JP2017104001A - Converter control device for parent environment vehicle and method thereof - Google Patents

Converter control device for parent environment vehicle and method thereof Download PDF

Info

Publication number
JP2017104001A
JP2017104001A JP2016113817A JP2016113817A JP2017104001A JP 2017104001 A JP2017104001 A JP 2017104001A JP 2016113817 A JP2016113817 A JP 2016113817A JP 2016113817 A JP2016113817 A JP 2016113817A JP 2017104001 A JP2017104001 A JP 2017104001A
Authority
JP
Japan
Prior art keywords
ramp signal
value
converter
reference current
converter control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016113817A
Other languages
Japanese (ja)
Inventor
チョン、シン、ヘ
Shin Hye Chun
ソン、ヒョン、ウク
Hyun Wook Seong
チャン、ヒ、ソン
Hui Sung Jang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2017104001A publication Critical patent/JP2017104001A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter control device and method for a parent environment vehicle that can improve current control response characteristics (control performance) of a converter even under a low load environment.SOLUTION: A converter control device suddenly adjusts the gradient of a ramp signal used for generating a converter control PWM signal of a parent environment vehicle (adjust to the first value) below the reference duty (current discontinuous mode), and when the reference duty is exceeded (current continuous mode), gently adjusts the gradient (adjust to the second value). The converter control device comprises: a reference current input device 10 that receives an input of a reference current; a ramp signal generator 20 that generates a ramp signal by superposing the input current of the converter, the DC offset for adjusting the gradient of the ramp signal, and the sawtooth wave; and a comparator 30 for generating a PWM signal using the reference current input via the reference current input device and the ramp signal generated by the ramp signal generator.SELECTED DRAWING: Figure 1

Description

本発明は、親環境車両用コンバータ制御装置及びその方法に関し、さらに詳しくは、親環境車両のコンバータ(Low voltage DC−DC Converter,LDC)制御用PWM(Pulse Width Modulation)信号を生成するのに用いられるランプ信号の勾配を二元化して、低い負荷(load)の環境でもコンバータの電流制御応答特性(制御性能)を向上させることができる技術に関する。   The present invention relates to a converter control device for a parent environment vehicle and a method thereof, and more particularly, to generate a PWM (Pulse Width Modulation) signal for controlling a converter (Low Voltage DC-DC Converter, LDC) of a parent environment vehicle. The present invention relates to a technique capable of improving the current control response characteristic (control performance) of a converter even in a low load environment by binarizing the gradient of the ramp signal to be generated.

本発明において、親環境車両は、高電圧バッテリーを用いて電気モータを駆動させて走行する車両であって、HEV(Hybrid Electric Vehicle)、EV(Electric Vehicle)、PHEV(Plug−in Hybrid Electric Vehicle)、FCEV(Fuel Cell Electric Vehicle)などを含む。   In the present invention, a parent environment vehicle is a vehicle that travels by driving an electric motor using a high-voltage battery, and is HEV (Hybrid Electric Vehicle), EV (Electric Vehicle), PHEV (Plug-in Hybrid Electric Vehicle). FCEV (Fuel Cell Electric Vehicle) and the like.

一般的に、親環境車両は、駆動用電源を供給するための高電圧バッテリーと、電装負荷に電源を供給するための補助バッテリーとを備える。このとき、補助バッテリー及び電装負荷に連結されているLDC(Low voltage DC−DC Converter)は、上位制御器の制御下で補助バッテリーの電圧が基準値を超過しないと、高電圧バッテリーの電圧を下げて補助バッテリーを充電する。   In general, a pro-environment vehicle includes a high voltage battery for supplying power for driving and an auxiliary battery for supplying power to an electrical load. At this time, an LDC (Low voltage DC-DC Converter) connected to the auxiliary battery and the electrical load lowers the voltage of the high voltage battery if the voltage of the auxiliary battery does not exceed the reference value under the control of the host controller. To charge the auxiliary battery.

