転速度は、半導体基板が飛び出さないように200min−1(rpm)以下が好ましく、半導体基板にかける研磨圧力(加工荷重)は、研磨傷が発生することを充分に抑制する観点から、100kPa以下が好ましい。研磨している間、ポンプ等で連続的に研磨液を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。 Although there is no limitation on the polishing conditions, the rotation speed of the polishing platen is preferably 200 min −1 (rpm) or less so that the semiconductor substrate does not pop out, and the polishing pressure (processing load) applied to the semiconductor substrate causes polishing scratches. From the viewpoint of sufficiently suppressing this, 100 kPa or less is preferable. During polishing, it is preferable to continuously supply the polishing liquid to the polishing pad with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with polishing liquid.

研磨終了後の半導体基板は、基板を流水中でよく洗浄して、基板に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を用いてもよく、洗浄効率を高めるためにブラシを用いてもよい。また、洗浄後は、半導体基板に付着した水滴を、スピンドライヤ等を用いて払い落としてから半導体基板を乾燥させることが好ましい。   The semiconductor substrate after polishing is preferably washed thoroughly under running water to remove particles adhering to the substrate. For cleaning, dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used to improve cleaning efficiency. Further, after cleaning, it is preferable to dry the semiconductor substrate after water droplets adhering to the semiconductor substrate are removed using a spin dryer or the like.

本実施形態に係る研磨方法において研磨される基板としては、例えば、ダイオード、トランジスタ、化合物半導体、サーミスタ、バリスタ、サイリスタ等の個別半導体;DRAM(ダイナミック・ランダム・アクセス・メモリー)、SRAM(スタティック・ランダム・アクセス・メモリー)、EPROM(イレイザブル・プログラマブル・リード・オンリー・メモリー)、マスクROM(マスク・リード・オンリー・メモリー)、EEPROM(エレクトリカル・イレイザブル・プログラマブル・リード・オンリー・メモリー)、フラッシュメモリー等の記憶素子;マイクロプロセッサー、DSP、ASIC等の理論回路素子;MMIC(モノリシック・マイクロウェーブ集積回路)に代表される化合物半導体等の集積回路素子;混成集積回路(ハイブリッドIC)、発光ダイオード、電荷結合素子等の光電変換素子などを有する基板を適用することができる。   As a substrate to be polished in the polishing method according to the present embodiment, for example, individual semiconductors such as diodes, transistors, compound semiconductors, thermistors, varistors, thyristors; DRAM (dynamic random access memory), SRAM (static random)・ Access memory), EPROM (erasable programmable read only memory), mask ROM (mask read only memory), EEPROM (electrically erasable programmable read only memory), flash memory, etc. Memory elements; theoretical circuit elements such as microprocessors, DSPs and ASICs; integrated circuit elements such as compound semiconductors represented by MMICs (monolithic microwave integrated circuits); hybrid integration Road (Hybrid IC), light emitting diodes, can be applied to a substrate having such a photoelectric conversion element such as a charge coupled device.

本実施形態に係る研磨液は、上述した実施形態で述べたような、半導体基板に形成されたSiOC、窒化珪素等の研磨に限られず、所定の配線を有する配線板に形成された酸化珪素、ガラス、窒化珪素等の無機絶縁材料;ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する材料の研磨に適用することができる。   The polishing liquid according to the present embodiment is not limited to the polishing of SiOC, silicon nitride or the like formed on a semiconductor substrate as described in the above-described embodiment, but silicon oxide formed on a wiring board having a predetermined wiring, It can be applied to polishing an inorganic insulating material such as glass or silicon nitride; a material mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN or the like.

