JP2017104776A - Carbon dioxide absorption liquid and separation and recovery method of carbon dioxide - Google Patents

Carbon dioxide absorption liquid and separation and recovery method of carbon dioxide Download PDF

Info

Publication number
JP2017104776A
JP2017104776A JP2015238939A JP2015238939A JP2017104776A JP 2017104776 A JP2017104776 A JP 2017104776A JP 2015238939 A JP2015238939 A JP 2015238939A JP 2015238939 A JP2015238939 A JP 2015238939A JP 2017104776 A JP2017104776 A JP 2017104776A
Authority
JP
Japan
Prior art keywords
carbon dioxide
amine
nitrogen
absorbing
hydrogen bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015238939A
Other languages
Japanese (ja)
Other versions
JP6685547B2 (en
Inventor
金久保 光央
Mitsuhisa Kanakubo
光央 金久保
貴至 牧野
Takashi Makino
貴至 牧野
敏郎 横山
Toshiro Yokoyama
敏郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015238939A priority Critical patent/JP6685547B2/en
Publication of JP2017104776A publication Critical patent/JP2017104776A/en
Application granted granted Critical
Publication of JP6685547B2 publication Critical patent/JP6685547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon dioxide absorption liquid where an absorption amount in the vicinity of room temperature is large in comparison with a conventional amine aqueous solution, easy-desorption property at a high temperature is excellent, the evaporation loss of an absorption liquid is small, specific heat is low, reaction heat is small, and energy required for the regeneration of the carbon dioxide absorption liquid per recovered carbon dioxide can be reduced.SOLUTION: Carbon dioxide absorption liquid includes a carbon dioxide chemical absorption amine being non-aqueous and recoverable at a high temperature and having a nitrogen-hydrogen bond and a tertiary amine solvent not having the nitrogen-hydrogen bond. The tertiary amine solvent not having the nitrogen-hydrogen bond is a polydentate amine being rich in hydrogen bond acceptability, being conformationally stable, having an oxygen atom and/or a nitrogen atom through a hydrocarbon group having a carbon number of a main chain of 2 or more so that a reaction between the amine having the nitrogen-hydrogen bond and carbon dioxide is accelerated and the total of the oxygen atom and the nitrogen atom is 2 or more.SELECTED DRAWING: None

Description

本発明は、二酸化炭素吸収液および二酸化炭素分離回収方法に関する。   The present invention relates to a carbon dioxide absorbing solution and a carbon dioxide separation and recovery method.

二酸化炭素や硫化水素などの酸性ガスの分離回収では、アミン化合物の水溶液を吸収液として用いた化学吸収法が実用化されている。この化学吸収法のプロセスでは、吸収塔において室温近傍で、酸性ガスを含む気体を吸収液に接触させて、酸性ガスを選択的に吸収液に化学的に吸収させ、酸性ガス濃度の低下した気体と酸性ガスを吸収した吸収液を気液分離し、再生塔において、その酸性ガスを吸収した吸収液を加熱して、酸性ガスを放散させて回収し、同時に吸収液を再生し、循環して用いる。   In the separation and recovery of acidic gases such as carbon dioxide and hydrogen sulfide, a chemical absorption method using an aqueous solution of an amine compound as an absorbing solution has been put into practical use. In this chemical absorption process, a gas containing an acid gas is brought into contact with an absorption liquid at room temperature in an absorption tower, and the acid gas is selectively absorbed into the absorption liquid to cause a gas with a reduced acid gas concentration. The absorption liquid that has absorbed the acid gas is separated into gas and liquid, and the absorption liquid that has absorbed the acid gas is heated in the regeneration tower to dissipate and collect the acid gas. At the same time, the absorption liquid is regenerated and circulated. Use.

しかし、このようなアミン水溶液を用いた二酸化炭素分離回収方法では、再生塔で二酸化炭素を回収して吸収液を再生するために吸収液を高温にする必要があり、消費エネルギーが著しく大きくなる。このような問題を解決するため様々な検討が行われている。   However, in such a carbon dioxide separation and recovery method using an amine aqueous solution, it is necessary to increase the temperature of the absorption liquid in order to recover the carbon dioxide in the regeneration tower and regenerate the absorption liquid, resulting in a significant increase in energy consumption. Various studies have been conducted to solve such problems.

例えば特許文献1には、ガス流からCOを分離する循環方法であって、アルカノールアミンCO吸収剤および非求核性の塩基を含む吸収剤にガス流を接触させる工程を含む方法が記載されている。特許文献1の実施例には、アルカノールアミンと、非求核性の塩基としてテトラメチルグアニジンを用いたものが記載されている。また、特許文献2には、COなどの不純物ガスを含む流体をイオン液体およびアミン化合物を含む不純物除去混合物と接触させる段階を含む、不純物ガス低減方法が記載され、アミン化合物としてモノアミンやジアミンなどが記載されている。 For example, Patent Document 1 describes a method of circulating CO 2 from a gas stream, which includes contacting the gas stream with an absorbent containing an alkanolamine CO 2 absorbent and a non-nucleophilic base. Has been. In the examples of Patent Document 1, alkanolamine and those using tetramethylguanidine as a non-nucleophilic base are described. Patent Document 2 describes a method for reducing an impurity gas, which includes a step of bringing a fluid containing an impurity gas such as CO 2 into contact with an impurity removal mixture containing an ionic liquid and an amine compound. Is described.

特表2013−542060号公報Special table 2013-542060 gazette 特表2011−521778号公報Special table 2011-521778 gazette

従来のアミン水溶液を用いた二酸化炭素分離回収方法の問題は、二酸化炭素の脱離(反応熱)の工程に高温が必要なこと、溶媒の水は比熱が大きく、昇温・冷却に過大なエネルギーを要すること、加熱に際して水の蒸発潜熱が余分に掛かることに由来する。特許文献1に記載の方法は、水性溶媒を用いたり、用いるテトラメチルグアニジンの沸点が160℃程度と低いので、二酸化炭素の脱離の工程で溶媒損失が大きくなる恐れがある。特許文献2に記載の方法は、水などを溶媒として用い、実施例では、二酸化炭素の放出の温度が100℃と低い温度の結果が示されているのみであり、また、アミン溶液の昇温・冷却に過大なエネルギーを要する恐れがある。   The problems with conventional carbon dioxide separation and recovery methods using aqueous amine solutions are that high temperatures are required for the carbon dioxide desorption (reaction heat) process, and the solvent water has a large specific heat, and excessive energy for heating and cooling. This is because the latent heat of vaporization of water is excessive during heating. In the method described in Patent Document 1, an aqueous solvent is used or the boiling point of tetramethylguanidine to be used is as low as about 160 ° C., so there is a risk that the solvent loss will increase in the carbon dioxide desorption process. The method described in Patent Document 2 uses water or the like as a solvent, and in the Examples, only the result of a low temperature of carbon dioxide release of 100 ° C. is shown, and the temperature of the amine solution is increased.・ Excessive energy may be required for cooling.

したがって、本発明の課題は、従来のアミン水溶液に比べて室温近傍での吸収量が多く、かつ高温での易脱性に優れ、吸収液の蒸発損失が少なく、低比熱で、反応熱が小さく、回収する二酸化炭素当たりの二酸化炭素吸収液の再生に要するエネルギーを削減できる二酸化炭素吸収液を提供することである。   Therefore, the problems of the present invention are that the amount of absorption near room temperature is higher than that of the conventional aqueous amine solution, and easy desorption at a high temperature is excellent, the evaporation loss of the absorbing solution is small, the specific heat is low, and the reaction heat is small. An object of the present invention is to provide a carbon dioxide absorbing solution capable of reducing energy required for regeneration of the carbon dioxide absorbing solution per recovered carbon dioxide.

本発明者らは、前記課題を解決するため鋭意検討した結果、非水系において、溶媒として、特定の3級多座アミンを用いると、室温近傍では、水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素とアミンとの反応を促進すること、高温では、二酸化炭素の放出が容易になること、二酸化炭素吸収剤として、特定の2級アミンを用いると二酸化炭素との反応熱が低くなること、また、特定の酸素原子や窒素原子を複数有する多座アミンを用いると二酸化炭素の吸収量が富んでいること、このような吸収液は、従来のアミン水溶液に比べて室温近傍での二酸化炭素の吸収量が多く、かつ、その吸収液を高温で取り扱うことができ、その高温で二酸化炭素の易脱性が優れ、吸収液の蒸発損失が少なく、二酸化炭素吸収液の再生エネルギーを削減できることを見出した。本発明者らは、更に検討を行い本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when a specific tertiary polydentate amine is used as a solvent in a non-aqueous system, it has a high hydrogen bond acceptability near the room temperature, and has a three-dimensional structure. It also stabilizes and promotes the reaction between carbon dioxide and amine. At high temperatures, the release of carbon dioxide becomes easy. When a specific secondary amine is used as a carbon dioxide absorbent, the heat of reaction with carbon dioxide is reduced. In addition, the use of polydentate amines having a plurality of specific oxygen atoms and nitrogen atoms increases the amount of carbon dioxide absorbed, and such an absorbent is near room temperature compared to conventional amine aqueous solutions. The absorption amount of carbon dioxide is large and the absorption liquid can be handled at high temperature, the carbon dioxide is easy to desorb at the high temperature, the evaporation liquid has little evaporation loss, and the regeneration energy of the carbon dioxide absorption liquid It has been found that can be reduced. The present inventors have further studied and completed the present invention.

上記課題を解決するため本発明は以下の態様を含む。
(1)窒素−水素結合を有する二酸化炭素化学吸収性アミンと、窒素−水素結合を有さない3級アミン溶媒とを含み、
前記窒素−水素結合を有さない3級アミン溶媒は、水素結合受容性に富み、立体構造的にも安定化し、前記窒素−水素結合を有するアミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級多座アミンである、高温回収可能な非水系の二酸化炭素吸収液。
In order to solve the above problems, the present invention includes the following aspects.
(1) comprising a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and a tertiary amine solvent having no nitrogen-hydrogen bond,
The tertiary amine solvent having no nitrogen-hydrogen bond is rich in hydrogen bond acceptability, is also sterically stabilized, and promotes the reaction between the amine having the nitrogen-hydrogen bond and carbon dioxide. A tertiary polydentate amine having a main chain containing an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms, and a total of 2 or more oxygen atoms and nitrogen atoms, and capable of high-temperature recovery Water-based carbon dioxide absorption solution.

(2)前記3級多座アミンは、
1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が1つと、炭素数2以上の無置換の炭化水素基が2つ結合した3級アミン、
1つの窒素原子に、水酸基を有する主鎖の炭素数が3以上の炭化水素基が1つと、無置換の炭化水素基が2つ結合した3級アミン、
1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が2つと、無置換の炭素数3以上の炭化水素基が1つ結合した3級アミン、又は
非環状骨格を構成するエチレン基、プロピレン基、若しくはブチレン基を介したジアミン骨格を有する3級アミン、
である、前記(1)に記載の二酸化炭素吸収液。
(2) The tertiary polydentate amine is
A tertiary amine in which one hydrocarbon group having 2 or more carbon atoms in the main chain having a hydroxyl group and two unsubstituted hydrocarbon groups having 2 or more carbon atoms are bonded to one nitrogen atom;
A tertiary amine in which one hydrocarbon group having 3 or more carbon atoms in the main chain having a hydroxyl group and two unsubstituted hydrocarbon groups are bonded to one nitrogen atom;
A tertiary amine in which two hydrocarbon groups having 2 or more carbon atoms in the main chain having a hydroxyl group and one unsubstituted hydrocarbon group having 3 or more carbon atoms are bonded to one nitrogen atom, or an acyclic skeleton A tertiary amine having a diamine skeleton via an ethylene group, a propylene group, or a butylene group;
The carbon dioxide absorbing solution according to (1), wherein

(3)前記3級多座アミンは、N−ブチルジエタノールアミン、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン、又はN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミンである、前記(1)又は(2)に記載の二酸化炭素吸収液。 (3) The tertiary polydentate amine is N-butyldiethanolamine, N, N, N ′, N′-tetrakis (2-hydroxyethyl) ethylenediamine, or N, N, N ′, N′-tetrakis (2- The carbon dioxide-absorbing solution according to (1) or (2), which is hydroxypropyl) ethylenediamine.

(4)前記3級多座アミンは、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミンである、前記(3)に記載の二酸化炭素吸収液。 (4) The carbon dioxide absorbing solution according to (3), wherein the tertiary polydentate amine is N, N, N ′, N′-tetrakis (2-hydroxyethyl) ethylenediamine.

(5)前記3級多座アミンは、N−メチルジエタノールアミン、N−エチルジエタノールアミン、又はトリエタノールアミンである、前記(1)に記載の二酸化炭素吸収液。 (5) The carbon dioxide absorbing liquid according to (1), wherein the tertiary polydentate amine is N-methyldiethanolamine, N-ethyldiethanolamine, or triethanolamine.

(6)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、更に水酸基を有する炭化水素基を有する、前記(1)〜(5)のいずれか1つに記載の二酸化炭素吸収液。 (6) The carbon dioxide absorbing liquid according to any one of (1) to (5), wherein the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond further has a hydrocarbon group having a hydroxyl group.

(7)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、4−アミノ−1−ブタノール、N−メチルエタノールアミン、3−メチルアミノ−1−プロパノール、2−(エチルアミノ)エタノール、2−(ブチルアミノ)エタノール、モノエタノールアミン、又はジエタノールアミンである、前記(6)に記載の二酸化炭素吸収液。 (7) The carbon dioxide chemically absorbing amine having the nitrogen-hydrogen bond is 4-amino-1-butanol, N-methylethanolamine, 3-methylamino-1-propanol, 2- (ethylamino) ethanol, The carbon dioxide absorbing solution according to (6), which is 2- (butylamino) ethanol, monoethanolamine, or diethanolamine.

(8)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、ジエタノールアミンである、前記(7)に記載の二酸化炭素吸収液。 (8) The carbon dioxide absorbing liquid according to (7), wherein the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is diethanolamine.

(9)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有する、前記(1)〜(5)のいずれか1つに記載の二酸化炭素吸収液。 (9) The carbon dioxide chemical-absorbing amine having a nitrogen-hydrogen bond has the oxygen atom and / or the nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain. The carbon dioxide absorbing solution according to any one of 5).

(10)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を有する、前記(1)〜(5)及び(9)のいずれか1つに記載の二酸化炭素吸収液。 (10) The carbon dioxide chemisorbable amine having a nitrogen-hydrogen bond has the diamine skeleton having a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain. ) And the carbon dioxide absorbing liquid according to any one of (9).

(11)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を2以上有するポリアミンである、前記(10)に記載の二酸化炭素吸収液。 (11) The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is a polyamine having two or more diamine skeletons having a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain. The carbon dioxide absorption liquid as described in 10).

(12)前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、エチレンジアミン、ピペラジン、N−ヘキシルエチレンジアミン、N−(2−ヒドロキシエチル)エチレンジアミン、N−(2−ヒドロキシイソプロピル)エチレンジアミン、N,N’−ビス(2−ヒドロキシエチル)エチレンジアミン、ジエチレントリアミン、トリス(2−アミノエチル)アミン、1−(2−アミノエチル)ピペラジン、トリエチレンテトラミン、又は1,2−ビス(3−アミノプロプルアミノ)エタンである、前記(9)〜(11)のいずれか1つに記載の二酸化炭素吸収液。 (12) The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is ethylenediamine, piperazine, N-hexylethylenediamine, N- (2-hydroxyethyl) ethylenediamine, N- (2-hydroxyisopropyl) ethylenediamine, N, N′-bis (2-hydroxyethyl) ethylenediamine, diethylenetriamine, tris (2-aminoethyl) amine, 1- (2-aminoethyl) piperazine, triethylenetetramine, or 1,2-bis (3-aminopropylamino) ) The carbon dioxide absorbing solution according to any one of (9) to (11), which is ethane.

(13)水分含有量が5質量%未満である、前記(1)〜(12)のいずれか1つに記載の二酸化炭素吸収液。 (13) The carbon dioxide absorbent according to any one of (1) to (12), wherein the water content is less than 5% by mass.