このような従来のLDCは、親環境車両のコンバータ制御用PWM信号を生成するのに用いられるランプ信号の勾配が一元化されているので、電圧指令が補助バッテリーの充電電圧より低い場合、電流制御応答特性が遅い電流不連続モードに進入することにより、ZVS(Zero voltage switching)が不可であるため、スイッチング損失を引き起こし、出力リップルが悪くなり、コア部品(トランス、インダクタ)に騷音を誘発する問題点がある。   In such a conventional LDC, the gradient of the ramp signal used to generate the converter control PWM signal of the environmentally friendly vehicle is unified, so that when the voltage command is lower than the charging voltage of the auxiliary battery, the current control response ZVS (Zero Voltage Switching) is impossible due to entering the current discontinuous mode with slow characteristics, causing switching loss, worsening output ripple, and causing noise in core components (transformer, inductor) There is a point.

前記のような従来技術の問題点を解決するために、本発明は、親環境車両のコンバータ制御用PWM信号を生成するのに用いられるランプ信号の勾配を、基準デューティ以下(電流不連続モード)では急に調節(第1値に調節)し、基準デューティを超過(電流連続モード)すると、緩やかに調節(第2値に調節)することにより、低い負荷(load)の環境でもコンバータの電流制御応答特性(制御性能)を向上させることができる親環境車両用コンバータ制御装置及びその方法を提供することにその目的がある。   In order to solve the problems of the prior art as described above, the present invention sets the slope of the ramp signal used to generate the PWM signal for converter control of the parent environment vehicle to a reference duty or less (current discontinuous mode). Then, suddenly adjust (adjust to the first value), and if the reference duty is exceeded (continuous current mode), then adjust slowly (adjust to the second value) to control the converter current even in a low load environment. It is an object of the present invention to provide a converter control device for a pro-environmental vehicle capable of improving response characteristics (control performance) and a method thereof.

本発明の目的等は以上で言及した目的に制限されず、言及されない本発明の他の目的及び長所は下記の説明によって理解され得、本発明の実施形態によってより明らかに分かるようになる。また、本発明の目的及び長所は、特許請求の範囲に示した手段及びその組み合わせによって実現され得ることが容易に分かる。   The objects and the like of the present invention are not limited to the objects mentioned above, and other objects and advantages of the present invention which are not mentioned can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. Further, it can be easily understood that the objects and advantages of the present invention can be realized by the means shown in the claims and combinations thereof.

前記目的を達成するための本発明の装置は、親環境車両用コンバータ制御装置において、基準電流の入力を受ける基準電流入力器;コンバータの入力電流と、ランプ信号の勾配調節用DCオフセットと、鋸歯状波とを重畳してランプ信号を生成するランプ信号生成器;及び基準電流入力器を介して入力された基準電流と、ランプ信号生成器によって生成されたランプ信号とを用いてPWM信号を生成する比較器を含む。   In order to achieve the above object, an apparatus according to the present invention comprises: a reference current input device for receiving a reference current input; a converter input current; a DC offset for adjusting a slope of a ramp signal; A ramp signal generator that generates a ramp signal by superimposing a waveform wave; and generates a PWM signal using a reference current input via a reference current input device and a ramp signal generated by the ramp signal generator A comparator.

前記目的を達成するための本発明の方法は、親環境車両用コンバータ制御方法において、基準電流入力器が、基準電流の入力を受ける段階;ランプ信号生成器が、コンバータの入力電流と、ランプ信号の勾配調節用DCオフセットと、鋸歯状波とを重畳してランプ信号を生成する段階;及び比較器が、基準電流入力器を介して入力された基準電流と、ランプ信号生成器によって生成されたランプ信号とを用いてPWM信号を生成する段階を含む。   According to another aspect of the present invention, there is provided a method for controlling a converter for a pro-environmental vehicle, wherein a reference current input unit receives a reference current input; a ramp signal generator includes an input current of the converter and a lamp signal; Generating a ramp signal by superimposing a DC offset for slope adjustment and a sawtooth wave; and a comparator generated by the ramp signal generator and a reference current input via a reference current input device And generating a PWM signal using the ramp signal.