本実施形態に係る研磨方法で研磨された基板を備える電子部品としては、種々のものが挙げられる。電子部品としては、半導体素子だけでなく、フォトマスク・レンズ・プリズム等の光学ガラス;ITO等の無機導電膜;ガラス及び結晶質材料で構成される光集積回路;光スイッチング素子;光導波路;光ファイバーの端面;シンチレータ等の光学用単結晶;固体レーザ単結晶;青色レーザLED用サファイヤ基板;SiC、GaP、GaAs等の半導体単結晶;磁気ディスク用ガラス基板;磁気ヘッドなどが挙げられる。これらの電子部品では、本実施形態に係る研磨液によって各層を研磨することにより、高集積化が図られると共に、優れた特性を発揮することができる。   As an electronic component including a substrate polished by the polishing method according to the present embodiment, various types can be cited. Electronic components include not only semiconductor elements but also optical glasses such as photomasks, lenses and prisms; inorganic conductive films such as ITO; optical integrated circuits composed of glass and crystalline materials; optical switching elements; optical waveguides; An optical single crystal such as a scintillator; a solid laser single crystal; a sapphire substrate for a blue laser LED; a semiconductor single crystal such as SiC, GaP, or GaAs; a glass substrate for a magnetic disk; a magnetic head. In these electronic components, by polishing each layer with the polishing liquid according to the present embodiment, high integration can be achieved and excellent characteristics can be exhibited.

以下、実施例により本発明を更に詳しく説明するが、本発明の技術的思想を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。例えば、研磨液の材料及びその配合比率は、本実施例記載の材料及び配合比率以外の材料及び配合比率でも構わないし、研磨対象の組成及び構造も、本実施例記載の組成及び構造以外の組成及び構造でも構わない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these Examples, unless it deviates from the technical idea of this invention. For example, the material of the polishing liquid and the blending ratio thereof may be materials and blending ratios other than the materials and blending ratios described in the present embodiment, and the composition and structure of the polishing object may be other than the compositions and structures described in the present embodiment. And the structure may be acceptable.

<酸化セリウム粉末の作製>
市販の炭酸セリウム水和物40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法で行ったところ、酸化セリウムであることを確認した。得られた酸化セリウム粉末20kgを、ジェットミルを用いて乾式粉砕し、酸化セリウム粒子を含む酸化セリウム粉末を得た。
<Preparation of cerium oxide powder>
40 kg of commercially available cerium carbonate hydrate was placed in an alumina container and baked in air at 830 ° C. for 2 hours to obtain 20 kg of yellowish white powder. When the phase of this powder was identified by the X-ray diffraction method, it was confirmed to be cerium oxide. 20 kg of the obtained cerium oxide powder was dry-ground using a jet mill to obtain a cerium oxide powder containing cerium oxide particles.

<CMP用研磨液の調製>
(実施例1)
前記で作製した酸化セリウム粉末200.0gと、脱イオン水795.0gとを混合した後、ポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%)5gを添加した。攪拌しながら超音波分散を行い、酸化セリウム分散液を得た。超音波分散は、超音波周波数400kHz、分散時間20分で行った。
<Preparation of polishing liquid for CMP>
Example 1
After mixing 200.0 g of the cerium oxide powder prepared above and 795.0 g of deionized water, 5 g of an aqueous ammonium polyacrylate solution (weight average molecular weight: 8000, 40 mass%) was added. Ultrasonic dispersion was performed with stirring to obtain a cerium oxide dispersion. Ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 20 minutes.

その後、1L容器(高さ:170mm)に1kgの酸化セリウム分散液を入れて静置し、沈降分級を行った。分級を15時間行った後、水面からの深さ130mmより上の上澄みをポンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、固形分含量が5質量%になるように脱イオン水で希釈して、酸化セリウム粒子を含む水分散液(スラリー)を得た。   Thereafter, 1 kg of cerium oxide dispersion was placed in a 1 L container (height: 170 mm) and allowed to stand, and sedimentation classification was performed. After 15 hours of classification, the supernatant above a depth of 130 mm from the water surface was pumped up. The obtained supernatant cerium oxide dispersion was diluted with deionized water so that the solid content was 5% by mass to obtain an aqueous dispersion (slurry) containing cerium oxide particles.

