JP2017108306A - Master unit and communication method - Google Patents

Master unit and communication method Download PDF

Info

Publication number
JP2017108306A
JP2017108306A JP2015241067A JP2015241067A JP2017108306A JP 2017108306 A JP2017108306 A JP 2017108306A JP 2015241067 A JP2015241067 A JP 2015241067A JP 2015241067 A JP2015241067 A JP 2015241067A JP 2017108306 A JP2017108306 A JP 2017108306A
Authority
JP
Japan
Prior art keywords
unit
data
packet
transmission
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015241067A
Other languages
Japanese (ja)
Other versions
JP5979522B1 (en
Inventor
隆 山元
Takashi Yamamoto
隆 山元
中川 克己
Katsumi Nakagawa
克己 中川
尚貴 楠井
Naotaka Kusui
尚貴 楠井
林 俊男
Toshio Hayashi
俊男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015241067A priority Critical patent/JP5979522B1/en
Application granted granted Critical
Publication of JP5979522B1 publication Critical patent/JP5979522B1/en
Publication of JP2017108306A publication Critical patent/JP2017108306A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Interconnected Communication Systems, Intercoms, And Interphones (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a master unit and a communication method that can reduce a processing load for broadcasting transmission of an intercom master unit.SOLUTION: In a section where an entrance slave unit transmits a packet, an intercom master unit (routing controller) performs routing control of receiving a packet from the entrance slave unit, outputting the packet to a controller, directly transmitting the packet from the entrance slave unit to another connected equipment, enabling a reception driver (Rx) of one DRV corresponding to each setting pattern and enabling a transmission driver (Tx) of another DRV so that reception of the packet from equipment other than the above-mentioned entrance slave unit is blocked. As a result, the intercom master unit can broadcast the received data to the other equipment before the data is input to the controller (CPU).SELECTED DRAWING: Figure 17

Description

本開示は、ドアホンシステムの親機およびドアホンシステムの通信方法に関する。   The present disclosure relates to a base unit of a door phone system and a communication method of the door phone system.

近年、住宅等において、例えば、宅外の玄関先に設置されたカメラ付きの子機(以下、「玄関子機」という)と、玄関子機のカメラで撮像された映像をモニタに表示する宅内の親機(以下、「ドアホン親機」という)と、からなるドアホンシステムが広く普及している。また、ドアホンシステムに、モニタを増設する場合もある(以下、「増設モニタ」という)。   In recent years, in homes and the like, for example, a slave unit with a camera (hereinafter referred to as an “entrance slave unit”) installed at a front door outside the home, and an image captured on the monitor of the entrance slave unit camera on a monitor A door phone system comprising a main phone (hereinafter referred to as “door phone master”) is widely used. In some cases, a monitor is added to the door phone system (hereinafter referred to as “additional monitor”).

一般的に、ドアホンシステムは、玄関子機とドアホン親機とが2線ケーブルにより接続される。また、ドアホン親機と増設モニタとが2線ケーブルにより接続される。特許文献1には、2線ケーブルで接続された玄関子機とドアホン親機との間でパケットを送受信するドアホンシステムが記載されている。   Generally, in a door phone system, an entrance cordless handset and a door phone master phone are connected by a two-wire cable. Further, the door phone master unit and the extension monitor are connected by a two-wire cable. Patent Document 1 describes a door phone system that transmits and receives packets between an entrance cordless handset and a doorphone master set connected by a two-wire cable.

ドアホン親機は、玄関子機から受信したデータを、増設モニタにも転送する。これにより、同一の画像データが、ドアホン親機と増設モニタに同報送信され、ドアホン親機と増設モニタは、同一の画像データを表示できる。   The intercom master unit also transfers the data received from the entrance slave unit to the additional monitor. As a result, the same image data is broadcast to the doorphone master and the extension monitor, and the doorphone master and the extension monitor can display the same image data.

特開2007−124227号公報JP 2007-124227 A

従来技術では、ドアホン親機が、玄関子機から受信したデータをデコードして解析し、受信データから抽出した画像データを再びコード化して増設モニタに転送している。このため、ドアホン親機の同報送信のための処理負荷が大きくなる。   In the prior art, the intercom master unit decodes and analyzes the data received from the entrance slave unit, re-encodes the image data extracted from the received data, and transfers it to the additional monitor. For this reason, the processing load for the broadcast transmission of the doorphone master unit increases.

本開示の目的は、玄関子機が生成した画像データを、ドアホン親機を含む複数の機器に同報送信する処理の負荷を低減することができるドアホンシステムの親機およびドアホンシステムの通信方法を提供することである。   An object of the present disclosure is to provide a door phone system parent device and a door phone system communication method capable of reducing the processing load of broadcasting image data generated by an entrance child device to a plurality of devices including the door phone parent device. Is to provide.

本開示の親機は、親機と子機および他の機器とがそれぞれ2線ケーブルを介して接続され、前記親機と前記子機および前記他の機器との間で時分割複信によりパケット信号を送受信するドアホンシステムの前記親機であって、前記子機からのパケットを受信する受信部と、前記子機からのパケットをデコードして処理する制御部と、接続された前記他の機器に前記子機からのパケットを同報送信する送信部と、前記子機がパケットを送信する区間において、前記子機からのパケットを受信して前記制御部に出力し、前記他の機器に対して前記子機からのパケットを送信し、かつ、前記他の機器からのパケットの受信を遮断するように、前記受信部および前記送信部を制御するルーティング制御部と、を具備する。   In the master unit of the present disclosure, a master unit, a slave unit, and other devices are connected via two-wire cables, respectively, and packets are transmitted by time division duplex between the master unit, the slave unit, and the other device. The master unit of the door phone system for transmitting and receiving signals, a receiving unit that receives packets from the slave unit, a control unit that decodes and processes packets from the slave unit, and the other devices connected A transmission unit that broadcasts a packet from the slave unit, and in a section in which the slave unit transmits a packet, the packet from the slave unit is received and output to the control unit, to the other device And a routing control unit that controls the reception unit and the transmission unit so as to transmit packets from the slave unit and to block reception of packets from the other devices.

本開示の通信方法は、親機と子機および他の機器とがそれぞれ2線ケーブルを介して接続され、前記親機と前記子機および前記他の機器との間で時分割複信によりパケット信号を送受信するドアホンシステムの同報送信時の通信方法であって、前記子機が、画像データを含むパケットを送信し、前記親機が、前記子機がパケットを送信する区間において、前記子機からのパケットを受信して制御部に出力し、接続された他の機器に対して前記子機からのパケットを送信し、かつ、前記他の機器からのパケットの受信を遮断するように通信ルートを制御し、前記子機から前記パケットを受信し、前記子機から受信したパケットを前記他の機器に同報送信し、前記制御部において、前記子機から受信したパケットをデコードする。   According to the communication method of the present disclosure, a parent device, a child device, and another device are connected via two-wire cables, respectively, and packets are transmitted between the parent device, the child device, and the other device by time division duplex. A communication method for broadcast transmission of a door phone system for transmitting and receiving signals, wherein the slave unit transmits a packet including image data, and the master unit transmits the packet in a period in which the slave unit transmits a packet. Receives a packet from the machine, outputs it to the control unit, transmits a packet from the slave unit to another connected device, and communicates to block reception of the packet from the other device The route is controlled, the packet is received from the slave unit, the packet received from the slave unit is broadcast to the other device, and the control unit decodes the packet received from the slave unit.

本開示によれば、ドアホン親機が、玄関子機が生成した画像データを、CPUに届く前に、他の機器に同報送信することができるので、ドアホン親機の同報送信のための処理負荷を低減することができる。   According to the present disclosure, the doorphone master unit can broadcast the image data generated by the front door slave unit to other devices before reaching the CPU. Processing load can be reduced.

本開示の一実施の形態に係るドアホンシステムの構成を示すシステム構成図The system block diagram which shows the structure of the door phone system which concerns on one embodiment of this indication 本開示の一実施の形態に係るフレーム構成、スロット構成を示す図The figure which shows the frame structure and slot structure which concern on one embodiment of this indication 本開示の一実施の形態に係る割り込み信号の構成を示す図The figure which shows the structure of the interrupt signal which concerns on one embodiment of this indication 本開示の一実施の形態に係る玄関子機の構成を示すブロック図The block diagram which shows the structure of the entrance cordless handset which concerns on one embodiment of this indication 本開示の一実施の形態に係るドアホン親機の構成を示すブロック図The block diagram which shows the structure of the door phone main unit which concerns on one embodiment of this indication 本開示の一実施の形態に係る増設モニタの構成を示すブロック図The block diagram which shows the structure of the expansion monitor which concerns on one embodiment of this indication パケットデータ(1ビット)に対する変調処理の一例を示す図The figure which shows an example of the modulation process with respect to packet data (1 bit) パケットデータ(複数ビット)に対する変調処理の一例を示す図The figure which shows an example of the modulation process with respect to packet data (multiple bits) 本開示の一実施の形態において使用されるプリアンブルデータの一例を示す図The figure which shows an example of the preamble data used in one embodiment of this indication 本開示の一実施の形態に係る玄関子機の同期検出部の内部構成を示すブロック図The block diagram which shows the internal structure of the synchronous detection part of the entrance cordless handset which concerns on one embodiment of this indication 本開示の一実施の形態に係る玄関子機の同期検出処理の一例を示す図The figure which shows an example of the synchronous detection process of the entrance cordless handset which concerns on one embodiment of this indication 本開示の一実施の形態に係る同期検出処理の動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of the synchronous detection process which concerns on one embodiment of this indication 本開示の一実施の形態に係る初期登録までのシーケンス図Sequence diagram until initial registration according to an embodiment of the present disclosure 本開示の一実施の形態に係る待機状態から通信状態までのシーケンス図Sequence diagram from standby state to communication state according to an embodiment of the present disclosure 本開示の一実施の形態に係る玄関子機の動作の一例を示すフローチャートThe flowchart which shows an example of operation of the entrance cordless handset concerning an embodiment of this indication 本開示の一実施の形態に係るドアホン親機の動作の一例を示すフローチャートThe flowchart which shows an example of operation of the door phone main unit concerning an embodiment of this indication 本開示の一実施の形態に係るドアホン親機の通常動作時のルーティング制御の具体例を示す図The figure which shows the specific example of the routing control at the time of normal operation | movement of the door phone main unit which concerns on one embodiment of this indication 本開示の一実施の形態に係るドアホン親機のルーティング制御部の内部構成を示す図The figure which shows the internal structure of the routing control part of the door phone main unit which concerns on one embodiment of this indication 本開示の一実施の形態に係るドアホン親機の初期登録時のルーティング制御の具体例を示す図The figure which shows the specific example of the routing control at the time of the initial registration of the door phone main unit which concerns on one embodiment of this indication

以下、本開示の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.

<システムの概要>
まず、本開示の一実施の形態に係るドアホンシステムの概要について、図1を用いて説明する。図1に示すように、ドアホンシステム1は、玄関子機100と、ドアホン親機200と、から構成される。なお、図1では、ドアホン親機200に3台の玄関子機100−1、100−2、100−3が接続している場合を例示している。また、ドアホンシステム1には、増設モニタ300を追加しても良い。さらに、ドアホンシステム1は、他のドアホンシステムと接続することもできる。
<System overview>
First, the outline | summary of the door phone system which concerns on one embodiment of this indication is demonstrated using FIG. As shown in FIG. 1, the door phone system 1 includes an entrance cordless handset 100 and a door phone master set 200. Note that FIG. 1 illustrates a case where three door slave devices 100-1, 100-2, and 100-3 are connected to the doorphone master device 200. Further, an additional monitor 300 may be added to the door phone system 1. Furthermore, the door phone system 1 can be connected to other door phone systems.

玄関子機100は、例えば、住宅等の玄関先に設けられる。ドアホン親機200および増設モニタ300は、例えば、住宅等の宅内に設けられ、壁に固定されたり、テーブルまたは台の上等に載置されたりする。玄関子機100とドアホン親機200とは、1対の銅線から成る2線ケーブルにより接続されている。増設モニタ300は、2線ケーブルによりドアホン親機200と接続される。   The entrance cordless handset 100 is provided, for example, at the entrance of a house or the like. The intercom master device 200 and the extension monitor 300 are provided in a home such as a house, for example, and are fixed to a wall or placed on a table or a table. The entrance cordless handset 100 and the door phone master set 200 are connected by a two-wire cable made of a pair of copper wires. The extension monitor 300 is connected to the door phone master unit 200 by a two-wire cable.

ドアホン親機200は、玄関子機100と通信を行い、玄関子機100から映像データ、音声データおよび制御データを受信し、音声データおよび制御データを送信する。また、ドアホン親機200は、増設モニタ300と通信を行い、玄関子機100から受信した映像データ、音声データおよび制御データを増設モニタ300に転送し、増設モニタ300から受信した音声データおよび制御データを玄関子機100に転送する。   The intercom master device 200 communicates with the entrance slave device 100, receives video data, audio data, and control data from the entrance slave device 100, and transmits the audio data and control data. The intercom base unit 200 communicates with the expansion monitor 300, transfers the video data, audio data, and control data received from the front door unit 100 to the expansion monitor 300, and receives the audio data and control data received from the expansion monitor 300. Is transferred to the entrance cordless handset 100.

なお、以下の説明において、玄関子機100あるいは増設モニタ300からドアホン親機200への方向を「上り方向」といい、玄関子機100あるいは増設モニタ300から上り方向に送信されるパケット、信号をそれぞれ「上りパケット」、「上り信号」という。また、ドアホン親機200から玄関子機100あるいは増設モニタ300への方向を「下り方向」といい、ドアホン親機200から下り方向に送信されるパケット、信号をそれぞれ「下りパケット」、「下り信号」という。   In the following description, the direction from the entrance slave unit 100 or the extension monitor 300 to the doorphone master unit 200 is referred to as “upward direction”, and packets and signals transmitted from the entrance slave unit 100 or the extension monitor 300 in the upward direction are referred to as “upward direction”. They are called “upstream packet” and “upstream signal”, respectively. Further, the direction from the doorphone master unit 200 to the entrance slave unit 100 or the extension monitor 300 is referred to as “downward direction”, and packets and signals transmitted from the doorphone master unit 200 in the downward direction are referred to as “downstream packet” and “downstream signal”, respectively. "

<フレーム構成、スロット構成>
次に、本実施の形態に係る同期通信時のフレーム構成、スロット構成について図2Aを用いて説明する。図2Aに示すように、各フレームは、48000bitの領域を有し、10ms周期、4.8Mbpsのビットレートであり、24スロットに分割される。したがって、各スロットは、2000bit=250byteの領域を有し、0.416ms周期、4.8Mbpsのビットレートになる。
<Frame configuration, slot configuration>
Next, a frame configuration and a slot configuration during synchronous communication according to the present embodiment will be described with reference to FIG. 2A. As shown in FIG. 2A, each frame has a 48000 bit area, has a 10 ms period, a 4.8 Mbps bit rate, and is divided into 24 slots. Therefore, each slot has an area of 2000 bits = 250 bytes, and has a bit rate of 0.416 ms and a bit rate of 4.8 Mbps.

各スロットは、52byteのガードスペース(Guard)、4byteのプリアンブルフィールド、2byteのシンクフィールド(Sync)、32byteの制御データフィールド、160byteのユーザデータフィールドに分けられている。   Each slot is divided into a 52-byte guard space (Guard), a 4-byte preamble field, a 2-byte sync field (Sync), a 32-byte control data field, and a 160-byte user data field.

ガードスペースは、伝播遅延時間差やクロックジッタ等によるスロットの衝突を避けるための時間である。プリアンブルフィールドには、所定のユニークパターンを有するプリアンブルデータ(後述)が付加される。シンクフィールドには、所定のシンクパターンが付加される。制御データフィールドには、制御データが付加される。ユーザデータフィールドには、画像データおよび音声データが付加される。ここでシンクパターンとは、シンクフィールドに配置された既知のデータあるいはデータ列であって、受信データ受信時の同期を確立するために用いられ、受信データが正確なタイミングで受信されたことを確認するための予め規定した既知のデータパターンである。   The guard space is a time for avoiding a slot collision due to a propagation delay time difference, clock jitter, or the like. Preamble data (described later) having a predetermined unique pattern is added to the preamble field. A predetermined sync pattern is added to the sync field. Control data is added to the control data field. Image data and audio data are added to the user data field. Here, the sync pattern is known data or a data string arranged in the sync field, and is used to establish synchronization at the time of reception data reception, and confirms that reception data has been received at an accurate timing. This is a known data pattern defined in advance.

