JP2017107680A - Surge protective element - Google Patents

Surge protective element Download PDF

Info

Publication number
JP2017107680A
JP2017107680A JP2015239109A JP2015239109A JP2017107680A JP 2017107680 A JP2017107680 A JP 2017107680A JP 2015239109 A JP2015239109 A JP 2015239109A JP 2015239109 A JP2015239109 A JP 2015239109A JP 2017107680 A JP2017107680 A JP 2017107680A
Authority
JP
Japan
Prior art keywords
surge protection
insulating tube
protection element
discharge
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015239109A
Other languages
Japanese (ja)
Other versions
JP6579440B2 (en
Inventor
黛 良享
Yoshitaka Mayuzumi
良享 黛
酒井 信智
Nobutomo Sakai
信智 酒井
良市 杉本
Ryoichi Sugimoto
良市 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015239109A priority Critical patent/JP6579440B2/en
Publication of JP2017107680A publication Critical patent/JP2017107680A/en
Application granted granted Critical
Publication of JP6579440B2 publication Critical patent/JP6579440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surge protective element capable of suppressing generation of CO and a COgas due to electric discharge, and suppressing operation destabilization.SOLUTION: A surge protective element comprises an insulation tube 2, a pair of sealing electrodes 3 for sealing a discharge control gas inside the insulation tube by blocking openings at both ends of the insulation tube, and a discharge auxiliary part 4 formed of a carbon material on an inner peripheral surface of the insulation tube. The pair of sealing electrodes includes a pair of protruding electrode parts 5 protruding inward and facing to each other. CO generation blocking parts 6A and 6B containing an element easier to be combined with oxygen in comparison with carbon are formed on the inner peripheral surface of the insulation tube.SELECTED DRAWING: Figure 1

Description

本発明は、落雷等で発生するサージから様々な機器を保護し、事故を未然に防ぐのに使用するサージ防護素子に関する。   The present invention relates to a surge protection element used for protecting various devices from a surge caused by a lightning strike and preventing accidents.

電話機、ファクシミリ、モデム等の通信機器用の電子機器が通信線との接続する部分、電源線、アンテナ或いはCRT、液晶テレビおよびプラズマテレビ等の画像表示駆動回路等、雷サージや静電気等の異常電圧(サージ電圧)による電撃を受けやすい部分には、異常電圧によって電子機器やこの機器を搭載するプリント基板の熱的損傷又は発火等による破壊を防止するために、サージ防護素子が接続されている。   Abnormal voltage such as lightning surge and static electricity, etc., such as parts where electronic devices for communication equipment such as telephones, facsimiles and modems are connected to communication lines, power lines, antennas or image display drive circuits such as CRTs, liquid crystal televisions and plasma televisions A surge protection element is connected to a portion that is easily subjected to electric shock due to (surge voltage) in order to prevent damage due to thermal damage or ignition of an electronic device or a printed circuit board on which the device is mounted due to abnormal voltage.

従来、例えば特許文献1に示すように、一対の封止電極から対向状態に突出した一対の突出電極部を備え、絶縁性管の内面に放電補助部が形成されたアレスタ型のサージ防護素子が記載されている。通常、このようなサージ防護素子では、炭素材で形成された放電補助部が、一対の突出電極部の間にある中間領域に対向する絶縁性管の内面に形成されている。このような放電補助部は、一般的にはグラファイト等の導電性のイオン源材料で形成され、初期放電を助長するためのイオン源となっている。   Conventionally, as shown in Patent Document 1, for example, an arrester-type surge protection element having a pair of protruding electrode portions protruding in a facing state from a pair of sealing electrodes and having a discharge auxiliary portion formed on the inner surface of an insulating tube is provided. Have been described. Usually, in such a surge protection element, a discharge auxiliary portion made of a carbon material is formed on the inner surface of an insulating tube facing an intermediate region between a pair of protruding electrode portions. Such a discharge auxiliary portion is generally formed of a conductive ion source material such as graphite and serves as an ion source for promoting initial discharge.