(14)前記(1)〜(13)のいずれか1つに記載の二酸化炭素吸収液を二酸化炭素を含む混合ガスと50℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び
前記の二酸化炭素を吸収した二酸化炭素吸収液を120℃以上に加熱することで吸収した二酸化炭素の90%以上を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法。
(14) Carbon dioxide is absorbed into the carbon dioxide absorbing liquid by bringing the carbon dioxide absorbing liquid according to any one of (1) to (13) into contact with a mixed gas containing carbon dioxide at 50 ° C. or less. An absorption step of selectively separating carbon dioxide from the mixed gas; and heating the carbon dioxide absorption liquid that has absorbed the carbon dioxide to 120 ° C. or more to dissipate 90% or more of the absorbed carbon dioxide. A carbon dioxide separation and recovery method, comprising: a heating regeneration step of recovering the carbon dioxide absorbing liquid.

本発明の二酸化炭素吸収液は、従来のアミン水溶液に比べて室温近傍での吸収量が多く、かつ高温での易脱性に優れ、吸収液の蒸発損失が少なく、低比熱で、反応熱が小さく、回収する二酸化炭素当たりの二酸化炭素吸収液の再生に要するエネルギーを削減可能である。   The carbon dioxide absorbing liquid of the present invention has a large amount of absorption near room temperature compared to conventional amine aqueous solutions, and is excellent in easy desorption at high temperatures, has little evaporation loss of the absorbing liquid, has a low specific heat, and has a heat of reaction. It is small and can reduce the energy required to regenerate the carbon dioxide absorbing liquid per carbon dioxide to be recovered.

二酸化炭素吸収試験装置(大気圧ガス吹込型)を示す図。The figure which shows a carbon dioxide absorption test apparatus (atmospheric pressure gas blowing type). 二酸化炭素吸収試験装置(高圧・ガス吸収量測定)を示す図。The figure which shows a carbon dioxide absorption test apparatus (high pressure and gas absorption amount measurement). 二酸化炭素反応熱測定装置を示す図。The figure which shows a carbon dioxide reaction heat measuring apparatus. 二酸化炭素吸収放散試験装置(温度スイング型)を示す図。The figure which shows a carbon dioxide absorption-and-release test apparatus (temperature swing type). 実施例1−1〜1−6の二酸化炭素吸収液(MEA/各種溶媒)の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of the carbon dioxide absorption liquid (MEA / various solvents) of Examples 1-1 to 1-6. 実施例1−7〜1−13の二酸化炭素吸収液(MEA/各種溶媒)の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of the carbon dioxide absorption liquid (MEA / various solvent) of Examples 1-7 to 1-13. 実施例2−1〜2−5の二酸化炭素吸収液(各種アミン/MDEA溶媒)の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of the carbon dioxide absorption liquid (various amine / MDEA solvent) of Examples 2-1 to 2-5. 実施例2−6〜2−12の二酸化炭素吸収液(各種アミン/MDEA溶媒)の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of the carbon dioxide absorption liquid (various amine / MDEA solvent) of Examples 2-6 to 2-12. 実施例2−13〜2−17の二酸化炭素吸収液(各種アミン/MDEA溶媒)の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of the carbon dioxide absorption liquid (various amine / MDEA solvent) of Examples 2-13 to 2-17. 各二酸化炭素吸収液の反応熱。Reaction heat of each carbon dioxide absorption liquid. 実施例3−1〜3−3、実施例4−1〜4−3の二酸化炭素吸収液の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of Examples 3-1 to 3-3 and the carbon dioxide absorption liquid of Examples 4-1 to 4-3. 実施例5−1〜5−3、実施例6−1〜6−3の二酸化炭素吸収液の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of Examples 5-1 to 5-3 and the carbon dioxide absorption liquid of Examples 6-1 to 6-3. 実施例5−1〜5−3、実施例6−1〜6−3の二酸化炭素吸収液の二酸化炭素吸収量を示すグラフ。The graph which shows the carbon dioxide absorption amount of Examples 5-1 to 5-3 and the carbon dioxide absorption liquid of Examples 6-1 to 6-3. 不純物試験(水蒸気成分同伴)における二酸化炭素吸収(50℃)の結果を示すグラフ。The graph which shows the result of the carbon dioxide absorption (50 degreeC) in an impurity test (water vapor | steam component accompanying). 不純物試験(水蒸気成分同伴)における二酸化炭素放散(120℃)の結果を示すグラフ。The graph which shows the result of the carbon dioxide emission (120 degreeC) in an impurity test (water vapor | steam component accompanying).

本発明の二酸化炭素吸収液は、高温回収可能な非水系の二酸化炭素吸収液であり、窒素−水素結合を有する二酸化炭素化学吸収性アミンと、窒素−水素結合を有さない3級アミン溶媒とを含む。この窒素−水素結合を有さない3級アミン溶媒は、水素結合受容性に富み、立体構造的にも安定化し、窒素−水素結合を有するアミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級多座アミンである。   The carbon dioxide absorbing liquid of the present invention is a non-aqueous carbon dioxide absorbing liquid that can be recovered at a high temperature, a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond, and a tertiary amine solvent having no nitrogen-hydrogen bond. including. This tertiary amine solvent not having a nitrogen-hydrogen bond is rich in hydrogen bond acceptability, stabilized in three-dimensional structure, and promotes the reaction between an amine having a nitrogen-hydrogen bond and carbon dioxide. It is a tertiary polydentate amine having an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the chain, and a total of 2 or more oxygen atoms and nitrogen atoms.

「非水系」とは、本発明の二酸化炭素吸収液が、実質的に水を含まないことをいい、好ましくは、水含有量が10質量%未満、より好ましくは5質量%未満、特に好ましくは3質量%未満である。   “Non-aqueous” means that the carbon dioxide absorbing liquid of the present invention does not substantially contain water, preferably the water content is less than 10% by mass, more preferably less than 5% by mass, and particularly preferably. It is less than 3% by mass.

「高温で回収可能な」とは、二酸化炭素を、常温付近、好ましくは10℃で吸収した本発明の二酸化炭素吸収液を高温、具体的には80℃以上、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上に加熱して、二酸化炭素吸収液から二酸化炭素をガスとして放出して分離できること、好ましくは10℃で吸収した二酸化炭素の50モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上を分離できることであり、吸収液がこれらの温度で安定であることを要し、吸収液の常圧における沸点が、これらの温度より高いことが好ましい。なお、「高温で回収可能な」とは、本発明の二酸化炭素吸収液における二酸化炭素の放出温度の限定を意図するものではない。本発明の二酸化炭素吸収液は、二酸化炭素を吸収した温度より高い温度であれば二酸化炭素を放出することができる。   “Recoverable at high temperature” means that the carbon dioxide-absorbing solution of the present invention that has absorbed carbon dioxide at around room temperature, preferably 10 ° C., has a high temperature, specifically 80 ° C. or higher, preferably 100 ° C. or higher. Can be heated to 120 ° C. or higher, more preferably 140 ° C. or higher, particularly preferably 150 ° C. or higher to release carbon dioxide as a gas from the carbon dioxide absorbing liquid, and preferably 50 carbon dioxide absorbed at 10 ° C. Mol% or more, more preferably 70 mol% or more, particularly preferably 90 mol% or more can be separated, and it is necessary that the absorption liquid is stable at these temperatures. It is preferable that the temperature is higher. “Recoverable at high temperature” is not intended to limit the carbon dioxide release temperature in the carbon dioxide absorbent of the present invention. The carbon dioxide absorbing liquid of the present invention can release carbon dioxide at a temperature higher than the temperature at which carbon dioxide is absorbed.

(3級アミン溶媒)
本発明に用いる3級アミン溶媒は、窒素−水素結合を有さず、水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素化学吸収性アミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級多座アミンである。ここで、「水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素化学吸収性アミンと二酸化炭素との反応を促進」とは、例えば式1で示されるように、3級多座アミンの窒素原子や酸素原子が、二酸化炭素化学吸収性アミンの水素と多座で相互作用して、二酸化炭素との反応生成物を安定化することである。
(Tertiary amine solvent)
The tertiary amine solvent used in the present invention does not have a nitrogen-hydrogen bond, is rich in hydrogen bond acceptability, is also stabilized in three-dimensional structure, and promotes the reaction between a carbon dioxide chemically absorbing amine and carbon dioxide. And a tertiary polydentate amine having an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain, and a total of 2 or more oxygen atoms and nitrogen atoms. Here, “rich in hydrogen bond acceptability, stabilized in three-dimensional structure, and promotes the reaction between carbon dioxide chemisorbable amine and carbon dioxide” means, for example, as shown in Formula 1, a tertiary multidentate The nitrogen and oxygen atoms of the amine interact in a multidentate manner with the hydrogen of the carbon dioxide chemically absorbing amine to stabilize the reaction product with carbon dioxide.

式1中、H−N(R)Rで表される化合物は、本発明に係る窒素−水素結合を有する二酸化炭素化学吸収性アミンを表し、Rは、無置換若しくは置換基を有していてもよい炭化水素基又は水素、Rは、無置換若しくは置換基を有していてもよい炭化水素基である。 In Formula 1, a compound represented by H—N (R 1 ) R 2 represents a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond according to the present invention, and R 1 is unsubstituted or has a substituent. An optionally substituted hydrocarbon group or hydrogen, R 2 is an unsubstituted or optionally substituted hydrocarbon group.

式1中、XN(R)Rで表される化合物は、本発明に係る3級多座アミンを表し、R及びRは、無置換若しくは置換基を有していてもよい炭化水素基、Rは、無置換若しくは置換基を有していてもよい、主鎖の炭素数が2以上の炭化水素基であり、Xは、窒素原子又は酸素原子及びそれらに結合する水素又は無置換若しくは置換基を有していてもよい炭化水素基である。なお、本明細書で、主鎖の炭素数が2以上の炭化水素基とは、三級アミンの窒素原子と、窒素原子又は酸素原子との間の最短の基本骨格が、エチレン基やプロピレン基、ブチレン基などのように炭素数2以上のことをいう。従って、例えば、HO−C(H)(CH)N(R)Rといった主鎖の炭化水素が1であるアミンは、本願発明に係る3級多座アミンには含まれない。主鎖の炭素数が2以上の炭化水素基としては、自由度の高い、非環状骨格を構成するエチレン基、プロピレン基、又はブチレン基が好ましく、エチレン基がより好ましい。 In Formula 1, a compound represented by X 1 R 5 N (R 3 ) R 4 represents a tertiary polydentate amine according to the present invention, and R 3 and R 4 are unsubstituted or have a substituent. And optionally substituted hydrocarbon group, R 5 is a hydrocarbon group having 2 or more carbon atoms in the main chain, which may be unsubstituted or substituted, and X 1 is a nitrogen atom or an oxygen atom and those Or a hydrocarbon group which may be unsubstituted or substituted. In this specification, the hydrocarbon group having 2 or more carbon atoms in the main chain means that the shortest basic skeleton between the nitrogen atom of the tertiary amine and the nitrogen atom or oxygen atom is an ethylene group or a propylene group. , And having 2 or more carbon atoms such as a butylene group. Therefore, for example, an amine whose main chain hydrocarbon is 1, such as HO—C (H) (CH 3 ) N (R 3 ) R 4 , is not included in the tertiary polydentate amine according to the present invention. The hydrocarbon group having 2 or more carbon atoms in the main chain is preferably an ethylene group, propylene group or butylene group constituting an acyclic skeleton having a high degree of freedom, and more preferably an ethylene group.

電子供与性の酸素原子や窒素原子は水素結合受容性が高く、二酸化炭素化学吸収性アミンの水素と相互作用して、二酸化炭素との反応生成物を安定化しうる。そして、式1中にRと曲線で表される主鎖の炭素数が2以上の炭化水素基は、自由度が高いため、その両端に結合する窒素原子及び/又は窒素原子が、二酸化炭素化学吸収性アミンの水素を包摂しうる。このような3級多座アミンは、二酸化炭素を吸収する室温近傍などの比較的低温側では、二酸化炭素化学吸収性アミンの水素を包摂して安定化することによって二酸化炭素との反応を促進する。また、Xに結合した水素は二酸化炭素化学吸収性アミンと反応した二酸化炭素と水素結合を形成でき、反応生成物をさらに安定化して、二酸化炭素との反応を促進可能である。一方、二酸化炭素を放出する高温側では、この包摂の度合いが低下するので、二酸化炭素の放出を促進しうる。 Electron-donating oxygen and nitrogen atoms have a high hydrogen bond accepting property, and can interact with hydrogen of the carbon dioxide chemically absorbing amine to stabilize the reaction product with carbon dioxide. And since the hydrocarbon group having 2 or more carbon atoms in the main chain represented by R 5 and the curve in Formula 1 has a high degree of freedom, a nitrogen atom and / or a nitrogen atom bonded to both ends thereof is carbon dioxide. It can include the hydrogen of a chemically absorbing amine. Such tertiary polydentate amines promote the reaction with carbon dioxide by including and stabilizing hydrogen of the carbon dioxide chemically absorbing amine on the relatively low temperature side, such as near room temperature, which absorbs carbon dioxide. . Further, hydrogen bonded to X 1 may form carbon dioxide and hydrogen bonds reacted with carbon dioxide chemical absorption amine, the reaction product was further stabilized, it is possible to accelerate the reaction with carbon dioxide. On the other hand, on the high temperature side where carbon dioxide is released, the degree of inclusion decreases, so that the release of carbon dioxide can be promoted.

本明細書では、一分子内に複数の窒素原子が存在し、それらの窒素原子が異なる級数であるときには、アミンの級数は、高い方の級数とする。例えば、一分子内に3級窒素原子(窒素原子に炭化水素基が3つ結合している)と2級窒素原子(窒素原子に炭化水素基が2つ結合し、水素原子が一つ結合している)を有する場合には、そのアミンは3級アミンである。したがって、この例の場合には、水素−窒素結合を有する3級アミンであり、3級アミン溶媒ではなく、二酸化炭素化学吸収性アミンに分類される。窒素炭素二重結合は、炭化水素基が窒素原子に2つ結合しているとして級数を定める。   In this specification, when there are a plurality of nitrogen atoms in one molecule and these nitrogen atoms are different series, the series of amine is the higher series. For example, a tertiary nitrogen atom (three hydrocarbon groups are bonded to the nitrogen atom) and a secondary nitrogen atom (two hydrocarbon groups are bonded to the nitrogen atom and one hydrogen atom is bonded to one molecule) The amine is a tertiary amine. Therefore, in this example, it is a tertiary amine having a hydrogen-nitrogen bond and is classified as a carbon dioxide chemically absorbing amine, not a tertiary amine solvent. A nitrogen-carbon double bond defines a series as two hydrocarbon groups bonded to a nitrogen atom.

