JP2017105676A - Manufacturing method of single crystal, and manufacturing apparatus of single crystal - Google Patents

Manufacturing method of single crystal, and manufacturing apparatus of single crystal Download PDF

Info

Publication number
JP2017105676A
JP2017105676A JP2015241372A JP2015241372A JP2017105676A JP 2017105676 A JP2017105676 A JP 2017105676A JP 2015241372 A JP2015241372 A JP 2015241372A JP 2015241372 A JP2015241372 A JP 2015241372A JP 2017105676 A JP2017105676 A JP 2017105676A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating member
single crystal
crucible
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015241372A
Other languages
Japanese (ja)
Other versions
JP6584007B2 (en
Inventor
佑 高橋
Yu Takahashi
佑 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015241372A priority Critical patent/JP6584007B2/en
Publication of JP2017105676A publication Critical patent/JP2017105676A/en
Application granted granted Critical
Publication of JP6584007B2 publication Critical patent/JP6584007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a single crystal capable of controlling a growth shape of a single crystal by adjusting a temperature distribution in the radial direction of a seed crystal and the single crystal growing thereon during crystal growth.SOLUTION: In a manufacturing method of a single crystal, a seed crystal is disposed on a lid part of a crucible composed of a crucible body and the lid part, while a raw material is housed in the lower part of the crucible body. A raw material gas produced by subliming the raw material is supplied to develop the single crystal on the seed crystal. An insulation member divided into a plurality of pieces of the insulation member is disposed on the top face of the lid part. A part of a plurality of the pieces of the insulation member is moved in the vertical direction to adjust a temperature distribution in the radius direction in the crucible during crystal growth.SELECTED DRAWING: Figure 2

Description

本発明は、単結晶の製造方法および単結晶製造装置に関する。   The present invention relates to a single crystal manufacturing method and a single crystal manufacturing apparatus.

炭化珪素は高い耐熱性、大きな絶縁破壊電圧、広いエネルギーバンドギャップ、そして、高い熱伝導度等優れた性能を有するため、高周波半導体デバイス、高耐温半導体素子への応用が可能である。現在はシリコンを使用したデバイスや素子が主流となっているが、物性限界から性能向上にも限界が近づきつつあり、シリコンよりも優れた物性限界を持つ炭化珪素への期待は近年高まり続けている。最近では地球温暖化問題への対策として、各種電力変換時のエネルギーロスを低減する省エネルギー技術として、炭化珪素を用いたパワーエレクトロニクス技術への注目が高まっている。   Since silicon carbide has excellent performance such as high heat resistance, large breakdown voltage, wide energy band gap, and high thermal conductivity, it can be applied to high frequency semiconductor devices and high temperature resistant semiconductor elements. Currently, devices and elements using silicon have become the mainstream, but the limits to the improvement in performance are approaching from the physical properties limit, and expectations for silicon carbide with physical properties superior to silicon have been increasing in recent years. . Recently, attention has been focused on power electronics technology using silicon carbide as an energy-saving technology for reducing energy loss during various power conversions as a countermeasure to the global warming problem.

従来、炭化珪素を含む種結晶及び昇華用原料より、炭化珪素単結晶(以下、適宜「単結晶」と略称する)を製造する炭化珪素単結晶の製造方法として、昇華再結晶法が知られている。
この昇華再結晶法は、昇華用原料を2000℃以上に加熱することで、原料を昇華させて昇華ガスを発生させ、その昇華ガスを原料収容部よりも数10〜数100℃低温にした種結晶へ供給することにより、この種結晶から炭化珪素の単結晶を成長させる方法である。
Conventionally, a sublimation recrystallization method has been known as a method for producing a silicon carbide single crystal for producing a silicon carbide single crystal (hereinafter referred to as “single crystal” as appropriate) from a seed crystal containing silicon carbide and a raw material for sublimation. Yes.
In this sublimation recrystallization method, a raw material for sublimation is heated to 2000 ° C. or higher to sublimate the raw material to generate a sublimation gas, and the sublimation gas is cooled to a temperature several tens to several hundreds of degrees lower than the raw material container. This is a method of growing a silicon carbide single crystal from this seed crystal by supplying it to the crystal.

昇華再結晶法を利用して炭化珪素単結晶を成長させる際に、種結晶あるいは炭化珪素単結晶 (以下、適宜「インゴット」と略称する)の成長速度はそれらの温度が昇華用原料の温度との差の大きさにより変化し、その差が大きければ成長速度は増大し、逆に小さければ低下することが知られている (例えば、特許文献1参照) 。   When a silicon carbide single crystal is grown using the sublimation recrystallization method, the growth rate of a seed crystal or a silicon carbide single crystal (hereinafter, abbreviated as “ingot” as appropriate) depends on the temperature of the sublimation raw material. It is known that the growth rate increases if the difference is large, and decreases if the difference is small (see, for example, Patent Document 1).

また、昇華再結晶法を利用して製造した炭化珪素単結晶において、結晶成長におけるインゴットにおいて、結晶成長中あるいは成長終了時におけるインゴット形状は、インゴットの残留応力に対して影響を与えることが知られており、例えばインゴットの成長表面において、インゴット中央部が他の部分と比較して大きく成長する凸型成長の場合、成長後のインゴット内残留応力が大きくなり、加工時にインゴット割れが誘発されたり、歪が多くなることが知られている (例えば、特許文献2参照) 。   In addition, in silicon carbide single crystals manufactured using the sublimation recrystallization method, it is known that the shape of the ingot during or at the end of growth affects the residual stress of the ingot in crystal growth ingots. For example, in the case of convex growth in which the central part of the ingot grows larger than other parts on the growth surface of the ingot, the residual stress in the ingot after growth becomes large, and ingot cracking is induced during processing, It is known that distortion increases (see, for example, Patent Document 2).

特開2014−5159号公報JP 2014-5159 A 特開2011−219294号公報JP 2011-219294 A

炭化珪素インゴットの成長形状は、結晶成長時のインゴットの温度分布に依存する。炭化珪素インゴットの成長形状は割れや歪といった不良だけではなく、インゴットから取得する基板の品質にも影響を与える。   The growth shape of the silicon carbide ingot depends on the temperature distribution of the ingot during crystal growth. The growth shape of the silicon carbide ingot affects not only defects such as cracks and distortions, but also the quality of the substrate obtained from the ingot.

例えば、インゴットの中心部が他の部分に比べて成長量が大きい凸型成長であれば、インゴット内部の残留応力が大きいことに起因してインゴット割れが発生し、加工歩留りの低下を招く。インゴット形状としては各部の成長量の差が小さい形状が好まれる。そのため、形状をコントロールしながら結晶成長させることが望ましい。   For example, if the center of the ingot is convex growth with a larger growth amount than other parts, ingot cracking occurs due to the large residual stress inside the ingot, resulting in a decrease in the processing yield. As the ingot shape, a shape having a small difference in the growth amount of each part is preferred. Therefore, it is desirable to grow the crystal while controlling the shape.

また、結晶成長においては、径の拡大や成長量の増加に伴い形状調整が困難になる傾向があるため、緻密な形状調整方法が求められている。   In crystal growth, shape adjustment tends to become difficult as the diameter increases and the amount of growth increases, so a precise shape adjustment method is required.

本発明は、上記事情を鑑みてなされたものであり、結晶成長中に種結晶やその上に成長した単結晶の径方向の温度分布を調整して単結晶の成長形状を制御できる単結晶の製造方法および単結晶製造装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the growth of a single crystal can be controlled by adjusting the temperature distribution in the radial direction of the seed crystal and the single crystal grown on the seed crystal during crystal growth. An object is to provide a manufacturing method and a single crystal manufacturing apparatus.

本発明は、上記課題を解決するために、以下の手段を提供する。   The present invention provides the following means in order to solve the above problems.

(1)本発明の一態様に係る単結晶の製造方法は、坩堝本体と蓋部とからなる坩堝内で、蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶の製造方法において、前記蓋部の上面に複数の断熱部材片に分割された構造を有する断熱部材を配置し、結晶成長中に前記複数の断熱部材片のうちの一部を垂直方向に移動させることにより坩堝内の温度分布を調整して単結晶の結晶成長を行うことを特徴とする。 (1) In the method for producing a single crystal according to one aspect of the present invention, a seed crystal is disposed in a lid part in a crucible composed of a crucible body and a lid part, and a raw material is accommodated in a lower part of the crucible body. In the method for producing a single crystal in which a raw material gas is supplied by sublimating and growing a single crystal on the seed crystal, a heat insulating member having a structure divided into a plurality of heat insulating member pieces is disposed on the upper surface of the lid portion. The crystal growth of the single crystal is performed by adjusting the temperature distribution in the crucible by moving a part of the plurality of heat insulating member pieces in the vertical direction during the crystal growth.