<割り込み信号の構成>
次に、本実施の形態に係る非同期通信時の割り込み信号の構成について図2Bを用いて説明する。
<Configuration of interrupt signal>
Next, the configuration of an interrupt signal during asynchronous communication according to the present embodiment will be described with reference to FIG. 2B.

図2Bに示すように、割り込み信号は、4byteのプリアンブルフィールド、2byteのシンクフィールド(Sync)、32byteの制御データフィールドに分けられている。さらに、図2Bに示す割り込み信号には、将来の拡張用として、30byteのユーザデータフィールドが設けられている。   As shown in FIG. 2B, the interrupt signal is divided into a 4-byte preamble field, a 2-byte sync field (Sync), and a 32-byte control data field. Further, the interrupt signal shown in FIG. 2B is provided with a 30-byte user data field for future expansion.

割り込み信号のプリアンブルデータおよびシンクパターンは、図2Aに示した同期通信時のスロットと同一のものである。これにより、同期通信時と非同期通信時とで受信部等を共用できるため、コストを抑えることができる。   The preamble data and the sync pattern of the interrupt signal are the same as the slots in the synchronous communication shown in FIG. 2A. Thereby, since a receiving part etc. can be shared by the time of synchronous communication and the time of asynchronous communication, cost can be held down.

割り込み信号の制御データフィールドには、メッセージ種別(同期要求等)、送信元機器番号(ID)等の制御情報が書き込まれる。割り込み信号のユーザデータフィールドは、機器異常情報(機器の異常を検知したことを示す情報)等、メッセージ種別に応じた詳細情報を通知するフィールドとして使用しても良い。   In the control data field of the interrupt signal, control information such as a message type (synchronization request or the like) and a transmission source device number (ID) is written. The user data field of the interrupt signal may be used as a field for notifying detailed information corresponding to the message type, such as device abnormality information (information indicating that a device abnormality is detected).

なお、図2Bに示す割り込み信号は、接続機器の初期登録時にも使用される。   Note that the interrupt signal shown in FIG. 2B is also used during initial registration of the connected device.

<玄関子機の構成>
次に、玄関子機100の構成について、図3のブロック図を用いて説明する。図3に示すように、玄関子機100は、ケーブル接続部101、キー入力部102、スピーカ103、マイク104、音声I/F(インターフェイス)部105、カメラ部106および制御部107を有する。制御部107は、内部に、第1クロック生成部131、パケット生成部132、データ再生部133、接続状態検出部134を有する。また、玄関子機100は、送信データ処理部108、送信データ反転部109、送信ドライバ110、受信ドライバ111、受信データ反転部112、同期検出部113、第2クロック生成部114、識別子記憶部115を有する。
<Configuration of entrance cordless handset>
Next, the structure of the entrance cordless handset 100 is demonstrated using the block diagram of FIG. As shown in FIG. 3, the entrance slave device 100 includes a cable connection unit 101, a key input unit 102, a speaker 103, a microphone 104, an audio I / F (interface) unit 105, a camera unit 106, and a control unit 107. The control unit 107 includes a first clock generation unit 131, a packet generation unit 132, a data reproduction unit 133, and a connection state detection unit 134 inside. Further, the entrance slave device 100 includes a transmission data processing unit 108, a transmission data inversion unit 109, a transmission driver 110, a reception driver 111, a reception data inversion unit 112, a synchronization detection unit 113, a second clock generation unit 114, and an identifier storage unit 115. Have

ケーブル接続部101は、2線ケーブル用の接続端子を含み、2線ケーブルの玄関側の一端と、受信ドライバ111および送信ドライバ110との間を、信号を伝送可能な状態で接続する。なお、2線ケーブルの他端は、ドアホン親機200に接続される。   The cable connection unit 101 includes a connection terminal for a two-wire cable, and connects the one end on the entrance side of the two-wire cable to the reception driver 111 and the transmission driver 110 in a state where signals can be transmitted. Note that the other end of the two-wire cable is connected to the doorphone master unit 200.

キー入力部102は、呼出ボタンを含み、呼出ボタンが操作されたとき、その旨を示す信号を制御部107に出力する。   The key input unit 102 includes a call button. When the call button is operated, the key input unit 102 outputs a signal indicating that to the control unit 107.

スピーカ103は、音声I/F部105から出力されたアナログ音声データを、音声に変換して出力する。   The speaker 103 converts the analog audio data output from the audio I / F unit 105 into audio and outputs the audio.

マイク104は、周囲の音声を集音してアナログ音声データに変換し、音声I/F部105に出力する。   The microphone 104 collects ambient sound, converts it into analog sound data, and outputs it to the sound I / F unit 105.

音声I/F部105は、制御部107から出力されたデジタル音声データを、アナログ音声データに変換し、信号レベルを調整して、スピーカ103に出力する。また、音声I/F部105は、マイク104から出力されたアナログ音声データを、信号レベルを調整し、デジタル音声データに変換して、制御部107に出力する。かかるアナログ/デジタル変換は、A/D,D/A変換器(図示せず)により行われる。   The audio I / F unit 105 converts the digital audio data output from the control unit 107 into analog audio data, adjusts the signal level, and outputs the analog audio data to the speaker 103. The audio I / F unit 105 adjusts the signal level of the analog audio data output from the microphone 104, converts the analog audio data into digital audio data, and outputs the digital audio data to the control unit 107. Such analog / digital conversion is performed by an A / D, D / A converter (not shown).

なお、音声I/F部105は、マイク104から出力されたアナログ音声データをデジタル変換したデータに対して、所定の音声圧縮処理を行って得られるデータを、デジタル音声データとして制御部107に出力してもよい。また、音声I/F部105は、制御部107から出力されたデジタル音声データが所定の音声圧縮処理を行って得られたデータである場合、当該データに対して所定の音声伸張処理を行ってから、デジタル/アナログ変換を行う。   The audio I / F unit 105 outputs data obtained by performing predetermined audio compression processing on the data obtained by digitally converting the analog audio data output from the microphone 104 to the control unit 107 as digital audio data. May be. In addition, when the digital audio data output from the control unit 107 is data obtained by performing predetermined audio compression processing, the audio I / F unit 105 performs predetermined audio expansion processing on the data. To digital / analog conversion.

カメラ部106は、デジタルカメラを含み、玄関の映像を撮影し、デジタル映像データを生成して、制御部107に出力する。なお、カメラ部106は、エンコーダモジュールを搭載していてもよい。すなわち、カメラ部106は、デジタルカメラから出力された映像データに対してH.264等の所定の動画圧縮処理を行って得られるデータを、デジタル映像データとして制御部107に出力してもよい。   The camera unit 106 includes a digital camera, takes a video of the entrance, generates digital video data, and outputs the digital video data to the control unit 107. Note that the camera unit 106 may include an encoder module. That is, the camera unit 106 may output data obtained by performing predetermined moving image compression processing such as H.264 to the video data output from the digital camera to the control unit 107 as digital video data.

制御部107は、玄関子機100の各部の制御を行う。また、制御部107は、送信を許可する送信区間、および、受信を許可する受信区間を指示する切り替え制御信号(SW CON)を送信ドライバ110および受信ドライバ111に出力する。   The control unit 107 controls each part of the entrance cordless handset 100. In addition, the control unit 107 outputs a transmission control signal (SW CON) that indicates a transmission period that permits transmission and a reception period that permits reception to the transmission driver 110 and the reception driver 111.

制御部107の第1クロック生成部131は、受信データをサンプリングするためのクロックであって、水晶発振を基準に、受信データのビットレートのn倍(nは1以上)に対応する第1周波数(例えば、48MHz(n=10))のクロック(CLK)を生成し、同期検出部113、第2クロック生成部114に出力する。   The first clock generation unit 131 of the control unit 107 is a clock for sampling the reception data, and the first frequency corresponding to n times (n is 1 or more) the bit rate of the reception data on the basis of the crystal oscillation. A clock (CLK) of (eg, 48 MHz (n = 10)) is generated and output to the synchronization detection unit 113 and the second clock generation unit 114.

制御部107のパケット生成部132は、映像付き通話を実現するための上りパケットを生成する。具体的には、パケット生成部132は、音声I/F部105から出力されたデジタル音声データおよびカメラ部106から出力されたデジタル映像データを適宜分割して各スロットのユーザデータフィールドに書き込み、自機(玄関子機100)に固有の識別子(以下、「自機IDslave」という)および通信相手のドアホン親機200の識別子(以下、「IDmaster」という)を含む制御データを各スロットの制御データフィールドに書き込む。さらに、パケット生成部132は、各スロットに、プリアンブルデータ、シンクパターンを書き込み、上りパケット(送信データ)を生成する。さらに、パケット生成部132は、送信用のイネーブル信号(SSCS)および送信用の第2周波数(例えば、4.8MHz)のクロック(SSCK)を生成する。そして、パケット生成部132は、上りパケットを、送信用のイネーブル信号(SSCS)およびクロック(SSCK)と同期させて、送信データ処理部108に出力する。 The packet generation unit 132 of the control unit 107 generates an uplink packet for realizing a call with video. Specifically, the packet generation unit 132 divides the digital audio data output from the audio I / F unit 105 and the digital video data output from the camera unit 106 as appropriate and writes them to the user data field of each slot. Control data including an identifier (hereinafter referred to as “own device ID slave ”) unique to the device (the entrance slave device 100) and an identifier of the communication partner doorphone parent device 200 (hereinafter referred to as “ID master ”) is controlled in each slot. Write to the data field. Furthermore, the packet generation unit 132 writes preamble data and a sync pattern in each slot, and generates an uplink packet (transmission data). Further, the packet generation unit 132 generates a transmission enable signal (SSCS) and a transmission second frequency (for example, 4.8 MHz) clock (SSCK). Then, the packet generation unit 132 outputs the uplink packet to the transmission data processing unit 108 in synchronization with the transmission enable signal (SSCS) and the clock (SSCK).

なお、玄関子機100とドアホン親機200との間でデータが送受されない待機状態では、パケット生成部132は、上りパケットを生成しない。また、待機状態(非同期通信時)において、呼出ボタンが操作される等の所定のイベントが発生すると、パケット生成部132は、プリアンブルデータ、シンクパターン、制御データを書き込んだ上りパケット(割り込み信号)を生成する。なお、非同期通信時の割り込み信号において使用されるプリアンブルとシンクパターンは、同期通信時に使用されるものと同一である。   Note that, in a standby state in which data is not transmitted and received between the front door device 100 and the door phone master device 200, the packet generation unit 132 does not generate an upstream packet. In a standby state (during asynchronous communication), when a predetermined event such as an operation of a call button occurs, the packet generation unit 132 transmits an upstream packet (interrupt signal) in which preamble data, sync pattern, and control data are written. Generate. The preamble and sync pattern used in the interrupt signal during asynchronous communication are the same as those used during synchronous communication.

制御部107のデータ再生部133は、同期検出部113からイネーブル信号(SSCS)を入力すると、第2クロック生成部114から出力された第2周波数のクロック(SSCK)を使用し、受信データ反転部112から出力された下り信号を復調して下りパケットを取得する。そして、データ再生部133は、下りパケットに含まれるデジタル音声データを音声I/F部105に出力し、下りパケット(受信データ)に含まれるシンクパターンを接続状態検出部134に出力する。なお、データ再生部133は、初期登録時に、下りパケットに含まれる自機IDslaveおよびIDmasterを識別子記憶部115に記憶させる。 When the data reproduction unit 133 of the control unit 107 receives the enable signal (SSCS) from the synchronization detection unit 113, the data reproduction unit 133 uses the second frequency clock (SSCK) output from the second clock generation unit 114, and receives the data inversion unit. The downlink signal output from 112 is demodulated to obtain a downlink packet. Then, the data reproduction unit 133 outputs the digital audio data included in the downlink packet to the audio I / F unit 105, and outputs the sync pattern included in the downlink packet (received data) to the connection state detection unit 134. Note that the data reproduction unit 133 causes the identifier storage unit 115 to store its own device ID slave and ID master included in the downlink packet at the time of initial registration.

また、データ再生部133は、待機状態(非同期通信時)において所定のイベントが発生し、下り信号(割り込み信号)を入力した場合、下り信号を復調して下りパケットを取得し、下りパケットに含まれるシンクパターンを接続状態検出部134に出力する。データ再生部133は、接続状態検出部134において正確に割り込み信号を捕捉できたことを確認した後、割り込み信号の制御データを抽出する。制御データが同期要求であれば、玄関子機100は、ドアホン親機200との同期処理に移行する。   Further, when a predetermined event occurs in a standby state (during asynchronous communication) and a downlink signal (interrupt signal) is input, the data reproduction unit 133 demodulates the downlink signal to acquire a downlink packet, and is included in the downlink packet The sync pattern is output to the connection state detection unit 134. The data reproduction unit 133 extracts control data of the interrupt signal after confirming that the connection state detection unit 134 has correctly captured the interrupt signal. If the control data is a synchronization request, the entrance slave device 100 shifts to a synchronization process with the doorphone master device 200.

制御部107の接続状態検出部134は、2線ケーブルが正接続である場合のチェック用シンクパターン(以下、「正接続チェック用シンクパターン」という(例えば、16bit全てが「0」))、および、正接続チェック用シンクパターンの逆のパターンであって、2線ケーブルが逆接続である場合のチェック用シンクパターン(以下、「逆接続チェック用シンクパターン」という(例えば、16bit全てが「1」))を記憶している。そして、接続状態検出部134は、データ再生部133から出力された受信データのシンクパターンを、正接続チェック用シンクパターンおよび逆接続チェック用シンクパターンと照合する。接続状態検出部134は、受信データのシンクパターンと正接続チェック用シンクパターンが完全に一致した場合に2線ケーブルが正接続であると判定し、受信データのシンクパターンと逆接続チェック用シンクパターンが完全に一致した場合に2線ケーブルが逆接続であると判定する。そして、接続状態検出部134は、判定結果を示す反転制御信号(INV CON)を、送信データ反転部109および受信データ反転部112に出力する。   The connection state detection unit 134 of the control unit 107 is a check sync pattern (hereinafter, referred to as a “positive connection check sync pattern” (for example, all 16 bits are “0”)) when the two-wire cable is connected correctly. This is a reverse pattern of the normal connection check sync pattern, and the check sync pattern when the two-wire cable is reverse connected (hereinafter referred to as “reverse connection check sync pattern” (eg, all 16 bits are “1”). )) Is remembered. Then, the connection state detection unit 134 collates the sync pattern of the reception data output from the data reproduction unit 133 with the sync pattern for the normal connection check and the sync pattern for the reverse connection check. The connection state detection unit 134 determines that the two-wire cable is correctly connected when the sync pattern of the received data completely matches the sync pattern for the normal connection check, and the sync pattern of the received data and the sync pattern for the reverse connection check If the two completely match, it is determined that the two-wire cable is reversely connected. Then, the connection state detection unit 134 outputs an inversion control signal (INV CON) indicating the determination result to the transmission data inversion unit 109 and the reception data inversion unit 112.

送信データ処理部108は、パケット生成部132からイネーブル信号(SSCS)を入力すると、パケット生成部132から出力された第2周波数のクロック(SSCK)を使用し、パケット生成部132から出力された上りパケットのデータに対して変調処理を行って上り信号を生成し、送信データ反転部109に出力する。なお、送信データ処理部108の変調処理の詳細(具体例)については後述する。   When the transmission data processing unit 108 receives the enable signal (SSCS) from the packet generation unit 132, the transmission data processing unit 108 uses the second frequency clock (SSCK) output from the packet generation unit 132, and the uplink data output from the packet generation unit 132. Modulation processing is performed on the packet data to generate an uplink signal, which is output to the transmission data inverting unit 109. Details (specific example) of the modulation processing of the transmission data processing unit 108 will be described later.

送信データ反転部109は、接続状態検出部134において2線ケーブルが逆接続であると判定された場合、送信データ処理部108から出力された上り信号を反転させて送信ドライバ110に出力する。一方、送信データ反転部109は、接続状態検出部134において2線ケーブルが正接続であると判定された場合、送信データ処理部108から出力された上り信号をそのまま送信ドライバ110に出力する。   When the connection state detection unit 134 determines that the two-wire cable is reversely connected, the transmission data inversion unit 109 inverts the uplink signal output from the transmission data processing unit 108 and outputs the inverted signal to the transmission driver 110. On the other hand, when the connection state detection unit 134 determines that the two-wire cable is a normal connection, the transmission data reversing unit 109 outputs the uplink signal output from the transmission data processing unit 108 to the transmission driver 110 as it is.