酸化セリウム粒子を含む水分散液中における酸化セリウム粒子の平均粒径(D50)を測定するため、He−Neレーザに対する測定時透過率(H)が60〜70%になるように前記分散液を希釈して測定サンプルを得た。レーザ回折式粒度分布計Mastersizer Microplus(Malvern社製、商品名(「Mastersizer」は登録商標))を用い、屈折率:1.93、吸収:0として測定サンプルのD50を測定したところ、D50の値は150nmであった。   In order to measure the average particle diameter (D50) of the cerium oxide particles in the aqueous dispersion containing the cerium oxide particles, the dispersion is adjusted so that the transmittance (H) at the time of measurement with respect to the He—Ne laser is 60 to 70%. Diluted to obtain a measurement sample. Using a laser diffraction particle size distribution meter Mastersizer Microplus (Malvern, trade name ("Mastersizer" is a registered trademark)), the refractive index is 1.93, the absorption is 0, and the D50 of the measurement sample is measured. Was 150 nm.

水、表1のジカルボン酸(A1、α−ケトグルタル酸、東京化成工業株式会社製)、pH調整剤、及び、前記酸化セリウム粒子を含む水分散液の順にこれらを同一容器内に配合した後に混合して、酸化セリウム粒子1.0質量%及びジカルボン酸0.10質量%を含有するCMP用研磨液を調製した。表1〜表3における「%」は「質量%」を示し、研磨液の全質量を基準とした含有量を示す。   After mixing these in the same container in the order of water, dicarboxylic acid in Table 1 (A1, α-ketoglutaric acid, manufactured by Tokyo Chemical Industry Co., Ltd.), pH adjuster, and aqueous dispersion containing the cerium oxide particles. Then, a polishing slurry for CMP containing 1.0% by mass of cerium oxide particles and 0.10% by mass of dicarboxylic acid was prepared. “%” In Tables 1 to 3 represents “mass%” and represents the content based on the total mass of the polishing liquid.

(実施例2〜10及び比較例1〜3)
実施例1と同様の手順で混合し、表1〜表3に示すCMP用研磨液を調製した。添加剤としては、1,3−アセトンジカルボン酸(A2、東京化成工業株式会社製)、ジグリコール酸(A3、東京化成工業株式会社製)、アジピン酸(A4、東京化成工業株式会社製)、チオリンゴ酸(A5、東京化成工業株式会社製)、酢酸(A6、和光純薬工業株式会社製、試薬特級)を用いた。実施例6では、ジカルボン酸とポリアクリル酸(カルボン酸基及びカルボン酸塩基の合計の数:2を超える)とを含有する研磨液を調製した。実施例7〜10では、ジカルボン酸とポリメタクリル酸(カルボン酸基及びカルボン酸塩基の合計の数:2を超える)とを含有する研磨液を調製した。比較例1では、添加剤を含有しない研磨液を調製した。比較例2では、ジカルボン酸を含有せず、ポリメタクリル酸(カルボン酸基及びカルボン酸塩基の合計の数:2を超える)を含有する研磨液を調製した。
(Examples 2 to 10 and Comparative Examples 1 to 3)
By mixing in the same procedure as in Example 1, CMP polishing liquids shown in Tables 1 to 3 were prepared. As additives, 1,3-acetone dicarboxylic acid (A2, manufactured by Tokyo Chemical Industry Co., Ltd.), diglycolic acid (A3, manufactured by Tokyo Chemical Industry Co., Ltd.), adipic acid (A4, manufactured by Tokyo Chemical Industry Co., Ltd.), Thiomalic acid (A5, manufactured by Tokyo Chemical Industry Co., Ltd.) and acetic acid (A6, manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) were used. In Example 6, a polishing liquid containing dicarboxylic acid and polyacrylic acid (total number of carboxylic acid groups and carboxylic acid groups: more than 2) was prepared. In Examples 7 to 10, polishing liquids containing dicarboxylic acid and polymethacrylic acid (total number of carboxylic acid groups and carboxylic acid groups: more than 2) were prepared. In Comparative Example 1, a polishing liquid containing no additive was prepared. In Comparative Example 2, a polishing liquid containing no dicarboxylic acid and containing polymethacrylic acid (total number of carboxylic acid groups and carboxylic acid groups: more than 2) was prepared.