(2)上記(1)に記載の単結晶の製造方法において、結晶成長中に前記複数の断熱部材片のうちの一部を脱着させてもよい。 (2) In the method for producing a single crystal described in (1) above, some of the plurality of heat insulating member pieces may be detached during crystal growth.

(3)本発明の一態様に係る単結晶製造装置は、坩堝本体と蓋部とからなる坩堝内で、前記蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶製造装置であって、前記蓋部の上面に配置された断熱部材を備え、該断熱部材が複数の断熱部材片に分割された構造を有し、前記複数の断熱部材片のうちの少なくとも一部は垂直方向に移動可能であることを特徴とする。 (3) A single crystal manufacturing apparatus according to an aspect of the present invention includes a crucible composed of a crucible body and a lid, wherein a seed crystal is disposed in the lid, the raw material is accommodated in a lower portion of the crucible body, and the raw material Is a single crystal manufacturing apparatus for growing a single crystal on the seed crystal by supplying a raw material gas, comprising a heat insulating member disposed on an upper surface of the lid, wherein the heat insulating member includes a plurality of heat insulating members It has a structure divided into pieces, and at least a part of the plurality of heat insulating member pieces is movable in the vertical direction.

(4)上記(3)に記載の単結晶製造装置において、前記断熱部材は平面視で円形であり、前記分割は前記円形の中心軸に対して軸対称になされていてもよい。 (4) In the single crystal manufacturing apparatus according to (3), the heat insulating member may be circular in a plan view, and the division may be axisymmetric with respect to the central axis of the circle.

(5)上記(3)または(4)のいずれかに記載の単結晶製造装置において、前記複数の断熱部材片のうちの一つは、前記円形の中心を含み、中心軸に対して軸対称な形状を有してもよい。 (5) In the single crystal manufacturing apparatus according to any one of (3) and (4), one of the plurality of heat insulating member pieces includes the circular center, and is axially symmetric with respect to a central axis. It may have various shapes.

(6)上記(3)〜(5)のいずれか一つに記載の単結晶製造装置において、前記分割のうちの一部は、円形の中心から放射状に延びる分割線に沿ってなされていてもよい。 (6) In the single crystal manufacturing apparatus according to any one of (3) to (5), a part of the division may be made along a dividing line extending radially from a circular center. Good.

(7)上記(3)〜(6)のいずれか一つに記載の単結晶製造装置において、前記断熱部材は、カーボンを主原料とするカーボン成形材、ポーラスカーボン、またはグラッシーカーボンのいずれかからなってもよい。 (7) In the single-crystal manufacturing apparatus according to any one of (3) to (6), the heat insulating member is made of any one of a carbon molding material, porous carbon, and glassy carbon whose main material is carbon. It may be.

本発明の単結晶の製造方法によれば、結晶成長中に種結晶やその上に成長した単結晶の径方向の温度分布を調整して単結晶の成長形状を制御できる。   According to the method for producing a single crystal of the present invention, the growth shape of the single crystal can be controlled by adjusting the temperature distribution in the radial direction of the seed crystal and the single crystal grown on the seed crystal during the crystal growth.

本発明の単結晶製造装置によれば、結晶成長中に種結晶やその上に成長した単結晶の径方向の温度分布を調整して単結晶の成長形状を制御できる。   According to the single crystal manufacturing apparatus of the present invention, the growth shape of a single crystal can be controlled by adjusting the temperature distribution in the radial direction of the seed crystal and the single crystal grown on the seed crystal during crystal growth.

本発明の第1の実施形態に係る単結晶製造装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the single-crystal manufacturing apparatus which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る断熱部材を示す平面模式図である。It is a plane schematic diagram which shows the heat insulation member which concerns on 1st Embodiment. 第2の実施形態に係る断熱部材を示す平面模式図である。It is a plane schematic diagram which shows the heat insulation member which concerns on 2nd Embodiment. 第3の実施形態に係る断熱部材を示す平面模式図である。It is a plane schematic diagram which shows the heat insulation member which concerns on 3rd Embodiment. 第4の実施形態に係る断熱部材を示す平面模式図である。It is a plane schematic diagram which shows the heat insulation member which concerns on 4th Embodiment. 第5の実施形態に係る断熱部材を示す平面模式図である。It is a plane schematic diagram which shows the heat insulation member which concerns on 5th Embodiment. 第6の実施形態に係る断熱部材を示す平面模式図である。It is a plane schematic diagram which shows the heat insulation member which concerns on 6th Embodiment. 炭化珪素単結晶の形状調整方法の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the shape adjustment method of a silicon carbide single crystal. 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the other example of the shape adjustment method of a silicon carbide single crystal. 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the other example of the shape adjustment method of a silicon carbide single crystal. 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the other example of the shape adjustment method of a silicon carbide single crystal. 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the other example of the shape adjustment method of a silicon carbide single crystal. 断熱部材片の取り外し構造の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the removal structure of a heat insulation member piece.

以下、本発明の実施形態について図を用いて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には図中、同一符号を付してある場合がある。また、以下の説明で用いる図面は、特徴を分かりやすくするため便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。一つの実施形態で示した構成を他の実施形態に適用することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts may be given the same reference numerals in the drawings. In addition, in the drawings used in the following description, in order to make the characteristics easy to understand, the characteristic parts may be shown in an enlarged manner for convenience, and the dimensional ratios of the respective constituent elements are not always the same as the actual ones. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited thereto, and can be implemented with appropriate modifications within the scope of the effects of the present invention. . The configuration shown in one embodiment can also be applied to other embodiments.

本発明は、昇華再結晶法、CVD法等の気相成長法に適用できるが、以下では一例として昇華再結晶法を用いた場合を例にあげて説明する。また、炭化珪素の単結晶を製造する場合を例に説明するが、本発明の単結晶の製造方法および単結晶製造装置は、炭化珪素に限らず、他の材料についても適用できる。   The present invention can be applied to a vapor phase growth method such as a sublimation recrystallization method and a CVD method. Hereinafter, a case where the sublimation recrystallization method is used will be described as an example. Moreover, although the case where a silicon carbide single crystal is manufactured will be described as an example, the method for manufacturing a single crystal and the single crystal manufacturing apparatus of the present invention are not limited to silicon carbide but can be applied to other materials.

〔単結晶製造装置(第1の実施形態)〕
図1および図2を参照して、本発明の第1の実施形態を適用した単結晶製造装置の構造について説明する。
図1は、本発明の第1の実施形態に係る単結晶製造装置を示す断面模式図であって、種結晶上に単結晶を成長させる前の段階のものである。この図では坩堝の蓋部の上面に設置した断熱部材の脱着は行われていない。
[Single crystal manufacturing apparatus (first embodiment)]
With reference to FIGS. 1 and 2, the structure of a single crystal manufacturing apparatus to which the first embodiment of the present invention is applied will be described.
FIG. 1 is a schematic cross-sectional view showing a single crystal manufacturing apparatus according to a first embodiment of the present invention, which is a stage before a single crystal is grown on a seed crystal. In this figure, the heat insulating member installed on the upper surface of the crucible lid is not removed.

図1に示す単結晶製造装置100は、坩堝本体1aと蓋部1bとからなる坩堝1と、蓋部1aの外側(上面)に配置された断熱部材2と、を備え、坩堝1内で、前記蓋部1bに種結晶Wを配置し、坩堝1内の下部に原料3を収容し、該原料3を昇華させて原料ガスを供給し、前記種結晶W上に単結晶を成長させる単結晶製造装置であって、断熱部材2が複数の断熱部材片2A〜2E(図2参照)に分割された構造を有し、前記複数の断熱部材片の少なくとも一部は垂直方向に移動可能である。   A single crystal manufacturing apparatus 100 shown in FIG. 1 includes a crucible 1 composed of a crucible body 1a and a lid portion 1b, and a heat insulating member 2 disposed on the outer side (upper surface) of the lid portion 1a. A single crystal in which a seed crystal W is arranged on the lid 1b, a raw material 3 is accommodated in the lower part of the crucible 1, a raw material gas is supplied by sublimating the raw material 3, and a single crystal is grown on the seed crystal W It is a manufacturing apparatus, Comprising: The heat insulation member 2 has the structure divided | segmented into several heat insulation member piece 2A-2E (refer FIG. 2), At least one part of these heat insulation member pieces is movable to a perpendicular direction. .

単結晶製造装置100はさらに、坩堝1を収容する成長容器4と、成長容器4の外側面を取り囲むように配置する加熱手段5と、蓋部1bの外側に配置された断熱部材2とは別に、断熱部材2で覆われている以外の坩堝1の外面を取り囲むように配置する断熱部材22と、を備える。   The single crystal manufacturing apparatus 100 further includes a growth vessel 4 that accommodates the crucible 1, heating means 5 that is arranged so as to surround the outer surface of the growth vessel 4, and a heat insulating member 2 that is arranged outside the lid portion 1b. The heat insulating member 22 is disposed so as to surround the outer surface of the crucible 1 other than being covered with the heat insulating member 2.