前記のような本発明は、親環境車両のコンバータ制御用PWM信号を生成するのに用いられるランプ信号の勾配を、基準デューティ以下(電流不連続モード)では急に調節(第1値に調節)し、基準デューティを超過(電流連続モード)すると、緩やかに調節(第2値に調節)することにより、低い負荷(load)の環境でもコンバータの電流制御応答特性(制御性能)を向上させることができる効果がある。   In the present invention as described above, the slope of the ramp signal used to generate the PWM signal for converter control of the environmentally-friendly vehicle is rapidly adjusted (adjusted to the first value) below the reference duty (current discontinuous mode). If the reference duty is exceeded (continuous current mode), the current control response characteristic (control performance) of the converter can be improved even in a low load environment by slowly adjusting (adjusting to the second value). There is an effect that can be done.

また、本発明は、デューティが小さい運転条件でLDCの出力電圧のリップル値を、2.35Vppから512mVppに下げることができる効果がある。   Further, the present invention has an effect that the ripple value of the output voltage of the LDC can be lowered from 2.35 Vpp to 512 mVpp under an operation condition with a small duty.

本発明に係る親環境車両用コンバータ制御装置の一実施形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the converter control apparatus for environmentally friendly vehicles which concerns on this invention. 本発明に係る親環境車両用コンバータ制御装置の一実施形態の回路図である。It is a circuit diagram of one embodiment of a converter control device for a pro-environment vehicle according to the present invention. 本発明が適用されるLDCの一例示図である。It is an illustration figure of LDC to which this invention is applied. 本発明に係る親環境車両用コンバータ制御装置の動作結果を示す一例示図である。It is an example figure which shows the operation result of the converter control apparatus for environmentally friendly vehicles which concerns on this invention. 本発明に係る親環境車両用コンバータ制御方法に対する一実施形態のフローチャートである。It is a flowchart of one Embodiment with respect to the converter control method for environmentally friendly vehicles which concerns on this invention.

前述した目的、特徴及び長所は、図面を参照して詳しく後述されている詳細な説明を介してより明確になるはずであり、それによって本発明の属する技術分野で通常の知識を有する者が本発明の技術的思想を容易に実施することができる。また、本発明を説明するにおいて、本発明に係る公知技術に対する具体的な説明が、本発明の要旨を不要にぼやかし得ると判断される場合、その詳細な説明を省略する。以下、図面を参照して本発明に係る好ましい実施形態を詳しく説明する。   The foregoing objects, features and advantages will become more apparent through the detailed description given below with reference to the drawings, so that those skilled in the art to which the present invention pertains The technical idea of the invention can be easily implemented. Further, in the description of the present invention, when it is determined that a specific description of a known technique according to the present invention can obscure the gist of the present invention unnecessarily, a detailed description thereof will be omitted. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る親環境車両用コンバータ制御装置の一実施形態の構成を示す図であって、LDCを例に挙げて説明する。   FIG. 1 is a diagram showing a configuration of an embodiment of a converter control device for a pro-environment vehicle according to the present invention, and will be described by taking an LDC as an example.

図1に示すように、本発明に係る親環境車両用コンバータ制御装置は、基準電流入力器10、ランプ信号生成器20、及び比較器30を含む。   As shown in FIG. 1, the environmentally-friendly vehicle converter control device according to the present invention includes a reference current input device 10, a ramp signal generator 20, and a comparator 30.

前記各構成要素等に対して検討してみれば、先ず、基準電流入力器10は、基準電流として電流指令(Current Reference)の入力を受ける。   Considering each of the above components, first, the reference current input device 10 receives a current command (Current Reference) as a reference current.

次に、ランプ信号生成器20は、入力電流と、DCオフセットと、鋸歯状波(鋸歯信号)とを重畳してランプ信号(Ramp Signal)を生成する。   Next, the ramp signal generator 20 generates a ramp signal (Ramp Signal) by superimposing the input current, the DC offset, and the sawtooth wave (sawtooth signal).