本発明に3級アミン溶媒として用いる3級多座アミンとしては、水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素化学吸収性アミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級アミンであれば特に限定されないが、例えば、式2で示される、1つの窒素原子に、水酸基を有する炭化水素基が1つと、水酸基を有さない炭化水素基が2つ結合した3級多座アミン;
(式2中、R及びRは、無置換又は置換基(水酸基を除く)を有していてもよい炭化水素基、n1は、2以上の整数であり、括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
式3で示される、1つの窒素原子に、水酸基を有する炭化水素基が2つと、水酸基を有さない炭化水素基が1つ結合した3級多座アミン;
(式3中、Rは、無置換又は置換基(水酸基を除く)を有していてもよい炭化水素基、n1及びn2は、2以上の整数であり、括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
式4で示される、1つの窒素原子に、水酸基を有する炭化水素基が3つ結合した3級多座アミン;
(式4中、n1、n2、及びn3は、2以上の整数であり、括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
The tertiary polydentate amine used as the tertiary amine solvent in the present invention is rich in hydrogen bond acceptability, stabilized in three-dimensional structure, and promotes the reaction between the carbon dioxide chemically absorbing amine and carbon dioxide. Although it is not particularly limited as long as it has a tertiary amine having an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain, and the total of the oxygen atom and the nitrogen atom is 2 or more, A tertiary polydentate amine represented by formula 2 in which one hydrocarbon group having one hydroxyl group and two hydrocarbon groups having no hydroxyl group are bonded to one nitrogen atom;
(In Formula 2, R 3 and R 4 are unsubstituted or a hydrocarbon group which may have a substituent (excluding a hydroxyl group), n1 is an integer of 2 or more, and a carbon atom in parentheses is substituted. (It may have a group, and a part of carbon atoms may be substituted with a hetero atom.)
A tertiary polydentate amine represented by formula 3 in which two hydrocarbon groups having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom;
(In Formula 3, R 3 is a hydrocarbon group which may be unsubstituted or have a substituent (excluding a hydroxyl group), n1 and n2 are integers of 2 or more, and the carbon atom in parentheses is a substituent. And a part of the carbon atom may be substituted with a hetero atom.)
A tertiary polydentate amine represented by formula 4 in which three hydrocarbon groups having a hydroxyl group are bonded to one nitrogen atom;
(In Formula 4, n1, n2, and n3 are integers of 2 or more, and the carbon atom in parentheses may have a substituent, or a part of the carbon atom may be substituted with a heteroatom. Good.)

式5で示される、炭素数2以上の炭化水素基を介した2つの窒素原子を有するジアミン骨格を有する3級アミンが挙げられる。
(式5中、R、R、R、及びRは、無置換又は置換基を有していてもよい炭化水素基、n4は、2以上の整数であり、括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
A tertiary amine having a diamine skeleton having two nitrogen atoms via a hydrocarbon group having 2 or more carbon atoms, represented by Formula 5, can be given.
(In formula 5, R 3 , R 4 , R 5 , and R 6 are unsubstituted or optionally substituted hydrocarbon groups, n4 is an integer of 2 or more, and a carbon atom in parentheses May have a substituent, and a part of carbon atoms may be substituted with a hetero atom.)

ここで、本明細書において、炭化水素基は、特に断りのない限り、例えば、無置換又はハロゲン基、水酸基などの置換基を有するアルキル基、アルケニル基、アルキニル基が挙げられ、環状であっても非環状であってもよく、骨格にヘテロ原子を有していてもよい。中でも、水酸基を有する炭化水素基は、水酸基を有するアルキル基が好ましい。また、水酸基を有さない炭化水素基は、アルキル基が好ましい。   In this specification, unless otherwise specified, the hydrocarbon group includes, for example, an unsubstituted alkyl group having a substituent such as a halogen group or a hydroxyl group, an alkenyl group, and an alkynyl group. May be non-cyclic and may have a hetero atom in the skeleton. Among these, the hydrocarbon group having a hydroxyl group is preferably an alkyl group having a hydroxyl group. The hydrocarbon group having no hydroxyl group is preferably an alkyl group.

式2で示される、1つの窒素原子に、水酸基を有する炭化水素基が1つと、水酸基を有さない炭化水素基が2つ結合した3級多座アミンとしては、例えば、2−ジメチルアミノエタノール((Me)N(EtOH))、2−(ジエチルアミノ)エタノール((Et)N(EtOH))、2−(ジイソプロピルアミノ)エタノール((i−Pr)N(EtOH))、2−(ジブチルアミノ)エタノール((n−Bu)N(EtOH))、3−ジメチルアミノ−1−プロパノール((Me)N(n−PrOH))、及び4−(ジメチルアミノ)−1−ブタノール((Me)N(n−BuOH))などが挙げられる。 As the tertiary polydentate amine represented by formula 2 in which one hydrocarbon group having one hydroxyl group and two hydrocarbon groups having no hydroxyl group are bonded to one nitrogen atom, for example, 2-dimethylaminoethanol ((Me) 2 N (EtOH)), 2- (diethylamino) ethanol ((Et) 2 N (EtOH)), 2- (diisopropylamino) ethanol ((i-Pr) 2 N (EtOH)), 2- (Dibutylamino) ethanol ((n-Bu) 2 N (EtOH)), 3-dimethylamino-1-propanol ((Me) 2 N (n-PrOH)), and 4- (dimethylamino) -1-butanol ((Me) 2 N (n-BuOH)) and the like.

中でも、式2において、R及びRが、炭素数が2以上の炭化水素基である3級アミン、すなわち、1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が1つと、炭素数2以上の炭化水素基が2つ結合した3級アミン、又は式2において、n1が3以上の整数である3級アミン、すなわち、1つの窒素原子に、水酸基を有する主鎖の炭素数が3以上の炭化水素基が1つと、無置換の炭化水素基が2つ結合した3級アミンが好ましい。具体的には、2−(ジエチルアミノ)エタノール、2−(ジイソプロピルアミノ)エタノール、及び2−(ジブチルアミノ)エタノール、並びに3−ジメチルアミノ−1−プロパノール及び4−(ジメチルアミノ)−1−ブタノールなどが挙げられる。 Among them, in Formula 2, R 3 and R 4 are tertiary amines which are hydrocarbon groups having 2 or more carbon atoms, that is, hydrocarbons having 2 or more carbon atoms in the main chain having a hydroxyl group in one nitrogen atom. A tertiary amine in which one group and two hydrocarbon groups having 2 or more carbon atoms are bonded, or a tertiary amine in which n1 is an integer of 3 or more in Formula 2, that is, one nitrogen atom has a hydroxyl group A tertiary amine in which one hydrocarbon group having 3 or more carbon atoms in the main chain and two unsubstituted hydrocarbon groups are bonded is preferable. Specifically, 2- (diethylamino) ethanol, 2- (diisopropylamino) ethanol, 2- (dibutylamino) ethanol, 3-dimethylamino-1-propanol, 4- (dimethylamino) -1-butanol, etc. Is mentioned.

式3で示される、1つの窒素原子に、水酸基を有する炭化水素基が2つと、水酸基を有さない炭化水素基が1つ結合した3級多座アミンとしては、例えば、N−メチルジエタノールアミン(MDEA)、N−エチルジエタノールアミン((Et)N(EtOH))、N−ブチルジエタノールアミン((n−Bu)N(EtOH))が挙げられる。 As a tertiary polydentate amine represented by formula 3 in which two hydrocarbon groups having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom, for example, N-methyldiethanolamine ( MDEA), N-ethyldiethanolamine ((Et) N (EtOH) 2 ), N-butyldiethanolamine ((n-Bu) N (EtOH) 2 ).

中でも、式3において、Rが炭素数3以上の炭化水素基である3級アミン、すなわち、1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が2つと、無置換の炭素数3以上の炭化水素基が1つ結合した3級アミンが好ましく、具体的には、N−ブチルジエタノールアミンが挙げられる。 Among them, in Formula 3, a tertiary amine in which R 3 is a hydrocarbon group having 3 or more carbon atoms, that is, two hydrocarbon groups having 2 or more carbon atoms in a main chain having a hydroxyl group in one nitrogen atom, A tertiary amine to which one unsubstituted hydrocarbon group having 3 or more carbon atoms is bonded is preferred, and specific examples include N-butyldiethanolamine.

式4で示される、1つの窒素原子に、水酸基を有する炭化水素基が3つ結合した3級多座アミンとしては、例えば、トリエタノールアミン(N(EtOH))、トリプロパノールアミン(N(n−PrOH))、トリブタノールアミン(N(n−BuOH))が挙げられる。中でもトリエタノールアミンが好ましい。 As the tertiary polydentate amine represented by the formula 4 in which three hydrocarbon groups having a hydroxyl group are bonded to one nitrogen atom, for example, triethanolamine (N (EtOH) 3 ), tripropanolamine (N ( n-PrOH) 3 ) and tributanolamine (N (n-BuOH) 3 ). Of these, triethanolamine is preferable.

式5で示される、炭素数2以上の炭化水素基を介した2つの窒素原子を有するジアミン骨格を有する3級アミンとしては、例えば、N,N,N’,N’−テトラメチルエチレンジアミン((Me)N(C)N(Me))、や、更に、窒素原子が、主鎖の炭素数が2以上の炭化水素基を介した酸素原子を有する置換基と結合した、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン((EtOH)N(CH4)N(EtOH))、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン((i−PrOH)N(C)N(i−PrOH))などの非環状骨格を構成するエチレン基、プロピレン基、若しくはブチレン基を介したジアミン骨格を有する3級アミンが挙げられる。中でも、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミンが好ましい。 As the tertiary amine having a diamine skeleton having two nitrogen atoms via a hydrocarbon group having 2 or more carbon atoms represented by Formula 5, for example, N, N, N ′, N′-tetramethylethylenediamine (( Me) 2 N (C 2 H 4 ) N (Me) 2 ), and further, a nitrogen atom is bonded to a substituent having an oxygen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain, N, N, N ′, N′-tetrakis (2-hydroxyethyl) ethylenediamine ((EtOH) 2 N (C 2 H 4) N (EtOH) 2 ), N, N, N ′, N′-tetrakis (2- hydroxypropyl) ethylenediamine ((i-PrOH) 2 N (C 2 H 4) N (i-PrOH) 2) ethylene group constituting a non-cyclic backbone, such as, having diamine skeleton via a propylene group, or butylene group Tertiary amine It is below. Among these, N, N, N ′, N′-tetrakis (2-hydroxyethyl) ethylenediamine is preferable.

(二酸化炭素化学吸収性アミン)
本発明に用いる二酸化炭素化学吸収性アミンは、窒素−水素結合を有する。窒素−水素結合を有するアミンは、二酸化炭素と反応してカルバメート塩を生成しうる(式6−1)。なお、生成したカルバメート塩と未反応のアミンとの間でプロトン移行が起こり(式6−2)、二酸化炭素化学吸収性アミンと二酸化炭素との反応は化学量論的に2:1になることがある(式6−3)。
(Carbon dioxide chemically absorbing amine)
The carbon dioxide chemically absorbing amine used in the present invention has a nitrogen-hydrogen bond. An amine having a nitrogen-hydrogen bond can react with carbon dioxide to form a carbamate salt (Formula 6-1). In addition, proton transfer occurs between the produced carbamate salt and the unreacted amine (Formula 6-2), and the reaction between the carbon dioxide chemically absorbing amine and carbon dioxide is stoichiometrically 2: 1. (Formula 6-3).

(ここで、R及びRは、それぞれ水素原子又は炭化水素基である。) (Here, R 1 and R 2 are each a hydrogen atom or a hydrocarbon group.)

このようにして、二酸化炭素化学吸収性アミンは20℃程度の比較的低温で二酸化炭素を吸収できる。二酸化炭素を吸収した二酸化炭素化学吸収性アミンは、少なくとも二酸化炭素を吸収した温度より高い温度で、好ましくは100℃や150℃といった高温にすると二酸化炭素を放出し、二酸化炭素化学吸収性アミンが再生される。   In this way, the carbon dioxide chemically absorbing amine can absorb carbon dioxide at a relatively low temperature of about 20 ° C. Carbon dioxide chemically absorbing amine that has absorbed carbon dioxide releases carbon dioxide at a temperature higher than at least the temperature at which carbon dioxide is absorbed, preferably 100 ° C or 150 ° C, and carbon dioxide chemically absorbing amine is regenerated. Is done.

本発明に用いる二酸化炭素化学吸収性アミンは、窒素−水素結合を有するアミンであれば、特に限定されず、式7で表される、アンモニアの水素原子の1つ又は2つが炭化水素基で置換されている、1級又は2級の窒素原子を有するアミンである。
(式7中、Rは、無置換若しくは置換基を有していてもよい炭化水素基又は水素、Rは、無置換若しくは置換基を有していてもよい炭化水素基である。炭化水素基中の炭素原子の一部がヘテロ原子で置換されていてもよい。)
The carbon dioxide chemically absorbing amine used in the present invention is not particularly limited as long as it is an amine having a nitrogen-hydrogen bond, and one or two hydrogen atoms of ammonia represented by formula 7 are substituted with a hydrocarbon group. Or an amine having a primary or secondary nitrogen atom.
(In Formula 7, R 1 is a hydrocarbon group or hydrogen which may be unsubstituted or substituted, and R 2 is a hydrocarbon group which may be unsubstituted or substituted. Some of the carbon atoms in the hydrogen group may be substituted with heteroatoms.)

より具体的には、式8に示すように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有するアミンが挙げられる。
(式8中、Rは、無置換若しくは置換基を有していてもよい炭化水素基又は水素、n5は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。Xは、−OR、−N(R)Rなどの、窒素原子又は酸素原子及びそれらに結合する水素又は無置換若しくは置換基を有していてもよい炭化水素基である(R、R、及びRは、無置換若しくは置換基を有していてもよい炭化水素基又は水素である。)である。
More specifically, as shown in Formula 8, an amine having an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain can be mentioned.
(In Formula 8, R 1 is an unsubstituted or optionally substituted hydrocarbon group or hydrogen, and n5 is an integer of 2 or more. The carbon atom in parentheses has a substituent. X may be a nitrogen atom or an oxygen atom such as —OR 5 , —N (R 6 ) R 7 , and a hydrogen atom bonded to them. It is a hydrocarbon group which may be substituted or substituted (R 5 , R 6 and R 7 are a hydrocarbon group which may be unsubstituted or substituted or hydrogen). is there.

さらに具体的には、式9で表される、1つの窒素原子に、水素原子が2つと水酸基を有する炭化水素基が1つ結合したアミン;
(式9中、n6は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
More specifically, an amine in which two hydrogen atoms and one hydrocarbon group having a hydroxyl group are bonded to one nitrogen atom represented by formula 9;
(In Formula 9, n6 is an integer of 2 or more. The carbon atom in parentheses may have a substituent, and a part of the carbon atom may be substituted with a hetero atom.)

式10で表される、1つの窒素原子に、水素原子が1つと水酸基を有する炭化水素基が1つと水酸基を有さない炭化水素基が1つ結合したアミン;
(式10中、Rは、無置換若しくは置換基(水酸基を除く)を有していてもよい炭化水素基、n7は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
An amine in which one hydrogen atom, one hydrocarbon group having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom represented by Formula 10;
(In formula 10, R 7 is a hydrocarbon group which may be unsubstituted or have a substituent (excluding a hydroxyl group), n7 is an integer of 2 or more. The carbon atom in parentheses has a substituent. And some of the carbon atoms may be substituted with heteroatoms.)

式11で表される、1つの窒素原子に、水素原子が1つと水酸基を有する炭化水素基が2つ結合したアミン;
(式11中、n8及びn9は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
An amine represented by formula 11 wherein one hydrogen atom and two hydrocarbon groups having a hydroxyl group are bonded to one nitrogen atom;
(In Formula 11, n8 and n9 are integers of 2 or more. The carbon atom in parentheses may have a substituent, and a part of the carbon atom may be substituted with a hetero atom.)

式12で表される、1つの窒素原子に、水素原子と、主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を有するアミンが挙げられる。
(式12中、R、R、R10は、無置換若しくは置換基を有していてもよい炭化水素基、n10は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
One nitrogen atom represented by Formula 12 includes an amine having a diamine skeleton having a hydrogen atom and a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain.
(In Formula 12, R 8 , R 9 and R 10 are unsubstituted or optionally substituted hydrocarbon groups, and n10 is an integer of 2 or more. The carbon atoms in parentheses are substituents. And a part of the carbon atom may be substituted with a hetero atom.)

式9で表される、1つの窒素原子に、水素原子が2つと水酸基を有する炭化水素基が1つ結合したアミンとしては、モノエタノールアミン(MEA)、3−アミノ−1−プロパノール(NH2(n−PrOH))、4−アミノ−1−ブタノール(NH(n−BuOH))などが挙げられる。中でも、4−アミノ−1−ブタノールなどの水素原子が2つと水酸基を有する炭素数3以上の炭化水素基が1つ結合したアミンが好ましい。 Examples of amines represented by formula 9 in which one hydrogen atom and one hydrocarbon group having a hydroxyl group are bonded to one nitrogen atom include monoethanolamine (MEA), 3-amino-1-propanol (NH 2 ( N-PrOH)), 4-amino-1-butanol (NH 2 (n-BuOH)) and the like. Among them, an amine in which two hydrogen atoms such as 4-amino-1-butanol and one hydrocarbon group having 3 or more carbon atoms having a hydroxyl group is bonded is preferable.