成長容器4は、坩堝1や断熱部材2等を収容する収容部4aを有し、その収容部4aに導入管6aと排気管6bが接続されている。導入管6aと排気管6bにより、任意のガスを収容部4aに導入・排気することができる。また、排気管6bには、ターボ分子ポンプなど真空ポンプ(図示略)が取り付けられており、排気管6bから排気して収容部4aを高真空の状態にすることができる。例えば、排気管6bから内部の空気を排気して減圧状態とした後、高純度のアルゴン(Ar)ガスを導入管6aから収容部4aに供給し、再び減圧状態とすることにより、収容部4aをアルゴン(Ar)雰囲気の減圧状態とすることができる。
なお、成長容器4の内部に導入するガスは、アルゴン(Ar)やヘリウム(He)などの不活性ガスまたは水素(H)ガスが好ましい。これらのガスは、炭化珪素と特別な反応を起こさず、また、冷却材としての効果もあるからである。
The growth container 4 has a housing part 4a for housing the crucible 1, the heat insulating member 2, and the like, and an introduction pipe 6a and an exhaust pipe 6b are connected to the housing part 4a. Arbitrary gas can be introduce | transduced into the accommodating part 4a and exhausted with the introduction pipe | tube 6a and the exhaust pipe 6b. Further, a vacuum pump (not shown) such as a turbo molecular pump is attached to the exhaust pipe 6b, and the container 4a can be brought into a high vacuum state by exhausting from the exhaust pipe 6b. For example, after exhausting the internal air from the exhaust pipe 6b to a reduced pressure state, high purity argon (Ar) gas is supplied from the introduction pipe 6a to the storage portion 4a, and the reduced pressure state is set again. Can be under reduced pressure in an argon (Ar) atmosphere.
The gas introduced into the growth vessel 4 is preferably an inert gas such as argon (Ar) or helium (He) or hydrogen (H 2 ) gas. This is because these gases do not cause a special reaction with silicon carbide and also have an effect as a coolant.

加熱手段5としては例えば、高周波加熱コイルを用いることができる。この場合、電流を流すことにより高周波を発生させて、坩堝1が例えば、黒鉛製からなるものであれば、誘導加熱によって坩堝1を加熱することができる。   For example, a high-frequency heating coil can be used as the heating means 5. In this case, if a crucible 1 is made of, for example, graphite by generating a high frequency by passing an electric current, the crucible 1 can be heated by induction heating.

坩堝1は分割された坩堝本体1aと蓋部1bとからなるが、坩堝本体1aおよび蓋部1bはそれぞれさらに分割されていてもよい。また、坩堝本体1aと蓋部1bとは、原料が収容される側と種結晶が配置される側とに2つに分割された部分との意であって、坩堝全体にそれぞれが占める割合は各部の機能を発揮できる限り、任意である。   The crucible 1 is composed of a divided crucible body 1a and a lid 1b, but the crucible body 1a and the lid 1b may be further divided. Further, the crucible body 1a and the lid 1b are a part divided into two parts, that is, the side where the raw material is stored and the side where the seed crystal is arranged, and the proportion of each of the whole crucible is As long as the function of each part can be exhibited, it is arbitrary.

坩堝1の内部には内部空間10を有する。内部空間10内の上部においては、炭化珪素種結晶Wが台座(図示略)に取り付けられる。また、坩堝本体1a(内部空間10)内の下部には、炭化珪素種結晶W上に炭化珪素単結晶を結晶成長させるのに十分な量の炭化珪素原料粉末3が充填される。   The crucible 1 has an internal space 10 inside. In the upper part in internal space 10, silicon carbide seed crystal W is attached to a pedestal (not shown). In addition, a lower portion in crucible body 1a (internal space 10) is filled with a sufficient amount of silicon carbide raw material powder 3 for crystal growth of a silicon carbide single crystal on silicon carbide seed crystal W.

坩堝1の材料としては、高温において安定で、かつ不純物ガスの発生の少ない材料を用いることが好ましい。具体的には例えば、黒鉛(グラファイト)、炭化珪素、及び炭化珪素もしくはタンタルカーバイド(TaC)により被覆された黒鉛(グラファイト)等を用いることが好ましい。   As a material for the crucible 1, it is preferable to use a material that is stable at high temperatures and generates little impurity gas. Specifically, for example, graphite (graphite), silicon carbide, and graphite (graphite) coated with silicon carbide or tantalum carbide (TaC) are preferably used.

台座は炭化珪素種結晶Wを取り付ける部分であり、蓋部1bの内面に下方に突出するように構成されている。図示する台座は蓋部2bと一体の部材として一つの材料で形成されているが、蓋部1bと別個の部材であってもよい。   The pedestal is a portion to which the silicon carbide seed crystal W is attached, and is configured to protrude downward on the inner surface of the lid portion 1b. The illustrated pedestal is formed of a single material as a member integral with the lid 2b, but may be a separate member from the lid 1b.

断熱部材2および断熱部材22は、これらの断熱部材で坩堝2全体を覆うように設置されている。断熱部材2および断熱部材22は坩堝に密接して配置されることが好ましい。
断熱部材2および断熱部材22は、坩堝1を安定的に高温状態に維持するためのものであり、坩堝1を必要な程度に安定的に高温状態に維持するよう、断熱部材2および断熱部材22は適宜、厚さや熱伝導率を調整した材料を用いることができ、例えば、炭素繊維製の材料、黒鉛(グラファイト)などを用いることができる。
断熱部材2は、蓋部2bの上部表面の一部が露出するように孔部2aを有する。また、断熱部材22は坩堝本体2aの底部表面の一部が露出するように孔部22aを有する。これらの孔部は放射温度計8a、8bによって坩堝の温度を計測し、制御するためのものである。
The heat insulating member 2 and the heat insulating member 22 are installed so as to cover the entire crucible 2 with these heat insulating members. The heat insulating member 2 and the heat insulating member 22 are preferably disposed in close contact with the crucible.
The heat insulating member 2 and the heat insulating member 22 are for stably maintaining the crucible 1 at a high temperature, and the heat insulating member 2 and the heat insulating member 22 are stably maintained at a high temperature as necessary. Can be appropriately used a material whose thickness and thermal conductivity are adjusted, for example, a carbon fiber material, graphite or the like.
The heat insulating member 2 has a hole 2a so that a part of the upper surface of the lid 2b is exposed. The heat insulating member 22 has a hole 22a so that a part of the bottom surface of the crucible body 2a is exposed. These holes are for measuring and controlling the temperature of the crucible with the radiation thermometers 8a and 8b.

断熱部材2は、その外形が蓋部2bの上面の外形と相似形であることが好ましい。また、断熱部材2は、蓋部2bの上面を完全に覆うことが好ましい。   It is preferable that the outer shape of the heat insulating member 2 is similar to the outer shape of the upper surface of the lid portion 2b. Moreover, it is preferable that the heat insulation member 2 completely covers the upper surface of the lid 2b.