送信ドライバ110は、制御部107からの切り替え制御信号(SW CON)によって指示された送信区間において、上り信号を、ケーブル接続部101を介してドアホン親機200に送信する。   The transmission driver 110 transmits an uplink signal to the intercom base unit 200 via the cable connection unit 101 in the transmission section instructed by the switching control signal (SW CON) from the control unit 107.

受信ドライバ111は、ドアホン親機200から送信された下り信号を、ケーブル接続部101を介して受信する。そして、受信ドライバ111は、制御部107からの切り替え制御信号(SW CON)によって指示された受信区間において、下り信号を、受信データ反転部112に出力する。   The reception driver 111 receives the downlink signal transmitted from the doorphone master device 200 via the cable connection unit 101. Then, the reception driver 111 outputs a downlink signal to the reception data inversion unit 112 in the reception period instructed by the switching control signal (SW CON) from the control unit 107.

受信データ反転部112は、接続状態検出部134において2線ケーブルが逆接続であると判定された場合、受信ドライバ111から出力された下り信号を反転させて同期検出部113、第2クロック生成部114、データ再生部133に出力する。一方、受信データ反転部112は、接続状態検出部134において2線ケーブルが正接続であると判定された場合、受信ドライバ111から出力された下り信号をそのまま同期検出部113、第2クロック生成部114、データ再生部133に出力する。   When the connection state detection unit 134 determines that the two-wire cable is reversely connected, the reception data inversion unit 112 inverts the downlink signal output from the reception driver 111 to synchronize the detection unit 113 and the second clock generation unit. 114 and output to the data reproduction unit 133. On the other hand, when the connection state detection unit 134 determines that the two-wire cable is a positive connection, the reception data inversion unit 112 directly uses the downlink signal output from the reception driver 111 as the synchronization detection unit 113 and the second clock generation unit. 114 and output to the data reproduction unit 133.

同期検出部113は、第1クロック生成部131から出力された第1周波数のクロック(CLK)を使用し、受信ドライバ111から出力された下り信号に含まれるプリアンブルデータを用いてドアホン親機200との同期(受信データの各ビットの先頭のタイミング)を検出する。そして、同期検出部113は、プリアンブルデータのユニークパターンを検出したタイミングで、クロック出力開始の基準となるトリガ信号を第2クロック生成部114に出力し、データ再生動作を許可するイネーブル信号(SSCS)をデータ再生部133に出力する。なお、同期検出部113の構成の詳細については、後述する。   The synchronization detection unit 113 uses the first frequency clock (CLK) output from the first clock generation unit 131 and uses the preamble data included in the downlink signal output from the reception driver 111 to Synchronization (start timing of each bit of received data) is detected. Then, the synchronization detection unit 113 outputs a trigger signal serving as a reference for starting clock output to the second clock generation unit 114 at the timing when the unique pattern of the preamble data is detected, and an enable signal (SSCS) that permits the data reproduction operation Is output to the data reproducing unit 133. The details of the configuration of the synchronization detection unit 113 will be described later.

第2クロック生成部114は、同期検出部113から指示されたタイミングで、第1クロック生成部131から出力された第1周波数のクロック(CLK)を基準に、受信データのビットレートに対応する第2周波数(例えば、4.8MHz)のクロック(SSCK)を生成し、データ再生部133に出力する。   The second clock generation unit 114 corresponds to the bit rate of the received data with reference to the first frequency clock (CLK) output from the first clock generation unit 131 at the timing instructed by the synchronization detection unit 113. A clock (SSCK) having two frequencies (for example, 4.8 MHz) is generated and output to the data reproducing unit 133.

識別子記憶部115は、ドアホン親機200から受信した自機IDslaveおよびIDmasterを記憶する。 The identifier storage unit 115 stores the own device ID slave and the ID master received from the intercom master device 200.

<ドアホン親機の構成>
次に、ドアホン親機200の構成について、図4のブロック図を用いて説明する。図4に示すように、ドアホン親機200は、ケーブル接続部201、キー入力部202、スピーカ203、マイク204、音声I/F部205、ディスプレイ部206および制御部207を有する。制御部207は、内部に、第1クロック生成部231、パケット生成部232、データ再生部233、接続状態検出部234、識別子設定部235を有する。また、ドアホン親機200は、送信データ処理部208、送信データ反転部209、送信ドライバ210、受信ドライバ211およびルーティング制御部212、同期検出部213、第2クロック生成部214、識別子記憶部215を有する。なお、ドアホン親機200は、ケーブル接続部201、送信ドライバ210および受信ドライバ211を、N個(Nは自然数)有する。
<Configuration of doorphone master unit>
Next, the configuration of door phone master device 200 will be described using the block diagram of FIG. As shown in FIG. 4, door phone master device 200 includes a cable connection unit 201, a key input unit 202, a speaker 203, a microphone 204, an audio I / F unit 205, a display unit 206, and a control unit 207. The control unit 207 includes a first clock generation unit 231, a packet generation unit 232, a data reproduction unit 233, a connection state detection unit 234, and an identifier setting unit 235 inside. The intercom 200 has a transmission data processing unit 208, a transmission data inversion unit 209, a transmission driver 210, a reception driver 211, a routing control unit 212, a synchronization detection unit 213, a second clock generation unit 214, and an identifier storage unit 215. Have. The doorphone parent device 200 has N (N is a natural number) the cable connection unit 201, the transmission driver 210, and the reception driver 211.

ケーブル接続部201−i(iは1からNまでの何れかの整数)は、2線ケーブル用の接続端子を含み、2線ケーブルの室内側の一端と、送信ドライバ210−iおよび受信ドライバ211−iとの間を、信号を伝送可能な状態で接続する。なお、各2線ケーブルの他端は、玄関子機100、増設モニタ300あるいは他のドアホンシステムの親機に接続される。図4では、ケーブル接続部201−1が、他のドアホンシステムの親機に接続されている場合を例示している。   The cable connection portion 201-i (i is any integer from 1 to N) includes a connection terminal for a two-wire cable, one end on the indoor side of the two-wire cable, a transmission driver 210-i, and a reception driver 211. -I is connected in a state where signals can be transmitted. In addition, the other end of each two-wire cable is connected to the main unit of the entrance cordless handset 100, the extension monitor 300, or another door phone system. In FIG. 4, the case where the cable connection part 201-1 is connected to the main | base station of another door phone system is illustrated.

キー入力部202は、応答ボタンを含み、応答ボタンが操作されたとき、その旨を示す信号を制御部207に出力する。   The key input unit 202 includes a response button. When the response button is operated, the key input unit 202 outputs a signal indicating that to the control unit 207.

スピーカ203は、音声I/F部205から出力されたアナログ音声データを、音声に変換して出力する。   The speaker 203 converts the analog audio data output from the audio I / F unit 205 into audio and outputs the audio.

マイク204は、周囲の音声を集音してアナログ音声データに変換し、音声I/F部205に出力する。   The microphone 204 collects surrounding sounds, converts them into analog sound data, and outputs the analog sound data to the sound I / F unit 205.

音声I/F部205は、制御部207から出力されたデジタル音声データを、アナログ音声データに変換し、信号レベルを調整して、スピーカ203に出力する。また、音声I/F部205は、マイク204から出力されたアナログ音声データを、信号レベルを調整し、デジタル音声データに変換して、制御部207に出力する。かかるアナログ/デジタル変換は、A/D,D/A変換器(図示せず)により行われる。   The audio I / F unit 205 converts the digital audio data output from the control unit 207 into analog audio data, adjusts the signal level, and outputs the analog audio data to the speaker 203. The audio I / F unit 205 adjusts the signal level of the analog audio data output from the microphone 204, converts the analog audio data into digital audio data, and outputs the digital audio data to the control unit 207. Such analog / digital conversion is performed by an A / D, D / A converter (not shown).

なお、音声I/F部205は、マイク204から出力されたアナログ音声データをデジタル変換したデータに対して、所定の音声圧縮処理を行って得られるデータを、デジタル音声データとして制御部207に出力してもよい。また、音声I/F部205は、制御部207から出力されたデジタル音声データが所定の音声圧縮処理を行って得られたデータである場合、当該データに対して所定の音声伸張処理を行ってから、デジタル/アナログ変換を行う。   The audio I / F unit 205 outputs data obtained by performing predetermined audio compression processing on the data obtained by digitally converting the analog audio data output from the microphone 204 to the control unit 207 as digital audio data. May be. In addition, when the digital audio data output from the control unit 207 is data obtained by performing predetermined audio compression processing, the audio I / F unit 205 performs predetermined audio expansion processing on the data. To digital / analog conversion.

ディスプレイ部206は、液晶ディスプレイを含み、制御部207から出力されたデジタル映像データを再生し、玄関の映像を表示する。なお、制御部207から出力されたデジタル映像データが所定の動画圧縮処理を行って得られたデータである場合、当該データに対して所定の動画伸張処理を行って、映像表示を行う。   The display unit 206 includes a liquid crystal display, reproduces digital video data output from the control unit 207, and displays an entrance video. When the digital video data output from the control unit 207 is data obtained by performing a predetermined moving image compression process, a predetermined moving image expansion process is performed on the data to display a video.

制御部207は、ドアホン親機200の各部の制御を行う。また、制御部207は、送信を許可する送信区間、および、受信を許可する受信区間を指示する切り替え制御信号(SW CON)を各送信ドライバ210−i、各受信ドライバ211−iおよびルーティング制御部212に出力する。   The control unit 207 controls each unit of the door phone master device 200. In addition, the control unit 207 sends a transmission control section (SW CON) that indicates a transmission section that permits transmission and a reception section that permits reception to each transmission driver 210-i, each reception driver 211-i, and a routing control section. It outputs to 212.

制御部207の第1クロック生成部231は、受信データをサンプリングするためのクロックであって、水晶発振を基準に、受信データのビットレートのn倍に対応する第1周波数(例えば、48MHz(n=10))のクロック(CLK)を生成し、同期検出部213、第2クロック生成部214に出力する。   The first clock generation unit 231 of the control unit 207 is a clock for sampling received data, and is based on crystal oscillation and has a first frequency corresponding to n times the bit rate of the received data (for example, 48 MHz (n = 10)) clock (CLK) is generated and output to the synchronization detector 213 and the second clock generator 214.

制御部207のパケット生成部232は、映像付き通話を実現するための下りパケットを生成する。具体的には、パケット生成部232は、音声I/F部205から出力されたデジタル音声データを適宜分割して各スロットのユーザデータフィールドに書き込み、自機(ドアホン親機200)に固有の識別子(以下、「自機IDmaster」という)および通信相手の機器の識別子を含む制御データを各スロットの制御データフィールドに書き込む。さらに、パケット生成部232は、各スロットに、プリアンブルデータ、シンクパターンを書き込み、下りパケット(送信データ)を生成する。さらに、パケット生成部232は、送信用のイネーブル信号(SSCS)および送信用の第2周波数(例えば、4.8MHz)のクロック(SSCK)を生成する。そして、パケット生成部232は、下りパケットを、送信用のイネーブル信号(SSCS)およびクロック(SSCK)と同期させて、送信データ処理部208に出力する。 The packet generation unit 232 of the control unit 207 generates a downlink packet for realizing a call with video. Specifically, the packet generation unit 232 appropriately divides the digital audio data output from the audio I / F unit 205 and writes it in the user data field of each slot, and an identifier unique to the own device (doorphone master device 200). (Hereinafter referred to as “own device ID master ”) and the control data including the identifier of the communication partner device are written in the control data field of each slot. Further, the packet generation unit 232 writes the preamble data and the sync pattern in each slot, and generates a downlink packet (transmission data). Furthermore, the packet generation unit 232 generates a transmission enable signal (SSCS) and a transmission second frequency (for example, 4.8 MHz) clock (SSCK). Then, the packet generation unit 232 outputs the downlink packet to the transmission data processing unit 208 in synchronization with the transmission enable signal (SSCS) and the clock (SSCK).

また、パケット生成部232は、ドアホン親機200の動作あるいは玄関子機100の動作に関する制御データを、玄関子機100への送信の対象となるデータとして送信データ処理部208に出力してもよい。かかる制御データには、例えば、ドアホン親機200から玄関子機100のカメラ動作(データレート、パン、チルト、ライト、シャッター、およびフィルター等の動作)や、玄関子機100に備えられた各種センサデバイスの動作を、ドアホン親機200から制御するための制御信号が含まれる。また、かかる制御データには、玄関子機100に備えられた無線通信回路等(図示せず)を介して屋外に配置されたデバイス(門の電子鍵等)の動作を制御するための制御信号が含まれる。   In addition, the packet generation unit 232 may output control data related to the operation of the doorphone master device 200 or the operation of the front door device 100 to the transmission data processing unit 208 as data to be transmitted to the front door device 100. . Such control data includes, for example, the camera operation (data rate, pan, tilt, light, shutter, filter, etc.) of the doorphone master unit 200 to the entrance slave unit 100 and various sensors provided in the entrance slave unit 100. A control signal for controlling the operation of the device from door phone parent device 200 is included. The control data includes a control signal for controlling the operation of a device (such as a gate electronic key) arranged outdoors via a wireless communication circuit or the like (not shown) provided in the entrance cordless handset 100. Is included.

パケット生成部232は、玄関子機100、増設モニタ300等の機器の初期登録時において、識別子設定部235にて設定された、登録対象の機器に割り当てた固有の識別子を含む下り信号を生成する。   The packet generation unit 232 generates a downlink signal including a unique identifier assigned to the registration target device set by the identifier setting unit 235 at the time of initial registration of the devices such as the entrance slave device 100 and the extension monitor 300. .

なお、玄関子機100(あるいは増設モニタ300)とドアホン親機200との間でデータが送受されない待機状態では、パケット生成部232は、下りパケットを生成しない。また、待機状態(非同期通信時)において、応答ボタンが操作される等の所定のイベントが発生すると、パケット生成部232は、プリアンブルデータ、シンクパターン、制御データを書き込んだ下りパケット(割り込み信号)を生成する。なお、非同期通信時の割り込み信号において使用されるプリアンブルとシンクパターンは、同期通信時に使用されるものと同一である。   Note that, in a standby state in which data is not exchanged between the front door device 100 (or the extension monitor 300) and the intercom master device 200, the packet generation unit 232 does not generate a downlink packet. Further, when a predetermined event such as a response button being operated occurs in a standby state (during asynchronous communication), the packet generation unit 232 transmits a downstream packet (interrupt signal) in which preamble data, sync pattern, and control data are written. Generate. The preamble and sync pattern used in the interrupt signal during asynchronous communication are the same as those used during synchronous communication.

制御部207のデータ再生部233は、同期検出部213からイネーブル信号(SSCS)を入力すると、第2クロック生成部214から出力された第2周波数のクロック(SSCK)を使用し、ルーティング制御部212から出力された上り信号を復調して上りパケットを取得する。そして、データ再生部233は、上りパケットに含まれるデジタル音声データを音声I/F部205に出力し、上りパケットに含まれるデジタル映像データをディスプレイ部206に出力し、上りパケットに含まれるシンクパターンを接続状態検出部234に出力する。   When the data reproduction unit 233 of the control unit 207 receives the enable signal (SSCS) from the synchronization detection unit 213, the data reproduction unit 233 uses the second frequency clock (SSCK) output from the second clock generation unit 214, and the routing control unit 212. The upstream signal output from is demodulated to obtain the upstream packet. Then, the data reproducing unit 233 outputs the digital audio data included in the upstream packet to the audio I / F unit 205, outputs the digital video data included in the upstream packet to the display unit 206, and the sync pattern included in the upstream packet. Is output to the connection state detection unit 234.

また、データ再生部233は、待機状態(非同期通信時)において所定のイベントが発生し、上り信号(割り込み信号)を入力した場合、上り信号を復調して上りパケットを取得し、上りパケットに含まれるシンクパターンを接続状態検出部234に出力する。データ再生部233は、接続状態検出部234において正確に割り込み信号を捕捉できたことを確認した後、割り込み信号の制御データを抽出する。制御データが同期要求であれば、ドアホン親機200は、玄関子機100あるいは増設モニタ300との同期処理に移行する。   Further, when a predetermined event occurs in a standby state (during asynchronous communication) and an upstream signal (interrupt signal) is input, the data reproduction unit 233 demodulates the upstream signal to acquire an upstream packet, and is included in the upstream packet The sync pattern to be output is output to the connection state detection unit 234. The data reproduction unit 233 extracts the control data of the interrupt signal after confirming that the connection state detection unit 234 can accurately capture the interrupt signal. If the control data is a synchronization request, the intercom master device 200 shifts to a synchronization process with the entrance slave device 100 or the extension monitor 300.