ここで、入力電流は、LDCに入力される電流であって、具体的にLDC 内変圧器の1次側に流れる電流を意味する。また、DCオフセットは、PWM信号のデューティが基準値以下になる区間、すなわち、LDCが電流不連続モードで動作する区間でランプ信号の勾配値を増加させる作用をする。また、鋸歯状波の勾配はLDCの発散を防止するために、LDC内部の出力インダクタ(図3でILo)に流れる電流の勾配の0.5倍以上になるように設定する。 このとき、基準値は、LDCの入力電圧と出力電圧及びトランス巻線比(降圧比)によって決定される。 Here, the input current is a current that is input to the LDC, and specifically means a current that flows to the primary side of the transformer in the LDC. The DC offset acts to increase the slope value of the ramp signal in a section where the duty of the PWM signal is below the reference value, that is, a section where the LDC operates in the current discontinuous mode. Further, the slope of the sawtooth wave is set to be 0.5 times or more of the slope of the current flowing through the output inductor (I Lo in FIG. 3) inside the LDC in order to prevent LDC divergence. At this time, the reference value is determined by the input voltage and output voltage of the LDC and the transformer winding ratio (step-down ratio).

特に、ランプ信号生成器20は、図4に示すように、PWM信号のデューティが基準値以下になる区間(430)では第1値の勾配を有するランプ信号を生成し、PWM信号のデューティが基準値を超過する区間(440)では第2値の勾配を有するランプ信号を生成する。このとき、第1値は、第2値より大きい値である。   In particular, as shown in FIG. 4, the ramp signal generator 20 generates a ramp signal having a slope of the first value in a section (430) where the duty of the PWM signal is equal to or less than the reference value, and the duty of the PWM signal is the reference. In a section (440) where the value is exceeded, a ramp signal having a slope of the second value is generated. At this time, the first value is larger than the second value.

次に、比較器30はピーク電流比較器であって、基準電流入力器10を介して入力された基準電流Icと、ランプ信号生成器20によって生成されたランプ信号Isを用いてPWM信号を生成する。すなわち、比較器30は、ランプ信号生成器20によって生成されたランプ信号が基準電流入力器10を介して入力された基準電流を超過すれば1、超過しなければ0と判断してPWM信号を生成する。   Next, the comparator 30 is a peak current comparator, which generates a PWM signal using the reference current Ic input via the reference current input device 10 and the ramp signal Is generated by the ramp signal generator 20. To do. That is, the comparator 30 determines that the ramp signal generated by the ramp signal generator 20 exceeds 1 if the reference current input through the reference current input device 10 exceeds the reference current, and determines 0 if it does not exceed the reference current. Generate.

前記各構成要素等は、制御器(図示せず)によって制御され得、このとき制御器は、前記各構成要素等が本来の機能を正常に行うことができるように全般的な制御を行う。   Each component etc. may be controlled by a controller (not shown), and at this time, the controller performs general control so that each component etc. can normally perform its original function.

以下、図2を参照して、ランプ信号生成器20の構造に対して詳しく検討してみる。   Hereinafter, the structure of the ramp signal generator 20 will be discussed in detail with reference to FIG.

図2は、本発明に係る親環境車両用コンバータ制御装置の一実施形態の回路図である。   FIG. 2 is a circuit diagram of an embodiment of the converter control device for a pro-environment vehicle according to the present invention.

図2に示すように、本発明に係るランプ信号生成器20は、入力電流21と、鋸歯状波22と、DCオフセット23とを重畳してランプ信号を生成する。このとき、抵抗R4、R5、R6及びキャパシタC2は、ランプ信号勾配のゲインを調節する役割を行う。   As shown in FIG. 2, the ramp signal generator 20 according to the present invention generates a ramp signal by superimposing an input current 21, a sawtooth wave 22, and a DC offset 23. At this time, the resistors R4, R5, R6 and the capacitor C2 play a role of adjusting the gain of the ramp signal gradient.

図3は、本発明が適用されるLDCの一例示図である。   FIG. 3 is an exemplary diagram of an LDC to which the present invention is applied.

図3に示すように、本発明が適用されるLDCは、コンバータ制御装置100による電流制御と、電圧制御器200による電圧制御を共に行う。   As shown in FIG. 3, the LDC to which the present invention is applied performs both current control by the converter control device 100 and voltage control by the voltage controller 200.