断熱部材2は複数の断熱部材片に分割された構造を有する。すなわち、断熱部材2は、別個の部材である複数の断熱部材片からなるものであり、複数の断熱部材片を断熱部材の所定の形状(例えば、円形)を有するように集結することで断熱部材をなすものである。隣接する断熱部材片同士は隙間なく密接して配置されているのが好ましいが、断熱部材としての役割を発揮できる範囲で離間して配置する構成であってもよい。また、隣接する断熱部材片同士は結晶成長中に各断熱部材片を垂直方向に移動可能な構成であれば、単に隣接して配置された構成でも、移動前には接着剤等で互いに接合された構成等でもよい。また、隣接する断熱部材片同士は、互いに嵌めこむ構成であったり、または、連結部材で連結されていてもよい。ここで、「垂直方向」とは、坩堝の蓋部の上面に対して直交する方向(坩堝の蓋部と坩堝本体とを結ぶ方向に平行な方向)の意である。なお、「垂直方向に移動可能な構成」とは、垂直方向以外の移動を排除する意味ではなく、蓋部の上面に断熱部材は配置するので蓋部の上面から離間させるために少なくとも垂直方向に移動させる工程を含む構成との意である。
断熱部材2は、複数の断熱部材片の少なくとも一部が垂直方向に移動可能であり、結晶成長中に複数の断熱部材片の一部を垂直方向に移動させることにより坩堝内の径方向の温度分布を調整することができる。坩堝内の径方向の温度分布を調整することで、結晶の成長面の径方向の温度分布を調整する。
断熱部材2を構成する複数の断熱部材片はそれぞれ、断熱部材2から脱着すなわち、取り外すことができる。断熱部材片を断熱部材2から脱着させるとは、断熱部材2を構成する他の断熱部材片から離間させることをいう。結晶成長中に複数の断熱部材片のうちの一部を脱着させることにより、坩堝内の径方向の温度分布を調整することができる。また、結晶成長中に脱着した断熱部材片を元の断熱部材の位置に戻すこともできる。すなわち、複数の断熱部材片は着脱(取り外したり、取り付けたり(元に戻したり))することができる。また、断熱部材片を断熱部材から完全に取り外すように脱着することもできるし、断熱部材片の一部が断熱部材に残るような位置までずらす(図12参照)こともできる。すなわち、断熱部材片の蓋部の上面からの距離を調整することができる。このように、断熱部材片の蓋部の上面からの距離を調整することにより、径方向の温度分布の調整をより精密に行うことができる。
The heat insulating member 2 has a structure divided into a plurality of heat insulating member pieces. That is, the heat insulating member 2 is composed of a plurality of heat insulating member pieces which are separate members, and the heat insulating member is assembled by concentrating the plurality of heat insulating member pieces so as to have a predetermined shape (for example, a circle) of the heat insulating member. It is what makes. It is preferable that the adjacent heat insulating member pieces are arranged closely without gaps, but may be configured so as to be separated from each other as long as the role as a heat insulating member can be exhibited. In addition, adjacent heat insulating member pieces can be joined to each other with an adhesive or the like before moving, as long as each heat insulating member piece can be moved in the vertical direction during crystal growth. The structure etc. may be sufficient. Moreover, the adjacent heat insulation member pieces may be configured to be fitted to each other, or may be connected by a connecting member. Here, the “vertical direction” means a direction perpendicular to the upper surface of the crucible lid (a direction parallel to the direction connecting the crucible lid and the crucible body). Note that “a configuration movable in the vertical direction” does not mean that movement other than the vertical direction is excluded, and since the heat insulating member is disposed on the upper surface of the lid portion, at least in the vertical direction to be separated from the upper surface of the lid portion. It is the structure including the process to move.
In the heat insulating member 2, at least a part of the plurality of heat insulating member pieces is movable in the vertical direction, and the temperature in the radial direction in the crucible is moved by moving a part of the plurality of heat insulating member pieces in the vertical direction during crystal growth. The distribution can be adjusted. The temperature distribution in the radial direction of the crystal growth surface is adjusted by adjusting the temperature distribution in the radial direction in the crucible.
Each of the plurality of heat insulating member pieces constituting the heat insulating member 2 can be detached from the heat insulating member 2, that is, removed. To remove the heat insulating member piece from the heat insulating member 2 means to separate the heat insulating member piece from other heat insulating member pieces constituting the heat insulating member 2. The temperature distribution in the radial direction in the crucible can be adjusted by detaching some of the plurality of heat insulating member pieces during crystal growth. Moreover, the heat insulating member piece desorbed during crystal growth can be returned to the original position of the heat insulating member. That is, the plurality of heat insulating member pieces can be attached and detached (removed, attached (returned to the original)). Moreover, it can also remove | desorb so that a heat insulation member piece may be completely removed from a heat insulation member, and it can also shift to the position where a part of heat insulation member piece remains in a heat insulation member (refer FIG. 12). That is, the distance from the upper surface of the lid portion of the heat insulating member piece can be adjusted. Thus, by adjusting the distance from the upper surface of the lid portion of the heat insulating member piece, the temperature distribution in the radial direction can be adjusted more precisely.

図2に、第1の実施形態に係る断熱部材の平面模式図を示す。
図2に示す断熱部材2は全体として平面視で円形であり、その円形の中心Oを含み、中心軸O(中心Oを通り、断熱部材に対して直交する軸を中心軸Oという)に対して軸対称な形状を有する平面視で円形の断熱部材片2Aと、互いに内径及び外径が異なり、中心軸Oに対して同心円状のリング状の断熱部材片2B、2C、2D、2Eとからなる。リング状の断熱部材片2B、2C、2D、2Eは、径の最も小さい断熱部材片2Bから径の大きな断熱部材片2C、2D、2Eが中心軸から順に外周へ並置されている。断熱部材片2Aは孔部2aを有するが、図2では図示は省略している。
結晶成長中に断熱部材片2A〜2Eのうちの一部を垂直方向に移動させることにより坩堝1内の径方向の温度分布を調整することができる。
FIG. 2 is a schematic plan view of the heat insulating member according to the first embodiment.
The heat insulating member 2 shown in FIG. 2 has a circular shape in plan view as a whole, and includes a center O of the circular shape. From the circular heat insulating member piece 2A having an axially symmetric shape in plan view and the ring-shaped heat insulating member pieces 2B, 2C, 2D and 2E which are different in inner diameter and outer diameter and concentric with the central axis O. Become. In the ring-shaped heat insulating member pieces 2B, 2C, 2D and 2E, the heat insulating member pieces 2B having the smallest diameter and the heat insulating member pieces 2C, 2D and 2E having a large diameter are juxtaposed in order from the central axis to the outer periphery. The heat insulating member piece 2A has a hole 2a, which is not shown in FIG.
The temperature distribution in the radial direction in the crucible 1 can be adjusted by moving some of the heat insulating member pieces 2A to 2E in the vertical direction during crystal growth.

〔単結晶製造装置(第2の実施形態)〕
第2の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図3に、第2の実施形態に係る断熱部材の平面模式図を示す。
図3に示す断熱部材32は全体として平面視で円形であり、その円形の中心を含み、中心軸Oに対して軸対称な形状を有する平面視で六角形の断熱部材片32Aと、その断熱部材片32Aの各辺に平行な辺からなる六角形の内周及び六角形の外周を有し、中心軸Oから順に外周へ並置された断熱部材片32B、32C、32Dと、断熱部材片32Dの外周側に配置され、断熱部材片32Dの外周の各辺に平行な六角形の内周と断熱部材32の外周でもある外周とを有する断熱部材片32Eとからなる。
結晶成長中に断熱部材片32A〜32Eのうちの一部を垂直方向に移動させることにより坩堝1内の径方向の温度分布を調整することができる。
[Single crystal manufacturing apparatus (second embodiment)]
Since the single crystal manufacturing apparatus of the second embodiment is common to the first embodiment except for the heat insulating member, only the heat insulating member will be described.
In FIG. 3, the plane schematic diagram of the heat insulation member which concerns on 2nd Embodiment is shown.
The heat insulating member 32 shown in FIG. 3 has a circular shape in plan view as a whole, includes a center of the circle, and has a hexagonal heat insulating member piece 32A in plan view having an axisymmetric shape with respect to the central axis O, and the heat insulation thereof. Heat insulation member pieces 32B, 32C, 32D having a hexagonal inner periphery and a hexagonal outer periphery composed of sides parallel to each side of the member piece 32A, and juxtaposed in order from the central axis O, and a heat insulation member piece 32D The heat insulating member piece 32E has a hexagonal inner periphery parallel to each side of the outer periphery of the heat insulating member piece 32D and an outer periphery that is also the outer periphery of the heat insulating member 32.
The temperature distribution in the radial direction in the crucible 1 can be adjusted by moving some of the heat insulating member pieces 32A to 32E in the vertical direction during crystal growth.

〔単結晶製造装置(第3の実施形態)〕
第3の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図4に、第3の実施形態に係る断熱部材の平面模式図を示す。
図4に示す断熱部材42は、図2に示した断熱部材2においてさらに、断熱部材片2Aの外周から放射状に、図2に示したリング状の断熱部材片2B〜2Eのそれぞれを等しい面積で分割するように等間隔で配置して延びる分割線L、L、L、L、L、L、L、Lによって分割された構成を有するものである。
断熱部材はより細かく分割した構成ほど、より精密な温度分布の調整が可能になるので、図2に示した断熱部材2よりも図4に示す断熱部材42の方がより精密な温度分布の調整ができる。
[Single Crystal Manufacturing Apparatus (Third Embodiment)]
Since the single crystal manufacturing apparatus of the third embodiment is common to the first embodiment except for the heat insulating member, only the heat insulating member will be described.
In FIG. 4, the plane schematic diagram of the heat insulation member which concerns on 3rd Embodiment is shown.
The heat insulating member 42 shown in FIG. 4 further has the same area in each of the ring-shaped heat insulating member pieces 2B to 2E shown in FIG. 2 radially from the outer periphery of the heat insulating member piece 2A in the heat insulating member 2 shown in FIG. It has a structure divided by dividing lines L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 and L 8 that are arranged at equal intervals so as to be divided.
As the heat insulating member is divided more finely, the temperature distribution can be adjusted more precisely. Therefore, the heat insulating member 42 shown in FIG. 4 can adjust the temperature distribution more precisely than the heat insulating member 2 shown in FIG. Can do.