式10で表される、1つの窒素原子に、水素原子が1つと水酸基を有する炭化水素基が1つと水酸基を有さない炭化水素基が1つ結合したアミンとしては、N−メチルエタノールアミン(MMEA)、3−メチルアミノ−1−プロパノール(MeNH(n−PrOH))、2−(エチルアミノ)エタノール(EtNH(EtOH))、2−(プロピルアミノ)エタノール(PrNH(EtOH))、2−(ブチルアミノ)エタノール(BuNH(EtOH))などが挙げられる。   An amine in which one hydrogen atom, one hydrocarbon group having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom represented by Formula 10 is N-methylethanolamine ( MMEA), 3-methylamino-1-propanol (MeNH (n-PrOH)), 2- (ethylamino) ethanol (EtNH (EtOH)), 2- (propylamino) ethanol (PrNH (EtOH)), 2- (Butylamino) ethanol (BuNH (EtOH)) and the like.

式11で表される、1つの窒素原子に、水素原子が1つと水酸基を有する炭化水素基が2つ結合したアミンとしては、ジエタノールアミン(DEA)、ジプロパノールアミン、ジブタノールアミンなどが挙げられる。   Examples of the amine represented by formula 11 in which one hydrogen atom and two hydrocarbon groups having a hydroxyl group are bonded to each other include diethanolamine (DEA), dipropanolamine, and dibutanolamine.

式12で表される、水素原子と、主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を有するアミンとしては、エチレンジアミン(EDA)、ピペラジン(PZ)などのアルキレンジアミン;N−ヘキシルエチレンジアミン(HexEDA)などのアルキルアルキレンジアミン;N−(2−ヒドロキシエチル)エチレンジアミン(HN(C)NHEtOH)、N−(2−ヒドロキシイソプロピル)エチレンジアミン(HN(C)NHiso−PrOH)、N,N’−ビス(2−ヒドロキシエチル)エチレンジアミン(EtOHNH(C)NHEtOH)などのヒドロキシアルキル基を有するアルキレンジアミン;ジエチレントリアミン(HN(C)HN(C)NH)、トリス(2−アミノエチル)アミン(N(CNH)、1−(2−アミノエチル)ピペラジン((PZ−(C)NH))、トリエチレンテトラミン(HN(C)HN(C)HN(C)NH)、1,2−ビス(3−アミノプロプルアミノ)エタン(HN(C)HN(C)HN(C)NH)などの主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を2以上有するポリアミンなどが挙げられる。なお、本明細書において「ジアミン骨格を2以上有する」とは、ジエチレントリアミンのようにジアミン骨格の窒素原子が共通する場合を含む。 Examples of the amine having a diamine skeleton having a hydrogen atom and a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain represented by Formula 12 include alkylenes such as ethylenediamine (EDA) and piperazine (PZ). diamine; N- alkyl alkylenediamine hexyl ethylenediamine (HexEDA); N- (2- hydroxyethyl) ethylenediamine (H 2 N (C 2 H 4) NHEtOH), N- (2- hydroxyisopropyl) ethylenediamine (H 2 N (C 2 H 4 ) NH iso- PrOH), N, N′-bis (2-hydroxyethyl) ethylenediamine (EtOHNH (C 2 H 4 ) NHEtOH) and other alkylene diamines having a hydroxyalkyl group; diethylenetriamine (H 2 N (C 2 H 4) HN ( C 2 H 4) NH 2), Tris (2-aminoethyl) amine (N (C 2 H 4 NH 2 ) 3 ), 1- (2-aminoethyl) piperazine ((PZ- (C 2 H 4 ) NH 2 )), triethylenetetramine (H 2 N (C 2 H 4) HN (C 2 H 4) HN (C 2 H 4) NH 2), 1,2- bis (3-aminopropionic pull amino) ethane (H 2 N (C 3 H 6) Examples thereof include polyamines having two or more diamine skeletons having a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain, such as HN (C 2 H 4 ) HN (C 3 H 6 ) NH 2 ). In the present specification, “having two or more diamine skeletons” includes a case where nitrogen atoms of the diamine skeleton are common, such as diethylenetriamine.

本発明に用いる二酸化炭素化学吸収性アミンは、窒素−水素結合を有するとともに、水酸基を有する炭化水素基を有すると好ましい。水酸基を有する炭化水素基は、特に限定されず、ヒドロキシアルキル基、ヒドロキシアルケニル基、ヒドロキシアルキニル基が挙げられ、更にハロゲン基などの置換基を有することもできる。水酸基を有する炭化水素基としては、ヒドロキシアルキル基が好ましい。ヒドロキシアルキル基を有するアミンは、アルカノールアミンとも呼ばれる。ヒドロキシアルキル基の例としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシ−i−プロピル基、及びヒドロキシブチル基などが挙げられる。中でも、炭素数2又は3以上であると好ましく、ヒドロキシエチル基が特に好ましい。   The carbon dioxide chemically absorbing amine used in the present invention preferably has a nitrogen-hydrogen bond and a hydrocarbon group having a hydroxyl group. The hydrocarbon group having a hydroxyl group is not particularly limited, and examples thereof include a hydroxyalkyl group, a hydroxyalkenyl group, and a hydroxyalkynyl group, and can further have a substituent such as a halogen group. As the hydrocarbon group having a hydroxyl group, a hydroxyalkyl group is preferred. Amines having a hydroxyalkyl group are also called alkanolamines. Examples of the hydroxyalkyl group include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxy-i-propyl group, and a hydroxybutyl group. Especially, it is preferable in it being C2 or 3 or more, and a hydroxyethyl group is especially preferable.

窒素−水素結合を有するとともに、水酸基を有する炭化水素基を有する二酸化炭素化学吸収性アミンの具体例としては、MEA、MMEA、2−(エチルアミノ)エタノール、2−(プロピルアミノ)エタノール、2−(ブチルアミノ)エタノール、3−メチルアミノ−1−プロパノール、N−(2−ヒドロキシエチル)エチレンジアミン、N−(2−ヒドロキシイソプロピル)エチレンジアミン、N,N’−ビス(2−ヒドロキシエチル)エチレンジアミン、DEA、ジプロパノールアミンなどが挙げられる。中でも、二酸化炭素吸収液として二酸化炭素分離回収の効率が高いなどの点で、水酸基を有する炭素数2以上の炭化水素基が窒素原子に結合した2級アミン又は1級アミンが好ましく、水酸基を有する炭素数2以上の炭化水素基が窒素原子に結合した2級アミンがより好ましい。より具体的には、MEA、DEA、MMEAが好ましく、DEAがより好ましい。   Specific examples of the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and a hydrocarbon group having a hydroxyl group include MEA, MMEA, 2- (ethylamino) ethanol, 2- (propylamino) ethanol, 2- (Butylamino) ethanol, 3-methylamino-1-propanol, N- (2-hydroxyethyl) ethylenediamine, N- (2-hydroxyisopropyl) ethylenediamine, N, N′-bis (2-hydroxyethyl) ethylenediamine, DEA And dipropanolamine. Among them, a secondary amine or a primary amine in which a hydrocarbon group having 2 or more carbon atoms having a hydroxyl group is bonded to a nitrogen atom is preferable because it has a high efficiency of carbon dioxide separation and recovery as a carbon dioxide absorbing solution, and has a hydroxyl group. A secondary amine in which a hydrocarbon group having 2 or more carbon atoms is bonded to a nitrogen atom is more preferable. More specifically, MEA, DEA, and MMEA are preferable, and DEA is more preferable.

(二酸化炭素吸収液)
本発明の二酸化炭素吸収液は、前述の窒素−水素結合を有する二酸化炭素化学吸収性アミンと、前述の窒素−水素結合を有さない3級アミン溶媒を含む。本発明に用いる二酸化炭素化学吸収性アミン及び3級アミン溶媒は、通常、室温で液体であり、本発明の二酸化炭素吸収液は、二酸化炭素化学吸収性アミンと3級アミン溶媒とを混合することによって得られる。
(Carbon dioxide absorbent)
The carbon dioxide absorbing liquid of the present invention contains the above-described carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and the above-mentioned tertiary amine solvent not having a nitrogen-hydrogen bond. The carbon dioxide chemically absorbing amine and tertiary amine solvent used in the present invention are usually liquid at room temperature, and the carbon dioxide absorbing liquid of the present invention is a mixture of a carbon dioxide chemically absorbing amine and a tertiary amine solvent. Obtained by.

二酸化炭素化学吸収性アミンと3級アミン溶媒の組み合わせは特に限定されないが、二酸化炭素化学吸収性アミンがモノエタノールアミンの場合、3級アミン溶媒は、1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が1つと、炭素数2以上の無置換の炭化水素基が2つ結合した3級アミン;1つの窒素原子に、水酸基を有する主鎖の炭素数が3以上の炭化水素基が1つと、無置換の炭化水素基が2つ結合した3級アミン;1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が2つと、無置換の炭素数3以上の炭化水素基が1つ結合した3級アミン;又は非環状骨格を構成するエチレン基、プロピレン基、若しくはブチレン基を介したジアミン骨格を有する3級アミン;などの3級多座アミンが好ましい。   The combination of the carbon dioxide chemically absorbing amine and the tertiary amine solvent is not particularly limited, but when the carbon dioxide chemically absorbing amine is monoethanolamine, the tertiary amine solvent has a main chain having a hydroxyl group on one nitrogen atom. A tertiary amine in which one hydrocarbon group having 2 or more carbon atoms and two unsubstituted hydrocarbon groups having 2 or more carbon atoms are bonded; the main chain having a hydroxyl group on one nitrogen atom has 3 or more carbon atoms A tertiary amine in which one hydrocarbon group is bonded to two unsubstituted hydrocarbon groups; two hydrocarbon groups having 2 or more carbon atoms in the main chain having a hydroxyl group on one nitrogen atom, and unsubstituted A tertiary amine in which one hydrocarbon group having 3 or more carbon atoms is bonded; or a tertiary amine having a diamine skeleton via an ethylene group, propylene group, or butylene group constituting an acyclic skeleton; Zodiac amine is preferred There.

具体的には、MEAと、2−ジメチルアミノエタノール、2−(ジエチルアミノ)エタノール、2−(ジイソプロピルアミノ)エタノール、2−(ジブチルアミノ)エタノール、3−ジメチルアミノ−1−プロパノール、4−(ジメチルアミノ)−1−ブタノール、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N−ブチルジエタノールアミン、トリエタノールアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン、又はN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミンの組合せが好ましい。   Specifically, MEA, 2-dimethylaminoethanol, 2- (diethylamino) ethanol, 2- (diisopropylamino) ethanol, 2- (dibutylamino) ethanol, 3-dimethylamino-1-propanol, 4- (dimethyl Amino) -1-butanol, N-methyldiethanolamine, N-ethyldiethanolamine, N-butyldiethanolamine, triethanolamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′— A combination of tetrakis (2-hydroxyethyl) ethylenediamine or N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine is preferred.

3級アミン溶媒が、MDEAの場合は、二酸化炭素化学吸収性アミンが、窒素−水素結合を有し、かつ、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有するアミンであると好ましい。具体的には、MDEAと、MEA、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、MMEA、3−メチルアミノ−1−プロパノール、2−(エチルアミノ)エタノール、2−(プロピルアミノ)エタノール、2−(ブチルアミノ)エタノール、DEA、ジプロパノールアミン、ジブタノールアミン、EDA、PZ、N−ヘキシルエチレンジアミン、N−(2−ヒドロキシエチル)エチレンジアミン、N−(2−ヒドロキシイソプロピル)エチレンジアミン、N,N’−ビス(2−ヒドロキシエチル)エチレンジアミン、ジエチレントリアミン、トリス(2−アミノエチル)アミン、1−(2−アミノエチル)ピペラジン、トリエチレンテトラミン、又は1,2−ビス(3−アミノプロプルアミノ)エタンの組合せが好ましい。   When the tertiary amine solvent is MDEA, the carbon dioxide chemisorbable amine has a nitrogen-hydrogen bond and the main chain has 2 or more oxygen atoms and / or nitrogen via a hydrocarbon group. An amine having an atom is preferable. Specifically, MDEA, MEA, 3-amino-1-propanol, 4-amino-1-butanol, MMEA, 3-methylamino-1-propanol, 2- (ethylamino) ethanol, 2- (propylamino) ) Ethanol, 2- (butylamino) ethanol, DEA, dipropanolamine, dibutanolamine, EDA, PZ, N-hexylethylenediamine, N- (2-hydroxyethyl) ethylenediamine, N- (2-hydroxyisopropyl) ethylenediamine, N, N′-bis (2-hydroxyethyl) ethylenediamine, diethylenetriamine, tris (2-aminoethyl) amine, 1- (2-aminoethyl) piperazine, triethylenetetramine, or 1,2-bis (3-aminopro A combination of (pullamino) ethane is preferred.

二酸化炭素吸収液中の二酸化炭素化学吸収性アミンと3級アミン溶媒の割合は特に限定されず、これらの種類によって適宜選択されるが、二酸化炭素化学吸収性アミン/(二酸化炭素化学吸収性アミン+3級アミン溶媒)(質量比)で、好ましくは1/100〜50/100、より好ましくは10/100〜40/100である。二酸化炭素化学吸収性アミンの比率がこの範囲にあると、室温近傍での二酸化炭素吸収量を上げ、かつ高温での二酸化炭素易脱性を向上できる。   The ratio of the carbon dioxide chemically absorbing amine and the tertiary amine solvent in the carbon dioxide absorbing liquid is not particularly limited, and is appropriately selected depending on these types. Carbon dioxide chemically absorbing amine / (carbon dioxide chemically absorbing amine + 3 Secondary amine solvent) (mass ratio), preferably 1/100 to 50/100, more preferably 10/100 to 40/100. When the ratio of the carbon dioxide chemically absorbing amine is within this range, the amount of carbon dioxide absorbed near room temperature can be increased, and the carbon dioxide easy desorption at a high temperature can be improved.

本発明の二酸化炭素吸収液は、非水系の二酸化炭素吸収液であり、実質的に水を含まない。具体的には、本発明の二酸化炭素吸収液の水含有量は、好ましくは、10質量%未満、より好ましくは5質量%未満、特に好ましくは3質量%未満である。   The carbon dioxide absorbing liquid of the present invention is a non-aqueous carbon dioxide absorbing liquid and does not substantially contain water. Specifically, the water content of the carbon dioxide absorbing liquid of the present invention is preferably less than 10% by mass, more preferably less than 5% by mass, and particularly preferably less than 3% by mass.

(二酸化炭素分離回収方法)
本発明の二酸化炭素吸収液は、二酸化炭素を含む混合ガスから、二酸化炭素ガスを分離回収できる。混合ガスは、二酸化炭素を含むガス状の混合物であれば、特に限定されず、その他の成分を含むことができる。その他の成分としては、二酸化炭素以外の酸性ガス、窒素ガス、酸素ガス、水、ばいじんなどが挙げられる。二酸化炭素以外の酸性ガスの例としては、硫化水素;一酸化硫黄、二酸化硫黄(亜硫酸ガス)、三酸化硫黄などの硫黄酸化物;一酸化窒素、二酸化窒素、亜酸化窒素(一酸化二窒素)、三酸化二窒素、四酸化二窒素、五酸化二窒素などの窒素酸化物;塩酸、硝酸、リン酸、硫酸などの無機酸類;カルボン酸、スルホン酸、炭酸などの有機酸類、が挙げられる。本発明の二酸化炭素吸収液は、混合ガスにその他の成分としての水が飽和量含まれていても二酸化炭素の回収性に影響が少ない。また、本発明の二酸化炭素吸収液は、混合ガスにその他の成分としてばいじんが含まれていても二酸化炭素の回収性に影響が少ない。
(CO2 separation and recovery method)
The carbon dioxide absorbing liquid of the present invention can separate and recover carbon dioxide gas from a mixed gas containing carbon dioxide. The mixed gas is not particularly limited as long as it is a gaseous mixture containing carbon dioxide, and may contain other components. Examples of other components include acid gases other than carbon dioxide, nitrogen gas, oxygen gas, water, and dust. Examples of acidic gases other than carbon dioxide include hydrogen sulfide; sulfur monoxide, sulfur dioxide (sulfurous acid gas), sulfur oxides such as sulfur trioxide; nitrogen monoxide, nitrogen dioxide, nitrous oxide (dinitrogen monoxide). And nitrogen oxides such as dinitrogen trioxide, dinitrogen tetroxide, and dinitrogen pentoxide; inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid; and organic acids such as carboxylic acid, sulfonic acid, and carbonic acid. The carbon dioxide absorbing liquid of the present invention has little influence on the recoverability of carbon dioxide even if the mixed gas contains a saturated amount of water as another component. Further, the carbon dioxide absorbing liquid of the present invention has little influence on the recoverability of carbon dioxide even if the mixed gas contains dust as another component.