制御部207の接続状態検出部234は、正接続チェック用シンクパターンおよび逆接続チェック用シンクパターンを記憶し、データ再生部233から出力された受信データのシンクパターンを、正接続チェック用シンクパターンおよび逆接続チェック用シンクパターンと照合する。接続状態検出部234は、受信データのシンクパターンと正接続チェック用シンクパターンが完全に一致した場合に2線ケーブルが正接続であると判定し、受信データのシンクパターンと逆接続チェック用シンクパターンが完全に一致した場合に2線ケーブルが逆接続であると判定する。そして、接続状態検出部234は、判定結果を示す反転制御信号(INV CON)を、送信データ反転部209に出力する。   The connection state detection unit 234 of the control unit 207 stores the normal connection check sync pattern and the reverse connection check sync pattern, and converts the received data sync pattern output from the data reproduction unit 233 into the normal connection check sync pattern and Match with reverse connection check sync pattern. The connection state detection unit 234 determines that the two-wire cable is correctly connected when the received data sync pattern and the normal connection check sync pattern completely match, and the received data sync pattern and the reverse connection check sync pattern are determined. If the two completely match, it is determined that the two-wire cable is reversely connected. Then, the connection state detection unit 234 outputs an inversion control signal (INV CON) indicating the determination result to the transmission data inversion unit 209.

制御部207の識別子設定部235は、玄関子機100、増設モニタ300等の機器の初期登録時において、各登録対象の機器に割り当てる固有の識別子を設定し、パケット生成部232に出力し、識別子記録部215に記録させる。また、識別子設定部235は、必要に応じて、識別子記録部215に記録された識別子を読み出す。なお、識別子設定部235は、識別子を送信してから所定の時間が経過しても、データ再生部233から識別子の受領確認が入力されなかった場合には、再び、設定した識別子をパケット生成部232に出力する。   The identifier setting unit 235 of the control unit 207 sets a unique identifier to be assigned to each registration target device at the time of initial registration of the devices such as the entrance slave device 100 and the extension monitor 300, and outputs the identifier to the packet generation unit 232. Recording is performed in the recording unit 215. Further, the identifier setting unit 235 reads the identifier recorded in the identifier recording unit 215 as necessary. Note that the identifier setting unit 235 returns the set identifier to the packet generation unit again when the receipt of the identifier is not input from the data reproducing unit 233 even after a predetermined time has elapsed since the identifier was transmitted. Output to H.232.

送信データ処理部208は、パケット生成部232からイネーブル信号(SSCS)を入力すると、パケット生成部232から出力された第2周波数のクロック(SSCK)を使用し、パケット生成部232から出力された下りパケットのデータに対して変調処理を行って下り信号を生成し、ルーティング制御部212に出力する。   When the transmission data processing unit 208 receives the enable signal (SSCS) from the packet generation unit 232, the transmission data processing unit 208 uses the second frequency clock (SSCK) output from the packet generation unit 232, and the downlink data output from the packet generation unit 232. Modulation processing is performed on the packet data to generate a downlink signal, which is output to the routing control unit 212.

送信データ反転部209は、接続状態検出部234において2線ケーブルが逆接続であると判定された場合、ルーティング制御部212から出力された下り信号を反転させて送信ドライバ210−1に出力する。一方、送信データ反転部209は、接続状態検出部234において2線ケーブルが正接続であると判定された場合、ルーティング制御部212から出力された下り信号をそのまま送信ドライバ210−1に出力する。   When the connection state detection unit 234 determines that the two-wire cable is reversely connected, the transmission data inverting unit 209 inverts the downlink signal output from the routing control unit 212 and outputs the inverted signal to the transmission driver 210-1. On the other hand, when the connection state detection unit 234 determines that the two-wire cable is a normal connection, the transmission data inversion unit 209 outputs the downlink signal output from the routing control unit 212 to the transmission driver 210-1 as it is.

送信ドライバ210−1は、制御部207からの切り替え制御信号(SW CON)によって指示された送信区間において、下り信号を、ケーブル接続部201−1を介して他のドアホンシステムの親機に送信する。送信ドライバ210−i(この場合、iは1以外)は、制御部207からの切り替え制御信号(SW CON)によって指示された送信区間において、下り信号を、ケーブル接続部201−iを介して玄関子機100あるいは増設モニタ300に送信する。   The transmission driver 210-1 transmits a downlink signal to the master unit of another door phone system via the cable connection unit 201-1 in the transmission section instructed by the switching control signal (SW CON) from the control unit 207. . The transmission driver 210-i (in this case, i is other than 1) transmits the downstream signal to the entrance via the cable connection unit 201-i in the transmission section instructed by the switching control signal (SW CON) from the control unit 207. It transmits to the subunit | mobile_unit 100 or the expansion monitor 300. FIG.

受信ドライバ211−iは、玄関子機100、増設モニタ300あるいは他のドアホンシステムの親機から送信された上り信号を、ケーブル接続部201−iを介して受信する。そして、受信ドライバ211−iは、制御部207からの切り替え制御信号(SW CON)によって指示された受信区間において、上り信号を、ルーティング制御部212に出力する。   The reception driver 211-i receives an upstream signal transmitted from the front cordless handset 100, the extension monitor 300, or the parent device of another door phone system via the cable connection unit 201-i. Then, the reception driver 211-i outputs an uplink signal to the routing control unit 212 in the reception period instructed by the switching control signal (SW CON) from the control unit 207.

ルーティング制御部212は、玄関子機100から送信され、受信ドライバ211−iから出力された上り信号を、ドアホン親機200宛である場合には同期検出部213、第2クロック生成部214、データ再生部233に出力し、増設モニタ300宛である場合には対応の送信ドライバ210−iに出力する。また、ルーティング制御部212は、送信データ処理部208から出力された玄関子機100宛の下り信号を、対応の送信ドライバ210−iに出力する。また、ルーティング制御部212は、増設モニタ300から送信され、受信ドライバ211−iから出力された玄関子機100宛の上り信号を、対応の送信ドライバ210−iに出力する。また、ルーティング制御部212は、ルーティング(通信ルートの有効/無効)の制御を行う。なお、ルーティング制御部212が行うルーティング制御の具体例については後述する。   The routing control unit 212 transmits an upstream signal transmitted from the front door device 100 and output from the reception driver 211-i to the synchronization unit 213, the second clock generation unit 214, and the data when the uplink signal is addressed to the intercom 200. The data is output to the reproduction unit 233, and when it is destined for the additional monitor 300, it is output to the corresponding transmission driver 210-i. In addition, the routing control unit 212 outputs the downlink signal output from the transmission data processing unit 208 and addressed to the entrance slave device 100 to the corresponding transmission driver 210-i. In addition, the routing control unit 212 outputs the uplink signal addressed to the entrance slave device 100 transmitted from the extension monitor 300 and output from the reception driver 211-i to the corresponding transmission driver 210-i. The routing control unit 212 controls routing (valid / invalid of communication routes). A specific example of routing control performed by the routing control unit 212 will be described later.

同期検出部213は、第1クロック生成部231から出力された第1周波数のクロック(CLK)を使用し、ルーティング制御部212から出力された上り信号に含まれるプリアンブルデータを用いて玄関子機100との同期(受信データの各ビットの先頭のタイミング)を検出する。そして、同期検出部213は、プリアンブルデータのユニークパターンを検出したタイミングで、クロック出力開始の基準となるトリガ信号を第2クロック生成部214に出力し、データ再生動作を許可するイネーブル信号(SSCS)をデータ再生部233に出力する。   The synchronization detection unit 213 uses the first frequency clock (CLK) output from the first clock generation unit 231 and uses the preamble data included in the uplink signal output from the routing control unit 212, to the entrance terminal 100. (The timing at the beginning of each bit of received data) is detected. Then, the synchronization detection unit 213 outputs a trigger signal serving as a reference for starting clock output to the second clock generation unit 214 at the timing when the unique pattern of the preamble data is detected, and an enable signal (SSCS) that permits the data reproduction operation Is output to the data reproducing unit 233.

第2クロック生成部214は、同期検出部213から指示されたタイミングで、第1クロック生成部231から出力された第1周波数のクロック(CLK)を基準に、受信データのビットレートに対応する第2周波数(例えば、4.8MHz)のクロック(SSCK)を生成し、第2周波数のクロックをデータ再生部233に出力する。   The second clock generation unit 214 corresponds to the bit rate of the received data based on the first frequency clock (CLK) output from the first clock generation unit 231 at the timing instructed by the synchronization detection unit 213. A clock (SSCK) having two frequencies (for example, 4.8 MHz) is generated, and a clock having the second frequency is output to the data reproducing unit 233.

識別子記憶部215は、自機IDmaster、および、各機器(玄関子機100、増設モニタ300、他のドアホンシステムの親機)の識別子を記憶する。 The identifier storage unit 215 stores the own device ID master and the identifiers of each device (the entrance slave device 100, the extension monitor 300, and the parent device of another door phone system).

<増設モニタの構成>
次に、増設モニタ300の構成について、図5のブロック図を用いて説明する。図5に示すように、増設モニタ300は、ケーブル接続部301、キー入力部302、スピーカ303、マイク304、音声I/F(インターフェイス)部305、ディスプレイ部306および制御部307を有する。制御部307は、内部に、第1クロック生成部331、パケット生成部332、データ再生部333、接続状態検出部334を有する。また、増設モニタ300は、送信データ処理部308、送信データ反転部309、送信ドライバ310、受信ドライバ311、受信データ反転部312、同期検出部313、第2クロック生成部314、識別子記憶部315を有する。
<Configuration of additional monitor>
Next, the configuration of the extension monitor 300 will be described with reference to the block diagram of FIG. As illustrated in FIG. 5, the extension monitor 300 includes a cable connection unit 301, a key input unit 302, a speaker 303, a microphone 304, an audio I / F (interface) unit 305, a display unit 306, and a control unit 307. The control unit 307 includes a first clock generation unit 331, a packet generation unit 332, a data reproduction unit 333, and a connection state detection unit 334 inside. The expansion monitor 300 includes a transmission data processing unit 308, a transmission data inversion unit 309, a transmission driver 310, a reception driver 311, a reception data inversion unit 312, a synchronization detection unit 313, a second clock generation unit 314, and an identifier storage unit 315. Have.

ケーブル接続部301は、2線ケーブル用の接続端子を含み、2線ケーブルの増設モニタ側の一端と、受信ドライバ311および送信ドライバ310との間を、信号を伝送可能な状態で接続する。なお、2線ケーブルの他端は、ドアホン親機200に接続される。   The cable connection unit 301 includes a connection terminal for a two-wire cable, and connects the one end on the additional monitor side of the two-wire cable to the reception driver 311 and the transmission driver 310 in a state where signals can be transmitted. Note that the other end of the two-wire cable is connected to the doorphone master unit 200.

キー入力部302は、呼出ボタンを含み、呼出ボタンが操作されたとき、その旨を示す信号を制御部307に出力する。   The key input unit 302 includes a call button. When the call button is operated, the key input unit 302 outputs a signal indicating that to the control unit 307.

スピーカ303は、音声I/F部305から出力されたアナログ音声データを、音声に変換して出力する。   The speaker 303 converts analog audio data output from the audio I / F unit 305 into audio and outputs the audio.

マイク304は、周囲の音声を集音してアナログ音声データに変換し、音声I/F部305に出力する。   The microphone 304 collects ambient sound, converts it into analog sound data, and outputs it to the sound I / F unit 305.

音声I/F部305は、制御部307から出力されたデジタル音声データを、アナログ音声データに変換し、信号レベルを調整して、スピーカ303に出力する。また、音声I/F部305は、マイク304から出力されたアナログ音声データを、信号レベルを調整し、デジタル音声データに変換して、制御部307に出力する。かかるアナログ/デジタル変換は、A/D,D/A変換器(図示せず)により行われる。   The audio I / F unit 305 converts the digital audio data output from the control unit 307 into analog audio data, adjusts the signal level, and outputs the analog audio data to the speaker 303. The audio I / F unit 305 adjusts the signal level of the analog audio data output from the microphone 304, converts the analog audio data into digital audio data, and outputs the digital audio data to the control unit 307. Such analog / digital conversion is performed by an A / D, D / A converter (not shown).

なお、音声I/F部305は、マイク304から出力されたアナログ音声データをデジタル変換したデータに対して、所定の音声圧縮処理を行って得られるデータを、デジタル音声データとして制御部307に出力してもよい。また、音声I/F部305は、制御部307から出力されたデジタル音声データが所定の音声圧縮処理を行って得られたデータである場合、当該データに対して所定の音声伸張処理を行ってから、デジタル/アナログ変換を行う。   Note that the audio I / F unit 305 outputs data obtained by performing predetermined audio compression processing on the data obtained by digitally converting the analog audio data output from the microphone 304 to the control unit 307 as digital audio data. May be. In addition, when the digital audio data output from the control unit 307 is data obtained by performing predetermined audio compression processing, the audio I / F unit 305 performs predetermined audio expansion processing on the data. To digital / analog conversion.

ディスプレイ部306は、液晶ディスプレイを含み、制御部307から出力されたデジタル映像データを再生し、玄関の映像を表示する。なお、制御部307から出力されたデジタル映像データが所定の動画圧縮処理を行って得られたデータである場合、当該データに対して所定の動画伸張処理を行って、映像表示を行う。   The display unit 306 includes a liquid crystal display, reproduces the digital video data output from the control unit 307, and displays the entrance video. When the digital video data output from the control unit 307 is data obtained by performing a predetermined moving image compression process, the predetermined video expansion process is performed on the data to display a video.

制御部307は、増設モニタ300の各部の制御を行う。また、制御部307は、送信を許可する送信区間、および、受信を許可する受信区間を指示する切り替え制御信号(SW CON)を送信ドライバ310および受信ドライバ311に出力する。   The control unit 307 controls each unit of the extension monitor 300. In addition, the control unit 307 outputs to the transmission driver 310 and the reception driver 311 a switching control signal (SW CON) instructing a transmission period that permits transmission and a reception period that permits reception.

制御部307の第1クロック生成部331は、受信データをサンプリングするためのクロックであって、水晶発振を基準に、受信データのビットレートのn倍に対応する第1周波数(例えば、48MHz(n=10))のクロック(CLK)を生成し、同期検出部313、第2クロック生成部314に出力する。   The first clock generation unit 331 of the control unit 307 is a clock for sampling received data, and is based on crystal oscillation and has a first frequency (for example, 48 MHz (n = 10)) clock (CLK) is generated and output to the synchronization detector 313 and the second clock generator 314.

制御部307のパケット生成部332は、映像付き通話を実現するための上りパケットを生成する。具体的には、パケット生成部332は、音声I/F部305から出力されたデジタル音声データを適宜分割して各スロットのユーザデータフィールドに書き込み、自機(増設モニタ300)に固有の識別子(以下、「自機IDmonitor」という)およびIDmasterを含む制御データを各スロットの制御データフィールドに書き込む。さらに、パケット生成部332は、各スロットに、プリアンブルデータ、シンクパターンを書き込み、上りパケット(送信データ)を生成する。さらに、パケット生成部332は、送信用のイネーブル信号(SSCS)および送信用の第2周波数(例えば、4.8MHz)のクロック(SSCK)を生成する。そして、パケット生成部332は、上りパケットを、送信用のイネーブル信号(SSCS)およびクロック(SSCK)と同期させて、送信データ処理部308に出力する。 The packet generation unit 332 of the control unit 307 generates an uplink packet for realizing a call with video. Specifically, the packet generation unit 332 appropriately divides the digital audio data output from the audio I / F unit 305 and writes the digital audio data in the user data field of each slot. Hereinafter, the control data including the “own device ID monitor ” and the ID master is written in the control data field of each slot. Further, the packet generation unit 332 writes preamble data and a sync pattern in each slot, and generates an uplink packet (transmission data). Further, the packet generation unit 332 generates a transmission enable signal (SSCS) and a transmission second frequency (for example, 4.8 MHz) clock (SSCK). Then, the packet generation unit 332 outputs the uplink packet to the transmission data processing unit 308 in synchronization with the transmission enable signal (SSCS) and the clock (SSCK).

なお、増設モニタ300とドアホン親機200との間でデータが送受されない待機状態では、パケット生成部332は、上りパケットを生成しない。また、待機状態(非同期通信時)において、呼出ボタンが操作される等の所定のイベントが発生すると、パケット生成部332は、プリアンブルデータ、シンクパターン、制御データを書き込んだ上りパケット(割り込み信号)を生成する。なお、非同期通信時の割り込み信号において使用されるプリアンブルとシンクパターンは、同期通信時に使用されるものと同一である。   Note that the packet generation unit 332 does not generate an uplink packet in a standby state in which data is not transmitted / received between the extension monitor 300 and the intercom base unit 200. Further, when a predetermined event such as operation of a call button occurs in a standby state (during asynchronous communication), the packet generation unit 332 transmits an uplink packet (interrupt signal) in which preamble data, sync pattern, and control data are written. Generate. The preamble and sync pattern used in the interrupt signal during asynchronous communication are the same as those used during synchronous communication.