前記CMP用研磨液のpHをpHメータ(電気化学計器株式会社製の型番PHL−40)で測定した。フタル酸塩pH緩衝液(pH4.01)と中性リン酸塩pH緩衝液(pH6.86)とホウ酸塩pH緩衝液(pH9.18)とを標準緩衝液として用いてpHメータを3点校正した後、pHメータの電極を研磨液に入れて、2分以上経過して安定した後の値を測定した。測定結果を表1〜表3に示す。   The pH of the polishing slurry for CMP was measured with a pH meter (Model No. PHL-40 manufactured by Electrochemical Instrument Co., Ltd.). Three pH meters using phthalate pH buffer (pH 4.01), neutral phosphate pH buffer (pH 6.86) and borate pH buffer (pH 9.18) as standard buffers After calibration, the pH meter electrode was placed in the polishing liquid, and the value after 2 minutes had passed and stabilized was measured. The measurement results are shown in Tables 1 to 3.

<研磨評価>
CMP評価用試験ウエハとして、パターンが形成されていないブランケット基板(Blanketウェハ)を使用した。ブランケット基板としては、SiOC膜(Merck社製)をシリコン(Si)基板(直径:300mm)上に有する基板を使用した。
<Polishing evaluation>
As a test wafer for CMP evaluation, a blanket substrate (Blanket wafer) on which no pattern was formed was used. As the blanket substrate, a substrate having a SiOC film (manufactured by Merck) on a silicon (Si) substrate (diameter: 300 mm) was used.

CMP評価用試験ウエハの研磨には、研磨装置(APPLIED MATERIALS社製、商品名:ReflexionLK)を用いた。基板取り付け用の吸着パッドを貼り付けたホルダーにCMP評価用試験ウエハをセットした。研磨装置の直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨パッド(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)を貼り付けた。被研磨膜であるSiOC膜が配置された面を下にして前記ホルダーを研磨定盤上に載せ、加工荷重を3.0psi(20.6kPa)に設定した。   A polishing apparatus (manufactured by APPLIED MATERIALS, product name: Reflexion LK) was used for polishing the test wafer for CMP evaluation. A test wafer for CMP evaluation was set in a holder to which a suction pad for attaching a substrate was attached. A polishing pad made of porous urethane resin (manufactured by Rohm and Haas Japan Co., Ltd., model number IC1010) was attached to a polishing surface plate having a diameter of 600 mm of the polishing apparatus. The holder was placed on a polishing platen with the surface on which the SiOC film as the film to be polished was placed facing down, and the processing load was set to 3.0 psi (20.6 kPa).

前記研磨定盤上に前記CMP用研磨液を300mL/minの速度で滴下しながら、研磨定盤とCMP評価用試験ウエハとをそれぞれ93min−1、87min−1で回転させて、CMP評価用試験ウエハを研磨した。研磨は60秒間行った。PVAブラシ(ポリビニルアルコールブラシ)を使用して研磨後のウエハを純水でよく洗浄した後、乾燥させた。 While the CMP polishing liquid to the polishing platen was added dropwise at a rate of 300 mL / min, the polishing plate and the CMP evaluation test wafer respectively 93min -1, rotated at 87min -1, test CMP Rating The wafer was polished. Polishing was performed for 60 seconds. The polished wafer was thoroughly washed with pure water using a PVA brush (polyvinyl alcohol brush) and then dried.