実用新案登録第3151069号公報Utility Model Registration No. 3151069

上記従来の技術には、以下の課題が残されている。
従来の構造では、放電補助部が、一対の突出電極部間で生じるアーク放電時の熱及び膨張エネルギーにより損傷、昇華消失してしまい、繰り返し放電時の放電電圧が不安定(放電電圧が上昇する)になるという問題があった。さらに、放電補助部から昇華消失した炭素(C)は絶縁性管から溶融昇華したシリカ等の中の酸素(O)と結合し、CO及びCOガスを発生させ、これらが放電開始電圧を大幅に上昇させる原因となる。
特に、大電流の放電では、放電補助部の昇華消失が顕著になる傾向がある。また、放電電流が保証範囲を大幅に超えてしまうと、電極の設計を変更することが要求されると共に、安定した動作のために、サイズを大型化する、又は並列に接続するなどの対応が必要になる不都合があった。
The following problems remain in the conventional technology.
In the conventional structure, the discharge auxiliary part is damaged and sublimated by the heat and expansion energy at the time of arc discharge generated between the pair of protruding electrode parts, and the discharge voltage at the time of repeated discharge is unstable (the discharge voltage increases). ). Furthermore, carbon (C) that has sublimated and disappeared from the discharge auxiliary part combines with oxygen (O) in silica or the like melted and sublimated from the insulating tube to generate CO and CO 2 gas, which greatly increases the discharge start voltage. Cause it to rise.
In particular, in the discharge of a large current, the sublimation disappearance of the discharge auxiliary part tends to become remarkable. Also, if the discharge current greatly exceeds the guaranteed range, it is required to change the design of the electrode, and for stable operation, measures such as increasing the size or connecting in parallel are required. There was an inconvenience that was necessary.

本発明は、前述の課題に鑑みてなされたもので、放電によるCO及びCOガスの発生を抑制し、動作の不安定化を抑制することが可能なサージ防護素子を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a surge protection element capable of suppressing the generation of CO and CO 2 gas due to discharge and suppressing the instability of operation. To do.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサージ防護素子は、絶縁性管と、前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止する一対の封止電極と、前記絶縁性管の内周面に炭素材で形成された放電補助部とを備え、一対の前記封止電極が、内方に突出し互いに対向した一対の突出電極部を有し、前記絶縁性管の内周面に、炭素に比べて酸素と結合し易い元素を含有するCO生成阻害部が形成されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the surge protection element according to the first invention includes an insulating tube, a pair of sealing electrodes that closes both ends of the insulating tube and seals a discharge control gas therein, and the insulating tube. A discharge auxiliary portion formed of a carbon material on the inner peripheral surface of the insulating tube, and the pair of sealing electrodes have a pair of protruding electrode portions that protrude inward and face each other, and the inner peripheral surface of the insulating tube In addition, a CO production-inhibiting portion containing an element that is more easily bonded to oxygen than carbon is formed.

本発明のサージ防護素子では、絶縁性管の内周面に、炭素に比べて酸素と結合し易い元素を含有するCO生成阻害部が形成されているので、CO生成阻害部に含まれる前記元素が絶縁性管から昇華した酸素(O)と結合して酸素を吸収し、CO及びCOガスの発生を抑制することができる。 In the surge protection element of the present invention, the CO generation inhibition portion containing an element that is more easily bonded to oxygen than carbon is formed on the inner peripheral surface of the insulating tube. Therefore, the element included in the CO generation inhibition portion Can be combined with oxygen (O) sublimated from the insulating tube to absorb oxygen and suppress generation of CO and CO 2 gas.

第2の発明に係るサージ防護素子は、第1の発明において、前記CO生成阻害部が、前記放電補助部の近傍に形成されていることを特徴とする。
すなわち、このサージ防護素子では、CO生成阻害部が、放電補助部の近傍に形成されているので、CO生成阻害部が放電補助部の近くで絶縁性管から昇華した酸素(O)を吸収して、CO及びCOガスの発生をさらに抑制することができる。
According to a second aspect of the present invention, the surge protection element according to the first aspect is characterized in that the CO generation inhibiting portion is formed in the vicinity of the discharge assisting portion.
That is, in this surge protection element, since the CO generation inhibiting portion is formed in the vicinity of the discharge assisting portion, the CO generation inhibiting portion absorbs oxygen (O) sublimated from the insulating tube near the discharge assisting portion. Thus, generation of CO and CO 2 gas can be further suppressed.