〔単結晶製造装置(第4の実施形態)〕
第4の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図5に、第4の実施形態に係る断熱部材の平面模式図を示す。
図5に示す断熱部材52は、図3に示した断熱部材32においてさらに、断熱部材片32Aの外周の頂点から断熱部材片32B〜32Dの内周及び外周の頂点を結ぶように放射状に延び、図3に示したリング状の断熱部材片32B〜32Eのそれぞれを等しい面積で分割するように等間隔で配置した分割線L11、L21、L31、L41、L51、L61によって分割された構成を有するものである。
断熱部材はより細かく分割した構成ほど、より精密な温度分布の調整が可能になるので、図3に示した断熱部材2よりも図5に示す断熱部材52の方がよりより精密な温度分布の調整ができる。
[Single crystal manufacturing apparatus (fourth embodiment)]
Since the single crystal manufacturing apparatus of the fourth embodiment is common to the first embodiment except for the heat insulating member, only the heat insulating member will be described.
In FIG. 5, the plane schematic diagram of the heat insulation member which concerns on 4th Embodiment is shown.
The heat insulating member 52 shown in FIG. 5 further extends radially so as to connect the inner and outer peripheral vertices of the heat insulating member pieces 32B to 32D from the outer peripheral vertex of the heat insulating member piece 32A in the heat insulating member 32 shown in FIG. Each of the ring-shaped heat insulating member pieces 32B to 32E shown in FIG. 3 is divided by dividing lines L 11 , L 21 , L 31 , L 41 , L 51 , and L 61 arranged at equal intervals so as to be divided into equal areas. It has the structure which was made.
As the heat insulating member is divided more finely, the temperature distribution can be adjusted more precisely. Therefore, the heat insulating member 52 shown in FIG. 5 has a more precise temperature distribution than the heat insulating member 2 shown in FIG. Can be adjusted.

〔単結晶製造装置(第5の実施形態)〕
第5の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図6に、第5の実施形態に係る断熱部材の平面模式図を示す。
図6に示す断熱部材62は、図2に示した断熱部材2と比較すると、円形の中心Oを含み、中心軸Oに対して軸対称な形状を有する平面視で円形の断熱部材片を有すると共に、その円形の断熱部材片の外側に配置するリング状の断熱部材片群が中心軸Oに対して同心円状に配置する点で共通するが、図2に示した断熱部材2ではリング状の断熱部材片2B〜2Eの全てのリングの幅が等しいのに対して、図6に示す断熱部材62では、リング状の断熱部材片62B〜62Eの全てのリングの幅が異なる点で異なる。
図6に示す断熱部材62では、リング状の断熱部材片62B〜62Eの全てのリングの幅が異なるが、リングの幅が等しいリング状の断熱部材片がある構成でもよい。
[Single crystal manufacturing apparatus (fifth embodiment)]
Since the single crystal manufacturing apparatus of the fifth embodiment is the same as that of the first embodiment except for the heat insulating member, only the heat insulating member will be described.
FIG. 6 is a schematic plan view of a heat insulating member according to the fifth embodiment.
The heat insulating member 62 shown in FIG. 6 has a circular heat insulating member piece in a plan view that includes a circular center O and has an axisymmetric shape with respect to the central axis O, as compared with the heat insulating member 2 shown in FIG. In addition, the ring-shaped heat insulating member pieces arranged outside the circular heat insulating member pieces are common in that they are arranged concentrically with respect to the central axis O, but the heat insulating member 2 shown in FIG. While the widths of all the rings of the heat insulating member pieces 2B to 2E are equal, the heat insulating member 62 shown in FIG. 6 is different in that the widths of all the rings of the ring-shaped heat insulating member pieces 62B to 62E are different.
In the heat insulating member 62 shown in FIG. 6, the ring-shaped heat insulating member pieces 62 </ b> B to 62 </ b> E have different ring widths, but may have a ring-shaped heat insulating member piece having the same ring width.

〔単結晶製造装置(第6の実施形態)〕
第6の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図7に、第6の実施形態に係る断熱部材の平面模式図を示す。
図7に示す断熱部材72は、図3に示した断熱部材32と比較すると、円形の中心Oを含み、中心軸Oに対して軸対称な形状を有する平面視で六角形の断熱部材片を有すると共に、その六角形の断熱部材片の外側に配置する断熱部材片群が最も外側の断熱部材片以外は、その六角形の断熱部材片の各辺に平行な辺からなる六角形の内周及び六角形の外周を有する点で共通するが、図3に示した断熱部材32ではリング状の断熱部材片32B〜32Dの全てのリングの幅が等しいのに対して、図7に示す断熱部材72では、リング状の断熱部材片72B〜72Dの全てのリングの幅が異なる点で異なる。
図7に示す断熱部材72では、リング状の断熱部材片72B〜72Dの全てのリングの幅が異なるが、リングの幅が等しいリング状の断熱部材片がある構成でもよい。
[Single crystal manufacturing apparatus (sixth embodiment)]
Since the single crystal manufacturing apparatus of the sixth embodiment is common to the first embodiment except for the heat insulating member, only the heat insulating member will be described.
In FIG. 7, the plane schematic diagram of the heat insulation member which concerns on 6th Embodiment is shown.
Compared with the heat insulating member 32 shown in FIG. 3, the heat insulating member 72 shown in FIG. 7 includes a circular center O and a hexagonal heat insulating member piece in a plan view having an axisymmetric shape with respect to the central axis O. And a hexagonal inner circumference composed of sides parallel to each side of the hexagonal heat insulating member piece, except for the outermost heat insulating member piece, which is arranged outside the hexagonal heat insulating member piece. In addition, the heat insulating member 32 shown in FIG. 3 has the same width in all of the ring-shaped heat insulating member pieces 32B to 32D, whereas the heat insulating member 32 shown in FIG. 72 is different in that the widths of all the rings of the ring-shaped heat insulating member pieces 72B to 72D are different.
In the heat insulating member 72 shown in FIG. 7, all the ring-shaped heat insulating member pieces 72 </ b> B to 72 </ b> D have different ring widths, but may have a structure with ring-shaped heat insulating member pieces having the same ring width.

〔単結晶製造方法〕
次に、本発明に係る炭化珪素単結晶の製造方法について図を参照して説明する。
図1に示した単結晶製造装置の坩堝1内に炭化珪素原料3(例えば、SiC粉末)を充填し、坩堝の蓋部1bの台座に炭化珪素種結晶Wを固定する。この坩堝の入った成長容器4中で導入管6aと排気管6bを介して真空排気及びガス導入を行いガス交換した後、高純度Arガスを導入して、成長容器4の内部(収容部4a)を例えば、Ar雰囲気で9.3×10Paという環境とする。
次に、加熱手段5を用いて坩堝1を1900℃以上の温度に加熱する。これにより、坩堝1内の炭化珪素原料粉末3を加熱して、炭化珪素原料粉末3から原料昇華ガス(原料ガス)を発生させ、発生した原料昇華ガスは坩堝の内部空間(成長空間)を通って、坩堝1の下部よりも低温である坩堝の蓋部1bに設置された炭化珪素種結晶W上で炭化珪素が再結晶化されて炭化珪素単結晶が成長する。成長する結晶は種結晶Wの結晶構造を引き継ぐため、例えば、4H−SiC単結晶を種結晶に用いれば、4H−SiC単結晶を種結晶上に成長させることができる。
[Single crystal manufacturing method]
Next, a method for manufacturing a silicon carbide single crystal according to the present invention will be described with reference to the drawings.
The silicon carbide raw material 3 (for example, SiC powder) is filled in the crucible 1 of the single crystal manufacturing apparatus shown in FIG. 1, and the silicon carbide seed crystal W is fixed to the base of the lid portion 1b of the crucible. In the growth vessel 4 containing the crucible, after evacuation and gas introduction through the introduction pipe 6a and the exhaust pipe 6b and gas exchange, a high-purity Ar gas is introduced, and the inside of the growth container 4 (container 4a) ) Is set to an environment of 9.3 × 10 4 Pa in an Ar atmosphere.
Next, the crucible 1 is heated to a temperature of 1900 ° C. or higher using the heating means 5. Thereby, the silicon carbide raw material powder 3 in the crucible 1 is heated to generate a raw material sublimation gas (raw material gas) from the silicon carbide raw material powder 3, and the generated raw material sublimation gas passes through the inner space (growth space) of the crucible. Thus, silicon carbide is recrystallized on the silicon carbide seed crystal W placed on the crucible lid 1b, which is at a lower temperature than the lower part of the crucible 1, and a silicon carbide single crystal grows. Since the growing crystal inherits the crystal structure of the seed crystal W, for example, if a 4H—SiC single crystal is used as the seed crystal, the 4H—SiC single crystal can be grown on the seed crystal.