制御部307のデータ再生部333は、同期検出部313からイネーブル信号(SSCS)を入力すると、第2クロック生成部314から出力された第2周波数のクロック(SSCK)を使用し、受信データ反転部312から出力された下り信号を復調して下りパケットを取得する。そして、データ再生部333は、下りパケットに含まれるデジタル映像データをディスプレイ部306に出力し、下りパケットに含まれるデジタル音声データを音声I/F部305に出力し、下りパケットに含まれるシンクパターンを接続状態検出部334に出力する。なお、データ再生部333は、初期登録時に、下りパケットに含まれる自機IDmonitorおよびIDmasterを識別子記憶部315に記憶させる。 When the data reproduction unit 333 of the control unit 307 receives the enable signal (SSCS) from the synchronization detection unit 313, the data reproduction unit 333 uses the second frequency clock (SSCK) output from the second clock generation unit 314, and receives the data inversion unit. The downlink signal output from 312 is demodulated to obtain a downlink packet. Then, the data reproducing unit 333 outputs the digital video data included in the downlink packet to the display unit 306, outputs the digital audio data included in the downlink packet to the audio I / F unit 305, and the sync pattern included in the downlink packet. Is output to the connection state detection unit 334. Note that the data reproduction unit 333 causes the identifier storage unit 315 to store its own ID monitor and ID master included in the downlink packet at the time of initial registration.

また、データ再生部333は、待機状態(非同期通信時)において所定のイベントが発生し、下り信号(割り込み信号)を入力した場合、下り信号を復調して下りパケットを取得し、下りパケットに含まれるシンクパターンを接続状態検出部334に出力する。データ再生部333は、接続状態検出部334において正確に割り込み信号を捕捉できたことを確認した後、割り込み信号の制御データを抽出する。制御データが同期要求であれば、増設モニタ300は、ドアホン親機200との同期処理に移行する。   In addition, when a predetermined event occurs in a standby state (during asynchronous communication) and a downlink signal (interrupt signal) is input, the data reproduction unit 333 demodulates the downlink signal to acquire a downlink packet, and is included in the downlink packet The sync pattern is output to the connection state detection unit 334. The data reproducing unit 333 extracts the control data of the interrupt signal after confirming that the connection state detecting unit 334 has correctly captured the interrupt signal. If the control data is a synchronization request, the extension monitor 300 shifts to a synchronization process with the doorphone parent device 200.

制御部307の接続状態検出部334は、正接続チェック用シンクパターンおよび逆接続チェック用シンクパターンを記憶し、データ再生部333から出力された受信データのシンクパターンを、正接続チェック用シンクパターンおよび逆接続チェック用シンクパターンと照合する。接続状態検出部334は、受信データのシンクパターンと正接続チェック用シンクパターンが完全に一致した場合に2線ケーブルが正接続であると判定し、受信データのシンクパターンと逆接続チェック用シンクパターンが完全に一致した場合に2線ケーブルが逆接続であると判定する。そして、接続状態検出部334は、判定結果を示す反転制御信号(INV CON)を、送信データ反転部309および受信データ反転部312に出力する。   The connection state detection unit 334 of the control unit 307 stores the normal connection check sync pattern and the reverse connection check sync pattern, and converts the received data sync pattern output from the data reproduction unit 333 into the normal connection check sync pattern and Match with reverse connection check sync pattern. The connection state detection unit 334 determines that the two-wire cable is correctly connected when the sync pattern of the received data completely matches the sync pattern for the normal connection check, and the sync pattern of the received data and the sync pattern for the reverse connection check If the two completely match, it is determined that the two-wire cable is reversely connected. Then, the connection state detection unit 334 outputs an inversion control signal (INV CON) indicating the determination result to the transmission data inversion unit 309 and the reception data inversion unit 312.

送信データ処理部308は、パケット生成部332からイネーブル信号(SSCS)を入力すると、パケット生成部332から出力された第2周波数のクロック(SSCK)を使用し、パケット生成部332から出力された上りパケットのデータに対して変調処理を行って上り信号を生成し、送信データ反転部309に出力する。   When the transmission data processing unit 308 receives the enable signal (SSCS) from the packet generation unit 332, the transmission data processing unit 308 uses the second frequency clock (SSCK) output from the packet generation unit 332, and the uplink data output from the packet generation unit 332. Modulation processing is performed on the packet data to generate an uplink signal, which is output to the transmission data inverting unit 309.

送信データ反転部309は、接続状態検出部334において2線ケーブルが逆接続であると判定された場合、送信データ処理部308から出力された上り信号を反転させて送信ドライバ310に出力する。一方、送信データ反転部309は、接続状態検出部334において2線ケーブルが正接続であると判定された場合、送信データ処理部308から出力された上り信号をそのまま送信ドライバ310に出力する。   When the connection state detection unit 334 determines that the two-wire cable is reversely connected, the transmission data inversion unit 309 inverts the uplink signal output from the transmission data processing unit 308 and outputs the inverted signal to the transmission driver 310. On the other hand, the transmission data inverting unit 309 outputs the uplink signal output from the transmission data processing unit 308 to the transmission driver 310 as it is when the connection state detection unit 334 determines that the two-wire cable is a normal connection.

送信ドライバ310は、制御部307からの切り替え制御信号(SW CON)によって指示された送信区間において、上り信号を、ケーブル接続部301を介してドアホン親機200に送信する。   The transmission driver 310 transmits an upstream signal to the intercom base unit 200 via the cable connection unit 301 in the transmission section instructed by the switching control signal (SW CON) from the control unit 307.

受信ドライバ311は、ドアホン親機200から送信された下り信号を、ケーブル接続部301を介して受信する。そして、受信ドライバ311は、制御部307からの切り替え制御信号(SW CON)によって指示された受信区間において、下り信号を、受信データ反転部312に出力する。   The reception driver 311 receives the downlink signal transmitted from the doorphone master device 200 via the cable connection unit 301. Then, the reception driver 311 outputs the downlink signal to the reception data inversion unit 312 in the reception period instructed by the switching control signal (SW CON) from the control unit 307.

受信データ反転部312は、接続状態検出部334において2線ケーブルが逆接続であると判定された場合、受信ドライバ311から出力された下り信号を反転させて同期検出部313、第2クロック生成部314、データ再生部333に出力する。一方、受信データ反転部312は、接続状態検出部334において2線ケーブルが正接続であると判定された場合、受信ドライバ311から出力された下り信号をそのまま同期検出部313、第2クロック生成部314、データ再生部333に出力する。   When the connection state detection unit 334 determines that the two-wire cable is reversely connected, the reception data inversion unit 312 inverts the downlink signal output from the reception driver 311 so as to invert the synchronization detection unit 313 and the second clock generation unit. 314, and output to the data reproduction unit 333. On the other hand, when the connection state detection unit 334 determines that the two-wire cable is a positive connection, the reception data inversion unit 312 directly uses the downlink signal output from the reception driver 311 as the synchronization detection unit 313 and the second clock generation unit. 314, and output to the data reproduction unit 333.

同期検出部313は、第1クロック生成部331から出力された第1周波数のクロック(CLK)を使用し、受信ドライバ311から出力された下り信号に含まれるプリアンブルデータを用いてドアホン親機200との同期(受信データの各ビットの先頭のタイミング)を検出する。そして、同期検出部313は、プリアンブルデータのユニークパターンを検出したタイミングで、クロック出力開始の基準となるトリガ信号を第2クロック生成部314に出力し、データ再生動作を許可するイネーブル信号(SSCS)をデータ再生部333に出力する。   The synchronization detection unit 313 uses the first frequency clock (CLK) output from the first clock generation unit 331 and uses the preamble data included in the downlink signal output from the reception driver 311 to Synchronization (start timing of each bit of received data) is detected. Then, the synchronization detection unit 313 outputs a trigger signal serving as a reference for starting clock output to the second clock generation unit 314 at the timing when the unique pattern of the preamble data is detected, and an enable signal (SSCS) that permits the data reproduction operation Is output to the data reproduction unit 333.

第2クロック生成部314は、同期検出部313から指示されたタイミングで、第1クロック生成部331から出力された第1周波数のクロック(CLK)を基準に、受信データのビットレートに対応する第2周波数(例えば、4.8MHz)のクロック(SSCK)を生成し、データ再生部333に出力する。   The second clock generation unit 314 corresponds to the bit rate of the received data based on the first frequency clock (CLK) output from the first clock generation unit 331 at the timing instructed by the synchronization detection unit 313. A clock (SSCK) having two frequencies (for example, 4.8 MHz) is generated and output to the data reproducing unit 333.

識別子記憶部315は、ドアホン親機200から受信した自機IDmonitorおよびIDmasterを記憶する。 The identifier storage unit 315 stores the own device ID monitor and the ID master received from the intercom master device 200.

なお、玄関子機100、ドアホン親機200および増設モニタ300は、図示しないが、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路をそれぞれ有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。   Although not shown in the figure, the front door device 100, the doorphone master device 200, and the extension monitor 300 are, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a RAM (Random Access And a communication circuit. In this case, the function of each unit described above is realized by the CPU executing the control program.

<変調処理の一例>
次に、送信データ処理部108(208、308)が行う変調処理の一例について図6、図7を用いて説明する。図6、図7では、マンチェスタ符号を採用した場合を示している。
<Example of modulation processing>
Next, an example of modulation processing performed by the transmission data processing unit 108 (208, 308) will be described with reference to FIGS. 6 and 7 show a case where the Manchester code is employed.

送信データ処理部108(208、308)は、周期Tm毎に、パケットの各データ(1ビット)に対応する信号を1つ生成する。マンチェスタ符号を採用した場合、図6に示すように、送信データ処理部108(208、308)は、値「0」のデータ401にLowからHighへの立上りを発生させ、変調信号402を生成する。また、送信データ処理部108(208、308)は、値「1」のデータ411にHighからLowへの立下りを発生させ、変調信号412を生成する。   The transmission data processing unit 108 (208, 308) generates one signal corresponding to each data (1 bit) of the packet for each cycle Tm. When the Manchester code is employed, the transmission data processing unit 108 (208, 308) generates a modulation signal 402 by causing the data 401 having the value “0” to rise from Low to High as shown in FIG. . Also, the transmission data processing unit 108 (208, 308) causes the data 411 having the value “1” to fall from High to Low, and generates a modulated signal 412.

そして、図7に示すように、「0,0,1,・・・,1,0」というデータ列421に対して、送信データ処理部108(208、308)は、各ビットの値に対応して、周期Tm毎に立上りあるいは立下りを有する変調信号422を生成する。   Then, as shown in FIG. 7, for the data string 421 of “0, 0, 1,..., 1, 0”, the transmission data processing unit 108 (208, 308) corresponds to the value of each bit. Thus, a modulation signal 422 having a rising edge or a falling edge is generated every period Tm.

<プリアンブルデータの一例>
次に、本実施の形態において使用されるプリアンブルデータの一例について図8を用いて説明する。
<Example of preamble data>
Next, an example of preamble data used in the present embodiment will be described with reference to FIG.

図8に示すように、本実施の形態において使用されるプリアンブルデータ(4byte=32bit)は、1byte目から3byte目までがすべて「0」のパターンであり、4byte目が、最初から7bitが「0」で、最後の1bitが「1」のパターンである。この結果、図8に示すプリアンブルデータは、4byte目の7bit目と8bit目(最初から31bit目と32bit目)の部分においてH(High)の期間が他よりも長いユニークパターンとなっている。   As shown in FIG. 8, the preamble data (4 bytes = 32 bits) used in the present embodiment has a pattern of “0” from the first byte to the third byte, and the fourth byte is “0” from the beginning. ", The last 1 bit is a pattern of" 1 ". As a result, the preamble data shown in FIG. 8 has a unique pattern in which the H (High) period is longer than the others in the 7th and 8th bits (the 31st and 32nd bits from the beginning) of the 4th byte.

なお、2線ケーブルが逆接続である場合、送信側装置において反転処理を行わなければ、プリアンブルデータは、受信側装置の受信時において、4byte目の7bit目と8bit目の部分においてL(Low)の期間が他よりも長いユニークパターンとなる。   When the two-wire cable is reversely connected, if the inversion processing is not performed in the transmission side device, the preamble data is L (Low) in the 7th and 8th bit portions of the 4th byte when received by the reception side device. This is a unique pattern with a longer period than others.

<同期検出部の内部構成>
次に、玄関子機100の同期検出部113の内部構成の詳細について、図9を用いて説明する。なお、その説明の際、本実施の形態の同期検出処理について理解を容易にするため、図9と併せて図10を用いる。図10の例において、プリアンブルデータおよびそのユニークパターンは、図8に示したものを用いる。
<Internal configuration of synchronization detector>
Next, the details of the internal configuration of the synchronization detection unit 113 of the front door device 100 will be described with reference to FIG. In the description, FIG. 10 is used in conjunction with FIG. 9 in order to facilitate understanding of the synchronization detection processing of the present embodiment. In the example of FIG. 10, the preamble data and its unique pattern are those shown in FIG.

図9に示すように、同期検出部113は、第1のユニークパターン検出部151、第2のユニークパターン検出部152およびイネーブル信号生成部153を有する。   As illustrated in FIG. 9, the synchronization detection unit 113 includes a first unique pattern detection unit 151, a second unique pattern detection unit 152, and an enable signal generation unit 153.

第1のユニークパターン検出部151は、2線ケーブルが正接続である場合のチェック用ユニークパターン(以下、「正接続チェック用ユニークパターン」という(図9の例では[HHHLLLLLLL]))を記憶している。そして、第1のユニークパターン検出部151は、第1クロック生成部131のクロックで、受信データ反転部112から出力された受信データから出力された受信データに含まれるプリアンブルデータをサンプリングし、正接続チェック用ユニークパターンの数に対応するサンプル区間のサンプリング値と正接続チェック用ユニークパターンを照合する。第1のユニークパターン検出部151は、サンプリング値と正接続チェック用ユニークパターンが完全に一致した場合にユニークパターンを検出したと判定し、その旨を示す信号をイネーブル信号生成部153に出力する。図10の例では、サンプル区間501の10個のサンプリング値が、正接続チェック用ユニークパターンと完全に一致する。なお、図10では、第1クロック生成部131が48MHzのクロック(CLK)を生成し、第2クロック生成部114が4.8MHzのクロック(SSCK)を生成している場合を示している。   The first unique pattern detection unit 151 stores a check unique pattern (hereinafter referred to as “positive connection check unique pattern” (in the example of FIG. 9, [HHHLLLLLLL])) when the two-wire cable is positively connected. ing. Then, the first unique pattern detection unit 151 samples the preamble data included in the reception data output from the reception data output from the reception data inversion unit 112 with the clock of the first clock generation unit 131, and performs a positive connection. The sampling value corresponding to the number of check unique patterns is collated with the unique pattern for positive connection check. The first unique pattern detection unit 151 determines that the unique pattern has been detected when the sampling value and the unique pattern for the positive connection check completely match, and outputs a signal indicating that to the enable signal generation unit 153. In the example of FIG. 10, ten sampling values in the sample section 501 completely match the unique pattern for positive connection check. FIG. 10 shows a case where the first clock generation unit 131 generates a 48 MHz clock (CLK) and the second clock generation unit 114 generates a 4.8 MHz clock (SSCK).

第2のユニークパターン検出部152は、正接続チェック用ユニークパターンの逆のパターンであって、2線ケーブルが逆接続である場合のチェック用ユニークパターン(以下、「逆接続チェック用ユニークパターン」という(図9の例では[LLLHHHHHHH]))を記憶している。そして、第2のユニークパターン検出部152は、第1のユニークパターン検出部151と同一タイミングで、受信データ反転部112から出力された受信データに含まれるプリアンブルデータをサンプリングし、サンプリング値と逆接続チェック用ユニークパターンを照合する。第2のユニークパターン検出部152は、サンプリング値と逆接続チェック用ユニークパターンが完全に一致した場合にユニークパターンを検出したと判定し、その旨を示す信号(図10の例では、SSCSのL(Low)信号)をイネーブル信号生成部153に出力する。   The second unique pattern detection unit 152 is a reverse pattern of the unique pattern for normal connection check, and a unique pattern for check when the two-wire cable is reversely connected (hereinafter referred to as “reverse connection check unique pattern”). ([LLLHHHHHHH] in the example of FIG. 9)) is stored. The second unique pattern detection unit 152 samples the preamble data included in the reception data output from the reception data inversion unit 112 at the same timing as the first unique pattern detection unit 151, and reversely connects the sampling value. Check unique patterns for checking. The second unique pattern detection unit 152 determines that the unique pattern has been detected when the sampling value and the reverse connection check unique pattern completely match, and indicates a signal indicating this (in the example of FIG. 10, the SSCS L (Low) signal) is output to the enable signal generation unit 153.