第3の発明に係るサージ防護素子は、第1又は第2の発明において、前記CO生成阻害部が、前記絶縁性管の内周面の全周にわたって延在する環状に形成されていることを特徴とする。
すなわち、このサージ防護素子では、CO生成阻害部が、絶縁性管の内周面の全周にわたって延在する環状に形成されているので、絶縁性管の内周面の全周にわたって酸素を吸収することができる。
According to a third aspect of the present invention, the surge protection element according to the first or second aspect is configured such that the CO generation inhibiting portion is formed in an annular shape extending over the entire circumference of the inner peripheral surface of the insulating tube. Features.
That is, in this surge protection element, the CO generation inhibiting portion is formed in an annular shape extending over the entire inner peripheral surface of the insulating tube, so that oxygen is absorbed over the entire inner peripheral surface of the insulating tube. can do.

第4の発明に係るサージ防護素子は、第1から第3の発明のいずれかにおいて、前記CO生成阻害部が、酸素と結合し易い前記元素で構成された核部と、絶縁性材料で形成され前記核部を被覆する被覆膜とで構成されていることを特徴とする。
すなわち、このサージ防護素子では、CO生成阻害部が、酸素と結合し易い前記元素で構成された核部と、絶縁性材料で形成され核部を被覆する被覆膜とで構成されているので、被覆膜によって核部が保護されていることで、放電による核部の昇華消失を抑制することができ、CO生成阻害機構を維持することができる。
A surge protection element according to a fourth invention is the surge protection element according to any one of the first to third inventions, wherein the CO generation inhibiting part is formed of a core part composed of the element that easily binds to oxygen and an insulating material. And a coating film that covers the core part.
That is, in this surge protection element, the CO generation inhibiting portion is composed of a core portion made of the element that is easily bonded to oxygen and a coating film that is formed of an insulating material and covers the core portion. Since the core part is protected by the coating film, the disappearance of sublimation of the core part due to discharge can be suppressed, and the CO production inhibition mechanism can be maintained.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサージ防護素子によれば、絶縁性管の内周面に、炭素に比べて酸素と結合し易い元素を含有するCO生成阻害部が形成されているので、CO生成阻害部に含まれる前記元素が放電補助部から昇華した炭素(C)と結合して炭素を吸収し、CO及びCOガスの発生を抑制することができる。これにより繰り返し放電時の放電開始電圧の大幅な上昇を防ぐことができる。
したがって、サージ電流や放電回数が増えてもサージ防護素子性能を良好に維持することが可能になる。特に、本発明に係るサージ防護素子は、大電流サージ耐性が要求されるインフラ用(鉄道関連、再生エネルギー関連(太陽電池、風力発電等))の電源及び通信設備に好適である。
The present invention has the following effects.
That is, according to the surge protection element according to the present invention, the CO generation inhibition portion containing an element that is more easily bonded to oxygen than carbon is formed on the inner peripheral surface of the insulating tube. The element contained in the carbon can be combined with the carbon (C) sublimated from the discharge auxiliary portion to absorb the carbon and suppress the generation of CO and CO 2 gas. This can prevent a significant increase in the discharge start voltage during repeated discharge.
Therefore, even if the surge current and the number of discharges increase, it is possible to maintain the surge protection element performance satisfactorily. In particular, the surge protection element according to the present invention is suitable for power supplies and communication facilities for infrastructure (railway-related, renewable energy-related (solar cell, wind power generation, etc.)) that require high current surge resistance.

本発明に係るサージ防護素子の第1実施形態を示す軸方向の断面図である。It is sectional drawing of the axial direction which shows 1st Embodiment of the surge protection element which concerns on this invention. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG. 本発明に係るサージ防護素子の第2実施形態を示す要部の断面図である。It is sectional drawing of the principal part which shows 2nd Embodiment of the surge protection element which concerns on this invention. 図3のB−B線矢視断面図である。FIG. 4 is a cross-sectional view taken along line B-B in FIG. 3. 本発明に係るサージ防護素子の第3実施形態を示す要部の断面図である。It is sectional drawing of the principal part which shows 3rd Embodiment of the surge protection element which concerns on this invention. 本発明に係るサージ防護素子の第4実施形態を示す要部の断面図である。It is sectional drawing of the principal part which shows 4th Embodiment of the surge protection element which concerns on this invention. 第2実施形態の他の例を示す要部の断面図である。It is sectional drawing of the principal part which shows the other example of 2nd Embodiment.