本発明の単結晶の製造方法は、単結晶を成長させている間に、複数の断熱部材片のうちの一部を垂直方向に移動させることにより、坩堝内の温度分布の調整を通して、種結晶やその上に成長する単結晶の温度分布を調整し、単結晶の成長形状を制御するものである。
複数の断熱部材片の移動の方法は特に限定するものではないが、例えば、ロッドやワイヤを各断熱部材片に取り付け、そのロッドやワイヤを成長容器の外に延ばしておき、そのロッドやワイヤを引き上げることでその断熱部材片を断熱部材から取り外すことができる。剛性のロッド等を用いた場合は、一旦、取り外した断熱部材片を、結晶成長の状態によってはまた、断熱部材に戻すこともできる。
ロッドやワイヤの材料としては特に限定するものではないが、例えば、黒鉛(グラファイト)を用いることができる。
ロッドやワイヤを各断熱部材片に取り付ける方法としては特に限定するものではないが、例えば、ロッドやワイヤの先端を釣り針状の形状としておき、炭素繊維製の断熱部材片に刺し込んで取り付けることができる。
According to the method for producing a single crystal of the present invention, a seed crystal is obtained by adjusting a temperature distribution in a crucible by moving a part of a plurality of heat insulating member pieces in a vertical direction while growing the single crystal. In addition, the temperature distribution of a single crystal grown thereon is adjusted to control the growth shape of the single crystal.
The method of moving the plurality of heat insulating member pieces is not particularly limited. For example, a rod or wire is attached to each heat insulating member piece, the rod or wire is extended outside the growth vessel, and the rod or wire is attached. The heat insulating member piece can be removed from the heat insulating member by pulling up. When a rigid rod or the like is used, the once removed heat insulating member piece can be returned to the heat insulating member depending on the state of crystal growth.
The material of the rod or wire is not particularly limited, but, for example, graphite can be used.
The method of attaching the rod or wire to each heat insulating member piece is not particularly limited. For example, the tip of the rod or wire may be formed into a fishhook shape and attached to the heat insulating member piece made of carbon fiber. it can.

以下では、複数の断熱部材片のうちの一部を垂直方向に移動させることにより坩堝内の径方向の温度分布を調整して単結晶の結晶成長を行う方法について図を参照して説明する。   Hereinafter, a method of growing a single crystal by adjusting a temperature distribution in the radial direction in the crucible by moving a part of the plurality of heat insulating member pieces in the vertical direction will be described with reference to the drawings.

図8は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の一例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図8に示す例は、成長中のインゴット形状が中央部の成長量が大きく、中央部が原料側に凸形形状に膨らんでいるものを平坦形状へと調整する場合である。
FIG. 8 is a schematic cross-sectional view for explaining an example of a method for adjusting the shape of a silicon carbide single crystal (ingot) using the structure shown in FIG. 2 as the heat insulating member. In the figure, only the crucible 1, the heat insulating member 2 composed of a plurality of heat insulating member pieces (2A to 2E), the silicon carbide raw material 3, and the silicon carbide single crystal S (seed crystal is not shown) are drawn.
The example shown in FIG. 8 is a case where the growing ingot shape has a large growth amount in the central portion, and the central portion swells in a convex shape on the raw material side is adjusted to a flat shape.

図8(a)は、断熱部材片を移動するところ、図8(b)は断熱部材片の移動後を示すものである。
インゴットの端部の成長量が中央部と比較して少ない状態を調整するためには、インゴットの端部の上方に位置する断熱部材片2Cを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Cが取り外されたことにより、坩堝のインゴットの端部の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの端部の温度が低下する。
インゴットの端部の温度が低下することにより、インゴットの端部での原料ガスの再結晶が促進し、インゴットの端部での結晶成長量が増加することにより、中央部との成長量差が小さい平坦型に調整することが可能となる。
FIG. 8A shows a state where the heat insulating member piece is moved, and FIG. 8B shows a state after the heat insulating member piece is moved.
In order to adjust the state in which the growth amount of the end portion of the ingot is smaller than that of the central portion, the heat insulating member piece 2C located above the end portion of the ingot is moved in the vertical direction (upward), and the heat insulating member 2 Remove from.
Since the heat insulating member piece 2C is removed, the amount of heat released from the upper part of the end of the crucible ingot to the outside of the crucible increases, and as a result, the temperature of the end of the ingot decreases.
The temperature at the end of the ingot decreases, the recrystallization of the source gas at the end of the ingot is promoted, and the amount of crystal growth at the end of the ingot increases, resulting in a difference in growth from the center. It becomes possible to adjust to a small flat mold.

図9は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図9に示す例は、成長中のインゴット形状が中央部の成長量が小さく、中央部が凹形形状に凹んでいるものを平坦形状へと調整する場合である。
FIG. 9 is a schematic cross-sectional view for explaining another example of the method for adjusting the shape of a silicon carbide single crystal (ingot) using the structure shown in FIG. 2 as the heat insulating member. In the figure, only the crucible 1, the heat insulating member 2 composed of a plurality of heat insulating member pieces (2A to 2E), the silicon carbide raw material 3, and the silicon carbide single crystal S (seed crystal is not shown) are drawn.
The example shown in FIG. 9 is a case where the growing ingot shape has a small amount of growth in the central portion and the center portion is recessed into a concave shape to be adjusted to a flat shape.

図9(a)は、断熱部材片を移動するところ、図9(b)は断熱部材片の移動後を示すものである。
インゴットの中央部の成長量が端部と比較して少ない状態を調整するためには、インゴットの中央部の上方に位置する断熱部材片2Aを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Aが取り外されたことにより、坩堝のインゴットの中央部の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの中央部の温度が低下する。
インゴットの中央部の温度が低下することにより、インゴットの中央部での原料ガスの再結晶が促進し、インゴットの中央部での結晶成長量が増加することにより、端部との成長量差が小さい平坦型に調整することが可能となる。
FIG. 9A shows a state where the heat insulating member piece is moved, and FIG. 9B shows a state after the heat insulating member piece is moved.
In order to adjust the state in which the amount of growth in the central portion of the ingot is small compared to the end portion, the heat insulating member piece 2A located above the central portion of the ingot is moved in the vertical direction (upward), and the heat insulating member 2 Remove from.
By removing the heat insulating member piece 2A, the amount of heat released from the upper part of the central part of the crucible ingot to the outside of the crucible increases, and as a result, the temperature of the central part of the ingot decreases.
Lowering the temperature of the central part of the ingot promotes recrystallization of the raw material gas at the central part of the ingot, increasing the amount of crystal growth at the central part of the ingot, thereby increasing the difference in growth amount from the end part. It becomes possible to adjust to a small flat mold.

図10は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図10に示す例は、成長中のインゴット形状が中央部及び端部の成長量が小さくてM形形状であるものを平坦形状へと調整する場合である。
FIG. 10 is a schematic cross-sectional view for explaining another example of a method for adjusting the shape of a silicon carbide single crystal (ingot) using the heat insulating member having the structure shown in FIG. In the figure, only the crucible 1, the heat insulating member 2 composed of a plurality of heat insulating member pieces (2A to 2E), the silicon carbide raw material 3, and the silicon carbide single crystal S (seed crystal is not shown) are drawn.
The example shown in FIG. 10 is a case where the growing ingot shape is adjusted to a flat shape when the growth amount of the central portion and the end portion is small and the shape is M-shaped.

図10(a)は、断熱部材片を移動するところ、図10(b)は断熱部材片の移動後を示すものである。
インゴットの中央部及び端部の成長量が端部と比較して少ない状態を調整するためには、インゴットの中央部及び端部の上方に位置する断熱部材片2Aおよび断熱部材片2Cを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Aおよび断熱部材片2Cが取り外されたことにより、坩堝のインゴットの中央部及び端部の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの中央部及び端部の温度が低下する。
インゴットの中央部及び端部の温度が低下することにより、インゴットの中央部及び端部での原料ガスの再結晶が促進し、インゴットの中央部及び端部での結晶成長量が増加することにより、他の部分との成長量差が小さい平坦型に調整することが可能となる。
FIG. 10A shows a state where the heat insulating member piece is moved, and FIG. 10B shows a state after the heat insulating member piece is moved.
In order to adjust the state where the growth amount of the central portion and the end portion of the ingot is small compared to the end portion, the heat insulating member piece 2A and the heat insulating member piece 2C positioned above the central portion and the end portion of the ingot are vertically arranged. Move (upward) and remove from the heat insulating member 2.
By removing the heat insulating member pieces 2A and the heat insulating member pieces 2C, the amount of heat released from the crucible ingot central portion and the upper portion of the end portion to the outside of the crucible increases, and as a result, the central portion and the end portion of the ingot The temperature drops.
By lowering the temperature at the center and end of the ingot, recrystallization of the source gas at the center and end of the ingot is promoted, and the amount of crystal growth at the center and end of the ingot is increased. It becomes possible to adjust to a flat type with a small growth amount difference from other parts.

図11は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図11に示す例は、成長中のインゴット形状が中央部と端部との間の位置の成長量が少ないW形形状であるものを平坦形状へと調整する場合である。
FIG. 11 is a schematic cross-sectional view for explaining another example of a method for adjusting the shape of a silicon carbide single crystal (ingot) using the structure shown in FIG. 2 as a heat insulating member. In the figure, only the crucible 1, the heat insulating member 2 composed of a plurality of heat insulating member pieces (2A to 2E), the silicon carbide raw material 3, and the silicon carbide single crystal S (seed crystal is not shown) are drawn.
The example shown in FIG. 11 is a case where the growing ingot shape is a W-shape with a small amount of growth at the position between the central portion and the end portion, and is adjusted to a flat shape.