コンバータ制御装置100は、基準電流入力器10を介して入力された基準電流Icと、ランプ信号生成器20によって生成されたランプ信号Isを用いてPWM信号を生成し、生成されたPWM信号のデューティを決定する。   The converter control device 100 generates a PWM signal using the reference current Ic input via the reference current input device 10 and the ramp signal Is generated by the ramp signal generator 20, and the duty of the generated PWM signal To decide.

LDCの入力電圧が高く、出力電圧(要求電圧)が低く、かつ負荷が低い運転条件によって最小デューティを出力するようになると、電流が低いため、電流不連続モードに進入するようになる。電流不連続モードは、電流連続モードに比べて応答性が顕著に落ち、電流指令がランプ信号の最低レベル以下に落ちてから再びランプ信号に会ってデューティを出力するバーストモードに進入すると、応答性能はさらに遅くなる。このとき、ランプ信号の勾配は、電流制御応答性能を決定する因子として、Lo300に流れる電流勾配の0.5倍以上になればこそ制御信号が発散をしない。   When the minimum duty is output under an operating condition in which the input voltage of the LDC is high, the output voltage (required voltage) is low, and the load is low, the current is low, so that the current discontinuous mode is entered. In the discontinuous current mode, the response is significantly lower than in the continuous current mode, and when the current command falls below the minimum level of the ramp signal and then enters the burst mode where it meets the ramp signal again and outputs the duty, the response performance Will be even slower. At this time, the control signal does not diverge only when the slope of the ramp signal becomes 0.5 or more times the current gradient flowing through the Lo 300 as a factor that determines the current control response performance.

従来には、発散を防ぐためにランプ信号の勾配を決定したとすれば、本発明では極低負荷での制御性能を改善するために、ランプ信号の勾配を一定のデューティ以下の区間と以上の区間に二元化する。したがって、本発明は、デューティ別の応答性を異に調節して、区間別の応答性能を合わせることができる。   Conventionally, if the slope of the ramp signal is determined in order to prevent divergence, in the present invention, in order to improve control performance at an extremely low load, the slope of the ramp signal is divided into a section having a certain duty or less and a section having the above section. To dualize. Therefore, the present invention can adjust the response performance for each section by adjusting the response characteristics for each duty differently.

例えば、電流指令Icが電圧レベルとして1.0V(Full scale:4.5V)である低いデューティ区間で制御不安定が発生したとすれば、ランプ信号にDCオフセットを追加して同一のデューティに対する電流指令Icの上向き効果を誘発することにより、Ic=1.0Vの不安定な運転区間を使用しないことが可能である。   For example, if control instability occurs in a low duty interval in which the current command Ic is 1.0 V (Full scale: 4.5 V) as a voltage level, a DC offset is added to the ramp signal and the current for the same duty By inducing an upward effect of the command Ic, it is possible not to use an unstable operation section of Ic = 1.0V.

また、低いデューティ区間でランプ信号の勾配を上向きにさせると、電流指令Ic1.0Vと比較されて出力されるデューティ変動量が減少し、制御安全性を確保することができる。ランプ信号の勾配は、図2に示すように抵抗R4、R5、R6の組み合わせとC2によって決定される。スイッチング周波数の周期でキャパシタC2の充放電が行われながら、キャパシタの容量に応じて勾配は変更され、低いデューティ区間では急に設定し、一定のデューティ以上では緩やかに設定して、電流制御応答性能を決定するのが好ましい。   Further, when the slope of the ramp signal is made upward in the low duty section, the duty fluctuation amount output compared with the current command Ic of 1.0 V is reduced, and the control safety can be ensured. The slope of the ramp signal is determined by the combination of resistors R4, R5, R6 and C2, as shown in FIG. While the capacitor C2 is charged / discharged at the switching frequency cycle, the gradient is changed according to the capacitance of the capacitor, and is set abruptly in a low duty interval, and is gently set above a certain duty, and current control response performance Is preferably determined.