以下、本発明に係るサージ防護素子の第1実施形態を、図1及び図2を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, a first embodiment of a surge protection element according to the present invention will be described with reference to FIGS. 1 and 2. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のサージ防護素子1は、図1及び図2に示すように、絶縁性管2と、絶縁性管2の両端開口部を閉塞して内部に放電制御ガスを封止する一対の封止電極3と、絶縁性管2の内周面に炭素材で形成された放電補助部4とを備えている。
一対の封止電極3は、内方に突出し互いに対向した一対の突出電極部5を有している。
また、絶縁性管2の内周面には、炭素(C)に比べて酸素(O)と結合し易い元素を含有するCO生成阻害部6A,6Bが形成されている。
As shown in FIGS. 1 and 2, the surge protection element 1 of this embodiment includes a pair of seals that close the insulating tube 2 and both ends of the insulating tube 2 and seal the discharge control gas inside. A stop electrode 3 and a discharge auxiliary portion 4 formed of a carbon material on the inner peripheral surface of the insulating tube 2 are provided.
The pair of sealing electrodes 3 has a pair of protruding electrode portions 5 that protrude inward and face each other.
In addition, CO generation inhibition portions 6A and 6B containing an element that is more easily bonded to oxygen (O) than carbon (C) are formed on the inner peripheral surface of the insulating tube 2.

上記CO生成阻害部6Aは、放電補助部4の近傍に形成されている。
すなわち、放電補助部4は、一対の突出電極部5の軸線Cに沿って直線状に形成されており、CO生成阻害部6Aは、この放電補助部4の近傍であって放電補助部4に沿って直線状に形成されている。
また、CO生成阻害部6Bは、球状、多角形状等に形成されており、絶縁性管2の内周面に分散して付着されている。
The CO generation inhibiting part 6A is formed in the vicinity of the discharge assisting part 4.
That is, the discharge auxiliary part 4 is formed in a straight line along the axis C of the pair of protruding electrode parts 5, and the CO generation inhibiting part 6 A is in the vicinity of the discharge auxiliary part 4 and is located in the discharge auxiliary part 4. It is formed linearly along.
Further, the CO production inhibiting portion 6B is formed in a spherical shape, a polygonal shape, or the like, and is dispersedly attached to the inner peripheral surface of the insulating tube 2.

CO生成阻害部6A,6Bに含有される元素は、温度と標準生成ギブズエネルギーとの関係を示すエリンガム図に基づいて、2C+O=2COの生成より安定な元素が選択される。炭素に比べて最も酸素と結合し易く安定な酸化物となる元素は、Caである。他にMg,Li,Al,Ti,Si,V,Mn,Cr(約1300℃以上)等の金属元素が採用可能である。これらの元素は、金属単体又は他の金属元素との混合物としてCO生成阻害部6A,6Bを構成する。
CO生成阻害部6A,6Bの形成方法としては、絶縁性管2の内周面に、例えば前記元素の金属粉末(Ti粉末等)を付着させたり、前記元素で形成された部材を嵌め込むなどすることでCO生成阻害部6A,6Bとしても良い。
As the elements contained in the CO production inhibiting units 6A and 6B, elements that are more stable than the production of 2C + O 2 = 2CO are selected based on the Ellingham diagram showing the relationship between the temperature and the standard production Gibbs energy. The element that is most easily bonded to oxygen and becomes a stable oxide as compared with carbon is Ca. In addition, metal elements such as Mg, Li, Al, Ti, Si, V, Mn, and Cr (about 1300 ° C. or higher) can be employed. These elements constitute the CO production inhibiting units 6A and 6B as a single metal or a mixture with other metal elements.
As a method for forming the CO generation inhibiting portions 6A and 6B, for example, metal powder (Ti powder or the like) of the element is attached to the inner peripheral surface of the insulating tube 2, or a member formed of the element is fitted. By doing so, it is good also as CO production | generation inhibition part 6A, 6B.