フィルメトリクス株式会社製の光干渉式膜厚測定装置(装置名:F80)を用いて研磨前後の被研磨膜の膜厚を測定し、膜厚変化量の平均値からブランケットウエハにおける研磨速度を算出した。なお、研磨速度の単位はnm/minである。評価結果を表1〜表3に示す。   The film thickness of the film to be polished before and after polishing is measured using an optical interference type film thickness measuring device manufactured by Filmetrics Co., Ltd. (device name: F80), and the polishing rate on the blanket wafer is calculated from the average value of the film thickness change amount. did. The unit of the polishing rate is nm / min. The evaluation results are shown in Tables 1 to 3.

Figure 2017110177
Figure 2017110177

Figure 2017110177
Figure 2017110177

Figure 2017110177
Figure 2017110177

なお、上記表中の記号は下記のとおりである。
A1:α−ケトグルタル酸
A2:1,3−アセトンジカルボン酸
A3:ジグリコール酸
A4:アジピン酸
A5:チオリンゴ酸
A6:酢酸
The symbols in the above table are as follows.
A1: α-ketoglutaric acid A2: 1,3-acetone dicarboxylic acid A3: Diglycolic acid A4: Adipic acid A5: Thiomalic acid A6: Acetic acid

表1〜表3の結果から、実施例1〜10は、比較例に比べて高いSiOC膜の研磨速度を示した。   From the results of Tables 1 to 3, Examples 1 to 10 showed higher SiOC film polishing rates than the comparative examples.

1…ウエハ、2…窒化珪素膜、3…SiOC膜、4…凹部の深さ、5…研磨後の凹部内のSiOC膜の厚さ、6…ディッシング量、100,200…基体。   DESCRIPTION OF SYMBOLS 1 ... Wafer, 2 ... Silicon nitride film, 3 ... SiOC film, 4 ... Depth of recessed part, 5 ... Thickness of SiOC film in recessed part after grinding | polishing, 6 ... Dishing amount, 100,200 ... Base | substrate.

Claims (10)

セリウムを含む砥粒と、カルボン酸基及びカルボン酸塩基の合計が2であるカルボン酸化合物と、水と、を含有し、
pHが5.0以上である、SiOC研磨用研磨液。
Containing abrasive grains containing cerium, a carboxylic acid compound having a total of 2 carboxylic acid groups and carboxylic acid groups, and water,
A polishing liquid for polishing SiOC having a pH of 5.0 or more.
前記砥粒が、酸化セリウム及びセリウム水酸化物からなる群より選ばれる少なくとも一種を含む、請求項1に記載の研磨液。   The polishing liquid according to claim 1, wherein the abrasive grains include at least one selected from the group consisting of cerium oxide and cerium hydroxide. 前記カルボン酸化合物が、アジピン酸、1,3−アセトンジカルボン酸、α−ケトグルタル酸、イミノジ酢酸、チオリンゴ酸、ジグリコール酸及びこれらの塩からなる群より選ばれる少なくとも一種を含む、請求項1又は2に記載の研磨液。   The carboxylic acid compound includes at least one selected from the group consisting of adipic acid, 1,3-acetone dicarboxylic acid, α-ketoglutaric acid, iminodiacetic acid, thiomalic acid, diglycolic acid and salts thereof. 2. The polishing liquid according to 2. pH調整剤を更に含有する、請求項1〜3のいずれか一項に記載の研磨液。   The polishing liquid according to any one of claims 1 to 3, further comprising a pH adjuster. カルボン酸基及びカルボン酸塩基からなる群より選ばれる少なくとも一種を有する高分子化合物を更に含有する、請求項1〜4のいずれか一項に記載の研磨液。   The polishing liquid according to any one of claims 1 to 4, further comprising a polymer compound having at least one selected from the group consisting of a carboxylic acid group and a carboxylic acid group. 前記高分子化合物の含有量が、当該研磨液の全質量を基準として0.001〜2質量%である、請求項5に記載の研磨液。   The polishing liquid according to claim 5, wherein the content of the polymer compound is 0.001 to 2 mass% based on the total mass of the polishing liquid. SiOCを含む被研磨面を研磨するために使用される、請求項1〜6のいずれか一項に記載の研磨液。   The polishing liquid according to claim 1, which is used for polishing a surface to be polished containing SiOC. 請求項1〜7のいずれか一項に記載の研磨液の構成成分が第一の液と第二の液とに分けて保存され、前記第一の液が前記砥粒及び水を含み、前記第二の液が前記カルボン酸化合物及び水を含む、研磨液セット。   The constituents of the polishing liquid according to any one of claims 1 to 7 are stored separately in a first liquid and a second liquid, and the first liquid contains the abrasive grains and water, A polishing liquid set, wherein the second liquid contains the carboxylic acid compound and water. 請求項1〜7のいずれか一項に記載の研磨液を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。   A method for polishing a substrate, comprising a step of polishing a surface to be polished of the substrate using the polishing liquid according to claim 1. 請求項8に記載の研磨液セットにおける前記第一の液と前記第二の液とを混合して得られる研磨液を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。   A method for polishing a substrate, comprising a step of polishing a surface to be polished of a substrate using a polishing liquid obtained by mixing the first liquid and the second liquid in the polishing liquid set according to claim 8.
JP2016081252A 2015-12-14 2016-04-14 Polishing liquid, polishing liquid set and substrate polishing method Pending JP2017110177A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243313 2015-12-14
JP2015243313 2015-12-14