図4は、本発明に係る親環境車両用コンバータ制御装置の動作結果を示す一例示図である。   FIG. 4 is an exemplary view showing an operation result of the converter controller for a pro-environmental vehicle according to the present invention.

図4において、「410」は基準電流Icを示し、「420」はランプ信号の電流最大値を示し、「430」はPWM信号のデューティが基準値以下になる区間を示し、「440」はPWM信号のデューティが基準値を超過する区間を示す。   In FIG. 4, “410” indicates the reference current Ic, “420” indicates the maximum current value of the ramp signal, “430” indicates a section where the duty of the PWM signal is equal to or less than the reference value, and “440” indicates the PWM. The section in which the duty of the signal exceeds the reference value is shown.

これを介して、「440」区間でのランプ信号の勾配に比べて、「430」区間でのランプ信号の勾配がさらに急であることが分かる。   From this, it can be seen that the slope of the ramp signal in the “430” section is steeper than the slope of the ramp signal in the “440” section.

これにより、電流指令Icが微細に変動する際に、「430」区間でのデューティ変動幅が「440」区間でのデューティ変動幅より小さい。したがって、最終的に出力電圧の変動量が小さくなり、制御が安定的である。   Thereby, when the current command Ic fluctuates minutely, the duty fluctuation range in the “430” section is smaller than the duty fluctuation width in the “440” section. Therefore, the fluctuation amount of the output voltage is finally reduced, and the control is stable.

図5は、本発明に係る親環境車両用コンバータ制御方法に対する一実施形態のフローチャートである。   FIG. 5 is a flowchart of an embodiment of a converter control method for a pro-environment vehicle according to the present invention.

先ず、基準電流入力器10が、基準電流の入力を受ける(501)。   First, the reference current input device 10 receives an input of a reference current (501).

また、ランプ信号生成器10が、コンバータの入力電流と、ランプ信号の勾配調節用DCオフセットと、鋸歯状波とを重畳してランプ信号を生成する(502)。このとき、ランプ信号生成器10は、PWM信号のデューティが基準値以下になる区間では第1値の勾配を有するランプ信号を生成し、PWM信号のデューティが基準値を超過する区間では第2値の勾配を有するランプ信号を生成する。   The ramp signal generator 10 generates a ramp signal by superimposing the input current of the converter, the DC offset for adjusting the gradient of the ramp signal, and the sawtooth wave (502). At this time, the ramp signal generator 10 generates a ramp signal having a gradient of the first value in a section where the duty of the PWM signal is equal to or less than the reference value, and a second value in a section where the duty of the PWM signal exceeds the reference value. A ramp signal having a slope of

それ以後、比較器30が、基準電流入力器を介して入力された基準電流と、ランプ信号生成器によって生成されたランプ信号とを用いてPWM信号を生成する(503)。   Thereafter, the comparator 30 generates a PWM signal using the reference current input through the reference current input device and the ramp signal generated by the ramp signal generator (503).

一方、前述したような本発明の方法は、コンピュータプログラムで作成が可能である。また、前記プログラムを構成するコード及びコードセグメントは、当該分野のコンピュータプログラマーによって容易に推論され得る。また、前記作成されたプログラムは、コンピュータが読み取り可能な記録媒体(情報格納媒体)に格納され、コンピュータによって判読されて実行されることにより、本発明の方法を具現する。また、前記記録媒体は、コンピュータが判読可能な全ての形態の記録媒体を含む。   On the other hand, the method of the present invention as described above can be created by a computer program. Moreover, the code and code segment which comprise the said program can be easily inferred by the computer programmer of the said field | area. Further, the created program is stored in a computer-readable recording medium (information storage medium), and read and executed by the computer, thereby realizing the method of the present invention. The recording medium includes all forms of recording media that can be read by a computer.

以上で説明した本発明は、本発明の属する技術分野で通常の知識を有する者において、本発明の技術的思想を外れない範囲内で多様な置換、変形及び変更が可能なので、前述した実施形態及び図面によって限定されるものではない。   Since the present invention described above can be variously replaced, modified, and changed without departing from the technical idea of the present invention by those who have ordinary knowledge in the technical field to which the present invention belongs, the embodiment described above is possible. It is not limited by the drawings.