上記放電補助部4は、導電性材料であって、例えば炭素材で形成されている。
上記絶縁性管2は、例えばアルミナなどの結晶性セラミックス材で形成された円筒状部材である。なお、絶縁性管2は、鉛ガラス等のガラス管を採用しても構わない。
The discharge auxiliary portion 4 is a conductive material, and is formed of, for example, a carbon material.
The insulating tube 2 is a cylindrical member formed of a crystalline ceramic material such as alumina. The insulating tube 2 may be a glass tube such as lead glass.

上記封止電極3は、例えば42アロイ(Fe:58wt%、Ni:42wt%)やCu等で構成されている。
封止電極3は、絶縁性管2の両端開口部に導電性融着材(図示略)により加熱処理によって密着状態に固定されている円板状のフランジ部7を有している。このフランジ部7の内側に、内方に突出していると共に絶縁性管2の内径よりも外径の小さな円柱状の突出電極部5が一体に設けられている。
The sealing electrode 3 is made of, for example, 42 alloy (Fe: 58 wt%, Ni: 42 wt%), Cu, or the like.
The sealing electrode 3 has a disk-like flange portion 7 that is fixed in close contact by a heat treatment with a conductive adhesive (not shown) at both ends of the insulating tube 2. A cylindrical protruding electrode portion 5 that protrudes inward and has an outer diameter smaller than the inner diameter of the insulating tube 2 is integrally provided inside the flange portion 7.

上記導電性融着材は、例えばAgを含むろう材としてAg−Cuろう材で形成されている。
上記絶縁性管2内に封入される放電制御ガスは、不活性ガス等であって、例えばHe,Ar,Ne,Xe,Kr,SF,CO,C,C,CF,H,大気等及び これらの混合ガスが採用される。
The conductive fusing material is formed of, for example, an Ag—Cu brazing material as a brazing material containing Ag.
The discharge control gas sealed in the insulating tube 2 is an inert gas or the like, for example, He, Ar, Ne, Xe, Kr, SF 6 , CO 2 , C 3 F 8 , C 2 F 6 , CF 4 , H 2 , air, etc. and mixed gas thereof are used.

このサージ防護素子1では、過電圧又は過電流が侵入すると、まず放電補助部4と突出電極部5との間で初期放電が行われ、この初期放電をきっかけに、さらに放電が進展して一対のフランジ部7間又は突出電極部5間で放電が行われる。   In this surge protection element 1, when an overvoltage or overcurrent enters, an initial discharge is first performed between the discharge auxiliary portion 4 and the protruding electrode portion 5, and the discharge further develops triggered by this initial discharge. Discharge is performed between the flange portions 7 or between the protruding electrode portions 5.

このように本実施形態のサージ防護素子1では、絶縁性管2の内周面に、炭素に比べて酸素と結合し易い元素を含有するCO生成阻害部6A,6Bが形成されているので、CO生成阻害部6A,6Bに含まれる前記元素が絶縁性管2から昇華した酸素(O)と結合して酸素を吸収し、CO及びCOガスの発生を抑制することができる。
また、CO生成阻害部6A,6Bが、放電補助部4の近傍に形成されているので、CO生成阻害部6A,6Bが放電補助部4の近くで絶縁性管2から昇華した酸素(O)を吸収して、CO及びCOガスの発生をさらに抑制することができる。
As described above, in the surge protection element 1 of the present embodiment, the CO generation inhibition portions 6A and 6B containing an element that is easier to combine with oxygen than carbon are formed on the inner peripheral surface of the insulating tube 2. The elements contained in the CO production inhibiting units 6A and 6B can be combined with oxygen (O) sublimated from the insulating tube 2 to absorb oxygen and suppress generation of CO and CO 2 gas.
Further, since the CO generation inhibition units 6A and 6B are formed in the vicinity of the discharge auxiliary unit 4, the oxygen (O) sublimated from the insulating tube 2 by the CO generation inhibition units 6A and 6B in the vicinity of the discharge auxiliary unit 4. The generation of CO and CO 2 gas can be further suppressed.