Publications (1)

Publication Number Publication Date
JP2017110177A true JP2017110177A (en) 2017-06-22

Family

ID=59080012

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016081252A Pending JP2017110177A (en) 2015-12-14 2016-04-14 Polishing liquid, polishing liquid set and substrate polishing method
JP2016242138A Active JP6790790B2 (en) 2015-12-14 2016-12-14 Polishing liquid, polishing liquid set and substrate polishing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016242138A Active JP6790790B2 (en) 2015-12-14 2016-12-14 Polishing liquid, polishing liquid set and substrate polishing method

Country Status (1)

Country Link
JP (2) JP2017110177A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035161A1 (en) * 2017-08-14 2019-02-21 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
WO2020065723A1 (en) * 2018-09-25 2020-04-02 日立化成株式会社 Slurry and polishing method
KR20210029227A (en) * 2018-07-26 2021-03-15 쇼와덴코머티리얼즈가부시끼가이샤 Slurry and polishing method
WO2022224357A1 (en) * 2021-04-20 2022-10-27 昭和電工マテリアルズ株式会社 Cmp polishing liquid and polishing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220522B2 (en) * 2018-05-24 2023-02-10 株式会社バイコウスキージャパン Abrasive grains, manufacturing method thereof, polishing slurry containing the same, and polishing method using the same
JP7158280B2 (en) * 2018-12-28 2022-10-21 ニッタ・デュポン株式会社 Semiconductor polishing composition
US20200270479A1 (en) * 2019-02-26 2020-08-27 Versum Materials Us, Llc Shallow Trench Isolation Chemical And Mechanical Polishing Slurry
WO2021144940A1 (en) * 2020-01-16 2021-07-22 昭和電工マテリアルズ株式会社 Polishing agent, stock solution for polishing agent, and polishing method
US20210332264A1 (en) * 2020-04-23 2021-10-28 Fujimi Corporation Novel polishing vehicles and compositions with tunable viscosity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564735B2 (en) * 2003-10-22 2010-10-20 旭硝子株式会社 Polishing slurry and method for manufacturing semiconductor integrated circuit
JP2005294798A (en) * 2004-03-08 2005-10-20 Asahi Glass Co Ltd Abrasive and polishing method
JP2012109287A (en) * 2009-03-13 2012-06-07 Asahi Glass Co Ltd Abrasive for semiconductor, manufacturing method thereof, and polishing method
JP2014187268A (en) * 2013-03-25 2014-10-02 Hitachi Chemical Co Ltd Cmp polishing agent, and method for polishing substrate
JP6375623B2 (en) * 2014-01-07 2018-08-22 日立化成株式会社 Abrasive, abrasive set, and substrate polishing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035161A1 (en) * 2017-08-14 2019-02-21 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
US11649377B2 (en) 2017-08-14 2023-05-16 Resonac Corporation Polishing liquid, polishing liquid set and polishing method
JPWO2019035161A1 (en) * 2017-08-14 2020-04-16 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