10:基準電流入力器
20:ランプ信号生成器
30:比較器
10: Reference current input device 20: Ramp signal generator 30: Comparator

Claims (7)

基準電流の入力を受ける基準電流入力器;
コンバータの入力電流と、ランプ信号の勾配調節用DCオフセットと、鋸歯状波とを重畳してランプ信号を生成するランプ信号生成器;及び
基準電流入力器を介して入力された基準電流と、ランプ信号生成器によって生成されたランプ信号とを用いてPWM信号を生成する比較器
を含む親環境車両用コンバータ制御装置。
Reference current input device that receives a reference current input;
A ramp signal generator for generating a ramp signal by superimposing an input current of the converter, a DC offset for adjusting a gradient of the ramp signal, and a sawtooth wave; and a reference current input via the reference current input device; The converter control apparatus for environment-friendly vehicles containing the comparator which produces | generates a PWM signal using the ramp signal produced | generated by the signal generator.
前記ランプ信号生成器は、PWM信号のデューティが基準値以下になる区間では第1値の勾配を有するランプ信号を生成し、PWM信号のデューティが基準値を超過する区間では第2値の勾配を有するランプ信号を生成することを特徴とする請求項1に記載の親環境車両用コンバータ制御装置。   The ramp signal generator generates a ramp signal having a slope of the first value in a section where the duty of the PWM signal is equal to or less than a reference value, and a slope of the second value in a section where the duty of the PWM signal exceeds the reference value. The converter control device for a pro-environmental vehicle according to claim 1, wherein the ramp signal is generated. 前記第1値は、前記第2値より大きい値であることを特徴とする請求項1に記載の親環境車両用コンバータ制御装置。   The environmental control vehicle converter control device according to claim 1, wherein the first value is larger than the second value. 前記比較器は、ピーク電流比較器であることを特徴とする請求項1に記載の親環境車両用コンバータ制御装置。   The converter for a pro-environment vehicle according to claim 1, wherein the comparator is a peak current comparator. 基準電流入力器が、基準電流の入力を受ける段階;
ランプ信号生成器が、コンバータの入力電流と、ランプ信号の勾配調節用DCオフセットと、鋸歯状波とを重畳してランプ信号を生成する段階;及び
比較器が、基準電流入力器を介して入力された基準電流と、ランプ信号生成器によって生成されたランプ信号とを用いてPWM信号を生成する段階
を含む親環境車両用コンバータ制御方法。
A reference current input device receiving a reference current input;
A ramp signal generator superimposes a converter input current, a DC offset for ramp signal slope adjustment, and a sawtooth wave to generate a ramp signal; and a comparator inputs via a reference current input A converter control method for a pro-environmental vehicle including a step of generating a PWM signal using the generated reference current and the ramp signal generated by the ramp signal generator.
前記ランプ信号生成段階は、PWM信号のデューティが基準値以下になる区間では第1値の勾配を有するランプ信号を生成し、PWM信号のデューティが基準値を超過する区間では第2値の勾配を有するランプ信号を生成することを特徴とする請求項5に記載の親環境車両用コンバータ制御方法。   The ramp signal generating step generates a ramp signal having a first value gradient in a section where the duty of the PWM signal is equal to or less than a reference value, and a second value gradient in a section where the duty of the PWM signal exceeds the reference value. 6. The environmentally friendly vehicle converter control method according to claim 5, wherein the ramp signal is generated. 前記第1値は、前記第2値より大きい値であることを特徴とする請求項5に記載の親環境車両用コンバータ制御方法。   6. The environmentally friendly vehicle converter control method according to claim 5, wherein the first value is larger than the second value.
JP2016113817A 2015-12-01 2016-06-07 Converter control device for parent environment vehicle and method thereof Pending JP2017104001A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150169977A KR101774665B1 (en) 2015-12-01 2015-12-01 Apparatus for controlling converter of green car and method thereof
KR10-2015-0169977 2015-12-01

Publications (1)