次に、本発明の二酸化炭素吸収液を用いた二酸化炭素分離回収方法について説明する。
本発明の二酸化炭素分離回収方法は、前述の二酸化炭素吸収液を二酸化炭素を含む混合ガスと接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び前記の二酸化炭素を吸収した二酸化炭素吸収液を吸収工程より高温に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む。本発明の二酸化炭素吸収液は、室温近傍での吸収量が多く、かつ高温での易脱性に優れ、蒸発損失が少なく、低比熱で、反応熱が小さいので、回収する二酸化炭素当たりの、二酸化炭素吸収液の再生に要するエネルギーを削減できる。
Next, a carbon dioxide separation and recovery method using the carbon dioxide absorbing liquid of the present invention will be described.
In the carbon dioxide separation and recovery method of the present invention, the carbon dioxide absorbing liquid is brought into contact with a mixed gas containing carbon dioxide, so that carbon dioxide is absorbed by the carbon dioxide absorbing liquid and carbon dioxide is selected from the mixed gas. An absorption step for separating the carbon dioxide, and heating and regeneration for recovering the carbon dioxide absorption liquid by dissipating and recovering the absorbed carbon dioxide by heating the carbon dioxide absorption liquid absorbing the carbon dioxide to a temperature higher than that of the absorption process. Process. The carbon dioxide absorbing liquid of the present invention has a large amount of absorption near room temperature, excellent detachability at high temperatures, low evaporation loss, low specific heat, and low reaction heat. Energy required for regeneration of the carbon dioxide absorbing liquid can be reduced.

吸収工程の二酸化炭素吸収液の温度は、下限が二酸化炭素吸収液が凝固しない限り特に限定されないが、60℃以下が好ましく、40℃以下が好ましく、室温近傍(20℃±20℃)が更に好ましく、10℃以下が特に好ましい。吸収工程の二酸化炭素吸収液の温度が低いほど、二酸化炭素の吸収量が増加する傾向がある。本発明の二酸化炭素分離回収方法は、二酸化炭素を化学的に二酸化炭素吸収液に吸収させるので、吸収工程の圧力は、特に限定されないが、二酸化炭素の二酸化炭素吸収液への溶解性や、二酸化炭素吸収液の同伴による損失を防ぐなどの点で、通常、大気圧以上が好ましく、1MPa〜6MPaなどの高圧条件でも利用することができる。   The temperature of the carbon dioxide absorbing liquid in the absorption step is not particularly limited as long as the carbon dioxide absorbing liquid does not solidify, but is preferably 60 ° C. or lower, preferably 40 ° C. or lower, and more preferably near room temperature (20 ° C. ± 20 ° C.). 10 degrees C or less is especially preferable. As the temperature of the carbon dioxide absorbing solution in the absorption process is lower, the amount of carbon dioxide absorbed tends to increase. Since the carbon dioxide separation and recovery method of the present invention chemically absorbs carbon dioxide in the carbon dioxide absorbing liquid, the pressure in the absorption step is not particularly limited, but solubility of carbon dioxide in the carbon dioxide absorbing liquid, In terms of preventing loss due to the accompanying carbon absorption liquid, the pressure is usually preferably equal to or higher than atmospheric pressure, and can be used even under high pressure conditions such as 1 MPa to 6 MPa.

加熱再生工程の二酸化炭素吸収液の温度は、吸収工程の温度より高い限り特に限定されないが、好ましくは40℃以上、より好ましくは80℃以上、更に好ましくは100℃以上、特に好ましくは140℃以上高くすることができる。温度差が大きいほど、吸収工程で吸収した二酸化炭素を高い割合で回収できる。より具体的な加熱再生工程の二酸化炭素吸収液の温度は、好ましくは50℃以上、より好ましくは80℃以上、更に好ましくは120℃以上、特に好ましくは150℃以上である。本発明の二酸化炭素吸収液は、高温で安定であり、蒸気圧が低いので、アミン水溶液に比べて高温にすることができる。加熱再生工程の二酸化炭素吸収液の温度の上限は特に限定されないが、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下である。本発明の二酸化炭素分離回収方法は、二酸化炭素を化学的に二酸化炭素吸収液から放散させて回収するので、加熱再生工程の圧力は、特に限定されないが、二酸化炭素の二酸化炭素吸収液からの放散性などの点で、吸収工程の圧力と同等又は低圧にすることが好ましく、吸収工程の圧力より高圧にすることもできる。   The temperature of the carbon dioxide absorbing liquid in the heating regeneration step is not particularly limited as long as it is higher than the temperature in the absorption step, but is preferably 40 ° C. or higher, more preferably 80 ° C. or higher, further preferably 100 ° C. or higher, particularly preferably 140 ° C. or higher. Can be high. The larger the temperature difference, the higher the percentage of carbon dioxide absorbed in the absorption process. The temperature of the carbon dioxide absorbing liquid in the more specific heating regeneration step is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher. Since the carbon dioxide absorbing liquid of the present invention is stable at high temperatures and has a low vapor pressure, it can be heated to a higher temperature than an aqueous amine solution. The upper limit of the temperature of the carbon dioxide absorbing liquid in the heating regeneration step is not particularly limited, but is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 160 ° C. or lower. Since the carbon dioxide separation and recovery method of the present invention recovers carbon dioxide by chemically dissipating it from the carbon dioxide absorbing solution, the pressure in the heating regeneration step is not particularly limited, but the carbon dioxide is released from the carbon dioxide absorbing solution. It is preferable that the pressure in the absorption process is equal to or lower than the pressure in the absorption process, and the pressure in the absorption process can be higher.

本発明の二酸化炭素分離回収方法において、吸収工程で吸収した二酸化炭素を加熱再生工程で回収する割合は特に限定されないが、50%以上回収することが好ましく、80%以上回収することが好ましく、90%以上回収することが好ましく、95%以上回収することがより好ましい。本発明の二酸化炭素吸収液は、吸収工程と加熱再生工程における二酸化炭素吸収液の温度差を大きくすることができるので、高収率で二酸化炭素を回収できる。   In the carbon dioxide separation and recovery method of the present invention, the ratio of recovering the carbon dioxide absorbed in the absorption step is not particularly limited, but it is preferable to recover 50% or more, preferably 80% or more, 90 % Or more is preferably recovered, more preferably 95% or more. Since the carbon dioxide absorption liquid of the present invention can increase the temperature difference between the carbon dioxide absorption liquid in the absorption process and the heating regeneration process, carbon dioxide can be recovered with a high yield.

本発明の二酸化炭素分離回収方法において、混合ガスと二酸化炭素吸収液の接触方法は、二酸化炭素が二酸化炭素吸収液に化学的に吸収される限り、特に限定されない。例えば、二酸化炭素吸収液中に混合ガスをバブリングさせる方法、混合ガスに二酸化炭素吸収液をスプレーする方法、二酸化炭素吸収液を含浸又はゲル化させた材料と混合ガスを接触させる方法などが挙げられる。   In the carbon dioxide separation and recovery method of the present invention, the method for contacting the mixed gas and the carbon dioxide absorbing liquid is not particularly limited as long as carbon dioxide is chemically absorbed by the carbon dioxide absorbing liquid. For example, a method of bubbling a mixed gas in a carbon dioxide absorbing solution, a method of spraying a carbon dioxide absorbing solution on the mixed gas, a method of bringing a mixed gas into contact with a material impregnated or gelled with a carbon dioxide absorbing solution, etc. .

本発明の二酸化炭素分離回収方法において、二酸化炭素吸収液を再生する方法は、吸収した二酸化炭素が放散され、二酸化炭素吸収液が再生されるのであれば、特に限定されない。   In the carbon dioxide separation and recovery method of the present invention, the method for regenerating the carbon dioxide absorbing liquid is not particularly limited as long as the absorbed carbon dioxide is diffused and the carbon dioxide absorbing liquid is regenerated.

本発明の二酸化炭素吸収液およびそれを用いた二酸化炭素分離回収方法は、二酸化炭素の分離回収に優れているが、二酸化炭素以外の酸性ガスの分離回収に用いることも出来る。   The carbon dioxide absorbing liquid and the carbon dioxide separation and recovery method using the same according to the present invention are excellent in the separation and recovery of carbon dioxide, but can also be used for the separation and recovery of acid gases other than carbon dioxide.

(実施例)
以下、本発明を実施例に基づき説明するが、本発明はこれら実施例に限定されない。測定は、以下の測定方法を用いた。圧力は、特に断りのない限り絶対圧である。
(測定方法)
(Example)
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples. The following measurement methods were used for the measurement. The pressure is an absolute pressure unless otherwise specified.
(Measuring method)

(1)二酸化炭素吸収量(常圧吹込型)
図1に示す、二酸化炭素吸収試験装置を用いて常圧で測定を行った。二酸化炭素吸収試験装置は、ガラス製の反応容器112に二酸化炭素を導入するための二酸化炭素のボンベ101、減圧弁102、流量計103、バルブ104、コイル状の熱交換器105、及びバルブ106、並びに、熱媒107を入れる恒温槽108、その恒温槽108内の熱媒107の温度を測定する白金測温体109を接続した抵抗表示器110、恒温槽108内の熱媒107の温度を一定に調節する冷却水循環装置111、反応容器112内に入れた回転子113を回転させるマグネチックスターラー114を備える。
反応容器112には、栓115、ガス導入管116、バルブ付き放出管117を取り付けることができる。バルブ106は、反応容器112に取り付けられたガス導入管116と接続できる。熱交換器105及び反応容器112は、恒温槽108の熱媒107に浸され、冷却水循環装置111で一定の温度に保たれる。反応容器112内には、回転子113が入れてあり、マグネチックスターラー114によって、反応容器112内の二酸化炭素吸収液を撹拌できる。熱媒107は、10℃以上80℃以下で測定する場合は水を用い、80℃以上150℃以下で測定する場合にはオイルを用いる。
以下に、この二酸化炭素吸収試験装置を用いた、二酸化炭素吸収量測定手順を記載する。
1)窒素雰囲気下で、所定量(約10cc)の二酸化炭素吸収液をガラス製の反応容器112に取り分け、反応容器112の口を栓115で封じる。反応容器全体の質量を分析天秤で計測し、これから風袋(反応容器112、回転子113及び栓115)の質量を差し引き、二酸化炭素吸収液の質量Wtotalを得る。
2)反応容器112にガス導入管116及び放出管117を取り付け、再度、質量を計測して反応容器全体の質量Wを得る。
3)反応容器112を恒温槽108に設置する。ガス導入管116をバルブ106に接続する。
4)恒温槽108の温度を40℃に保ち、二酸化炭素を反応容器112に流通させ、二酸化炭素吸収液に二酸化炭素を吸収させる。一定時間(例えば60分)毎に反応容器全体の質量を分析天秤で測定する。測定毎の質量変化が0.001g以下になった際の、反応容器全体の質量をWとする。
5)二酸化炭素吸収液に吸収された二酸化炭素の質量WCO2を下記式に基づき求める。
CO2=W−W
また、二酸化炭素吸収液中の二酸化炭素化学吸収性アミン1モルあたりの二酸化炭素吸収量αCO2を下記式に基づき決定する。
αCO2=(WCO2/MCO2)/(W/Mchem
ここで上記式中、MCO2は二酸化炭素のモル質量であり、Mchemは二酸化炭素化学吸収性アミンのモル質量であり、二酸化炭素化学吸収性アミンの質量Wは二酸化炭素吸収液の質量Wtotalに質量分率xを乗じて求めた。
6)恒温槽108の温度を適宜変更し、前記4)〜5)の操作と解析を行い、各温度における二酸化炭素吸収量を決定する。その後、40℃で吸収された二酸化炭素の質量を再度計測し、再現性を確認する。
(1) Carbon dioxide absorption (normal pressure blowing type)
Measurement was performed at normal pressure using a carbon dioxide absorption test apparatus shown in FIG. The carbon dioxide absorption test apparatus comprises a carbon dioxide cylinder 101 for introducing carbon dioxide into a glass reaction vessel 112, a pressure reducing valve 102, a flow meter 103, a valve 104, a coiled heat exchanger 105, and a valve 106. In addition, a constant temperature bath 108 in which the heating medium 107 is placed, a resistance indicator 110 connected to a platinum temperature measuring element 109 for measuring the temperature of the heating medium 107 in the constant temperature bath 108, and a constant temperature of the heating medium 107 in the constant temperature bath 108. A cooling water circulation device 111 that adjusts to the above, and a magnetic stirrer 114 that rotates the rotor 113 placed in the reaction vessel 112.
A plug 115, a gas introduction pipe 116, and a discharge pipe 117 with a valve can be attached to the reaction vessel 112. The valve 106 can be connected to a gas introduction pipe 116 attached to the reaction vessel 112. The heat exchanger 105 and the reaction vessel 112 are immersed in the heat medium 107 of the thermostatic bath 108 and maintained at a constant temperature by the cooling water circulation device 111. A rotor 113 is placed in the reaction vessel 112, and the carbon dioxide absorbing liquid in the reaction vessel 112 can be stirred by the magnetic stirrer 114. The heat medium 107 uses water when measuring at 10 to 80 ° C., and uses oil when measuring at 80 to 150 ° C.
Below, the carbon dioxide absorption amount measurement procedure using this carbon dioxide absorption test apparatus is described.
1) In a nitrogen atmosphere, a predetermined amount (about 10 cc) of carbon dioxide absorbing liquid is separated into a glass reaction vessel 112, and the mouth of the reaction vessel 112 is sealed with a stopper 115. The mass of the entire reaction vessel is measured with an analytical balance, and the mass of the tare (reaction vessel 112, rotor 113, and stopper 115) is subtracted therefrom to obtain the mass W total of the carbon dioxide absorbing liquid.
2) To the reaction vessel 112 fitted with a gas inlet tube 116 and discharge pipe 117, again, to obtain a mass W 2 of the entire reaction vessel by measuring the mass.
3) Place the reaction vessel 112 in the thermostat 108. The gas introduction pipe 116 is connected to the valve 106.
4) Keep the temperature of the thermostatic chamber 108 at 40 ° C., circulate carbon dioxide through the reaction vessel 112, and absorb the carbon dioxide in the carbon dioxide absorbing solution. The mass of the entire reaction vessel is measured with an analytical balance every certain time (for example, 60 minutes). When the mass change of each measurement is equal to or less than 0.001 g, the mass of the entire reaction vessel and W 3.
5) The mass W CO2 of carbon dioxide absorbed in the carbon dioxide absorbing liquid is determined based on the following formula.
W CO2 = W 3 -W 2
Further, the carbon dioxide absorption amount α CO2 per mole of the carbon dioxide chemically absorbing amine in the carbon dioxide absorbing liquid is determined based on the following formula.
α CO2 = (W CO2 / M CO2 ) / (W 1 / M chem )
Here, in the above formula, M CO2 is the molar mass of carbon dioxide, M chem is the molar mass of the carbon dioxide chemically absorbing amine, and the mass W 1 of the carbon dioxide chemically absorbing amine is the mass W of the carbon dioxide absorbing liquid. It was determined by multiplying the mass fraction x 1 in total.
6) The temperature of the thermostatic chamber 108 is changed as appropriate, and the operations and analyzes of 4) to 5) are performed to determine the carbon dioxide absorption amount at each temperature. Then, the mass of the carbon dioxide absorbed at 40 degreeC is measured again, and reproducibility is confirmed.