イネーブル信号生成部153は、第1のユニークパターン検出部151あるいは第2のユニークパターン検出部152のいずれかから、ユニークパターンを検出した旨を示す信号を入力すると、クロック出力開始の基準となるトリガ信号を第2クロック生成部114に出力し、データ再生動作を許可するイネーブル信号を制御部107のデータ再生部133に出力する。   When the enable signal generation unit 153 receives a signal indicating that a unique pattern has been detected from either the first unique pattern detection unit 151 or the second unique pattern detection unit 152, the trigger that becomes a reference for starting clock output The signal is output to the second clock generation unit 114, and an enable signal for permitting the data recovery operation is output to the data recovery unit 133 of the control unit 107.

この場合、第2クロック生成部114は、イネーブル信号生成部153からトリガ信号を入力したタイミングから規定のクロック数の時間(図10の区間502)後の第1周波数のクロック(図10のt0)を開始タイミングとして、クロックを生成する。なお、図10の例では、SSCKがCLKを10分周したクロックであるので、規定のクロック数は「10」となる。   In this case, the second clock generation unit 114 has a first frequency clock (t0 in FIG. 10) after a predetermined number of clocks (section 502 in FIG. 10) from the timing when the trigger signal is input from the enable signal generation unit 153. Is used as a start timing to generate a clock. In the example of FIG. 10, since SSCK is a clock obtained by dividing CLK by 10, the prescribed number of clocks is “10”.

なお、ドアホン親機200の同期検出部213および増設モニタ300の同期検出部313の内部構成も、図9に示した玄関子機100の同期検出部113の内部構成と同一である。   The internal configurations of the synchronization detection unit 213 of the doorphone master unit 200 and the synchronization detection unit 313 of the extension monitor 300 are also the same as the internal configuration of the synchronization detection unit 113 of the front door device 100 shown in FIG.

<同期検出処理のフロー>
次に、玄関子機100(同期検出部113、接続状態検出部134)における同期検出処理のフローについて図11を用いて説明する。
<Flow of synchronization detection processing>
Next, the flow of the synchronization detection process in the entrance cordless handset 100 (synchronization detection unit 113, connection state detection unit 134) will be described with reference to FIG.

ステップS610において、同期検出部113は、第1のユニークパターン検出部151および第2のユニークパターン検出部152により、第1クロック生成部131のクロックで、受信ドライバ111から出力された復調前の下り信号に含まれるプリアンブルデータをサンプリングし、プリアンブルデータのユニークパターンのチェックを行う。   In step S <b> 610, the synchronization detection unit 113 uses the first unique pattern detection unit 151 and the second unique pattern detection unit 152 to output the downlink before demodulation output from the reception driver 111 using the clock of the first clock generation unit 131. The preamble data included in the signal is sampled, and the unique pattern of the preamble data is checked.

ユニークパターンを検出できた場合(S620:YES)、ビット同期を取ることができたとして、フローをステップS630へ進め、検出できていない場合(S620:NO)、フローをステップS610に戻し、ユニークパターンのチェックを再び行う。   If the unique pattern can be detected (S620: YES), the flow proceeds to step S630 on the assumption that the bit synchronization can be established. If not detected (S620: NO), the flow returns to step S610 to return to the unique pattern. Check again.

ステップS630において、接続状態検出部134は、データ再生部133から出力された受信データのシンクパターンのチェックを行う。   In step S630, the connection state detection unit 134 checks the sync pattern of the reception data output from the data reproduction unit 133.

受信データのシンクパターンが、正接続チェック用シンクパターンと一致した場合(S640:YES)、ステップS650において、接続状態検出部134は、2線ケーブルが正接続であると判定し、同期検出処理を終了する。   If the sync pattern of the received data matches the sync pattern for normal connection check (S640: YES), in step S650, the connection state detection unit 134 determines that the two-wire cable is a normal connection, and performs synchronization detection processing. finish.

また、受信データのシンクパターンが、逆接続チェック用シンクパターンと一致した場合(S640:NO,S660:YES)、ステップS670において、接続状態検出部134は、2線ケーブルが逆接続であると判定し、同期検出処理を終了する。   When the sync pattern of the received data matches the sync pattern for reverse connection check (S640: NO, S660: YES), in step S670, the connection state detection unit 134 determines that the two-wire cable is reverse connected. Then, the synchronization detection process ends.

また、受信データのシンクパターンが、逆接続チェック用シンクパターンおよび逆接続チェック用シンクパターンのどちらにも一致しなかった場合(S640:NO,S660:NO)、ステップS680において、接続状態検出部134は、シンクパターンの検知に失敗したと判定し、フローをステップS610に戻し、ユニークパターンのチェックを再び行う。   If the sync pattern of the received data does not match either the reverse connection check sync pattern or the reverse connection check sync pattern (S640: NO, S660: NO), the connection state detection unit 134 in step S680. Determines that the sync pattern detection has failed, returns the flow to step S610, and checks the unique pattern again.

<初期登録までのシーケンス>
次に、本開示の一実施の形態に係る初期登録までのシーケンスについて図12を用いて説明する。
<Sequence until initial registration>
Next, a sequence until initial registration according to an embodiment of the present disclosure will be described with reference to FIG.

玄関子機100とドアホン親機200が2線ケーブルで接続され、電源がONされた場合(S701)、ドアホン親機200は、玄関子機100に対して、制御データフィールドに登録開始情報が書き込まれた割り込み信号を送信する(S702)。   When the entrance cordless handset 100 and the doorphone master set 200 are connected with a two-wire cable and the power is turned on (S701), the doorphone master set 200 writes registration start information in the control data field for the entrance cordless handset 100. The interrupt signal is transmitted (S702).

玄関子機100は、ドアホン親機200からの割り込み信号を捕捉し、割り込み信号の制御データ(登録開始情報)を確認する(S703)。なお、割り込み信号の捕捉とは、具体的には、第1周波数のクロックを用いて割り込み信号のサンプリングを行い、プリアンブル内のユニークパターンを検出してビット同期を確立し、第2周波数のクロックを用いて割り込み信号を再生して前記シンクパターンを検出することである。   The front door device 100 captures the interrupt signal from the door phone master device 200 and checks the control data (registration start information) of the interrupt signal (S703). The capture of the interrupt signal specifically means that the interrupt signal is sampled using the first frequency clock, the unique pattern in the preamble is detected, bit synchronization is established, and the second frequency clock is set. It is used to reproduce the interrupt signal and detect the sync pattern.

また、玄関子機100は、割り込み信号のシンクパターンを用いて、2線ケーブルの反転検出(正接続/逆接続の判定)を行い、2線ケーブルが逆接続である場合、送信データ反転部109および受信データ反転部112に対して反転設定を行う(S704)。   Further, the entrance unit 100 detects the inversion of the two-wire cable (judgment of normal connection / reverse connection) using the sink pattern of the interrupt signal, and when the two-wire cable is in the reverse connection, the transmission data inversion unit 109 Then, inversion setting is performed for the reception data inversion unit 112 (S704).

その後、玄関子機100は、制御データフィールドに登録開始情報の受領確認が書き込まれた割り込み信号をドアホン親機200に送信する(S705)。   Thereafter, the front door device 100 transmits an interrupt signal in which the confirmation of receipt of the registration start information is written in the control data field to the intercom base device 200 (S705).

ドアホン親機200は、玄関子機100からの割り込み信号を捕捉し、割り込み信号の制御データ(登録開始情報受領)を確認する(S706)。   The intercom master device 200 captures the interrupt signal from the entrance slave device 100 and confirms the control data (registration start information receipt) of the interrupt signal (S706).

そして、ドアホン親機200は、玄関子機100に割り当てた固有の識別子(端末ID)が制御データフィールドに書き込まれた割り込み信号を送信する(S707)。   Then, the intercom master device 200 transmits an interrupt signal in which the unique identifier (terminal ID) assigned to the front door slave device 100 is written in the control data field (S707).

玄関子機100は、割り込み信号の制御データ(端末ID)を確認し、制御データフィールドに端末IDの受領確認が書き込まれた割り込み信号をドアホン親機200に送信する(S708)。   The front door device 100 confirms the control data (terminal ID) of the interrupt signal, and transmits the interrupt signal in which the receipt confirmation of the terminal ID is written in the control data field to the doorphone master device 200 (S708).

以上の処理により、初期登録が完了する(S709)。   Through the above processing, the initial registration is completed (S709).

<待機状態から通信状態までのシーケンス>
次に、本開示の一実施の形態に係る待機状態(非同期通信時)から通信状態までのシーケンスについて図13を用いて説明する。なお、図13では、玄関子機100−1、100−2および増設モニタ300がドアホン親機200と接続している場合のシーケンスを示す。
<Sequence from standby state to communication state>
Next, a sequence from a standby state (during asynchronous communication) to a communication state according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 13 shows a sequence in the case where the front cordless handsets 100-1 and 100-2 and the extension monitor 300 are connected to the doorphone master phone 200.

各機器とドアホン親機200との間でデータが送受されない待機状態(非同期通信時)において(S801)、玄関子機100−2の呼出ボタンが操作された場合(S802)、玄関子機100−2は、制御データフィールドに同期要求が書き込まれた割り込み信号をドアホン親機200に送信することにより同期要求を行う(S803)。   In a standby state (at the time of asynchronous communication) in which data is not transmitted / received between each device and the door phone master unit 200 (S801), when the call button of the entrance slave unit 100-2 is operated (S802), the entrance slave unit 100- 2 performs a synchronization request by transmitting an interrupt signal in which the synchronization request is written in the control data field to the intercom base unit 200 (S803).

ドアホン親機200は、割り込み信号を捕捉し(S804)、割り込み信号に含まれる同期要求を確認する。なお、割り込み信号の捕捉とは、具体的には、第1周波数のクロックを用いて割り込み信号のサンプリングを行い、プリアンブル内のユニークパターンを検出してビット同期を確立し、第2周波数のクロックを用いて割り込み信号を再生して前記シンクパターンを検出することである。   The intercom master device 200 captures the interrupt signal (S804) and confirms the synchronization request included in the interrupt signal. The capture of the interrupt signal specifically means that the interrupt signal is sampled using the first frequency clock, the unique pattern in the preamble is detected, bit synchronization is established, and the second frequency clock is set. It is used to reproduce the interrupt signal and detect the sync pattern.

ドアホン親機200は、玄関子機100−2からの同期要求を確認すると、各機器と同期通信するためのフレームタイミングを決定し(S805)、各機器に同期スロット信号を送信する(S806)。   Upon confirming the synchronization request from the entrance slave device 100-2, the intercom master device 200 determines the frame timing for synchronous communication with each device (S805), and transmits a synchronization slot signal to each device (S806).

各機器は、同期スロット信号に従って、ドアホン親機200と同期を取る(S807)。これにより、各機器とドアホン親機200との間は、同期状態となる(S808)。   Each device synchronizes with the doorphone master device 200 in accordance with the synchronization slot signal (S807). As a result, the respective devices and the intercom master device 200 are in a synchronized state (S808).

その後、玄関子機100−2は、制御データフィールドに画像接続要求が書き込まれた上りパケットを親機200に送信することにより画像接続要求を行う(S809)。ドアホン親機200は、画像接続要求を確認すると、制御データフィールドに画像接続確認が書き込まれた下りパケットを玄関子機100−2に送信することにより画像接続確認を行う(S810)。以降、玄関子機100−2が上りパケットによりドアホン親機200に画像データを送信し、ドアホン親機200が当該画像データを表示する画像データ通信状態となる(S811)。なお、玄関子機100−2から送信された画像データは、ドアホン親機200から他の機器(玄関子機100−1、増設モニタ300)に同報送信され、増設モニタ300においても、画像データが表示可能になる。   Thereafter, the front door device 100-2 makes an image connection request by transmitting an upstream packet in which the image connection request is written in the control data field to the parent device 200 (S809). When confirming the image connection request, the door phone main unit 200 confirms the image connection by transmitting the downlink packet in which the image connection confirmation is written in the control data field to the front door device 100-2 (S810). Thereafter, the entrance handset 100-2 transmits image data to the doorphone master 200 by an uplink packet, and the doorphone master 200 enters an image data communication state in which the image data is displayed (S811). Note that the image data transmitted from the front door slave 100-2 is broadcast from the doorphone master 200 to other devices (the front door slave 100-1, the extension monitor 300). Can be displayed.

<各装置の動作>
次に、各装置の動作について説明する。
<Operation of each device>
Next, the operation of each device will be described.

<玄関子機の動作>
図14は、玄関子機100の動作の一例を示すフローチャートである。
<Operation of entrance cordless handset>
FIG. 14 is a flowchart illustrating an example of the operation of the front door device 100.

ステップS1010において、制御部107は、呼出ボタンが操作されたか否かを判定する。制御部107は、呼出ボタンが操作された場合(S1010:YES)、フローをステップS1020へ進め、操作されていない場合(S1010:NO)、フローを後述のステップS1100へ進める。   In step S1010, the control unit 107 determines whether the call button has been operated. When the call button is operated (S1010: YES), the control unit 107 advances the flow to step S1020, and when not operated (S1010: NO), advances the flow to step S1100 described later.

ステップS1020において、制御部107は、呼出信号をドアホン親機200へ送信する。   In step S <b> 1020, control unit 107 transmits a calling signal to door phone parent device 200.

ステップS1030において、制御部107は、ドアホン親機200から応答信号を受信したか否かを判定する。制御部107は、応答信号を受信していない場合(S1030:NO)、フローをステップS1020へ戻し、応答信号を受信した場合(S1030:YES)、フローをステップS1040へ進める。なお、制御部107は、呼出信号を所定回数送信しても応答信号を受信しない場合、フローを、後述のステップS1100へ進めてもよい。   In step S1030, control unit 107 determines whether a response signal has been received from intercom master device 200 or not. When the response signal is not received (S1030: NO), the control unit 107 returns the flow to step S1020, and when the response signal is received (S1030: YES), the control unit 107 advances the flow to step S1040. Note that if the control unit 107 does not receive a response signal even if the call signal is transmitted a predetermined number of times, the control unit 107 may advance the flow to step S1100 described later.

ステップS1040において、制御部107は、マイク104、音声I/F部105、およびカメラ部106を用いて、音声入力および映像撮影を開始する。また、制御部107は、パケット生成部132および送信データ処理部108を用いて、送信の対象となる各種データ(制御データ/デジタル音声データ/デジタル映像データ)のパケット化および符号化を開始する。なお、制御部107は、デジタル音声データおよびデジタル映像データの送信レート制御を行ってもよい。   In step S <b> 1040, the control unit 107 starts audio input and video shooting using the microphone 104, the audio I / F unit 105, and the camera unit 106. In addition, the control unit 107 uses the packet generation unit 132 and the transmission data processing unit 108 to start packetizing and encoding various data (control data / digital audio data / digital video data) to be transmitted. Note that the control unit 107 may perform transmission rate control of digital audio data and digital video data.

ステップS1050において、制御部107は、子機側送信区間であるか否かを判定する。制御部107は、送信区間である場合(S1050:YES)、フローをステップS1060へ進め、送信区間ではない場合(S1050:NO)、フローを後述のステップS1070へ進める。   In step S1050, control unit 107 determines whether or not it is a slave unit side transmission section. If it is a transmission interval (S1050: YES), the control unit 107 advances the flow to step S1060. If not (S1050: NO), the control unit 107 advances the flow to step S1070 described later.

ステップS1060において、制御部107は、送信ドライバ110を用いて、符号化により生成された上り信号を、2線ケーブルを介してドアホン親機200へ送信する。なお、制御部107は、送信区間が終了したとき、上り信号の送信を停止する。   In step S <b> 1060, control unit 107 uses transmission driver 110 to transmit the upstream signal generated by encoding to door phone parent device 200 via a two-wire cable. In addition, the control part 107 stops transmission of an uplink signal when a transmission area is complete | finished.