図11(a)は、断熱部材片を移動するところ、図11(b)は断熱部材片の移動後を示すものである。
インゴットの中央部と端部との間の位置の成長量が中央部及び端部と比較して少ない状態を調整するためには、インゴットの中央部と端部との間の位置の上方に位置する断熱部材片2Bを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Bが取り外されたことにより、坩堝のインゴットの中央部と端部との間の位置の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの中央部と端部との間の位置の温度が低下する。
インゴットの中央部と端部との間の位置の温度が低下することにより、インゴットの中央部と端部との間の位置での原料ガスの再結晶が促進し、インゴットの中央部と端部との間の位置での結晶成長量が増加することにより、他の部分との成長量差が小さい平坦型に調整することが可能となる。
FIG. 11A shows a state where the heat insulating member piece is moved, and FIG. 11B shows a state after the heat insulating member piece is moved.
In order to adjust the state where the amount of growth at the position between the center portion and the end portion of the ingot is small compared to the center portion and the end portion, the position is located above the position between the center portion and the end portion of the ingot. The heat insulating member piece 2B to be moved is moved in the vertical direction (upward) and removed from the heat insulating member 2.
By removing the heat insulating member piece 2B, the amount of heat released to the outside of the crucible from the upper portion of the position between the central portion and the end portion of the crucible ingot increases, and as a result, the central portion and the end portion of the ingot The temperature at the position between is lowered.
Reducing the temperature at the position between the central portion and the end portion of the ingot promotes recrystallization of the source gas at the position between the central portion and the end portion of the ingot, and the central portion and the end portion of the ingot. By increasing the crystal growth amount at a position between the two, it is possible to adjust to a flat type with a small difference in growth amount from other portions.

図12は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図12に示す例は、成長中のインゴット形状が中央部と外周との間の外周寄りの位置の成長量が最も少なく、中央部は最も成長量が多く、外周の成長量はそれらの中間程度であるもの(ここでは歪形状という)を平坦形状へと調整する場合である。
FIG. 12 is a schematic cross-sectional view for explaining another example of a method for adjusting the shape of a silicon carbide single crystal (ingot) using the structure shown in FIG. 2 as a heat insulating member. In the figure, only the crucible 1, the heat insulating member 2 composed of a plurality of heat insulating member pieces (2A to 2E), the silicon carbide raw material 3, and the silicon carbide single crystal S (seed crystal is not shown) are drawn.
In the example shown in FIG. 12, the growing ingot shape has the smallest amount of growth near the outer periphery between the central portion and the outer periphery, the center portion has the largest amount of growth, and the growth amount on the outer periphery is about the middle of them. This is a case of adjusting a flat shape to a flat shape.

図12(a)は、インゴットの成長開始後、形状調整のために断熱部材片2B及び2Cの移動を1回行った断熱部材片の配置構成を示すものであり、この際、インゴットの形状が図示のような歪形状であったため(図12(a)に示す断熱部材片の配置構成の場合は、インゴットの形状が図12(a)に示す歪形状となるとの意ではない)、さらに形状調整が必要になって断熱部材片を移動するところを示すものであり、図12(b)はその断熱部材片の移動後を示すものである。
図12(a)に示す断熱部材片の配置構成において、インゴットの形状はその中央部と外周との間の外周寄りの位置の成長量が最も少なく、中央部は最も成長量が多く、外周の成長量はそれらの中間程度である歪形状である。この歪形状を調整するためには、中央部と外周との間の上方に位置する断熱部材片2Cだけを垂直方向(上方)に移動する。この際、成長量のずれを調整するため、断熱部材片2Bの脱着後の位置は断熱部材片2Cの位置よりも坩堝の蓋部に近い位置にする。この位置調整により、断熱部材片2Bの位置での放熱量が断熱部材片2Cの位置での放熱量よりも少なくなることで、インゴット先端の断熱部材片2Bの位置での温度低下は断熱部材2Cの位置での温度低下よりも緩やかになるため、結晶成長量の差が調整され、インゴットの形状を平坦型に調整することが可能となる。また、温度を調整するために、断熱部材片2Cは完全には脱着せずに、断熱部材片2Bに一部接触した所で停止させるなどの位置調整を行ってもよい。このような位置調整により、歪形状のような微妙な調整が可能となる。
図12を参照して説明したように、形状調整のための断熱部材片の移動はインゴット(単結晶)の製造中に複数回行ってもよい。
図8〜図12を参照して、形状調整のための断熱部材片の移動パターン(配置構成)について説明してきたが、これらの図は説明を分かりやすくするために特徴を誇張したり、単純化したりしており、インゴットの形状と断熱部材片の移動パターン(配置構成)との組合せは一例に過ぎない。
FIG. 12A shows an arrangement configuration of the heat insulating member pieces in which the heat insulating member pieces 2B and 2C are moved once for shape adjustment after the start of ingot growth. In this case, the shape of the ingot is Since it was a distorted shape as shown in the figure (in the case of the arrangement configuration of the heat insulating member pieces shown in FIG. 12 (a), the shape of the ingot does not mean the distorted shape shown in FIG. 12 (a)). FIG. 12 (b) shows the position after the movement of the heat insulating member piece. FIG.
In the arrangement configuration of the heat insulating member pieces shown in FIG. 12 (a), the shape of the ingot has the smallest growth amount at the position near the outer periphery between the central portion and the outer periphery, the central portion has the largest growth amount, The growth amount is a strained shape that is about the middle of them. In order to adjust this distorted shape, only the heat insulating member piece 2C positioned above between the central portion and the outer periphery is moved in the vertical direction (upward). At this time, in order to adjust the deviation of the growth amount, the position after the heat insulating member piece 2B is detached is set closer to the crucible lid than the position of the heat insulating member piece 2C. With this position adjustment, the amount of heat released at the position of the heat insulating member piece 2B is smaller than the amount of heat released at the position of the heat insulating member piece 2C, so that the temperature drop at the position of the heat insulating member piece 2B at the tip of the ingot is reduced. Therefore, the difference in crystal growth amount is adjusted, and the shape of the ingot can be adjusted to a flat type. Further, in order to adjust the temperature, the heat insulating member piece 2C may not be completely detached and may be adjusted such that the heat insulating member piece 2C is stopped at a part of contact with the heat insulating member piece 2B. By such position adjustment, fine adjustment such as a distorted shape becomes possible.
As described with reference to FIG. 12, the movement of the heat insulating member piece for shape adjustment may be performed a plurality of times during the production of the ingot (single crystal).
Although the movement pattern (arrangement configuration) of the heat insulating member pieces for shape adjustment has been described with reference to FIGS. 8 to 12, these figures are exaggerated or simplified for easy understanding. The combination of the shape of the ingot and the movement pattern (arrangement configuration) of the heat insulating member pieces is merely an example.

図13は、断熱部材片の取り外し構造の一例を説明するための断面模式図である。
図13は、図1に示した単結晶製造装置において、断熱部材を構成する断熱部材片にロッド11を取り付けた構成を示すものである。
ロッド11は各断熱部材片に1本に限らず、複数本を取り付けた構成でもよく、取り外しに適した本数とすることができる。
図13に示す例では、図2に示した断熱部材を備えた構成であるが、リング状の各断熱部材片に図示したものでも2本のロッド11が取り付けられている。
FIG. 13 is a schematic cross-sectional view for explaining an example of a structure for removing a heat insulating member piece.
FIG. 13 shows a configuration in which the rod 11 is attached to a heat insulating member piece constituting the heat insulating member in the single crystal manufacturing apparatus shown in FIG. 1.
The number of rods 11 is not limited to one for each heat insulating member piece, and a plurality of rods 11 may be attached, and the number of rods 11 can be made suitable for removal.
In the example shown in FIG. 13, although it is the structure provided with the heat insulation member shown in FIG. 2, the two rods 11 are attached also to what was illustrated in each ring-shaped heat insulation member piece.