(2)二酸化炭素吸収量(高圧密閉型セル)
前記(1)の常圧吹込型の測定方法において、特に溶媒の蒸気圧が高い場合に、溶媒が二酸化炭素ガスと同伴して反応容器から放出されて、二酸化炭素の吸収量が正確に測定できないことがある。比較例1のMEA/水からなる二酸化炭素吸収液は、水の蒸気圧が高いため、図2に示すように、反応容器112を耐圧容器である高圧セル(耐圧セル)215に代え、栓115、ガス導入管116、及び放出管117の代わりに、管の端部が液面に付かない長さのバルブ付きのガス導入管及び耐圧栓を用いて測定する。この二酸化炭素吸収試験装置(高圧密閉型セル)を用いた二酸化炭素吸収量測定手順は、質量変化を測定する前に、耐圧セルに接続したバルブ210を開放し、常圧において適当な時間静置することを除いて、前述した二酸化炭素吸収量装置(常圧吹込型)の手順と同じである。
(2) Carbon dioxide absorption (high pressure sealed cell)
In the atmospheric pressure blowing type measurement method of (1) above, particularly when the vapor pressure of the solvent is high, the solvent is released from the reaction vessel together with the carbon dioxide gas, and the amount of carbon dioxide absorbed cannot be measured accurately. Sometimes. Since the carbon dioxide absorption liquid composed of MEA / water of Comparative Example 1 has a high vapor pressure of water, the reaction vessel 112 is replaced with a high pressure cell (pressure cell) 215 which is a pressure vessel as shown in FIG. In place of the gas introduction pipe 116 and the discharge pipe 117, measurement is performed using a gas introduction pipe with a valve and a pressure stopper having a length such that the end of the pipe does not contact the liquid surface. The carbon dioxide absorption measurement procedure using this carbon dioxide absorption test apparatus (high-pressure sealed cell) is to open the valve 210 connected to the pressure cell before measuring the mass change and leave it at normal pressure for a suitable time. Except for this, the procedure is the same as that of the carbon dioxide absorption device (normal pressure blowing type) described above.

(3)吸収液の反応熱の測定
二酸化炭素吸収液が二酸化炭素を吸収した際の発熱量を、図3に示す反応熱測定装置を用いて、25℃、二酸化炭素圧力約0.1MPaの条件で測定し、二酸化炭素1モル当たりの反応熱を測定した。
図3に示す反応熱測定装置は、二酸化炭素ボンベ301、窒素ボンベ302、冷却水循環装置303、シリンジポンプ304、305、恒温水槽306、温度計307、熱量計308、制御用パソコン309、圧力計310、温調用ジャケット311から構成される。以下に、反応熱の測定手順を記載する。
1)十分に露点が低いグローブボックス内で、ステンレス製容器に、事前に十分に乾燥した二酸化炭素吸収液を所定量(約0.1cc)仕込み、電子天秤で仕込み量(Wtotal)を測定する。その後、ステンレス製容器を25℃に保持された熱量計308にセットする。また、恒温水槽306を40℃に保持する。シリンジポンプ305を用い、窒素を0.01mL/minでフローさせ、熱量の変化が0.01mW/h以下になるまで待機する。
2)熱量の変化が0.01mW/h以下になったら、シリンジポンプ305を停止する。その後、直ちにシリンジポンプ304を始動し、熱量計308にセットしたステンレス製容器内に二酸化炭素をフローさせ、二酸化炭素吸収液に二酸化炭素を吸収させる。二酸化炭素の吸収に伴う発熱ピークが検出され、一定時間経過すると、熱量変化は再び0.01mW/h以下になる。二酸化炭素の吸収量が飽和に到達したと見なし、シリンジポンプ304を停止し、測定を終了する。
3)制御用パソコン309を用い、ピークを積分して発熱量(Q)を得る。以下の式を用いて、反応熱(ΔH)を決定する。
ΔH=Q/(Wtotal×(x/Mchem)×αCO2
上記式中、xは二酸化炭素吸収液中の二酸化炭素化学吸収性アミンの質量分率、Mchemは二酸化炭素化学吸収性アミンのモル質量、αCO2はアミン1モルあたりの二酸化炭素吸収量(モル比)である。
(3) Measurement of reaction heat of absorbing liquid The calorific value when the carbon dioxide absorbing liquid absorbs carbon dioxide was measured under the conditions of 25 ° C. and carbon dioxide pressure of about 0.1 MPa using the reaction heat measuring apparatus shown in FIG. And the heat of reaction per mole of carbon dioxide was measured.
3 includes a carbon dioxide cylinder 301, a nitrogen cylinder 302, a cooling water circulation device 303, syringe pumps 304 and 305, a constant temperature water tank 306, a thermometer 307, a calorimeter 308, a control personal computer 309, and a pressure gauge 310. And a temperature control jacket 311. The procedure for measuring the heat of reaction is described below.
1) In a glove box with a sufficiently low dew point, a predetermined amount (about 0.1 cc) of carbon dioxide absorption liquid sufficiently dried in advance is charged into a stainless steel container, and the amount charged (W total ) is measured with an electronic balance. . Thereafter, the stainless steel container is set on a calorimeter 308 maintained at 25 ° C. In addition, the constant temperature water tank 306 is maintained at 40 ° C. The syringe pump 305 is used to flow nitrogen at 0.01 mL / min, and waits until the change in the amount of heat becomes 0.01 mW / h or less.
2) When the change in the amount of heat becomes 0.01 mW / h or less, the syringe pump 305 is stopped. Thereafter, the syringe pump 304 is immediately started, carbon dioxide is caused to flow into a stainless steel container set in the calorimeter 308, and carbon dioxide is absorbed by the carbon dioxide absorbent. When the exothermic peak accompanying the absorption of carbon dioxide is detected and a certain time elapses, the change in calorie again becomes 0.01 mW / h or less. Considering that the amount of carbon dioxide absorbed has reached saturation, the syringe pump 304 is stopped and the measurement is terminated.
3) Using the control personal computer 309, the peak is integrated to obtain the calorific value (Q). The heat of reaction (ΔH) is determined using the following equation:
ΔH = Q / (W total × (x 1 / M chem ) × α CO2 )
In the above formula, x 1 is the mass fraction of the carbon dioxide chemically absorbing amine in the carbon dioxide absorbing liquid, M chem is the molar mass of the carbon dioxide chemically absorbing amine, and α CO2 is the amount of carbon dioxide absorbed per mole of amine ( Molar ratio).

(4)不純物試験(水蒸気成分同伴)
二酸化炭素分離回収に及ぼす、混合ガス中の不純物の影響を、不純物が水蒸気の場合について調べた。図4に示す二酸化炭素吸収放散試験装置(温度スイング型)を用いて、混合ガス(12mol%CO−N)がドライな場合と水蒸気成分を含んだ場合において、50℃における二酸化炭素の吸収試験を実施後、120℃に昇温して二酸化炭素の放散試験を行った。二酸化炭素吸収放散試験装置(温度スイング型)は、二酸化炭素ボンベ401、窒素ボンベ402、マスフローコントローラー403、404、恒温加湿器405、吸収液注入器406、反応器407、恒温槽408、コントローラー409、撹拌器410、撹拌翼411、温度計412、冷却水循環装置413、冷却器414、圧力計415、二酸化炭素濃度計416、データロガー417、ガスフローメーター418、記録用PC409、A〜Iバルブから構成される。
以下に、二酸化炭素吸収放散試験の操作手順を記載する。
1)反応器を空の状態でセットし、窒素ボンベ402から窒素ガスのみをマスフローコントローラー404で所定の流量で流して、系内を窒素ガスで置き換え、二酸化炭素濃度計416の読みが0.00%を示すのを確認する。
2)冷却水循環装置413の電源を入れ、冷却器414を0℃近傍まで冷却する。
3)窒素ガスをゆっくりと流した状態で、吸収液注入器406から二酸化炭素吸収液100mLを反応器407に入れる。
4)バルブEを操作して窒素ガスの流路をバイパス側に切り替える。
5)撹拌器410の電源を入れ、撹拌翼411を800rpmで回転する。
6)反応器407内にセットした温度計412の値を読み取り、二酸化炭素吸収液が50.0℃になるようにコントローラー409で恒温槽408の温度を制御する。
7)二酸化炭素ボンベ401を開け、マスフローコントローラー403で所定の流量の二酸化炭素を流す。
8)二酸化炭素用のマスフローコントローラー403と窒素用のマスフローコントローラー404を用いて、二酸化炭素濃度が12.0%、混合ガスの総流量が約400mL/minとなるように調整する。
9)バイパス側の状態で、二酸化炭素濃度計416とガスフローメーター418の値を2秒間隔でデータロガー417と記録用PC418を用いて計測し、30分以上安定することを確認する。
10)バルブEを操作して、流路を反応器407側に切り替える。バルブEを切り替えた時間を時間0分として、二酸化炭素濃度計416とガスフローメーター418の値を2秒間隔で5時間連続して記録する。
11)5時間経過後、吸収液の温度を120℃になるようにコントローラー409で恒温槽408の温度を制御する。
12)120℃に設定した時間を0分として、二酸化炭素濃度計416とガスフローメーター418の値を2秒間隔で3時間連続して記録する。
13)3時間経過後、ガスの流路を反応容器側からバイパス側に切り替え、二酸化炭素濃度計416とガスフローメーター418の値の記録を停止し、実験を終了する。
14)50℃で得られた二酸化炭素濃度とガス流量をそれぞれ標準状態(0℃、1atm)に換算し、吸収液出口の二酸化炭素量を求めた。バイパス側の流路で得られた二酸化炭素濃度とガス流量をそれぞれ標準状態(0℃、1atm)に換算し、吸収液入口の二酸化炭素量を求めた。吸収液入口と吸収液出口の二酸化炭素量の差から二酸化炭素吸収量を求める。
15)同様にして、120℃で得られた二酸化炭素濃度とガス流量から吸収液出口の二酸化炭素量を求め、バイパス側の流路で得られた吸収液入口の二酸化炭素量の差から、二酸化炭素放散量を求める。
16)不純物として水蒸気を混合ガスに同伴させる場合は、バルブCおよびDを恒温加湿器405側に切り替え、混合ガスを50℃に制御した膜チューブ内を通過することにより、外側に流通させた50℃のイオン交換水を飽和した混合ガスを調製し、二酸化炭素吸収液を充填した反応器に送り込み、10)以降の操作を行う。
(4) Impurity test (with water vapor component)
The effect of impurities in the mixed gas on carbon dioxide separation and recovery was investigated in the case where the impurities were water vapor. Absorption of carbon dioxide at 50 ° C. when the mixed gas (12 mol% CO 2 —N 2 ) is dry and contains a water vapor component using the carbon dioxide absorption / emission test apparatus (temperature swing type) shown in FIG. After the test, the temperature was raised to 120 ° C. and a carbon dioxide emission test was conducted. A carbon dioxide absorption / dissipation test apparatus (temperature swing type) includes a carbon dioxide cylinder 401, a nitrogen cylinder 402, mass flow controllers 403 and 404, a constant temperature humidifier 405, an absorption liquid injector 406, a reactor 407, a constant temperature bath 408, a controller 409, A stirrer 410, a stirring blade 411, a thermometer 412, a cooling water circulation device 413, a cooler 414, a pressure gauge 415, a carbon dioxide concentration meter 416, a data logger 417, a gas flow meter 418, a recording PC 409, and A to I valves. Is done.
The operation procedure of the carbon dioxide absorption / emission test is described below.
1) Set the reactor in an empty state, flow only nitrogen gas from the nitrogen cylinder 402 at a predetermined flow rate with the mass flow controller 404, replace the system with nitrogen gas, and the reading of the carbon dioxide concentration meter 416 is 0.00 Check to show%.
2) Turn on the cooling water circulation device 413 and cool the cooler 414 to around 0 ° C.
3) In a state where nitrogen gas is allowed to flow slowly, 100 mL of the carbon dioxide absorbing solution is put into the reactor 407 from the absorbing solution injector 406.
4) Operate valve E to switch the flow path of nitrogen gas to the bypass side.
5) Turn on the power of the stirrer 410 and rotate the stirring blade 411 at 800 rpm.
6) The value of the thermometer 412 set in the reactor 407 is read, and the temperature of the thermostat 408 is controlled by the controller 409 so that the carbon dioxide absorption liquid becomes 50.0 ° C.
7) The carbon dioxide cylinder 401 is opened, and a predetermined flow rate of carbon dioxide is caused to flow by the mass flow controller 403.
8) Using the mass flow controller 403 for carbon dioxide and the mass flow controller 404 for nitrogen, the carbon dioxide concentration is adjusted to 12.0% and the total flow rate of the mixed gas is adjusted to about 400 mL / min.
9) In the state of the bypass side, the values of the carbon dioxide concentration meter 416 and the gas flow meter 418 are measured at intervals of 2 seconds using the data logger 417 and the recording PC 418 and confirmed to be stable for 30 minutes or more.
10) Operate the valve E to switch the flow path to the reactor 407 side. The time when the valve E is switched is set to time 0 minutes, and the values of the carbon dioxide concentration meter 416 and the gas flow meter 418 are continuously recorded for 5 hours at intervals of 2 seconds.
11) After 5 hours, the temperature of the thermostatic chamber 408 is controlled by the controller 409 so that the temperature of the absorbing solution becomes 120 ° C.
12) Record the values of the carbon dioxide concentration meter 416 and the gas flow meter 418 continuously for 3 hours at intervals of 2 seconds, assuming that the time set at 120 ° C. is 0 minute.
13) After 3 hours, the gas flow path is switched from the reaction vessel side to the bypass side, recording of the values of the carbon dioxide concentration meter 416 and the gas flow meter 418 is stopped, and the experiment is terminated.
14) The carbon dioxide concentration and gas flow rate obtained at 50 ° C. were converted into standard states (0 ° C., 1 atm), respectively, and the amount of carbon dioxide at the outlet of the absorbing solution was determined. The carbon dioxide concentration and gas flow rate obtained in the flow path on the bypass side were each converted to the standard state (0 ° C., 1 atm), and the amount of carbon dioxide at the absorption liquid inlet was determined. The amount of carbon dioxide absorption is obtained from the difference in the amount of carbon dioxide between the absorption liquid inlet and the absorption liquid outlet.
15) Similarly, the amount of carbon dioxide at the outlet of the absorbent is obtained from the carbon dioxide concentration obtained at 120 ° C. and the gas flow rate, and from the difference in the amount of carbon dioxide at the inlet of the absorbent obtained in the bypass channel, Obtain carbon emissions.
16) In the case where water vapor is entrained in the mixed gas as an impurity, the valves C and D are switched to the constant temperature humidifier 405 side, and the mixed gas passes through the inside of the membrane tube controlled to 50 ° C., and is circulated to the outside. A mixed gas saturated with ion-exchanged water at 0 ° C. is prepared, sent to a reactor filled with a carbon dioxide absorbing solution, and the operations after 10) are performed.