ステップS1070において、制御部107は、親機側送信区間であるか否かを判定する。制御部107は、送信区間である場合(S1070:YES)、フローをステップS1080へ進め、送信区間ではない場合(S1070:NO)、フローを後述のステップS1090へ進める。   In step S1070, control unit 107 determines whether or not it is a parent device side transmission section. When it is a transmission section (S1070: YES), the control unit 107 advances the flow to step S1080. When it is not a transmission section (S1070: NO), the control section 107 advances the flow to step S1090 described later.

ステップS1080において、制御部107は、下り信号の受信、各種データ(制御データ/音声データ)の抽出、および音声の出力を開始する。なお、制御部107は、送信区間が終了したとき、下り信号の受信あるいは各種データの抽出を停止する。   In step S1080, the control unit 107 starts receiving a downlink signal, extracting various data (control data / audio data), and outputting audio. Note that the control unit 107 stops receiving a downlink signal or extracting various data when the transmission period ends.

ステップS1090において、制御部107は、玄関子機100とドアホン親機200との間の通話が終了したか否かを判定する。例えば、制御部107は、ドアホン親機200で通話終了の操作が行われたことを示す信号をドアホン親機200から受信したとき、通話が終了したと判定する。制御部107は、通話が終了していない場合(S1090:NO)、フローをステップS1050へ戻し、通話が終了した場合(S1090:YES)、フローをステップS1100へ進める。   In step S <b> 1090, control unit 107 determines whether or not the call between entrance slave device 100 and doorphone master device 200 has ended. For example, the control unit 107 determines that the call has ended when it receives a signal indicating that a call end operation has been performed on the doorphone base unit 200 from the doorphone base unit 200. If the call has not ended (S1090: NO), control unit 107 returns the flow to step S1050. If the call has ended (S1090: YES), control proceeds to step S1100.

ステップS1100において、制御部107は、ドアホン機能に関する処理の終了を指示されたかを判定する。例えば、制御部107は、ドアホン親機200でドアホン機能の停止の操作が行われたことを示す信号をドアホン親機200から受信したとき、上記処理の終了を指示されたと判定する。制御部107は、上記処理の終了を指示されていない場合(S1100:NO)、フローをステップS1010へ戻し、上記処理の終了を指示された場合(S1100:YES)、一連の処理を終了する。   In step S1100, control unit 107 determines whether or not an instruction to end processing related to the door phone function has been given. For example, when the control unit 107 receives a signal indicating that the operation of stopping the door phone function has been performed on the doorphone master unit 200 from the doorphone master unit 200, the control unit 107 determines that the end of the process has been instructed. If the end of the process is not instructed (S1100: NO), the control unit 107 returns the flow to step S1010, and if instructed to end the process (S1100: YES), ends the series of processes.

<ドアホン親機の動作>
図15は、ドアホン親機200の動作の一例を示すフローチャートである。
<Operation of doorphone master unit>
FIG. 15 is a flowchart showing an example of the operation of the doorphone parent device 200.

ステップS2010において、制御部207は、玄関子機100から呼出信号を受信したか否かを判定する。制御部207は、呼出信号を受信した場合(S2010:YES)、フローをステップS2020へ進め、呼出信号を受信していない場合(S2010:NO)、フローを後述のステップS2090へ進める。   In step S2010, the control unit 207 determines whether a call signal has been received from the front door device 100. When the call signal is received (S2010: YES), the control unit 207 advances the flow to step S2020. When the call signal is not received (S2010: NO), the control unit 207 advances the flow to step S2090 described later.

ステップS2020において、制御部207は、応答信号を玄関子機100へ送信するとともに、音声I/F部205およびスピーカ203を用いて、呼出音を出力する。   In step S2020, the control unit 207 transmits a response signal to the front door device 100 and outputs a ringing tone using the voice I / F unit 205 and the speaker 203.

ステップS2030において、制御部207は、マイク204および音声I/F部205を用いて、音声入力を開始する。また、制御部207は、パケット生成部232および送信データ処理部208を用いて、送信の対象となる各種データ(制御データ/デジタル音声データ)のパケット化および符号化を開始する。なお、制御部207は、デジタル音声データの送信レート制御を行ってもよい。   In step S2030, the control unit 207 starts voice input using the microphone 204 and the voice I / F unit 205. In addition, the control unit 207 uses the packet generation unit 232 and the transmission data processing unit 208 to start packetizing and encoding various data (control data / digital audio data) to be transmitted. Note that the control unit 207 may perform digital audio data transmission rate control.

ステップS2040において、制御部207は、子機側送信区間であるか否かを判定する。制御部207は、送信区間である場合(S2040:YES)、フローをステップS2050へ進め、送信区間ではない場合(S2040:NO)、フローを後述のステップS2060へ進める。   In step S2040, control unit 207 determines whether or not it is a slave unit side transmission section. The control unit 207 advances the flow to step S2050 if it is a transmission interval (S2040: YES), and advances the flow to step S2060 described later if it is not a transmission interval (S2040: NO).

ステップS2050において、制御部207は、上り信号の受信および各種データ(制御データ/音声データ/映像データ)の抽出を開始する。また、制御部207は、音声I/F部205、スピーカ203および液晶ディスプレイを用いて、音声および映像の出力を開始する。なお、制御部207は、送信区間が終了したとき、上り信号の受信あるいは各種データの抽出を停止する。   In step S2050, the control unit 207 starts receiving an upstream signal and extracting various data (control data / audio data / video data). In addition, the control unit 207 uses the audio I / F unit 205, the speaker 203, and the liquid crystal display to start outputting audio and video. Note that the control unit 207 stops receiving the uplink signal or extracting various data when the transmission period ends.

ステップS2060において、制御部207は、親機側送信区間であるか否かを判定する。制御部207は、送信区間である場合(S2060:YES)、フローをステップS2070へ進め、送信区間ではない場合(S2060:NO)、フローを後述のステップS2080へ進める。   In step S2060, the control unit 207 determines whether or not it is a parent device side transmission section. When it is a transmission section (S2060: YES), the control unit 207 advances the flow to step S2070. When it is not a transmission section (S2060: NO), the control section 207 advances the flow to step S2080 described later.

ステップS2070において、制御部207は、送信ドライバ210を用いて、符号化により生成された下り信号を、2線ケーブルを介して玄関子機100へ送信する。但し、制御部207は、上述の通り、応答ボタンが操作されるまでは、デジタル音声データの送信を行わないことが望ましい。なお、制御部207は、送信区間が終了したとき、下り信号の送信を停止する。   In step S2070, the control unit 207 uses the transmission driver 210 to transmit the downlink signal generated by encoding to the front door device 100 via the two-wire cable. However, it is desirable that the control unit 207 does not transmit digital audio data until the response button is operated as described above. Note that the control unit 207 stops the transmission of the downlink signal when the transmission period ends.

ステップS2080において、制御部207は、玄関子機100とドアホン親機200との間の通話が終了したか否かを判定する。例えば、制御部207は、ドアホン親機200で通話終了の操作が行われたこと検知したとき、通話が終了したと判定する。なお、制御部207は、かかる通話終了の操作が行われたとき、その旨を示す信号を玄関子機100に送信することが望ましい。制御部207は、通話が終了していない場合(S2080:NO)、フローをステップS2040へ戻し、通話が終了した場合(S2080:YES)、フローをステップS2090へ進める。   In step S2080, control unit 207 determines whether or not the telephone conversation between entrance slave device 100 and doorphone master device 200 has ended. For example, the control unit 207 determines that the call is ended when it is detected that an operation for ending the call is performed on the intercom base unit 200. In addition, it is desirable that the control unit 207 transmits a signal indicating that to the entrance terminal 100 when an operation for terminating the call is performed. If the call has not ended (S2080: NO), control returns to step S2040. If the call has ended (S2080: YES), control proceeds to step S2090.

ステップS2090において、制御部207は、ドアホン機能に関する処理の終了を指示されたかを判定する。例えば、制御部207は、ドアホン親機200でドアホン機能の停止の操作が行われたことを検知したとき、上記処理の終了を指示されたと判定する。なお、制御部207は、かかるドアホン機能の停止の操作が行われたとき、その旨を示す信号を玄関子機100に送信することが望ましい。制御部207は、上記処理の終了を指示されていない場合(S2090:NO)、フローをステップS2010へ戻し、上記処理の終了を指示された場合(S2090:YES)、一連の処理を終了する。   In step S2090, control unit 207 determines whether an instruction to end the process related to the door phone function has been given. For example, when the control unit 207 detects that the doorphone function stop operation has been performed on the doorphone master unit 200, the control unit 207 determines that the end of the process has been instructed. In addition, when the operation of stopping the door phone function is performed, the control unit 207 desirably transmits a signal indicating that to the front door device 100. If the control unit 207 is not instructed to end the process (S2090: NO), the control unit 207 returns the flow to step S2010, and if instructed to end the process (S2090: YES), ends the series of processes.

<通常動作時のルーティング制御>
次に、本実施の形態に係るドアホン親機200の通常動作時のルーティング制御の具体例について、図16、図17を用いて説明する。図16の例では、ドアホン親機200(制御部207(図16では「親機制御部」と記載))が、いずれかのDRV(送信ドライバ(Tx)と受信ドライバ(Rx)のセット)1〜5を介して5個の機器(玄関子機100、増設モニタ300、他のドアホンシステムの親機)と接続している場合を示している。この場合、7種類の設定パターン(P1〜P7)が用意される。図17は、ルーティング制御部212の内部構成を示す図である。図17に示すように、ルーティング制御部212は、内部に、切替スイッチ2121およびOR回路2122を有する。
<Routing control during normal operation>
Next, a specific example of the routing control during the normal operation of door phone parent device 200 according to the present embodiment will be described with reference to FIGS. 16 and 17. In the example of FIG. 16, the intercom base unit 200 (control unit 207 (described as “base unit control unit” in FIG. 16)) is one of the DRVs (set of transmission driver (Tx) and reception driver (Rx)) 1 ˜5, a case where five devices (the entrance slave device 100, the extension monitor 300, and the parent device of another door phone system) are connected is shown. In this case, seven types of setting patterns (P1 to P7) are prepared. FIG. 17 is a diagram illustrating an internal configuration of the routing control unit 212. As illustrated in FIG. 17, the routing control unit 212 includes a changeover switch 2121 and an OR circuit 2122 inside.

設定パターンP1は、ドアホン親機200がいずれの機器ともデータの送受を行っていない待機状態におけるルーティング(通信ルートの有効/無効)を示す。設定パターンP1では、ドアホン親機200は、受信モード(送信を行わず、受信のみを行うモード)となり、制御部207は、図16に示すように受信モードであるため、SPI-RWの制御により、切替スイッチ2121の端子T3をT2に接続し、各機器からのデータ受信が可能となるように各DRVの受信ドライバ(Rx)を有効にし、各接続機器からの割り込みを待っている状態となる。なお、設定パターンP1で、各接続機器からの割り込みを待っている状態において、すべてのDRVの受信ドライバ(Rx)の出力は「L」とする。   The setting pattern P1 indicates routing (valid / invalid of communication route) in a standby state in which the intercom base unit 200 is not transmitting / receiving data to / from any device. In the setting pattern P1, the intercom base unit 200 is in a reception mode (a mode in which only reception is performed without transmission), and the control unit 207 is in the reception mode as shown in FIG. The terminal T3 of the changeover switch 2121 is connected to T2, the reception driver (Rx) of each DRV is enabled so that data reception from each device is possible, and an interrupt from each connected device is awaited. . In the setting pattern P1, in the state of waiting for an interrupt from each connected device, the outputs of all DRV reception drivers (Rx) are set to “L”.

待機状態において、いずれかの機器から非同期の割り込み信号を受信した場合、ドアホン親機200は、当該割り込み信号を送信した機器との間で同期を確立する。例えば、ドアホン親機200は、DRV1から割り込み信号を受信した場合、DRV1と接続する機器と同期を確立し、データの送受を行う(P2(送信時)またはP3(受信時)に移行する)。   When an asynchronous interrupt signal is received from any device in the standby state, door phone parent device 200 establishes synchronization with the device that transmitted the interrupt signal. For example, when receiving an interrupt signal from DRV1, door phone parent device 200 establishes synchronization with a device connected to DRV1, and transmits and receives data (shifts to P2 (during transmission) or P3 (during reception)).

設定パターンP2は、ドアホン親機200が全ての機器に対してデータを送信する一斉送信時(Broadcast)におけるルーティングを示す。設定パターンP2では、ドアホン親機200は、送信モード(受信を行わず、送信のみを行うモード)となり、制御部207は、切替スイッチ2121の端子T3を端子T1と接続させ、各機器へのデータ送信が可能となるように各DRVの送信ドライバ(Tx)を有効にする。このとき、いずれかの機器からドアホン親機200にデータが送信されても、各DRVにおいて受信できず、親機200において当該データは破棄される。なお、設定パターンP2では、ドアホン親機200が、接続中のすべての機器に対してデータ送信を行うが、下りパケットの制御データフィールドには通信相手の機器の識別子のみが記載されているため、他の機器は、データを受信しても破棄する。なお、設定パターンP2で、すべてのDRVの受信ドライバ(Rx)の出力は「L」とする。   The setting pattern P2 indicates routing at the time of simultaneous transmission (Broadcast) in which the doorphone parent device 200 transmits data to all devices. In the setting pattern P2, the door phone base unit 200 is in a transmission mode (a mode in which only transmission is performed without reception), and the control unit 207 connects the terminal T3 of the changeover switch 2121 to the terminal T1, and transmits data to each device. The transmission driver (Tx) of each DRV is enabled so that transmission is possible. At this time, even if data is transmitted from any device to the intercom base unit 200, it cannot be received by each DRV, and the base unit 200 discards the data. In the setting pattern P2, the intercom base unit 200 transmits data to all connected devices, but only the identifier of the communication partner device is described in the control data field of the downstream packet. Other devices discard data even if they are received. In the setting pattern P2, the outputs of all DRV reception drivers (Rx) are set to “L”.

設定パターンP3からP7は、ドアホン親機200がいずれか1つの機器からデータを受信する個別受信時におけるルーティングを示す。設定パターンP3からP7では、ドアホン親機200は受信モードとなり、制御部207は、切替スイッチ2121の端子T3を端子T2と接続させ、各設定パターンに対応する1つのDRVの受信ドライバ(Rx)を有効にし、他のDRVの送信ドライバ(Tx)を有効にする。これにより、ドアホン親機200は、受信ドライバ(Rx)が選択されたDRVから受信したデータを、ルーティング制御部212において、制御部207(CPU)に出力すると同時に、当該データをそのまま、送信ドライバ(Tx)が選択されたすべてのDRVに接続されている他の機器に同報送信することができる。したがって、同報送信する際に、受信データをデコードして解析する必要がない。なお、送信ドライバ(Tx)が選択されているすべてのDRVの受信ドライバ(Rx)の出力は「L」とする。   Setting patterns P3 to P7 indicate routing at the time of individual reception in which the intercom master device 200 receives data from any one device. In the setting patterns P3 to P7, the intercom base unit 200 is in the reception mode, and the control unit 207 connects the terminal T3 of the changeover switch 2121 to the terminal T2, and sets one DRV reception driver (Rx) corresponding to each setting pattern. Enable the other DRV transmission driver (Tx). Thereby, the intercom base unit 200 outputs the data received from the DRV for which the reception driver (Rx) is selected to the control unit 207 (CPU) in the routing control unit 212, and at the same time, transmits the data as it is to the transmission driver ( Tx) can be broadcast to other devices connected to all selected DRVs. Therefore, it is not necessary to decode and analyze the received data when performing broadcast transmission. Note that the outputs of the reception drivers (Rx) of all DRVs for which the transmission driver (Tx) is selected are “L”.

例えば、ドアホン親機200が、玄関子機100のデータをDRV2から受信する場合、制御部207は、DRV2の受信ドライバ(Rx)を有効とし、他のDRVの送信ドライバ(Tx)を有効にする。この場合、玄関子機100からのデータは、DRV2から受信され、ルーティング制御部212のOR回路2122を通り、デコード用として制御部207へ出力される。さらに、OR回路2122を通ったデータは、切替スイッチ2121を経由して、DRV1、3、4、5に送信され、各接続機器に同報送信される。その際、DRV2は、受信ドライバ(Rx)のみが有効であり、送信ドライバ(Tx)が無効であるため、OR回路2122を通ったデータは、DRV2からは同報送信されない。また、この時、他の機器からドアホン親機200にデータが送信されても、DRV1、3、4、5において受信できず、親機200において当該データは破棄される。   For example, when the intercom 200 receives data from the DRV 2 from the DRV 2, the control unit 207 enables the DRV 2 reception driver (Rx) and enables other DRV transmission drivers (Tx). . In this case, the data from the entrance slave unit 100 is received from the DRV 2, passes through the OR circuit 2122 of the routing control unit 212, and is output to the control unit 207 for decoding. Further, the data that has passed through the OR circuit 2122 is transmitted to the DRVs 1, 3, 4, and 5 via the changeover switch 2121 and is broadcast to each connected device. At that time, only the reception driver (Rx) is valid for DRV2, and the transmission driver (Tx) is invalid. Therefore, the data passing through the OR circuit 2122 is not broadcast from DRV2. At this time, even if data is transmitted from another device to the intercom base unit 200, it cannot be received by the DRVs 1, 3, 4, 5 and the base unit 200 discards the data.