KR20210029227A (en) * 2018-07-26 2021-03-15 쇼와덴코머티리얼즈가부시끼가이샤 Slurry and polishing method
KR102676956B1 (en) 2018-07-26 2024-06-19 가부시끼가이샤 레조낙 Slurry and polishing methods
US12104112B2 (en) 2018-07-26 2024-10-01 Resonac Corporation Slurry, screening method, and polishing method
CN112740366A (en) * 2018-09-25 2021-04-30 昭和电工材料株式会社 Slurry and grinding method
KR20210047951A (en) * 2018-09-25 2021-04-30 쇼와덴코머티리얼즈가부시끼가이샤 Slurry and polishing method
JPWO2020065723A1 (en) * 2018-09-25 2021-08-30 昭和電工マテリアルズ株式会社 Slurry and polishing method
KR102382508B1 (en) * 2018-09-25 2022-04-01 쇼와덴코머티리얼즈가부시끼가이샤 Slurry and Polishing Methods
WO2020065723A1 (en) * 2018-09-25 2020-04-02 日立化成株式会社 Slurry and polishing method
CN112740366B (en) * 2018-09-25 2024-08-02 株式会社力森诺科 Slurry and polishing method
WO2022224357A1 (en) * 2021-04-20 2022-10-27 昭和電工マテリアルズ株式会社 Cmp polishing liquid and polishing method
JP7517465B2 (en) 2021-04-20 2024-07-17 株式会社レゾナック CMP polishing liquid and polishing method

Also Published As

Publication number Publication date
JP6790790B2 (en) 2020-11-25
JP2017110219A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP2017110177A (en) Polishing liquid, polishing liquid set and substrate polishing method
KR101419156B1 (en) Polishing liquid for cmp and polishing method using the same
JP5510575B2 (en) Polishing liquid and substrate polishing method using the polishing liquid
JP7294398B2 (en) Polishing liquid, polishing liquid set, polishing method and defect suppression method
JP6252587B2 (en) Polishing liquid and polishing method for CMP
JP7180756B2 (en) Polishing liquid, polishing liquid set, polishing method and defect suppression method
KR20200021519A (en) Polishing liquid, polishing liquid set and polishing method
JP2017139350A (en) Polishing liquid, polishing liquid set, and substrate polishing method
JP2017139349A (en) Polishing liquid, polishing liquid set, and substrate polishing method
JP5375025B2 (en) Polishing liquid
US20040023491A1 (en) Preparation and use of an abrasive slurry composition
JP7508275B2 (en) Polishing composition, polishing method, and method for producing semiconductor substrate
JP7294809B2 (en) Method of using a chemical-mechanical polishing (CMP) composition for polishing cobalt and/or cobalt-alloy containing substrates
JP7106907B2 (en) Structure and its manufacturing method
JP2017117898A (en) Polishing liquid for CMP and polishing method using the same
JP6657935B2 (en) Polishing liquid
JP2016199659A (en) Polishing liquid, polishing liquid set and substrate polishing method
JP2015137350A (en) Polishing liquid and polishing method using the same
JP2011243789A (en) Polishing solution for cmp, and polishing method using the same
JP6627283B2 (en) Polishing liquid and polishing method