(実施例1−1:MEA/2−ジメチルアミノエタノール)
二酸化炭素化学吸収性アミンとしてのモノエタノールアミン(MEA、2−アミノエタノール、シグマアルドリッチ社製、純度≧99.0%)1.01gと、3級アミン溶媒としての2−ジメチルアミノエタノール(アルドリッチ社製、純度≧99.5%)5.83gを混合して二酸化炭素吸収液E1−1を得た(モル分率20%)。水分含有率は1%以下である。図1に示す装置を用いて常圧で二酸化炭素吸収液E1−1の二酸化炭素吸収量を測定した。結果を図5に示す。10℃で吸収した二酸化炭素は、125.91(mol%/二酸化炭素化学吸収性アミン)であった。また、10℃で吸収した二酸化炭素の80℃における回収率は、83.67%であった。
(Example 1-1: MEA / 2-dimethylaminoethanol)
Monoethanolamine (MEA, 2-aminoethanol, manufactured by Sigma Aldrich, purity ≧ 99.0%) 1.01 g as a carbon dioxide chemically absorbing amine, and 2-dimethylaminoethanol (Aldrich) as a tertiary amine solvent Manufactured, purity ≧ 99.5%) 5.83 g were mixed to obtain a carbon dioxide absorbing liquid E1-1 (molar fraction 20%). The moisture content is 1% or less. The carbon dioxide absorption amount of the carbon dioxide absorbing liquid E1-1 was measured at normal pressure using the apparatus shown in FIG. The results are shown in FIG. The carbon dioxide absorbed at 10 ° C. was 125.91 (mol% / carbon dioxide chemically absorbing amine). The recovery rate of carbon dioxide absorbed at 10 ° C. at 80 ° C. was 83.67%.

(実施例1−2〜13)
3級アミン溶媒として、MDEAの代わりに、表1に示す3級アミン溶媒(モル分率20%)を用いた以外は、実施例1−1と同様にして二酸化炭素吸収液E1−2〜E1−13を得た(モル分率20%)。低温側(10〜150℃)は図1に示す装置を用いて常圧で、二酸化炭素吸収液E1−2〜E1−13の二酸化炭素吸収量を測定した。結果を図5、図6に示す。なお、E1−4は、二酸化炭素を吸収すると2相となった。また、E1−2は60℃以上で、E1−5は80℃以上で、E1−6は40℃以上で、二酸化炭素を吸収すると2相となった。また、10℃で吸収した二酸化炭素及び10℃で吸収した二酸化炭素の150℃における回収率を表1に示す。
(Examples 1-2 to 13)
Carbon dioxide absorbents E1-2 to E1 were used in the same manner as in Example 1-1, except that the tertiary amine solvent (molar fraction 20%) shown in Table 1 was used as the tertiary amine solvent instead of MDEA. -13 was obtained (molar fraction 20%). The low temperature side (10-150 degreeC) measured the carbon dioxide absorption amount of the carbon dioxide absorption liquid E1-2 to E1-13 at normal pressure using the apparatus shown in FIG. The results are shown in FIGS. In addition, E1-4 became two phases when carbon dioxide was absorbed. Moreover, E1-2 was 60 degreeC or more, E1-5 was 80 degreeC or more, E1-6 was 40 degreeC or more, and when it absorbed the carbon dioxide, it became two phases. Table 1 shows the recovery rate of carbon dioxide absorbed at 10 ° C. and carbon dioxide absorbed at 10 ° C. at 150 ° C.

また、二酸化炭素吸収液E1−7の反応熱を測定した。測定結果を図10に示す。   Moreover, the heat of reaction of the carbon dioxide absorption liquid E1-7 was measured. The measurement results are shown in FIG.

(実施例2−1〜17)
二酸化炭素化学吸収性アミンとしてMEAの代わりに、表2に示すアミン(モル分率20%)を用いた以外は、実施例1−1と同様にして二酸化炭素吸収液E2−1〜E2−17を得た(モル分率20%)。図1に示す装置を用いて常圧で、二酸化炭素吸収液E2−1〜E2−17の二酸化炭素吸収量を測定した。結果を図7〜図9に示す。なお、E2−9では、10℃〜100℃において濁りが観測された。E2−17では、10℃〜100℃において濁りが観測された。E2−15では、80℃〜100℃で固体の析出が見られ、E2−16では60℃で固まり、150℃超まで溶けなかった。また、10℃で吸収した二酸化炭素及び10℃で吸収した二酸化炭素の150℃における回収率を表1に示す。
(Examples 2-1 to 17)
Carbon dioxide absorbents E2-1 to E2-17 are the same as Example 1-1 except that the amine (molar fraction 20%) shown in Table 2 was used as the carbon dioxide chemically absorbing amine instead of MEA. Was obtained (molar fraction 20%). The carbon dioxide absorption amount of the carbon dioxide absorbing liquids E2-1 to E2-17 was measured at normal pressure using the apparatus shown in FIG. The results are shown in FIGS. In E2-9, turbidity was observed at 10 to 100 ° C. In E2-17, turbidity was observed at 10 to 100 ° C. In E2-15, solid precipitation was observed at 80 ° C. to 100 ° C., and in E2-16, it solidified at 60 ° C. and did not melt to over 150 ° C. Table 1 shows the recovery rate of carbon dioxide absorbed at 10 ° C. and carbon dioxide absorbed at 10 ° C. at 150 ° C.

二酸化炭素吸収液E2−4、E2−6、E2−7、E2−10、E2−11、E2−14、E2−16について反応熱を測定した。測定結果を図10に示す。   Reaction heat was measured about the carbon dioxide absorption liquid E2-4, E2-6, E2-7, E2-10, E2-11, E2-14, and E2-16. The measurement results are shown in FIG.

(実施例3−1〜3−3:MMEA/MDEA)
二酸化炭素化学吸収性アミンとしてのN−メチルエタノールアミン(MMEA、アルドリッチ社製、2−(メチルアミノ)エタノール、純度≧98.0%)0.90gと、3級アミン溶媒としてのメチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99.0%)5.61gを混合して二酸化炭素吸収液E3−1を得た(14質量%)。水分含有率は2%以下である。同様にして二酸化炭素吸収液E3−2(30質量%)及び二酸化炭素吸収液E3−3(50質量%)を得た。図1に示す装置を用いて常圧で二酸化炭素吸収液E3−1、E3−2,E3−3の二酸化炭素吸収量を測定した。結果を図11に示す。
(Examples 3-1 to 3-3: MMEA / MDEA)
N-methylethanolamine (MMEA, manufactured by Aldrich, 2- (methylamino) ethanol, purity ≧ 98.0%) 0.90 g as a carbon dioxide chemically absorbing amine, and methyldiethanolamine (MDEA) as a tertiary amine solvent The carbon dioxide absorption liquid E3-1 was obtained (14 mass%) by mixing 5.61 g, manufactured by Aldrich, purity ≧ 99.0%. The moisture content is 2% or less. In the same manner, carbon dioxide absorbing liquid E3-2 (30% by mass) and carbon dioxide absorbing liquid E3-3 (50% by mass) were obtained. The carbon dioxide absorption amount of the carbon dioxide absorbing liquids E3-1, E3-2, and E3-3 was measured at normal pressure using the apparatus shown in FIG. The results are shown in FIG.

(実施例4−1〜4−3:2−(ブチルアミノ)エタノール/MDEA)
二酸化炭素化学吸収性アミンとしての2−(ブチルアミノ)エタノール(アルドリッチ社製、純度≧98.0%)1.79gと、3級アミン溶媒としてのメチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99.0%)7.29gを混合して二酸化炭素吸収液E4−1を得た(20質量%)。水分含有率は2%以下である。同様にして二酸化炭素吸収液E4−2(30質量%)及び二酸化炭素吸収液E4−3(50質量%)を得た。図1に示す装置を用いて常圧で二酸化炭素吸収液E4−1、E4−2,E4−3の二酸化炭素吸収量を測定した。結果を図11に示す。
(Examples 4-1 to 4-3: 2- (butylamino) ethanol / MDEA)
1.79 g of 2- (butylamino) ethanol (manufactured by Aldrich, purity ≧ 98.0%) as a carbon dioxide chemically absorbing amine and methyldiethanolamine (MDEA, manufactured by Aldrich, purity ≧ 99) as a tertiary amine solvent 0.02) 7.29 g was mixed to obtain a carbon dioxide absorbing solution E4-1 (20% by mass). The moisture content is 2% or less. Similarly, carbon dioxide absorbing liquid E4-2 (30 mass%) and carbon dioxide absorbing liquid E4-3 (50 mass%) were obtained. The carbon dioxide absorption amount of the carbon dioxide absorbing liquids E4-1, E4-2, and E4-3 was measured at normal pressure using the apparatus shown in FIG. The results are shown in FIG.

(実施例5−1〜5−3:ジエチレントリアミン/MDEA)
二酸化炭素化学吸収性アミンとしてのジエチレントリアミン(シグマアルドリッチ社製、純度≧99.0%)1.61gと、3級アミン溶媒としてのメチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99.0%)7.42gを混合して二酸化炭素吸収液E5−1を得た(18質量%)。水分含有率は2%以下である。同様にして二酸化炭素吸収液E3−2(30質量%)及び二酸化炭素吸収液E3−3(50質量%)を得た。図1に示す装置を用いて常圧で二酸化炭素吸収液E5−1、E5−2,E5−3の二酸化炭素吸収量を測定した。結果を図12に示す。
(Examples 5-1 to 5-3: diethylenetriamine / MDEA)
1.61 g of diethylenetriamine (Sigma Aldrich, purity ≧ 99.0%) as a carbon dioxide chemically absorbing amine and methyldiethanolamine (MDEA, Aldrich, purity ≧ 99.0%) as a tertiary amine solvent 7 .42 g was mixed to obtain a carbon dioxide absorbing liquid E5-1 (18% by mass). The moisture content is 2% or less. In the same manner, carbon dioxide absorbing liquid E3-2 (30% by mass) and carbon dioxide absorbing liquid E3-3 (50% by mass) were obtained. The carbon dioxide absorption amount of the carbon dioxide absorption liquids E5-1, E5-2, and E5-3 was measured at normal pressure using the apparatus shown in FIG. The results are shown in FIG.

(実施例6−1〜6−3:N−(2−ヒドロキシエチル)エチレンジアミン/MDEA)
二酸化炭素化学吸収性アミンとしてのN−(2−ヒドロキシエチル)エチレンジアミン(アルドリッチ社製、純度≧99.0%)1.59gと、3級アミン溶媒としてのメチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99.0%) 7.33gを混合して二酸化炭素吸収液E5−1を得た(18質量%)。水分含有率は2%以下である。同様にして二酸化炭素吸収液E3−2(30質量%)及び二酸化炭素吸収液E3−3(50質量%)を得た。図1に示す装置を用いて常圧で二酸化炭素吸収液E5−1、E5−2,E5−3の二酸化炭素吸収量を測定した。結果を図12、図13に示す。
(Examples 6-1 to 6-3: N- (2-hydroxyethyl) ethylenediamine / MDEA)
1.59 g of N- (2-hydroxyethyl) ethylenediamine (manufactured by Aldrich, purity ≧ 99.0%) as a carbon dioxide chemically absorbing amine and methyldiethanolamine (MDEA, manufactured by Aldrich, purity) as a tertiary amine solvent ≧ 99.0%) 7.33 g was mixed to obtain a carbon dioxide absorbing liquid E5-1 (18% by mass). The moisture content is 2% or less. In the same manner, carbon dioxide absorbing liquid E3-2 (30% by mass) and carbon dioxide absorbing liquid E3-3 (50% by mass) were obtained. The carbon dioxide absorption amount of the carbon dioxide absorption liquids E5-1, E5-2, and E5-3 was measured at normal pressure using the apparatus shown in FIG. The results are shown in FIGS.

(実施例7)
二酸化炭素化学吸収性アミンとしてのモノエタノールアミン(MEA、2−アミノエタノール、シグマアルドリッチ社製、純度≧99.0%)45.0115gと、3級アミン溶媒としてのメチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99.0%)105.0151gを混合して二酸化炭素吸収液E7−1を得た(30質量%)。水分含有率は1%以下である。二酸化炭素吸収液E7−1を用いて、模擬石炭燃焼排ガス(12mol%CO−N)による、ドライ条件で、二酸化炭素吸収・放散試験を行った、結果を図14、図15に示す。
(Example 7)
Monoethanolamine (MEA, 2-aminoethanol, manufactured by Sigma-Aldrich, purity ≧ 99.0%) 45.0115 g as a carbon dioxide chemically absorbing amine, and methyldiethanolamine (MDEA, manufactured by Aldrich) as a tertiary amine solvent , Purity ≧ 99.0%) 105.0151 g was mixed to obtain a carbon dioxide absorbing liquid E7-1 (30% by mass). The moisture content is 1% or less. Carbon dioxide absorption liquid E7-1 was used to perform a carbon dioxide absorption / release test under dry conditions with simulated coal combustion exhaust gas (12 mol% CO 2 —N 2 ). The results are shown in FIGS.

(実施例8)
二酸化炭素化学吸収性アミンとしてのモノエタノールアミン(MEA、2−アミノエタノール、シグマアルドリッチ社製、純度≧99.0%)36.4403gと、3級アミン溶媒としてのメチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99.0%)85.0013gを混合して二酸化炭素吸収液E8を得た(30質量%)。水分含有率は1%以下である。二酸化炭素吸収液E8を用いて、加湿条件で、模擬石炭燃焼排ガス(12mol%CO−N)の二酸化炭素吸収・放散試験を行った、結果を図14、図15に示す。
(Example 8)
Monoethanolamine (MEA, 2-aminoethanol, Sigma-Aldrich, purity ≧ 99.0%) 36.4403 g as a carbon dioxide chemically absorbing amine, and methyldiethanolamine (MDEA, manufactured by Aldrich) as a tertiary amine solvent , Purity ≧ 99.0%) was mixed with 85.0013 g to obtain a carbon dioxide absorbing liquid E8 (30 mass%). The moisture content is 1% or less. The carbon dioxide absorption / emission test of the simulated coal combustion exhaust gas (12 mol% CO 2 —N 2 ) was performed under humidification conditions using the carbon dioxide absorbing liquid E8, and the results are shown in FIGS.

(実施例9)
二酸化炭素化学吸収性アミンとしてのモノエタノールアミン(MEA、2−アミノエタノール、シグマアルドリッチ社製、純度≧99.0%)40.0276gと、3級アミン溶媒としてのN,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン(シグマアルドリッチ社製、純度99.3%) 93.3696gを混合して二酸化炭素吸収液E9を得た(30質量%)。水分含有率は1%以下である。二酸化炭素吸収液E9を用いて、加湿条件で、模擬石炭燃焼排ガス(12mol%CO−N)の二酸化炭素吸収・放散試験を行った、結果を図14、図15に示す。
Example 9
Monoethanolamine (MEA, 2-aminoethanol, manufactured by Sigma-Aldrich, purity ≧ 99.0%) 40.0276 g as a carbon dioxide chemically absorbing amine and N, N, N ′, N as a tertiary amine solvent '-Tetrakis (2-hydroxyethyl) ethylenediamine (manufactured by Sigma-Aldrich, purity 99.3%) 93.3696 g was mixed to obtain a carbon dioxide absorbing liquid E9 (30% by mass). The moisture content is 1% or less. The carbon dioxide absorption / emission test of the simulated coal combustion exhaust gas (12 mol% CO 2 —N 2 ) was performed under humidification conditions using the carbon dioxide absorbing liquid E9, and the results are shown in FIGS.

(比較例1:MEA/水)
二酸化炭素化学吸収性アミンとしてエタノールアミン(MEA、2−アミノエタノール、シグマアルドリッチ社製、純度≧99.0%)0.67gと、溶媒として超純水5.15gを混合して、二酸化炭素吸収液R1(モル分率20%)を得た。二酸化炭素吸収液R1の反応熱を測定した。結果を図10に示す。
(Comparative Example 1: MEA / water)
Carbon dioxide absorption by mixing 0.67 g of ethanolamine (MEA, 2-aminoethanol, Sigma-Aldrich, purity ≧ 99.0%) as a carbon dioxide chemical absorbing amine and 5.15 g of ultrapure water as a solvent. A liquid R1 (molar fraction 20%) was obtained. The heat of reaction of the carbon dioxide absorbing liquid R1 was measured. The results are shown in FIG.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。   Various embodiments and modifications can be made to the present invention without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.