Publication Number Publication Date
JP2017104001A true JP2017104001A (en) 2017-06-08

Family

ID=58777149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113817A Pending JP2017104001A (en) 2015-12-01 2016-06-07 Converter control device for parent environment vehicle and method thereof

Country Status (4)

Country Link
US (1) US10239408B2 (en)
JP (1) JP2017104001A (en)
KR (1) KR101774665B1 (en)
CN (1) CN106817019B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822280B1 (en) * 2016-05-04 2018-01-26 현대자동차주식회사 Method for correcting output voltage sensing error of low voltage dc-dc converter
KR101988089B1 (en) * 2016-11-04 2019-06-12 현대자동차주식회사 Circuit having variable output and controller comprising the same
KR102542939B1 (en) * 2018-12-03 2023-06-15 현대자동차주식회사 Control system and method of low voltage dc-dc converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664774B2 (en) * 2002-03-27 2003-12-16 Semtech Corporation Offset peak current mode control circuit for multiple-phase power converter
JP2004040856A (en) * 2002-06-28 2004-02-05 Fuji Electric Holdings Co Ltd Switching power supply
JP2007336742A (en) 2006-06-16 2007-12-27 Fuji Electric Device Technology Co Ltd Switching power supply device
JP2009153289A (en) 2007-12-20 2009-07-09 Oki Semiconductor Co Ltd Dc-dc converter
GB2459304B (en) * 2008-04-18 2013-02-20 Nujira Ltd Improved pulse width modulation
KR101090701B1 (en) 2010-05-18 2011-12-08 현대자동차주식회사 Method for controlling DC-DC converter
JP2013247574A (en) * 2012-05-28 2013-12-09 Renesas Electronics Corp Pwm signal generation circuit and semiconductor device
US9325194B2 (en) * 2013-09-13 2016-04-26 Semiconductor Components Industries, Llc Method of forming a power supply controller and structure therefor
CN104201887B (en) * 2014-09-01 2017-03-01 矽力杰半导体技术(杭州)有限公司 Zero adjustment circuit and the method excessively of buck convertor

Also Published As

Publication number Publication date
KR101774665B1 (en) 2017-09-04
US10239408B2 (en) 2019-03-26
KR20170064333A (en) 2017-06-09
CN106817019A (en) 2017-06-09
CN106817019B (en) 2020-05-08
US20170151877A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
KR101959922B1 (en) On board charger(OBC) control method and apparatus
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
CN101981794B (en) Method for regulating an output voltage
US11596035B2 (en) Dimming control circuit, dimming control method and LED driver thereof
US20110215782A1 (en) Power regulator and controlling method thereof
JP2011035948A (en) Dc-dc converter, control circuit and power supply voltage control method
JP2012005249A (en) Switching power supply circuit
JP2017104001A (en) Converter control device for parent environment vehicle and method thereof
JP2007043852A (en) Method, program, and circuit for controlling dc-dc converter
JP2018007546A (en) Control method and system for charging electric vehicle
JP5403438B2 (en) DCDC converter and control method of DCDC converter
JP5199019B2 (en) Buck-boost DC-DC converter
CN112406579A (en) System for increasing battery temperature for vehicle
KR101449305B1 (en) Power control module for vehicle
US9762144B2 (en) Switching control circuit with signal process to accommodate the synchronous rectifier of power converters
KR20200083871A (en) Integrated power supply for electric vehicle and method of controlling the same
JP4838008B2 (en) Power supply device and control method thereof
WO2018235438A1 (en) Dc-dc converter, power supply system using dc-dc converter, and automobile using power supply system
JP6835901B2 (en) Duty control method for DC pulse power supply and DC pulse power supply
JP4686285B2 (en) Switching control circuit, DC-DC converter
JP2007215152A (en) Control circuit, load system making practical use of it, and modulatable triangular wave generator
JP2007336609A (en) Precharge circuit
JP6992014B2 (en) A control system that controls the DC-DC voltage converter circuit
JP6711150B2 (en) Boost circuit
JP2010104161A (en) Dc-dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210216

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210319

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210323

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210615

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210914

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211015

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211015