次に、本発明に係るサージ防護素子の第2から第5実施形態について、図2から図6を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, second to fifth embodiments of the surge protection element according to the present invention will be described below with reference to FIGS. Note that, in the following description of the embodiment, the same components described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、CO生成阻害部6A,6Bが直線状、球状又は多角形状に形成されているのに対し、第2実施形態のサージ防護素子21では、図3及び図4に示すように、CO生成阻害部26が、絶縁性管2の内周面の全周にわたって延在する環状に形成されている点である。
なお、このCO生成阻害部26の軸線(中心線)は、絶縁性管2の軸線Cと同じである。
The difference between the second embodiment and the first embodiment is that, in the first embodiment, the CO production inhibiting portions 6A and 6B are formed in a linear shape, a spherical shape or a polygonal shape, whereas the second embodiment is different from the second embodiment. In the surge protection element 21, as shown in FIGS. 3 and 4, the CO generation inhibiting portion 26 is formed in an annular shape that extends over the entire inner peripheral surface of the insulating tube 2.
The axis (center line) of the CO production inhibiting unit 26 is the same as the axis C of the insulating tube 2.

CO生成阻害部26は、一対の突出電極部5の外周面に対向する一対の電極対向領域A1の両方に形成され、絶縁性管2の内面のうち一対の電極対向領域A2の間にある領域A2が、CO生成阻害部26が存在しない領域とされている。この領域A2にCO生成阻害部26を形成しないことにより、CO生成阻害部26がアーク放電の影響を直接受けて昇華消失することを抑制可能である。   The CO generation inhibiting portion 26 is formed in both of the pair of electrode facing regions A1 facing the outer peripheral surfaces of the pair of protruding electrode portions 5, and is a region between the pair of electrode facing regions A2 on the inner surface of the insulating tube 2. A2 is an area where the CO production inhibiting unit 26 does not exist. By not forming the CO generation inhibition part 26 in this region A2, it is possible to suppress the CO production inhibition part 26 from being directly affected by arc discharge and sublimation disappearance.

このように第2実施形態のサージ防護素子21では、CO生成阻害部26が、絶縁性管2の内周面の全周にわたって延在する環状に形成されているので、絶縁性管2の内周面の全周にわたって酸素を吸収することができる。   Thus, in the surge protection element 21 of the second embodiment, the CO generation inhibiting portion 26 is formed in an annular shape extending over the entire circumference of the inner peripheral surface of the insulating tube 2. Oxygen can be absorbed over the entire circumference.

次に、第3実施形態と第2実施形態との異なる点は、第2実施形態では、1つの電極対向領域A1内にCO生成阻害部26が1つ形成されているのに対し、第3実施形態のサージ防護素子31では、図5に示すように、1つの電極対向領域A1内にCO生成阻害部36が3つ互いに軸方向に沿った方向に間隔を空けて形成されている点である。
したがって、第3実施形態のサージ防護素子31では、CO生成阻害部36が、絶縁性管2の軸方向に沿った方向に複数形成されているので、絶縁性管2の軸方向に沿った方向において1つのCO生成阻害部36が損傷しても、他のCO生成阻害部36がCO生成阻害機能を良好に維持しており、繰り返し放電時でも安定した動作を得ることができる。
Next, the difference between the third embodiment and the second embodiment is that, in the second embodiment, one CO generation inhibiting portion 26 is formed in one electrode facing region A1, whereas the third embodiment is different from the third embodiment. In the surge protection element 31 of the embodiment, as shown in FIG. 5, three CO generation inhibition portions 36 are formed in one electrode facing region A1 with a space in the direction along the axial direction. is there.
Therefore, in the surge protection element 31 of the third embodiment, a plurality of the CO generation inhibition portions 36 are formed in the direction along the axial direction of the insulating tube 2, so the direction along the axial direction of the insulating tube 2. In this case, even if one CO production inhibiting unit 36 is damaged, other CO production inhibiting units 36 maintain the CO production inhibiting function well, and a stable operation can be obtained even during repeated discharge.