101 窒素又は二酸化炭素のボンベ
102 減圧弁
103 流量計
104 バルブ
105 熱交換器
106 バルブ
107 熱媒
108 恒温槽
109 白金測温体
110 抵抗表示器
111 冷却水循環装置
112 反応容器
113 回転子
114 マグネチックスターラー
115 栓
116 ガス導入管
117 放出管
201 真空ポンプ
202 真空計
203 高圧セル部
204 ガスチャンバー部
205 恒温槽
206、207、208、209、210 バルブ
211 サーミスター
212 圧力計
213 冷却水循環装置
214 二酸化炭素ボンベ
215 高圧セル
216 撹拌子
217 スターラー
301 二酸化炭素ボンベ
302 窒素ボンベ
303 冷却水循環装置
304 シリンジポンプ
305 シリンジポンプ
306 恒温水槽
307 温度計
308 熱量計
309 制御用パソコン
310 圧力計
311 温調用ジャケット
401 二酸化炭素ボンベ
402 窒素ボンベ
403、404 マスフローコントローラー
405 恒温加湿器
406 吸収液注入器
407 反応器
408 恒温槽
409 コントローラー
410 撹拌器
411 撹拌翼
412 温度計
413 冷却水循環装置
414 冷却器
415 圧力計
416 二酸化炭素濃度計
417 データロガー
418 ガスフローメーター
409 記録用PC
A、B、C、D、E、F、G、I バルブ
101 Nitrogen or carbon dioxide cylinder 102 Pressure reducing valve 103 Flow meter 104 Valve 105 Heat exchanger 106 Valve 107 Heating medium 108 Constant temperature bath 109 Platinum temperature sensor 110 Resistance indicator 111 Cooling water circulation device 112 Reaction vessel 113 Rotor 114 Magnetic stirrer 115 Plug 116 Gas introduction pipe 117 Release pipe 201 Vacuum pump 202 Vacuum gauge 203 High pressure cell section 204 Gas chamber section 205 Constant temperature bath 206, 207, 208, 209, 210 Valve 211 Thermistor 212 Pressure gauge 213 Cooling water circulation device 214 Carbon dioxide cylinder 215 High-pressure cell 216 Stirrer 217 Stirrer 301 Carbon dioxide cylinder 302 Nitrogen cylinder 303 Cooling water circulation device 304 Syringe pump 305 Syringe pump 306 Thermostatic water tank 307 Thermometer 308 Calorimeter 309 Control PC 310 Pressure gauge 311 Temperature control jacket 401 Carbon dioxide cylinder 402 Nitrogen cylinder 403, 404 Mass flow controller 405 Constant temperature humidifier 406 Absorbing liquid injector 407 Reactor 408 Constant temperature bath 409 Controller 410 Stirrer 411 Stirring blade 412 Thermometer 413 Cooling water circulation device 414 Cooler 415 Pressure gauge 416 Carbon dioxide concentration meter 417 Data logger 418 Gas flow meter 409 PC for recording
A, B, C, D, E, F, G, I Valve

Claims (14)

窒素−水素結合を有する二酸化炭素化学吸収性アミンと、窒素−水素結合を有さない3級アミン溶媒とを含み、
前記窒素−水素結合を有さない3級アミン溶媒は、水素結合受容性に富み、立体構造的にも安定化し、前記窒素−水素結合を有するアミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級多座アミンである、高温回収可能な非水系の二酸化炭素吸収液。
A carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and a tertiary amine solvent having no nitrogen-hydrogen bond,
The tertiary amine solvent having no nitrogen-hydrogen bond is rich in hydrogen bond acceptability, is also sterically stabilized, and promotes the reaction between the amine having the nitrogen-hydrogen bond and carbon dioxide. A tertiary polydentate amine having a main chain containing an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms, and a total of 2 or more oxygen atoms and nitrogen atoms, and capable of high-temperature recovery Water-based carbon dioxide absorption solution.
前記3級多座アミンは、
1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が1つと、炭素数2以上の無置換の炭化水素基が2つ結合した3級アミン、
1つの窒素原子に、水酸基を有する主鎖の炭素数が3以上の炭化水素基が1つと、無置換の炭化水素基が2つ結合した3級アミン、
1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が2つと、無置換の炭素数3以上の炭化水素基が1つ結合した3級アミン、又は
非環状骨格を構成するエチレン基、プロピレン基、若しくはブチレン基を介したジアミン骨格を有する3級アミン、
である、請求項1に記載の二酸化炭素吸収液。
The tertiary polydentate amine is
A tertiary amine in which one hydrocarbon group having 2 or more carbon atoms in the main chain having a hydroxyl group and two unsubstituted hydrocarbon groups having 2 or more carbon atoms are bonded to one nitrogen atom;
A tertiary amine in which one hydrocarbon group having 3 or more carbon atoms in the main chain having a hydroxyl group and two unsubstituted hydrocarbon groups are bonded to one nitrogen atom;
A tertiary amine in which two hydrocarbon groups having 2 or more carbon atoms in the main chain having a hydroxyl group and one unsubstituted hydrocarbon group having 3 or more carbon atoms are bonded to one nitrogen atom, or an acyclic skeleton A tertiary amine having a diamine skeleton via an ethylene group, a propylene group, or a butylene group;
The carbon dioxide absorbing solution according to claim 1, wherein
前記3級多座アミンは、N−ブチルジエタノールアミン、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン、又はN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミンである、請求項1又は2に記載の二酸化炭素吸収液。   The tertiary polydentate amine is N-butyldiethanolamine, N, N, N ′, N′-tetrakis (2-hydroxyethyl) ethylenediamine, or N, N, N ′, N′-tetrakis (2-hydroxypropyl). The carbon dioxide absorption liquid according to claim 1 or 2 which is ethylenediamine. 前記3級多座アミンは、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミンである、請求項3に記載の二酸化炭素吸収液。   The carbon dioxide absorbing liquid according to claim 3, wherein the tertiary polydentate amine is N, N, N ', N'-tetrakis (2-hydroxyethyl) ethylenediamine. 前記3級多座アミンは、N−メチルジエタノールアミン、N−エチルジエタノールアミン、又はトリエタノールアミンである、請求項1に記載の二酸化炭素吸収液。   The carbon dioxide absorbing solution according to claim 1, wherein the tertiary polydentate amine is N-methyldiethanolamine, N-ethyldiethanolamine, or triethanolamine. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、更に水酸基を有する炭化水素基を有する、請求項1〜5のいずれか1項に記載の二酸化炭素吸収液。   The carbon dioxide absorbing liquid according to any one of claims 1 to 5, wherein the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond further has a hydrocarbon group having a hydroxyl group. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、4−アミノ−1−ブタノール、N−メチルエタノールアミン、3−メチルアミノ−1−プロパノール、2−(エチルアミノ)エタノール、2−(ブチルアミノ)エタノール、モノエタノールアミン、又はジエタノールアミンである、請求項6に記載の二酸化炭素吸収液。   The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is 4-amino-1-butanol, N-methylethanolamine, 3-methylamino-1-propanol, 2- (ethylamino) ethanol, 2- ( The carbon dioxide absorbing solution according to claim 6, which is (butylamino) ethanol, monoethanolamine, or diethanolamine. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、ジエタノールアミンである、請求項7に記載の二酸化炭素吸収液。   The carbon dioxide absorbing liquid according to claim 7, wherein the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is diethanolamine. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有する、請求項1〜5のいずれか1項に記載の二酸化炭素吸収液。   The carbon dioxide chemical-absorbing amine having a nitrogen-hydrogen bond has an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain. The carbon dioxide absorbing solution according to item. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を有する、請求項1〜5及び9のいずれか1項に記載の二酸化炭素吸収液。   The carbon dioxide chemical-absorbing amine having a nitrogen-hydrogen bond has a diamine skeleton having a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain. The carbon dioxide absorption liquid according to item 1. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、主鎖の炭素数が2以上の炭化水素基を介した窒素原子を有するジアミン骨格を2以上有するポリアミンである、請求項10に記載の二酸化炭素吸収液。   The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is a polyamine having two or more diamine skeletons having a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain. Carbon dioxide absorption liquid. 前記の窒素−水素結合を有する二酸化炭素化学吸収性アミンは、エチレンジアミン、ピペラジン、N−ヘキシルエチレンジアミン、N−(2−ヒドロキシエチル)エチレンジアミン、N−(2−ヒドロキシイソプロピル)エチレンジアミン、N,N’−ビス(2−ヒドロキシエチル)エチレンジアミン、ジエチレントリアミン、トリス(2−アミノエチル)アミン、1−(2−アミノエチル)ピペラジン、トリエチレンテトラミン、又は1,2−ビス(3−アミノプロプルアミノ)エタンである、請求項9〜11のいずれか1項に記載の二酸化炭素吸収液。   The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is ethylenediamine, piperazine, N-hexylethylenediamine, N- (2-hydroxyethyl) ethylenediamine, N- (2-hydroxyisopropyl) ethylenediamine, N, N′-. With bis (2-hydroxyethyl) ethylenediamine, diethylenetriamine, tris (2-aminoethyl) amine, 1- (2-aminoethyl) piperazine, triethylenetetramine, or 1,2-bis (3-aminoproplamino) ethane The carbon dioxide absorption liquid according to any one of claims 9 to 11, wherein 水分含有量が5質量%未満である、請求項1〜12のいずれか1項に記載の二酸化炭素吸収液。   The carbon dioxide absorbing solution according to any one of claims 1 to 12, wherein the water content is less than 5% by mass. 請求項1〜13のいずれか1項に記載の二酸化炭素吸収液を二酸化炭素を含む混合ガスと50℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び
前記の二酸化炭素を吸収した二酸化炭素吸収液を120℃以上に加熱することで吸収した二酸化炭素の90%以上を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法。
The carbon dioxide absorbing liquid according to any one of claims 1 to 13 is brought into contact with a mixed gas containing carbon dioxide at 50 ° C or lower so that carbon dioxide is absorbed by the carbon dioxide absorbing liquid, and the mixed gas is used. An absorption step of selectively separating carbon dioxide from the carbon dioxide, and 90% or more of the absorbed carbon dioxide is diffused and recovered by heating the carbon dioxide absorbing solution that has absorbed the carbon dioxide to 120 ° C or higher, A carbon dioxide separation and recovery method comprising a heating regeneration step of regenerating the carbon absorbing liquid.
JP2015238939A 2015-12-07 2015-12-07 Carbon dioxide absorption liquid and carbon dioxide separation and recovery method Active JP6685547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238939A JP6685547B2 (en) 2015-12-07 2015-12-07 Carbon dioxide absorption liquid and carbon dioxide separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238939A JP6685547B2 (en) 2015-12-07 2015-12-07 Carbon dioxide absorption liquid and carbon dioxide separation and recovery method

Publications (2)

Publication Number Publication Date
JP2017104776A true JP2017104776A (en) 2017-06-15
JP6685547B2 JP6685547B2 (en) 2020-04-22

Family

ID=59058393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238939A Active JP6685547B2 (en) 2015-12-07 2015-12-07 Carbon dioxide absorption liquid and carbon dioxide separation and recovery method

Country Status (1)

Country Link
JP (1) JP6685547B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181402A (en) * 2018-04-16 2019-10-24 国立研究開発法人産業技術総合研究所 Absorbent for carbon dioxide collection method, and carbon dioxide collection method
JP2020157211A (en) * 2019-03-26 2020-10-01 東ソー株式会社 Carbon dioxide separation composition
JP2021154236A (en) * 2020-03-27 2021-10-07 国立研究開発法人産業技術総合研究所 Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method
KR20230125193A (en) 2020-12-22 2023-08-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 carbon dioxide absorbent
KR20230138452A (en) 2021-01-27 2023-10-05 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 carbon dioxide absorbent
KR20240000478A (en) 2021-04-22 2024-01-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Carbon dioxide recovery method and carbon dioxide recovery device
CN117695830A (en) * 2024-02-04 2024-03-15 四川益能康生环保科技有限公司 Carbon dioxide low-temperature trapping absorption liquid and absorption method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152542A (en) * 2011-04-18 2011-08-11 Mitsubishi Heavy Ind Ltd Absorbing liquid, and apparatus and method of removing co2 or h2s from gas using the same
JP2013542060A (en) * 2010-09-09 2013-11-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method of scrubbing CO2 with alkanolamine
JP2014511759A (en) * 2011-03-28 2014-05-19 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティ オブ アラバマ N-functionalized imidazole-containing system and method of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542060A (en) * 2010-09-09 2013-11-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method of scrubbing CO2 with alkanolamine
JP2014511759A (en) * 2011-03-28 2014-05-19 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティ オブ アラバマ N-functionalized imidazole-containing system and method of use
JP2011152542A (en) * 2011-04-18 2011-08-11 Mitsubishi Heavy Ind Ltd Absorbing liquid, and apparatus and method of removing co2 or h2s from gas using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181402A (en) * 2018-04-16 2019-10-24 国立研究開発法人産業技術総合研究所 Absorbent for carbon dioxide collection method, and carbon dioxide collection method
JP7165388B2 (en) 2018-04-16 2022-11-04 国立研究開発法人産業技術総合研究所 Carbon dioxide recovery method
JP2020157211A (en) * 2019-03-26 2020-10-01 東ソー株式会社 Carbon dioxide separation composition
JP7251251B2 (en) 2019-03-26 2023-04-04 東ソー株式会社 Carbon dioxide separation composition
JP2021154236A (en) * 2020-03-27 2021-10-07 国立研究開発法人産業技術総合研究所 Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method
KR20230125193A (en) 2020-12-22 2023-08-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 carbon dioxide absorbent
KR20230138452A (en) 2021-01-27 2023-10-05 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 carbon dioxide absorbent
KR20240000478A (en) 2021-04-22 2024-01-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Carbon dioxide recovery method and carbon dioxide recovery device
CN117695830A (en) * 2024-02-04 2024-03-15 四川益能康生环保科技有限公司 Carbon dioxide low-temperature trapping absorption liquid and absorption method thereof
CN117695830B (en) * 2024-02-04 2024-05-28 四川益能康生环保科技有限公司 Carbon dioxide low-temperature trapping absorption liquid and absorption method thereof

Also Published As

Publication number Publication date
JP6685547B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6685547B2 (en) Carbon dioxide absorption liquid and carbon dioxide separation and recovery method
JP4865530B2 (en) Mixed absorbent for carbon dioxide separation
CA2817549C (en) Acid gas absorbent composition
US8318117B2 (en) Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases
US8231719B2 (en) Absorbent liquid, and apparatus and method for removing CO2 or H2S from gas with use of absorbent liquid
CA2820678C (en) Solvent composition for carbon dioxide recovery
US8318114B2 (en) Composition for treating acid gas
JP6694642B2 (en) Carbon dioxide absorption liquid and carbon dioxide separation and recovery method
Liu et al. Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi‐solvent blends
JP2012143744A (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
JP2014004533A (en) Acid gas absorbent, acid gas removing method and acid gas removing device
BRPI1011933B1 (en) NET WASHING COMPOSITION TO ABSORP ACID CONTAMINANTS FROM FLUIDS IN AN INDUSTRIAL PROCESS AND PROCESS FOR REDUCING ACID CONTAMINANTS IN AN INDUSTRIAL FLUID FLOW
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
BR112017003655B1 (en) CARBON CAPTURE SOLVENTS HAVING ALCOHOLS AND AMINES AND METHODS TO USE THESE SOLVENTS
JP2015027647A (en) Acid gas absorbent, acid gas removal method and acid gas removal device
JP2013516305A (en) Removal of CO2 from gas with low CO2 partial pressure using 2,2 '-(ethylenedioxy) bis (ethylamine) (EDEA)
JP2006150298A (en) Absorption liquid, and co2 or h2s removal apparatus and method employing it
JP5039276B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
RU2686925C1 (en) Liquid absorbent for co2 and/or n2s, as well as a device and a method using same
JP5627534B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
Al Hinai et al. Amine-Blends Screening and Characterization for CO 2 Post-Combustion Capture
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
KR102433565B1 (en) Low-water type carbon dioxide absorbent and method for absorbing carbon dioxide using the same
JP2021154236A (en) Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method
Huang et al. Experimental study on the performance of a highly efficient NE‐1 absorbent for CO2 capture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6685547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250