<初期登録時のルーティング制御>
次に、本実施の形態に係るドアホン親機200の初期登録時のルーティング制御の具体例について、図17、図18を用いて説明する。図18の例では、ドアホン親機200(制御部207(図18では「親機制御部」と記載))が、いずれかのDRV1〜5を介して5個の機器と接続している場合を示している。この場合、5種類の設定パターン(EP1〜EP5)が用意される。
<Routing control during initial registration>
Next, a specific example of the routing control at the time of initial registration of door phone parent device 200 according to the present embodiment will be described with reference to FIGS. 17 and 18. In the example of FIG. 18, the case where the doorphone master unit 200 (the control unit 207 (described as “master unit control unit” in FIG. 18)) is connected to five devices via any one of the DRVs 1 to 5. Show. In this case, five types of setting patterns (EP1 to EP5) are prepared.

設定パターンEP1からEP5は、ドアホン親機200がいずれか1つの機器を登録する初期登録時におけるルーティングを示す。設定パターンEP1からEP5では、ドアホン親機200は送信モードとなり、制御部207は、切替スイッチ2121の端子T3を端子T1と接続させ、登録対象の機器に対応するDRVの送信ドライバ(Tx)を有効にし、他のDRVの受信ドライバ(Rx)を有効にする。これにより、ドアホン親機200は、パケットを送信する区間において、登録対象以外の機器に対してパケットの送信を行わず、登録対象の機器のみにパケットの送信を行うことができる。なお、このとき、他のDRVの受信ドライバ(Rx)が有効になるが、ドアホン親機200が送信の場合は、全ての機器からのパケットの受信を遮断する論理とし、それらのDRVからのパケットの受信を受け付けない(SPI-RWで制御部207は送信を選択する)。なお、各登録対象の機器からドアホン親機200へのパケットの送信は、図16のP3からP7の設定を使用する。この場合、他接続機器への同報送信の機能が働くが、ドアホン親機200のみへの送信であるため、他接続機器はこれを無視する。これにより、ドアホン親機200が、各玄関子機100等の登録対象機器と1対1に通信することができる。なお、送信ドライバ(Tx)が選択されているすべてのDRVの受信ドライバ(Rx)の出力は「L」とする。また、DRVの受信ドライバ(Rx)が選択され、各接続機器からの割り込みを待っている状態においては、受信ドライバ(Rx)の出力は「L」とする。   The setting patterns EP1 to EP5 indicate routing at the time of initial registration in which any one device is registered by the doorphone parent device 200. In the setting patterns EP1 to EP5, the intercom base unit 200 is in the transmission mode, and the control unit 207 connects the terminal T3 of the changeover switch 2121 to the terminal T1, and enables the DRV transmission driver (Tx) corresponding to the registration target device. And enable other DRV reception drivers (Rx). Thereby, intercom master 200 can transmit a packet only to a registration target device without transmitting a packet to a device other than a registration target in a section in which the packet is transmitted. At this time, other DRV reception drivers (Rx) are enabled. However, when the doorphone parent device 200 is transmitting, the logic is to block reception of packets from all devices, and packets from those DRVs are used. (The control unit 207 selects transmission by SPI-RW). Note that the settings from P3 to P7 in FIG. 16 are used for transmission of packets from each registration target device to the intercom master device 200. In this case, the broadcast transmission function to other connected devices works, but since the transmission is only to the doorphone parent device 200, the other connected devices ignore this. Thereby, door phone main unit 200 can communicate one-to-one with a registration target device such as each front unit 100. Note that the outputs of the reception drivers (Rx) of all DRVs for which the transmission driver (Tx) is selected are “L”. When the DRV reception driver (Rx) is selected and waiting for an interrupt from each connected device, the output of the reception driver (Rx) is “L”.

<本実施の形態の効果>
以上のように、本実施の形態によれば、ドアホン親機200は、制御部207(CPU)に入力される前のデコードされていない受信データをそのまま、他の機器に同報送信することができる。したがって、同報送信する際に、受信データをデコードして解析する必要がないので、ドアホン親機の同報送信のための処理負荷を低減することができる。
<Effects of the present embodiment>
As described above, according to the present embodiment, door phone parent device 200 can broadcast-receive received data that has not been decoded before being input to control unit 207 (CPU) to other devices. it can. Therefore, since it is not necessary to decode and analyze the received data at the time of broadcast transmission, it is possible to reduce the processing load for broadcast transmission of the intercom master unit.

なお、上記の説明では、玄関子機100からの画像データを、親機200、増設モニタ300、他のドアホンシステムの親機等、複数の機器に同報送信し、各機器において画像を同時に表示させる場合について説明したが、本発明はこれに限られず、例えば、緊急メッセージを、玄関子機100の呼出ボタンの長押し等の処理によって発生させ、この緊急メッセージを複数の機器に同報送信し、各機器からアラームを出力させるようにしても良い。なお、本実施の形態では、ドアホン親機200と玄関子機100などの接続機器同士の接続を一例として説明したが、本発明はこれに限られない。例えば、その他の応用機器として、ビジネスホン(内線電話機と制御装置間)、ホームセキュリティ装置(各種センサーノードと制御装置間)等の制御装置(通信装置)などであっても、同様の効果が得られる。   In the above description, the image data from the entrance slave device 100 is broadcast to a plurality of devices such as the master device 200, the extension monitor 300, and the master device of another door phone system, and the images are simultaneously displayed on each device. However, the present invention is not limited to this. For example, an emergency message is generated by a process such as long-pressing a call button of the front door 100, and the emergency message is broadcast to a plurality of devices. An alarm may be output from each device. In the present embodiment, the connection between connected devices such as the door phone master device 200 and the entrance slave device 100 is described as an example, but the present invention is not limited to this. For example, the same effect can be obtained even if the other application device is a control device (communication device) such as a business phone (between an extension telephone and a control device) or a home security device (between various sensor nodes and a control device). .

本開示は、カメラ付きの玄関子機とドアホン親機とからなるドアホンシステムに用いるに好適である。   The present disclosure is suitable for use in a door phone system including an entrance child device with a camera and a door phone parent device.

1 ドアホンシステム
100 玄関子機
101、201、301 ケーブル接続部
102、202、302 キー入力部
103、203、303 スピーカ
104、204、304 マイク
105、205、305 音声I/F部
106 カメラ部
107、207、307 制御部
108、208、308 送信データ処理部
109、209、309 送信データ反転部
110、210、310 送信ドライバ
111、211、311 受信ドライバ
112、312 受信データ反転部
113、213、313 同期検出部
114、214、314 第2クロック生成部
115、215、315 識別子記憶部
131、231、331 第1クロック生成部
132、232、332 パケット生成部
133、233、333 データ再生部
134、234、334 接続状態検出部
151 第1のユニークパターン検出部
152 第2のユニークパターン検出部
153 イネーブル信号生成部
200 ドアホン親機
206、306 ディスプレイ部
212 ルーティング制御部
235 識別子設定部
300 増設モニタ
DESCRIPTION OF SYMBOLS 1 Door phone system 100 Entrance unit 101, 201, 301 Cable connection part 102, 202, 302 Key input part 103, 203, 303 Speaker 104, 204, 304 Microphone 105, 205, 305 Audio | voice I / F part 106 Camera part 107, 207, 307 Control unit 108, 208, 308 Transmission data processing unit 109, 209, 309 Transmission data inversion unit 110, 210, 310 Transmission driver 111, 211, 311 Reception driver 112, 312 Reception data inversion unit 113, 213, 313 Synchronization Detection unit 114, 214, 314 Second clock generation unit 115, 215, 315 Identifier storage unit 131, 231, 331 First clock generation unit 132, 232, 332 Packet generation unit 133, 233, 333 Data reproduction unit 134, 234, 334 Connection state detection unit 151 First unique pattern detection unit 152 Second unique pattern detection unit 153 Enable signal generation unit 200 Door phone master unit 206, 306 Display unit 212 Routing control unit 235 Identifier setting unit 300 Additional monitor

本開示の親機は、親機と子機および他の機器とがそれぞれ2線ケーブルを介して接続され、前記親機と前記子機および前記他の機器との間で時分割複信によりパケット信号を送受信するドアホンシステムの前記親機であって、前記子機からのパケットを受信する受信部と、前記子機からのパケットをデコードして処理する制御部と、接続された前記他の機器に前記子機からのパケットを同報送信する送信部と、前記子機がパケットを送信するタイムスロットにおいて、前記子機からのパケットを受信して前記制御部に出力し、前記他の機器に対して前記子機からのパケットを送信し、かつ、前記他の機器からのパケットの受信を遮断するように、前記受信部および前記送信部を制御するルーティング制御部と、を具備する。 In the master unit of the present disclosure, a master unit, a slave unit, and other devices are connected via two-wire cables, respectively, and packets are transmitted by time division duplex between the master unit, the slave unit, and the other device. The master unit of the door phone system for transmitting and receiving signals, a receiving unit that receives packets from the slave unit, a control unit that decodes and processes packets from the slave unit, and the other devices connected A transmission unit that broadcasts a packet from the slave unit, and in a time slot in which the slave unit transmits a packet, the packet from the slave unit is received and output to the control unit, to the other device And a routing control unit for controlling the receiving unit and the transmitting unit so as to transmit a packet from the slave unit and to block reception of a packet from the other device.

本開示の通信方法は、親機と子機および他の機器とがそれぞれ2線ケーブルを介して接続され、前記親機と前記子機および前記他の機器との間で時分割複信によりパケット信号を送受信するドアホンシステムの同報送信時の通信方法であって、前記子機が、画像データを含むパケットを送信し、前記親機が、前記子機がパケットを送信するタイムスロットにおいて、前記子機からのパケットを受信して制御部に出力し、接続された前記他の機器に対して前記子機からのパケットを送信し、かつ、前記他の機器からのパケットの受信を遮断するように通信ルートを制御し、前記子機から前記パケットを受信し、前記子機から受信したパケットを前記他の機器に同報送信し、前記制御部において、前記子機から受信したパケットをデコードする。 According to the communication method of the present disclosure, a parent device, a child device, and another device are connected via two-wire cables, respectively, and packets are transmitted between the parent device, the child device, and the other device by time division duplex. A communication method for broadcast transmission of a door phone system for transmitting and receiving signals, wherein the slave unit transmits a packet including image data, and the master unit transmits the packet in a time slot in which the slave unit transmits a packet. receiving a packet from the slave unit to output to the control unit sends said packet from the slave unit to the connected the other equipment, and to block the reception of packets from the other device The communication route is controlled, the packet is received from the slave unit, the packet received from the slave unit is broadcast to the other device, and the control unit decodes the packet received from the slave unit. .

Claims (2)

親機と子機および他の機器とがそれぞれ2線ケーブルを介して接続され、前記親機と前記子機および前記他の機器との間で時分割複信によりパケット信号を送受信するドアホンシステムの前記親機であって、
前記子機からのパケットを受信する受信部と、
前記子機からのパケットをデコードして処理する制御部と、
接続された前記他の機器に前記子機からのパケットを同報送信する送信部と、
前記子機がパケットを送信する区間において、前記子機からのパケットを受信して前記制御部に出力し、前記他の機器に対して前記子機からのパケットを送信し、かつ、前記他の機器からのパケットの受信を遮断するように、前記受信部および前記送信部を制御するルーティング制御部と、
を具備する親機。
A door phone system in which a parent device, a child device, and another device are connected via a two-wire cable, and packet signals are transmitted and received between the parent device, the child device, and the other device by time division duplex. The master unit,
A receiving unit for receiving a packet from the slave unit;
A control unit that decodes and processes the packet from the slave unit;
A transmitter that broadcasts a packet from the slave unit to the connected other device;
In the section in which the slave unit transmits a packet, the packet from the slave unit is received and output to the control unit, the packet from the slave unit is transmitted to the other device, and the other unit A routing control unit that controls the reception unit and the transmission unit so as to block reception of packets from the device;
A master unit equipped with
親機と子機および他の機器とがそれぞれ2線ケーブルを介して接続され、前記親機と前記子機および前記他の機器との間で時分割複信によりパケット信号を送受信するドアホンシステムの同報送信時の通信方法であって、
前記子機が、
画像データを含むパケットを送信し、
前記親機が、
前記子機がパケットを送信する区間において、前記子機からのパケットを受信して制御部に出力し、接続された他の機器に対して前記子機からのパケットを送信し、かつ、前記他の機器からのパケットの受信を遮断するように通信ルートを制御し、
前記子機から前記パケットを受信し、
前記子機から受信したパケットを前記他の機器に同報送信し、
前記制御部において、前記子機から受信したパケットをデコードする、
通信方法。
A door phone system in which a parent device, a child device, and another device are connected via a two-wire cable, and packet signals are transmitted and received between the parent device, the child device, and the other device by time division duplex. A communication method at the time of broadcast transmission,
The slave is
Send a packet containing image data,
The master unit is
In the section in which the slave unit transmits a packet, the packet from the slave unit is received and output to the control unit, the packet from the slave unit is transmitted to another connected device, and the other Control the communication route to block the reception of packets from other devices,
Receiving the packet from the slave,
Broadcast the packet received from the slave unit to the other device,
In the control unit, decode the packet received from the slave unit,
Communication method.
JP2015241067A 2015-12-10 2015-12-10 Base unit and communication method Active JP5979522B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241067A JP5979522B1 (en) 2015-12-10 2015-12-10 Base unit and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241067A JP5979522B1 (en) 2015-12-10 2015-12-10 Base unit and communication method

Publications (2)

Publication Number Publication Date
JP5979522B1 JP5979522B1 (en) 2016-08-24
JP2017108306A true JP2017108306A (en) 2017-06-15

Family

ID=56759967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241067A Active JP5979522B1 (en) 2015-12-10 2015-12-10 Base unit and communication method

Country Status (1)

Country Link
JP (1) JP5979522B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013114A (en) * 2019-07-08 2021-02-04 パナソニックIpマネジメント株式会社 Doorphone system and communication method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202116A (en) * 2005-12-27 2007-08-09 Matsushita Electric Works Ltd Voice transmission system
JP5049243B2 (en) * 2008-10-15 2012-10-17 パナソニック株式会社 Intercom system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013114A (en) * 2019-07-08 2021-02-04 パナソニックIpマネジメント株式会社 Doorphone system and communication method
JP7223976B2 (en) 2019-07-08 2023-02-17 パナソニックIpマネジメント株式会社 Door phone system and communication method

Also Published As

Publication number Publication date
JP5979522B1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
CN106686271B (en) Door phone system and communication method thereof
US10484118B2 (en) Intercom system and communication control method
JP5892401B1 (en) Door phone system and communication method
JP5984028B1 (en) Door phone system and communication method thereof
JP5979522B1 (en) Base unit and communication method
JP5979517B1 (en) Slave unit, master unit, monitor and communication method
JP5979519B1 (en) Door phone system and communication method thereof
JP5979521B1 (en) Slave unit, monitor and communication method
JP5979523B1 (en) Slave unit, master unit, monitor and communication method
JP2018182375A (en) Communication device and communication method
JP6531991B2 (en) Slave unit, master unit, monitor and communication method
JP6410159B2 (en) Door phone system and communication method
JP6569867B2 (en) Door phone system, parent device, monitor, and communication method
JP2017163223A (en) Intercom system and communication method
JP5979520B1 (en) Slave unit, master unit, monitor and communication method
JP5979518B1 (en) Slave unit, master unit, monitor and communication method
JP6474004B2 (en) Base unit and communication method
JP5983975B1 (en) Slave unit, master unit, monitor and communication method
JP6226211B1 (en) Door phone system and communication method thereof
JP6485782B2 (en) Door phone system and communication method
JP6531992B2 (en) Slave unit, master unit, monitor and communication method
JP6176507B1 (en) Door phone system and communication method
JP6300044B2 (en) Door phone system and communication method thereof
JP2017092939A (en) Intercom and communication method for the same
JP5979525B1 (en) Doorphone system and communication control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R151 Written notification of patent or utility model registration

Ref document number: 5979522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151