次に、第4実施形態と第1実施形態との異なる点は、CO生成阻害部6Bが、炭素に比べて酸素と結合し易い元素だけで形成されているのに対し、第4実施形態のサージ防護素子41では、図6に示すように、CO生成阻害部46が、酸素と結合し易い前記元素で構成された核部46aと、絶縁性材料で形成され核部46aを被覆する被覆膜46bとで構成されている点である。   Next, the difference between the fourth embodiment and the first embodiment is that the CO production inhibiting portion 6B is formed of only elements that are more easily bonded to oxygen than carbon, whereas the fourth embodiment is different from the fourth embodiment. In the surge protection element 41, as shown in FIG. 6, the CO generation inhibiting portion 46 is formed of a core portion 46a made of the element that easily binds to oxygen, and a coating that is formed of an insulating material and covers the core portion 46a. It is a point comprised by the film | membrane 46b.

すなわち、第4実施形態のCO生成阻害部46は、Ca,Mg,Li,Al,Ti,Si,V,Mn,Cr等の金属元素で形成された球状又は多角形状等の核部46aと、核部46aを被覆するセラミックス等の絶縁性材料で形成された被覆膜46bとで形成された複合体となっている。例えば、TiO,SiO,Al等の被覆膜46bでTi等の核部46aが被覆されている。
なお、CO生成阻害部として、上記複合体に、被覆膜46bで覆われていない核部46aを混合したものを採用しても構わない。
That is, the CO production inhibiting part 46 of the fourth embodiment includes a core part 46a having a spherical or polygonal shape formed of a metal element such as Ca, Mg, Li, Al, Ti, Si, V, Mn, Cr, It is a composite formed of a coating film 46b formed of an insulating material such as ceramics that covers the core 46a. For example, the core 46a made of Ti or the like is covered with a coating film 46b made of TiO 2 , SiO 2 , Al 2 O 3 or the like.
In addition, you may employ | adopt what mixed the nucleus 46a which is not covered with the coating film 46b in the said composite_body | complex as a CO production | generation inhibition part.

したがって、第4実施形態のサージ防護素子41では、CO生成阻害部46が、酸素と結合し易い前記元素で構成された核部46aと、絶縁性材料で形成され核部46aを被覆する被覆膜46bとで構成されているので、被覆膜46bによって核部46aが保護されていることで、放電による核部46aの昇華消失を抑制することができ、CO生成阻害機構を維持することができる。なお、アーク放電によって被覆膜46bの少なくとも一部が消失することで、核部46aが露出し、酸素を吸収することができる。   Therefore, in the surge protection element 41 of the fourth embodiment, the CO generation inhibiting portion 46 includes a core portion 46a made of the element that easily binds to oxygen and a coating that is formed of an insulating material and covers the core portion 46a. Since the core portion 46a is protected by the coating film 46b, the sublimation disappearance of the core portion 46a due to discharge can be suppressed, and the CO production inhibition mechanism can be maintained. it can. Note that at least part of the coating film 46b disappears due to arc discharge, so that the core 46a is exposed and oxygen can be absorbed.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、第2実施形態のように、一対の電極対向領域A1内にそれぞれCO生成阻害部26を形成することが好ましいが、他の例として、図7に示すように、一対の電極対向領域A1のうち一方のみにCO生成阻害部26を形成したサージ防護素子51としても構わない。   For example, as in the second embodiment, it is preferable to form the CO generation inhibiting portion 26 in each of the pair of electrode facing regions A1, but as another example, as shown in FIG. 7, the pair of electrode facing regions A1 Of these, the surge protection element 51 in which the CO generation inhibiting portion 26 is formed only on one side may be used.

1,21,31,41,51…サージ防護素子、2…絶縁性管、3…封止電極、4…放電補助部、5…突出電極部、6A,6B,26,36,46…CO生成阻害部、46a…核部、46b…被覆膜   1, 21, 31, 41, 51 ... surge protection element, 2 ... insulating tube, 3 ... sealing electrode, 4 ... discharge auxiliary part, 5 ... protruding electrode part, 6A, 6B, 26, 36, 46 ... CO generation Inhibition part, 46a ... core part, 46b ... coating film

Claims (4)