1 坩堝
1a 坩堝本体
1b 蓋部
2、32、42、52、62、72 断熱部材
3 原料(炭化珪素原料、炭化珪素原料粉末)
4 成長容器
5 加熱手段
11 ロッド
100 単結晶製造装置
W 種結晶
DESCRIPTION OF SYMBOLS 1 Crucible 1a Crucible body 1b Cover part 2, 32, 42, 52, 62, 72 Heat insulation member 3 Raw material (silicon carbide raw material, silicon carbide raw material powder)
4 Growth vessel 5 Heating means 11 Rod 100 Single crystal production apparatus W Seed crystal

Claims (7)

坩堝本体と蓋部とからなる坩堝内で、蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶の製造方法において、
前記蓋部の上面に複数の断熱部材片に分割された構造を有する断熱部材を配置し、結晶成長中に前記複数の断熱部材片のうちの一部を垂直方向に移動させることにより坩堝内の温度分布を調整して単結晶の結晶成長を行うことを特徴とする単結晶の製造方法。
In a crucible composed of a crucible body and a lid portion, a seed crystal is arranged in the lid portion, a raw material is accommodated in the lower part of the crucible body, the raw material is sublimated and a raw material gas is supplied, and a single crystal is formed on the seed crystal. In the method for producing a single crystal for growing
A heat insulating member having a structure divided into a plurality of heat insulating member pieces is disposed on the upper surface of the lid portion, and a part of the plurality of heat insulating member pieces is moved in the vertical direction during crystal growth, so that the inside of the crucible A method for producing a single crystal, wherein the single crystal is grown by adjusting a temperature distribution.
結晶成長中に前記複数の断熱部材片のうちの一部を脱着させることを特徴とする請求項1に記載の単結晶の製造方法。   The method for producing a single crystal according to claim 1, wherein a part of the plurality of heat insulating member pieces is desorbed during crystal growth. 坩堝本体と蓋部とからなる坩堝内で、蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶製造装置であって、
前記蓋部の上面に配置された断熱部材を備え、
該断熱部材が複数の断熱部材片に分割された構造を有し、前記複数の断熱部材片のうちの少なくとも一部は垂直方向に移動可能であることを特徴とする単結晶製造装置。
In a crucible composed of a crucible body and a lid portion, a seed crystal is arranged in the lid portion, a raw material is accommodated in the lower part of the crucible body, the raw material is sublimated and a raw material gas is supplied, and a single crystal is formed on the seed crystal. A single crystal manufacturing apparatus for growing
A heat insulating member disposed on the upper surface of the lid,
The single crystal manufacturing apparatus, wherein the heat insulating member has a structure divided into a plurality of heat insulating member pieces, and at least a part of the heat insulating member pieces is movable in a vertical direction.
前記断熱部材は平面視で円形であり、前記分割は前記円形の中心軸に対して軸対称になされていることを特徴とする請求項3に記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 3, wherein the heat insulating member is circular in a plan view, and the division is axisymmetric with respect to a central axis of the circular shape. 前記複数の断熱部材片のうちの一つは、前記円形の中心を含み、中心軸に対して軸対称な形状を有することを特徴とする請求項3または4のいずれかに記載の単結晶製造装置。   5. The single crystal manufacturing method according to claim 3, wherein one of the plurality of heat insulating member pieces includes the circular center and has an axisymmetric shape with respect to a central axis. apparatus. 前記分割のうちの一部は、円形の中心から放射状に延びる分割線に沿ってなされていることを特徴とする請求項3〜5のいずれか一項に記載の単結晶製造装置。   6. The single crystal manufacturing apparatus according to claim 3, wherein a part of the division is made along a division line extending radially from a circular center. 前記断熱部材は、カーボンを主原料とするカーボン成形材、ポーラスカーボン、またはグラッシーカーボンのいずれかからなることを特徴とする請求項3〜6のいずれか一項に記載の単結晶製造装置。   The single-crystal manufacturing apparatus according to any one of claims 3 to 6, wherein the heat insulating member is made of any one of a carbon molding material mainly composed of carbon, porous carbon, and glassy carbon.
JP2015241372A 2015-12-10 2015-12-10 Single crystal manufacturing method and single crystal manufacturing apparatus Active JP6584007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241372A JP6584007B2 (en) 2015-12-10 2015-12-10 Single crystal manufacturing method and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241372A JP6584007B2 (en) 2015-12-10 2015-12-10 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2017105676A true JP2017105676A (en) 2017-06-15
JP6584007B2 JP6584007B2 (en) 2019-10-02

Family

ID=59060276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241372A Active JP6584007B2 (en) 2015-12-10 2015-12-10 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6584007B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291615B1 (en) * 2017-05-23 2018-03-14 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
JP6317868B1 (en) * 2017-05-23 2018-04-25 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
WO2019130873A1 (en) * 2017-12-27 2019-07-04 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
WO2019176444A1 (en) * 2018-03-13 2019-09-19 信越半導体株式会社 Method for producing silicon carbide single crystal
JP2020093970A (en) * 2018-12-12 2020-06-18 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Manufacturing apparatus for ingot and manufacturing method for silicon carbide single crystal ingot using the same
JP2021014385A (en) * 2019-07-12 2021-02-12 住友電気工業株式会社 Method for manufacturing 4h silicon carbide single crystal
CN112813499A (en) * 2020-12-31 2021-05-18 山东天岳先进科技股份有限公司 Preparation method and growth device of N-type silicon carbide crystal
JP7452276B2 (en) 2019-08-30 2024-03-19 株式会社レゾナック Single crystal manufacturing device and SiC single crystal manufacturing method
JP7494468B2 (en) 2019-12-26 2024-06-04 株式会社レゾナック Crucible and single crystal manufacturing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217627B2 (en) * 2018-12-14 2023-02-03 昭和電工株式会社 SiC single crystal manufacturing apparatus and structure for manufacturing SiC single crystal

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317868B1 (en) * 2017-05-23 2018-04-25 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
JP2018197174A (en) * 2017-05-23 2018-12-13 Jfeミネラル株式会社 Aluminum nitride single crystal manufacturing device
JP2018197173A (en) * 2017-05-23 2018-12-13 Jfeミネラル株式会社 Aluminum nitride single crystal manufacturing device
JP6291615B1 (en) * 2017-05-23 2018-03-14 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
US11149357B2 (en) 2017-12-27 2021-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate
WO2019130873A1 (en) * 2017-12-27 2019-07-04 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
JP2019116405A (en) * 2017-12-27 2019-07-18 信越半導体株式会社 Method of manufacturing silicon carbide single crystal
WO2019176444A1 (en) * 2018-03-13 2019-09-19 信越半導体株式会社 Method for producing silicon carbide single crystal
JP2019156679A (en) * 2018-03-13 2019-09-19 信越半導体株式会社 Production method of silicon carbide single crystal
US11225729B2 (en) 2018-03-13 2022-01-18 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate
JP2020093970A (en) * 2018-12-12 2020-06-18 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Manufacturing apparatus for ingot and manufacturing method for silicon carbide single crystal ingot using the same
US11078599B2 (en) 2018-12-12 2021-08-03 Skc Co., Ltd. Apparatus for producing an ingot comprising a crucible body with a lid assembly having a movable core member and method for producing silicon carbide ingot using the apparatus
CN111304745B (en) * 2018-12-12 2021-12-03 赛尼克公司 Apparatus for producing ingot and method for producing silicon carbide single crystal ingot
CN111304745A (en) * 2018-12-12 2020-06-19 Skc株式会社 Apparatus for producing ingot and method for producing silicon carbide single crystal ingot
JP2021014385A (en) * 2019-07-12 2021-02-12 住友電気工業株式会社 Method for manufacturing 4h silicon carbide single crystal
JP7452276B2 (en) 2019-08-30 2024-03-19 株式会社レゾナック Single crystal manufacturing device and SiC single crystal manufacturing method
JP7494468B2 (en) 2019-12-26 2024-06-04 株式会社レゾナック Crucible and single crystal manufacturing equipment
CN112813499A (en) * 2020-12-31 2021-05-18 山东天岳先进科技股份有限公司 Preparation method and growth device of N-type silicon carbide crystal

Also Published As

Publication number Publication date
JP6584007B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6584007B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US20120234231A1 (en) Process for producing silicon carbide single crystals
JP5613604B2 (en) Silicon carbide single crystal manufacturing apparatus, silicon carbide single crystal manufacturing method, and growth method thereof
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
JP2011219295A (en) Apparatus for producing silicon carbide single crystal ingot
CN115821372A (en) Crystal growing device
KR101458183B1 (en) An apparatus and method for growing silicon carbide single crystal
KR20120140547A (en) Apparatus for fabricating ingot
KR20150066015A (en) Growth device for single crystal
US20140202389A1 (en) Apparatus for fabricating ingot
US20140158042A1 (en) Apparatus for fabricating ingot
US20140366807A1 (en) Apparatus for fabricating ingot and method of fabricating ingot
CN114540943B (en) Large-diameter SiC single crystal growth device and growth method
KR102236396B1 (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
KR20130033838A (en) Apparatus for fabricating ingot
KR20170073834A (en) Growth device for silicon carbide single crystal
JP2013075793A (en) Apparatus and method for producing single crystal
KR101841109B1 (en) Apparatus for fabricating ingot
WO2019176447A1 (en) Production method and production device of silicon carbide single crystal
KR101886271B1 (en) Apparatus for fabricating ingot and method for fabricating ingot
KR102163488B1 (en) Growth device for single crystal
US11453959B2 (en) Crystal growth apparatus including heater with multiple regions and crystal growth method therefor
KR20120138112A (en) Apparatus for fabricating ingot
KR20130020488A (en) Apparatus for fabricating ingot
US20240150930A1 (en) System and method of producing monocrystalline layers on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6584007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350