絶縁性管と、
前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止する一対の封止電極と、
前記絶縁性管の内周面に炭素材で形成された放電補助部とを備え、
一対の前記封止電極が、内方に突出し互いに対向した一対の突出電極部を有し、
前記絶縁性管の内周面に、炭素に比べて酸素と結合し易い元素を含有するCO生成阻害部が形成されていることを特徴とするサージ防護素子。
An insulating tube;
A pair of sealing electrodes for closing the opening at both ends of the insulating tube and sealing the discharge control gas inside;
A discharge auxiliary portion formed of a carbon material on the inner peripheral surface of the insulating tube;
The pair of sealing electrodes has a pair of protruding electrode portions protruding inward and facing each other,
A surge protection element characterized in that a CO generation inhibiting portion containing an element that is more easily bonded to oxygen than carbon is formed on the inner peripheral surface of the insulating tube.
請求項1に記載のサージ防護素子において、
前記CO生成阻害部が、前記放電補助部の近傍に形成されていることを特徴とするサージ防護素子。
The surge protection element according to claim 1,
The surge protection element, wherein the CO generation inhibiting portion is formed in the vicinity of the discharge assisting portion.
請求項1又は2に記載のサージ防護素子において、
前記CO生成阻害部が、前記絶縁性管の内周面の全周にわたって延在する環状に形成されていることを特徴とするサージ防護素子。
The surge protection element according to claim 1 or 2,
The surge protection element, wherein the CO generation inhibiting portion is formed in an annular shape extending over the entire circumference of the inner peripheral surface of the insulating tube.
請求項1から3のいずれか一項に記載のサージ防護素子において、
前記CO生成阻害部が、酸素と結合し易い前記元素で構成された核部と、絶縁性材料で形成され前記核部を被覆する被覆膜とで構成されていることを特徴とするサージ防護素子。
In the surge protection element according to any one of claims 1 to 3,
Surge protection characterized in that the CO production inhibiting part is composed of a core part made of the element that is easily bonded to oxygen and a coating film that is made of an insulating material and covers the core part. element.
JP2015239109A 2015-12-08 2015-12-08 Surge protective element Expired - Fee Related JP6579440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015239109A JP6579440B2 (en) 2015-12-08 2015-12-08 Surge protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015239109A JP6579440B2 (en) 2015-12-08 2015-12-08 Surge protective element

Publications (2)

Publication Number Publication Date
JP2017107680A true JP2017107680A (en) 2017-06-15
JP6579440B2 JP6579440B2 (en) 2019-09-25

Family

ID=59059784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239109A Expired - Fee Related JP6579440B2 (en) 2015-12-08 2015-12-08 Surge protective element

Country Status (1)

Country Link
JP (1) JP6579440B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257779A (en) * 1990-03-07 1991-11-18 Okaya Electric Ind Co Ltd Discharge type surge absorbing element
JPH0729667A (en) * 1993-07-08 1995-01-31 Mitsubishi Materials Corp Discharge type surge absorber and its manufacture
JP2006024422A (en) * 2004-07-07 2006-01-26 Okaya Electric Ind Co Ltd Discharge tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257779A (en) * 1990-03-07 1991-11-18 Okaya Electric Ind Co Ltd Discharge type surge absorbing element
JPH0729667A (en) * 1993-07-08 1995-01-31 Mitsubishi Materials Corp Discharge type surge absorber and its manufacture
JP2006024422A (en) * 2004-07-07 2006-01-26 Okaya Electric Ind Co Ltd Discharge tube

Also Published As

Publication number Publication date
JP6579440B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2017187832A1 (en) Surge protection element
WO2017187839A1 (en) Surge protection element
JP6579440B2 (en) Surge protective element
JP2017098097A (en) Surge protective element
JP6590208B2 (en) Surge protective element
JP6646873B2 (en) Surge protection element
CN108141012B (en) Surge protection element
JP7161144B2 (en) surge protective element
JP6669986B2 (en) Surge protection element
JP6745055B2 (en) Surge protection element
JP6646868B2 (en) Surge protection element
JP6562261B2 (en) Surge protective element
JP6795783B2 (en) Surge protection element
JP2019216108A (en) Surge protection element
JP6658433B2 (en) Surge protection element
JP6668720B2 (en) Surge protection element
JP2024039224A (en) Surge protective element
JP2017098096A (en) Surge protective element
JP2018156800A (en) Surge protective element
JP2017168293A (en) Surge protective element
JP2017168197A (en) Surge protective element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190815

R150 Certificate of patent or registration of utility model

Ref document number: 6579440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees