JP2017102102A - Evolved gas analysis device and evolved gas analysis method - Google Patents

Evolved gas analysis device and evolved gas analysis method Download PDF

Info

Publication number
JP2017102102A
JP2017102102A JP2016173396A JP2016173396A JP2017102102A JP 2017102102 A JP2017102102 A JP 2017102102A JP 2016173396 A JP2016173396 A JP 2016173396A JP 2016173396 A JP2016173396 A JP 2016173396A JP 2017102102 A JP2017102102 A JP 2017102102A
Authority
JP
Japan
Prior art keywords
gas
detection means
path
generated
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016173396A
Other languages
Japanese (ja)
Other versions
JP6280964B2 (en
Inventor
秀之 秋山
Hideyuki Akiyama
秀之 秋山
将史 渡邉
Masashi Watanabe
将史 渡邉
幹太郎 丸岡
Kantaro Maruoka
幹太郎 丸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to TW105133069A priority Critical patent/TWI687685B/en
Priority to KR1020160133533A priority patent/KR102074968B1/en
Priority to CN201611016231.7A priority patent/CN107037071B/en
Priority to US15/356,580 priority patent/US9831077B2/en
Publication of JP2017102102A publication Critical patent/JP2017102102A/en
Application granted granted Critical
Publication of JP6280964B2 publication Critical patent/JP6280964B2/en
Priority to KR1020190154588A priority patent/KR102388642B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/38Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using the melting or combustion of a solid
    • G01N25/385Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using the melting or combustion of a solid for investigating the composition of gas mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evolved gas analysis device with an improved accuracy in detecting a gas component without increasing the device in size.SOLUTION: Provided is an evolved gas analysis device comprising a heating unit 10 for heating a sample and generating a gas component G, detection means for detecting the gas component generated by the heating unit, and a gas passage 41 for connecting the heating unit and the detection means, in which a mixed gas of the gas component and a carrier gas for guiding the gas component to the detection means flows, wherein the gas passage has a branch path 42 left open to the outside, the branch path having a discharge flow rate adjustment mechanism 42a for adjusting a discharge flow rate of the gas component to the outside, and further includes a flow rate control unit for controlling the discharge flow rate adjustment mechanism on the basis of a detection signal from the detection means so that the detection signal falls within a predetermined range.SELECTED DRAWING: Figure 4

Description

本発明は、試料を加熱して発生したガス成分を分析し、試料の同定や定量等を行う発生ガス分析装置及び発生ガス分析方法に関する。   The present invention relates to a generated gas analyzing apparatus and a generated gas analyzing method for analyzing a gas component generated by heating a sample and identifying or quantifying the sample.

樹脂の柔軟性を確保するため、樹脂中にはフタル酸エステル等の可塑剤が含まれているが、4種類のフタル酸エステルについて、欧州特定有害物質規制(RoHS)により2019年以降の使用が制限されることになった。そのため、樹脂中のフタル酸エステルを同定及び定量することが必要になっている。
フタル酸エステルは揮発性成分であるので、従来公知の発生ガス分析(EGA;Evolved Gas Analysis)を適用して分析することができる。この発生ガス分析は、試料を加熱して発生したガス成分を、ガスクロマトグラフや質量分析等の各種の分析装置で分析するものである。
In order to ensure the flexibility of the resin, the resin contains plasticizers such as phthalates, but the use of four types of phthalates is beyond 2019 due to the European Specific Hazardous Substances Regulation (RoHS). It was to be restricted. Therefore, it is necessary to identify and quantify the phthalate ester in the resin.
Since the phthalate ester is a volatile component, it can be analyzed by applying a conventionally known evolved gas analysis (EGA). In this generated gas analysis, a gas component generated by heating a sample is analyzed by various analyzers such as a gas chromatograph and a mass spectrometer.

発生ガス分析においては、発生したガス成分を窒素ガス等のキャリアガス中に流して分析装置に導入している。ところが、ガス成分が多量に発生してガス濃度が高くなり過ぎると、分析装置の検出範囲を超えて検出信号がオーバースケールしてしまい、測定が不正確になるという問題がある。
そこで、分析装置の検出信号が検出範囲を超えたときに、ガス成分と混合されるキャリアガス流量を増加させてガス成分を希釈し、ガス濃度を低下させる技術(特許文献1、2)が開示されている。
In the generated gas analysis, the generated gas components are introduced into an analyzer by flowing into a carrier gas such as nitrogen gas. However, if a large amount of gas components are generated and the gas concentration becomes too high, the detection signal exceeds the detection range of the analyzer and the detection signal is overscaled, resulting in inaccurate measurement.
Therefore, disclosed is a technique (Patent Documents 1 and 2) in which when the detection signal of the analyzer exceeds the detection range, the flow rate of the carrier gas mixed with the gas component is increased to dilute the gas component to lower the gas concentration. Has been.

特開2001-28251号公報JP 2001-28251 A 特開2012-202887号公報JP 2012-202887 A

しかしながら、特許文献1、2記載の技術の場合、ガス濃度が高くなったときにキャリアガス流量を増加させるため、キャリアガスの供給能力を大きくする必要が生じ、装置の大型化やコストアップを招く。
又、分析装置として質量分析計を用いる場合、その前段でガス成分をイオン化している。ところが、ガス成分中に測定対象でない副成分が含まれていると、ガス成分が多量に発生したときに副成分が多量にイオン化してしまい、本来イオン化させたい測定対象の成分が十分にイオン化せず、測定対象の検出信号がかえって低下してしまう(イオンサプレッション)。特許文献1、2記載の技術はこのような場合に対応することが困難である。
そこで、本発明は上記の課題を解決するためになされたものであり、装置を大型化せずにガス成分の検出精度を向上させた発生ガス分析装置及び発生ガス分析方法の提供を目的とする。
However, in the case of the techniques described in Patent Documents 1 and 2, since the carrier gas flow rate is increased when the gas concentration becomes high, it is necessary to increase the supply capacity of the carrier gas, leading to an increase in size and cost of the apparatus. .
Moreover, when using a mass spectrometer as an analyzer, the gas component is ionized in the front | former stage. However, if the gas component contains a subcomponent that is not the object of measurement, when the gas component is generated in a large amount, the subcomponent is ionized in a large amount, and the component to be measured that is originally intended to be ionized is sufficiently ionized. In other words, the detection signal to be measured is reduced (ion suppression). The techniques described in Patent Documents 1 and 2 are difficult to cope with such a case.
Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a generated gas analyzer and a generated gas analysis method that improve the detection accuracy of gas components without increasing the size of the apparatus. .

上記の目的を達成するために、本発明の発生ガス分析装置は、試料を加熱してガス成分を発生させる加熱部と、該加熱部で生成した前記ガス成分を検出する検出手段と、前記加熱部と前記検出手段との間を接続し、前記ガス成分と、該ガス成分を前記検出手段へ導くキャリアガスとの混合ガスが流れるガス流路と、を備えた発生ガス分析装置において、前記ガス流路は外部に開放された分岐路を有し、前記分岐路は、前記混合ガスの外部への排出流量を調整する排出流量調整機構を有し、前記検出手段からの検出信号に基づいて、その検出信号が所定の範囲内になるように前記排出流量調整機構を制御する流量制御部をさらに備えたことを特徴とする。
この発生ガス分析装置によれば、ガス成分が多量に発生してガス濃度が高くなり過ぎたときには、分岐路から外部へ排出される混合ガスの流量を増やし、ガス流路から検出手段側へ導入される混合ガスの流量を減少させる。これにより、検出手段の検出範囲を超えて検出信号がオーバースケールして測定が不正確になることを抑制できる。
この際、分岐路から外部へ排出される流量を調整すればよく、キャリアガス流量を増加させる必要がないため、キャリアガスの供給能力を大きくすることなく、装置を大型化せずにガス成分の検出精度を向上させることができる。
In order to achieve the above object, the generated gas analyzer of the present invention includes a heating unit that heats a sample to generate a gas component, a detection unit that detects the gas component generated by the heating unit, and the heating And a gas flow path in which a mixed gas of the gas component and a carrier gas that guides the gas component to the detection means flows. The flow path has a branch path opened to the outside, and the branch path has a discharge flow rate adjusting mechanism for adjusting a discharge flow rate of the mixed gas to the outside, and based on a detection signal from the detection means, A flow rate control unit is further provided for controlling the discharge flow rate adjusting mechanism so that the detection signal falls within a predetermined range.
According to this generated gas analyzer, when a large amount of gas components are generated and the gas concentration becomes too high, the flow rate of the mixed gas discharged from the branch path to the outside is increased and introduced from the gas flow path to the detection means side. Reduce the flow rate of the mixed gas. Thereby, it can suppress that a detection signal exceeds the detection range of a detection means, and a measurement becomes inaccurate due to overscale.
At this time, it is only necessary to adjust the flow rate discharged from the branch path to the outside, and it is not necessary to increase the flow rate of the carrier gas. Therefore, without increasing the carrier gas supply capacity, Detection accuracy can be improved.

前記ガス流路又は前記分岐路を、加熱又は保温する保温部を有してもよい。
この発生ガス分析装置によれば、加熱部中で生じたガス成分が、ガス流路又は分岐路の内壁で冷却されて凝縮してトラップされることを抑制できる。従って、トラップされたガス成分がその後再び気化し、検出手段で検出されることがなく、測定が長時間になって作業効率が低下したり、凝縮して再気化したガス成分が次の測定に影響を及ぼすことを防止できる。
You may have the heat retention part which heats or heat-retains the said gas flow path or the said branch path.
According to this generated gas analyzer, it is possible to suppress the gas component generated in the heating unit from being cooled and condensed and trapped by the inner wall of the gas channel or the branch channel. Therefore, the trapped gas component is then vaporized again and is not detected by the detection means, the measurement takes a long time and the working efficiency is reduced, or the condensed and re-vaporized gas component is used for the next measurement. It can prevent the influence.

前記分岐路の排出側に、該分岐路を流れる前記混合ガスを強制排気する強制排気部を有してもよい。
この発生ガス分析装置によれば、混合ガスを強制排気し、ガス流路と分岐路の気圧を下げ、トラップされたガス成分が検出手段側に逆流することを抑制できる。従って、トラップされたガス成分がその後再び気化し、検出手段で検出されることがなく、測定が長時間になって作業効率が低下したり、凝縮して再気化したガス成分が次の測定に影響を及ぼすことを防止できる。
You may have the forced exhaust part which forcibly exhausts the said mixed gas which flows through this branch path on the discharge side of the said branch path.
According to this generated gas analyzer, it is possible to forcibly exhaust the mixed gas, lower the pressure of the gas flow path and the branch path, and prevent the trapped gas component from flowing backward to the detection means. Therefore, the trapped gas component is then vaporized again and is not detected by the detection means, the measurement takes a long time and the working efficiency is reduced, or the condensed and re-vaporized gas component is used for the next measurement. It can prevent the influence.

前記ガス流路のうち前記分岐路と接する部位の第1軸線と、前記分岐流路のうち前記ガス路と接する部位の第2軸線とのなす角θが30〜60度であり、前記分岐路は自然排気されてもよい。
この発生ガス分析装置によれば、分岐路を自然排気する際に、ガス流路の上流側から流れてきた混合ガスが分岐路で急激に方向を曲げられることが無いので、分岐路で乱流が発生することを抑制し、スムースに分岐路から排気することができる。又、θ>60度(例えば90度)とする場合に比べ、分岐路の高さが低くなり、省スペースとなる。
なお、「分岐路を自然排気する」とは、分岐路自身又は分岐路の排出側に直接接続されて混合ガスを強制排気する強制排気部を有さない形態であればよく、分岐路の排出側から離れてダクト等の吸い込み口が配置されていてもよい。又、この場合、ダクトが動作している状態で、分岐路からの混合ガスの流量を設定する。
An angle θ formed by a first axis of a portion of the gas flow path that contacts the branch path and a second axis of a portion of the branch flow path that contacts the gas path is 30 to 60 degrees, and the branch path May be naturally vented.
According to the generated gas analyzer, when the branch passage is naturally exhausted, the mixed gas flowing from the upstream side of the gas passage is not suddenly bent in the branch passage. Can be suppressed, and air can be smoothly exhausted from the branch path. Further, compared to the case where θ> 60 degrees (for example, 90 degrees), the height of the branch path is reduced, and space is saved.
Note that “naturally exhausting the branch path” may be any form that does not have a forced exhaust section that is directly connected to the branch path itself or to the discharge side of the branch path and forcibly exhausts the mixed gas. A suction port such as a duct may be arranged away from the side. In this case, the flow rate of the mixed gas from the branch path is set while the duct is operating.

前記加熱部を一定温度に保持する加熱制御部を備え、前記検出手段は質量分析計であってもよい。
この発生ガス分析装置によれば、加熱部の温度を変えながら検出を行うクロマトグラフィ等に比べ、加熱部の温度制御が簡略になり、測定を短時間で行える。
A heating control unit for holding the heating unit at a constant temperature may be provided, and the detection means may be a mass spectrometer.
According to the generated gas analyzer, the temperature control of the heating unit is simplified and the measurement can be performed in a short time as compared with chromatography or the like that performs detection while changing the temperature of the heating unit.

前記検出手段は質量分析計であり、前記ガス流路と前記質量分析計との間に前記混合ガス中の前記ガス成分をイオン化するイオン化部を有し、前記流量制御部は、前記検出手段からの検出信号が所定の範囲未満になったときに、前記混合ガスの前記排出流量を増大させるように前記排出流量調整機構を制御してもよい。
分析装置として質量分析計を用いる場合、その前段のイオン化部でガス成分をイオン化している。ところが、ガス成分が多量に発生したときには、副成分が多量にイオン化してしまい、本来イオン化させたい測定対象の成分が十分にイオン化せず、測定対象の検出信号がかえって低下するイオンサプレッションが生じ、検出信号も低下する。
そこで、この発生ガス分析装置によれば、イオンサプレッションが生じている場合、流量制御部は検出信号のピーク強度が閾値未満と判定し、混合ガスの前記排出流量を増大させるように排出流量調整機構を制御する。これにより、イオン化部へ導入される混合ガスの流量が少なくなるので、副成分のイオン化が抑制され、検出信号の低下を抑制してガス成分の検出精度を向上させることができる。
The detection unit is a mass spectrometer, and has an ionization unit that ionizes the gas component in the mixed gas between the gas flow path and the mass spectrometer, and the flow rate control unit is connected to the detection unit. The discharge flow rate adjustment mechanism may be controlled so that the discharge flow rate of the mixed gas is increased when the detection signal is less than a predetermined range.
When using a mass spectrometer as an analyzer, the gas component is ionized by the ionization part of the front | former stage. However, when a large amount of gas component is generated, a large amount of secondary components are ionized, and the component of the measurement target that is originally intended to be ionized is not sufficiently ionized, resulting in ion suppression that lowers the detection signal of the measurement target. The detection signal also decreases.
Therefore, according to this generated gas analyzer, when ion suppression occurs, the flow rate control unit determines that the peak intensity of the detection signal is less than the threshold value, and increases the discharge flow rate adjustment mechanism so as to increase the discharge flow rate of the mixed gas. To control. Thereby, since the flow rate of the mixed gas introduced into the ionization unit is reduced, ionization of the subcomponent is suppressed, and the detection accuracy of the gas component can be improved by suppressing the decrease in the detection signal.

本発明の発生ガス分析方法は、試料を加熱して発生したガス成分をキャリアガスと混合して混合ガスを生成し、該混合ガスをガス流路を介して検出手段へ導入し、前記検出手段により前記ガス成分を検出する発生ガス分析方法において、前記検出手段からの検出信号に基づいて、その検出信号が所定の範囲内になるように、前記ガス流路に設けられて外部に開放された分岐路から前記混合ガスの一部を外部に排出することを特徴とする。   In the generated gas analysis method of the present invention, a gas component generated by heating a sample is mixed with a carrier gas to generate a mixed gas, and the mixed gas is introduced into a detection means via a gas flow path. In the generated gas analysis method for detecting the gas component by the above, based on the detection signal from the detection means, the gas flow path is provided outside and opened to the outside so that the detection signal is within a predetermined range. A part of the mixed gas is discharged to the outside from the branch path.

本発明によれば、装置を大型化せずにガス成分の検出精度を向上させた発生ガス分析装置が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the generated gas analyzer which improved the detection accuracy of the gas component without enlarging an apparatus is obtained.

本発明の実施形態に係る発生ガス分析装置の構成を示す斜視図である。It is a perspective view which shows the structure of the generated gas analyzer which concerns on embodiment of this invention. ガス発生部の構成を示す斜視図である。It is a perspective view which shows the structure of a gas generation part. ガス発生部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a gas generation part. ガス発生部の構成を示す横断面図である。It is a cross-sectional view which shows the structure of a gas generation part. 発生ガス分析装置によるガス成分の分析動作を示すブロック図である。It is a block diagram which shows the analysis operation | movement of the gas component by the generated gas analyzer. 試料ホルダの排出位置と測定位置を示す図である。It is a figure which shows the discharge position and measurement position of a sample holder. ガス流路及び分岐路の保温部を示す図である。It is a figure which shows the heat retention part of a gas flow path and a branch path. 分岐路の強制排気部を示す図である。It is a figure which shows the forced exhaustion part of a branched path. ガス流路及び分岐路の別の実施形態を示す図である。It is a figure which shows another embodiment of a gas flow path and a branch path.

以下、本発明の実施形態について、図面を参照して説明する。図1は本発明の実施形態に係る発生ガス分析装置200の構成を示す斜視図であり、図2はガス発生部100の構成を示す斜視図、図3はガス発生部100の構成を示す軸心Oに沿う縦断面図、図4はガス発生部100の構成を示す軸心Oに沿う横断面図である。
発生ガス分析装置200は、筐体となる本体部202と、本体部202の正面に取り付けられた箱型のガス発生部取付け部204と、全体を制御するコンピュータ(制御部)210とを備える。コンピュータ210は、データ処理を行うCPUと、コンピュータプログラムやデータを記憶する記憶部と、モニタと、キーボード等の入力部等を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a generated gas analyzer 200 according to an embodiment of the present invention, FIG. 2 is a perspective view showing a configuration of a gas generator 100, and FIG. 3 is a shaft showing a configuration of the gas generator 100. 4 is a longitudinal sectional view taken along the center O, and FIG. 4 is a transverse sectional view taken along the axis O showing the configuration of the gas generating unit 100.
The generated gas analyzer 200 includes a main body unit 202 serving as a housing, a box-shaped gas generation unit mounting unit 204 mounted on the front surface of the main body unit 202, and a computer (control unit) 210 that controls the whole. The computer 210 includes a CPU that performs data processing, a storage unit that stores computer programs and data, a monitor, and an input unit such as a keyboard.

ガス発生部取付け部204の内部には、円筒状の加熱炉(加熱部)10と、試料ホルダ20と、冷却部30と、ガスを分岐させるスプリッタ40と、イオン源50とがアセンブリとして1つになったガス発生部100が収容されている。又、本体部202の内部には、試料を加熱して発生したガス成分を分析する質量分析計(検出手段)110が収容されている。
なお、ガス発生部取付け部204の上面から前面に向かって開口204hが設けられ、試料ホルダ20を加熱炉10外側の排出位置(後述)に移動させると開口204hに位置するので、開口204hから試料ホルダ20に試料を出し入れ可能になっている。又、ガス発生部取付け部204の前面には、スリット204sが設けられ、スリット204sから外部に露出する開閉ハンドル22Hを左右に動かすことにより、試料ホルダ20を加熱炉10の内外に移動させて上述の排出位置にセットし、試料を出し入れするようになっている。
なお、例えばコンピュータ210で制御されるステッピングモータ等により、移動レール204L(後述)上で試料ホルダ20を移動させれば、試料ホルダ20を加熱炉10の内外に移動させる機能を自動化できる。
Inside the gas generator mounting portion 204, a cylindrical heating furnace (heating unit) 10, a sample holder 20, a cooling unit 30, a splitter 40 for branching the gas, and an ion source 50 are provided as one assembly. The gas generating part 100 which became is accommodated. Further, a mass spectrometer (detection means) 110 for analyzing a gas component generated by heating the sample is accommodated in the main body 202.
An opening 204h is provided from the upper surface to the front surface of the gas generator mounting portion 204. When the sample holder 20 is moved to a discharge position (described later) outside the heating furnace 10, it is positioned at the opening 204h. A sample can be taken in and out of the holder 20. In addition, a slit 204s is provided on the front surface of the gas generator mounting portion 204, and the sample holder 20 is moved in and out of the heating furnace 10 by moving the open / close handle 22H exposed to the outside from the slit 204s to the left and right. It is set to the discharge position of and the sample is taken in and out.
If the sample holder 20 is moved on a moving rail 204L (described later) by, for example, a stepping motor controlled by the computer 210, the function of moving the sample holder 20 in and out of the heating furnace 10 can be automated.

次に、図2〜図5を参照し、ガス発生部100の各部分の構成について説明する。
まず、加熱炉10は、ガス発生部取付け部204の取付板204aに軸心Oを水平にして取り付けられ、軸心Oを中心に開口する略円筒状をなす加熱室12と、加熱ブロック14と、保温ジャケット16とを有する。
加熱室12の外周に加熱ブロック14が配置され、加熱ブロック14の外周に保温ジャケット16が配置されている。加熱ブロック14はアルミニウムからなり、軸心Oに沿って加熱炉10の外部に延びる一対のヒータ電極14a(図4参照)により通電加熱される。
なお、取付板204aは、軸心Oに垂直な方向に延びており、スプリッタ40及びイオン源50は、加熱炉10に取り付けられている。さらに、イオン源50は、ガス発生部取付け部204の上下に延びる支柱204bに支持されている。
Next, the configuration of each part of the gas generation unit 100 will be described with reference to FIGS.
First, the heating furnace 10 is mounted on the mounting plate 204a of the gas generating section mounting portion 204 with the axis O horizontally, and has a substantially cylindrical heating chamber 12 that opens around the axis O, a heating block 14, and the like. And a heat insulation jacket 16.
A heating block 14 is disposed on the outer periphery of the heating chamber 12, and a heat insulation jacket 16 is disposed on the outer periphery of the heating block 14. The heating block 14 is made of aluminum, and is energized and heated by a pair of heater electrodes 14 a (see FIG. 4) extending along the axis O to the outside of the heating furnace 10.
The attachment plate 204 a extends in a direction perpendicular to the axis O, and the splitter 40 and the ion source 50 are attached to the heating furnace 10. Further, the ion source 50 is supported by a support column 204 b extending vertically from the gas generating unit mounting unit 204.

加熱炉10のうち開口側と反対側(図3の右側)にはスプリッタ40が接続されている。又、加熱炉10の下側にはキャリアガス保護管18が接続され、キャリアガス保護管18の内部には、加熱室12の下面に連通してキャリアガスCを加熱室12に導入するキャリアガス流路18fが収容されている。
そして、詳しくは後述するが、加熱室12のうち開口側と反対側(図3の右側)の端面にガス流路41が連通し、加熱炉10(加熱室12)で生成したガス成分Gと、キャリアガスCとの混合ガスMがガス流路41を流れるようになっている。
A splitter 40 is connected to the heating furnace 10 on the side opposite to the opening side (the right side in FIG. 3). Further, a carrier gas protection pipe 18 is connected to the lower side of the heating furnace 10, and a carrier gas that communicates with the lower surface of the heating chamber 12 and introduces the carrier gas C into the heating chamber 12 inside the carrier gas protection pipe 18. A flow path 18f is accommodated.
And although mentioned later in detail, the gas flow path 41 is connected to the end surface of the heating chamber 12 opposite to the opening side (the right side in FIG. 3), and the gas component G generated in the heating furnace 10 (heating chamber 12) The mixed gas M with the carrier gas C flows through the gas flow path 41.

試料ホルダ20は、ガス発生部取付け部204の内部上面に取り付けられた移動レール204L上を移動するステージ22と、ステージ22上に取り付けられて上下に延びるブラケット24cと、ブラケット24cの前面(図3の左側)に取り付けられた断熱材24b、26と、ブラケット24cから加熱室12側に軸心O方向に延びる試料保持部24aと、試料保持部24aの直下に埋設されるヒータ27と、ヒータ27の直上で試料保持部24aの上面に配置されて試料を収容する試料皿28と、を有する。
ここで、移動レール204Lは軸心O方向(図3の左右方向)に延び、試料ホルダ20はステージ22ごと、軸心O方向に進退するようになっている。又、開閉ハンドル22Hは、軸心O方向に垂直な方向に延びつつステージ22に取り付けられている。
The sample holder 20 includes a stage 22 that moves on a moving rail 204L attached to the inner upper surface of the gas generating part attaching part 204, a bracket 24c attached on the stage 22 and extending vertically, and a front face of the bracket 24c (FIG. 3). Heat insulating materials 24b and 26 attached to the left side), a sample holding portion 24a extending in the direction of the axis O from the bracket 24c to the heating chamber 12 side, a heater 27 embedded immediately below the sample holding portion 24a, and a heater 27 And a sample tray 28 that is disposed on the upper surface of the sample holder 24a and accommodates the sample.
Here, the moving rail 204L extends in the direction of the axis O (the left-right direction in FIG. 3), and the sample holder 20 advances and retreats in the direction of the axis O along with the stage 22. The opening / closing handle 22H is attached to the stage 22 while extending in a direction perpendicular to the direction of the axis O.

なお、ブラケット24cは上部が半円形をなす短冊状をなし、断熱材24bは略円筒状をなしてブラケット24c上部の前面に装着され(図6参照)、断熱材24bを貫通してヒータ27の電極27aが外部に取り出されている。断熱材26は略矩形状をなして、断熱材24bより下方でブラケット24cの前面に装着される。又、ブラケット24cの下方には断熱材26が装着されずにブラケット24cの前面が露出し、接触面24fを形成している。
ブラケット24cは加熱室12よりやや大径をなして加熱室12を気密に閉塞し、試料保持部24aが加熱室12の内部に収容される。
そして、加熱室12の内部の試料皿28に載置された試料が加熱炉10内で加熱され、ガス成分Gが生成する。
The bracket 24c has a strip shape with a semicircular upper portion, and the heat insulating material 24b has a substantially cylindrical shape and is mounted on the front surface of the upper portion of the bracket 24c (see FIG. 6). The electrode 27a is taken out to the outside. The heat insulating material 26 has a substantially rectangular shape, and is attached to the front surface of the bracket 24c below the heat insulating material 24b. Further, the heat insulating material 26 is not attached below the bracket 24c, and the front surface of the bracket 24c is exposed to form a contact surface 24f.
The bracket 24 c has a slightly larger diameter than the heating chamber 12 and hermetically closes the heating chamber 12, and the sample holder 24 a is accommodated in the heating chamber 12.
Then, the sample placed on the sample tray 28 inside the heating chamber 12 is heated in the heating furnace 10 to generate a gas component G.

冷却部30は、試料ホルダ20の熱伝導ブロック26に対向するようにして加熱炉10の外側(図3の加熱炉10の左側)に配置されている。冷却部30は、略矩形で凹部32rを有する冷却ブロック32と、冷却ブロック32の下面に接続する冷却フィン34と、冷却フィン34の下面に接続されて冷却フィン34に空気を当てる空冷ファン36とを備える。
そして、詳しくは後述するが、試料ホルダ20が移動レール204L上を軸心O方向に図3の左側に移動して加熱炉10の外に排出されると、ブラケット24cの接触面24fが冷却ブロック32の凹部32rに収容されつつ接触し、冷却ブロック32を介してブラケット24cの熱が奪われ、試料ホルダ20(特に試料保持部24a)を冷却するようになっている。
なお、本実施形態では、試料ホルダ20(ブラケット24cを含む)及び冷却ブロック32はいずれもアルミニウムからなる。
The cooling unit 30 is disposed outside the heating furnace 10 (on the left side of the heating furnace 10 in FIG. 3) so as to face the heat conduction block 26 of the sample holder 20. The cooling unit 30 includes a substantially rectangular cooling block 32 having a recess 32r, a cooling fin 34 connected to the lower surface of the cooling block 32, and an air cooling fan 36 connected to the lower surface of the cooling fin 34 to apply air to the cooling fin 34. Is provided.
As will be described in detail later, when the sample holder 20 moves to the left side of FIG. 3 in the direction of the axis O on the moving rail 204L and is discharged out of the heating furnace 10, the contact surface 24f of the bracket 24c becomes the cooling block. The bracket 24c is contacted while being accommodated in the recess 32r, and the heat of the bracket 24c is removed via the cooling block 32, thereby cooling the sample holder 20 (particularly the sample holding portion 24a).
In the present embodiment, the sample holder 20 (including the bracket 24c) and the cooling block 32 are both made of aluminum.

図3、図4に示すように、スプリッタ40は、加熱室12と連通する上述のガス流路41と、ガス流路41に連通しつつ外部に開放された分岐路42と、分岐路42の出側に接続されて分岐路42からの混合ガスMの外部への排出流量を調整するマスフローコントローラ(排出流量調整機構)42aと、自身の内部にガス流路41が開口される筐体部43と、筐体部43を囲む保温部44とを備えている。
図4に示すように、上面から見たとき、ガス流路41は、加熱室12と連通して軸心O方向に延びた後、軸心O方向に垂直に曲がり、さらに軸心O方向に曲がって終端部41eに至るクランク状をなしている。又、ガス流路41のうち軸心O方向に垂直に延びる部位の中央付近は拡径して分岐室41Mを形成している。分岐室41Mは筐体部43の上面まで延び、分岐室41Mよりやや小径の分岐路42が嵌合されている。
ガス流路41は、加熱室12と連通して軸心O方向に延びて終端部41eに至る直線状であってもよく、加熱室12やイオン源50の位置関係に応じて、種々の曲線や軸心Oと角度を有する線状等であってもよい。
As shown in FIGS. 3 and 4, the splitter 40 includes the above-described gas flow path 41 that communicates with the heating chamber 12, a branch path 42 that communicates with the gas flow path 41, and is opened to the outside. A mass flow controller (discharge flow rate adjusting mechanism) 42a that is connected to the outlet side and adjusts the discharge flow rate of the mixed gas M from the branch passage 42 to the outside, and a housing portion 43 in which the gas flow channel 41 is opened. And a heat retaining part 44 surrounding the housing part 43.
As shown in FIG. 4, when viewed from above, the gas channel 41 communicates with the heating chamber 12 and extends in the direction of the axis O, then bends perpendicularly to the direction of the axis O, and further in the direction of the axis O. It has a crank shape that bends to reach the end portion 41e. Further, the diameter of the vicinity of the center of the gas flow path 41 extending perpendicularly to the direction of the axis O is increased to form a branch chamber 41M. The branch chamber 41M extends to the upper surface of the casing 43, and a branch path 42 having a slightly smaller diameter than the branch chamber 41M is fitted therein.
The gas flow path 41 may be a straight line that communicates with the heating chamber 12 and extends in the direction of the axis O to reach the terminal end portion 41e, and has various curves depending on the positional relationship between the heating chamber 12 and the ion source 50. Or a linear shape having an angle with the axis O.

なお、本実施形態では、ガス流路41は一例として直径約2mm、分岐室41M及び分岐路42は直径約1.5mmとされている。そして、ガス流路41を終端部41eまで流れる流量と、分岐路42へ分岐される流量との比(スプリット比)は各流路抵抗で決まっており、分岐路42へより多くの混合ガスMを流出可能になっている。そして、このスプリット比はマスフローコントローラ42aの開度を調整することで制御できる。
なお、分岐路42の内径は、直前のガス流路の断面積よりも、イオン源側の流路と分岐路側の流路の断面積の合計が小さくなるようにし、且つイオン源側と分岐路側いずれにおいてもガスの流れが音速に達しない大きさとする。この内径は、接点P(図9参照)の直前のガス流路41の内径の50〜90%であるのが好ましい。
In this embodiment, as an example, the gas channel 41 has a diameter of about 2 mm, and the branch chamber 41M and the branch channel 42 have a diameter of about 1.5 mm. The ratio (split ratio) between the flow rate flowing through the gas flow path 41 to the terminal end 41e and the flow rate branched to the branch path 42 is determined by the resistance of each flow path, and more mixed gas M flows into the branch path 42. Can be spilled. The split ratio can be controlled by adjusting the opening of the mass flow controller 42a.
The inner diameter of the branch path 42 is such that the sum of the cross-sectional areas of the ion source side channel and the branch path side channel is smaller than the sectional area of the immediately preceding gas channel, and the ion source side and the branch path side In any case, the gas flow is set so as not to reach the speed of sound. This inner diameter is preferably 50 to 90% of the inner diameter of the gas flow path 41 immediately before the contact P (see FIG. 9).

図3、図4に示すように、イオン源50は、筐体部53と、筐体部53を囲む保温部54と、放電針56と、放電針56を保持するステー55とを有する。筐体部53は板状をなし、その板面が軸心O方向に沿うと共に、中央に小孔53Cが貫通している。そして、ガス流路41の終端部41eが筐体部53の内部を通って小孔53Cの側壁に臨んでいる。一方、放電針56は軸心O方向に垂直に延びて小孔53Cに臨んでいる。
そして、終端部41eから小孔53C付近に導入された混合ガスMのうち、ガス成分Gが放電針56によってイオン化される。
イオン源50は公知の装置であり、本実施形態では、大気圧化学イオン化(APCI)タイプを採用している。APCIはガス成分Gのフラグメントを起こし難く、フラグメントピークが生じないので、クロマトグラフ等で分離せずとも測定対象を検出できるので好ましい。
イオン源50でイオン化されたガス成分Gは、キャリアガスCと共に質量分析計110に導入されて分析される。
なお、イオン源50は、保温部54の内部に収容されている。
As shown in FIGS. 3 and 4, the ion source 50 includes a housing portion 53, a heat retaining portion 54 that surrounds the housing portion 53, a discharge needle 56, and a stay 55 that holds the discharge needle 56. The casing 53 is plate-shaped, and its plate surface is along the direction of the axis O, and a small hole 53C passes through the center. And the terminal part 41e of the gas flow path 41 passes through the inside of the housing part 53 and faces the side wall of the small hole 53C. On the other hand, the discharge needle 56 extends perpendicularly to the direction of the axis O and faces the small hole 53C.
Then, the gas component G is ionized by the discharge needle 56 in the mixed gas M introduced from the terminal portion 41 e to the vicinity of the small hole 53 </ b> C.
The ion source 50 is a known device, and in this embodiment, an atmospheric pressure chemical ionization (APCI) type is adopted. APCI is preferable because it does not easily cause a fragment of the gas component G and a fragment peak does not occur, so that the measurement object can be detected without separation by a chromatograph or the like.
The gas component G ionized by the ion source 50 is introduced into the mass spectrometer 110 together with the carrier gas C and analyzed.
The ion source 50 is accommodated inside the heat retaining unit 54.

図5は、発生ガス分析装置200によるガス成分の分析動作を示すブロック図である。
試料Sは加熱炉10の加熱室12内で加熱され、ガス成分Gが生成する。加熱炉10の加熱状態(昇温速度、最高到達温度等)は、コンピュータ210の加熱制御部212によって制御される。
ガス成分Gは、加熱室12に導入されたキャリアガスCと混合されて混合ガスMとなり、スプリッタ40に導入される。コンピュータ210の検出信号判定部214は、質量分析計110の検出器118(後述)から検出信号を受信する。
流量制御部216は、検出信号判定部214から受信した検出信号のピーク強度が閾値の範囲外か否かを判定する。そして、範囲外の場合、流量制御部216は、マスフローコントローラ42aの開度を制御することにより、スプリッタ40内で分岐路42から外部へ排出される混合ガスMの流量、ひいてはガス流路41からイオン源50へ導入される混合ガスMの流量を調整し、質量分析計110の検出精度を最適に保つ。
FIG. 5 is a block diagram showing the gas component analysis operation by the generated gas analyzer 200.
The sample S is heated in the heating chamber 12 of the heating furnace 10 to generate a gas component G. The heating state (heating rate, maximum temperature, etc.) of the heating furnace 10 is controlled by the heating control unit 212 of the computer 210.
The gas component G is mixed with the carrier gas C introduced into the heating chamber 12 to become a mixed gas M and introduced into the splitter 40. The detection signal determination unit 214 of the computer 210 receives a detection signal from the detector 118 (described later) of the mass spectrometer 110.
The flow rate control unit 216 determines whether or not the peak intensity of the detection signal received from the detection signal determination unit 214 is outside the threshold range. When the flow rate is out of the range, the flow rate control unit 216 controls the opening degree of the mass flow controller 42 a, whereby the flow rate of the mixed gas M discharged from the branch path 42 to the outside in the splitter 40, and from the gas flow path 41. The flow rate of the mixed gas M introduced into the ion source 50 is adjusted, and the detection accuracy of the mass spectrometer 110 is kept optimal.

質量分析計110は、イオン源50でイオン化されたガス成分Gを導入する第1細孔111と、第1細孔111に続いてガス成分Gが順に流れる第2細孔112、イオンガイド114、四重極マスフィルター116と、四重極マスフィルター116から出たガス成分Gを検出する検出器118とを備える。
四重極マスフィルター116は、印加する高周波電圧を変化させることにより、質量走査可能であり、四重極電場を生成し、この電場内でイオンを振動運動させることによりイオンを検出する。四重極マスフィルター116は、特定の質量範囲にあるガス成分Gだけを透過させる質量分離器をなすので、検出器118でガス成分Gの同定および定量を行うことができる。
なお、測定対象のガス成分が有する特定の質量電荷比(m/z)のイオンのみを検出する選択イオン検出(SIM)モードを用いると、ある範囲の質量電荷比のイオンを検出する全イオン検出(スキャン)モードに比べ、測定対象のガス成分の検出精度が向上するので好ましい。
The mass spectrometer 110 includes a first pore 111 for introducing the gas component G ionized by the ion source 50, a second pore 112 through which the gas component G sequentially flows after the first pore 111, an ion guide 114, A quadrupole mass filter 116 and a detector 118 that detects a gas component G emitted from the quadrupole mass filter 116 are provided.
The quadrupole mass filter 116 is capable of mass scanning by changing the applied high-frequency voltage, generates a quadrupole electric field, and detects ions by oscillating the ions in the electric field. Since the quadrupole mass filter 116 forms a mass separator that allows only the gas component G in a specific mass range to pass therethrough, the detector 118 can identify and quantify the gas component G.
In addition, using the selected ion detection (SIM) mode that detects only ions with a specific mass-to-charge ratio (m / z) of the gas component to be measured, all-ion detection that detects ions with a certain range of mass-to-charge ratios Compared to the (scan) mode, the detection accuracy of the gas component to be measured is improved, which is preferable.

なお、図6に示すように、本発明においては、試料ホルダ20がステージ22を介して軸心O方向の所定の2つの位置(図6(a)に示す加熱炉10の外側に排出されて試料皿28が加熱炉10外に露出する排出位置と、図6(b)に示す加熱炉10内に収容されて測定を行う測定位置)の間を移動する。
従って、図6(a)に示す排出位置で、試料皿28と共に試料を出し入れすることができる。このとき、ブラケット24cの接触面24fが、冷却ブロック32の凹部(接触部)32rに接触することで、冷却ブロック32を介してブラケット24cの熱が奪われ、試料ホルダ20を冷却する。
As shown in FIG. 6, in the present invention, the sample holder 20 is discharged to the outside of the heating furnace 10 shown in FIG. It moves between a discharge position where the sample pan 28 is exposed to the outside of the heating furnace 10 and a measurement position where the sample dish 28 is accommodated in the heating furnace 10 shown in FIG.
Accordingly, the sample can be taken in and out together with the sample pan 28 at the discharge position shown in FIG. At this time, the contact surface 24f of the bracket 24c comes into contact with the concave portion (contact portion) 32r of the cooling block 32, so that the heat of the bracket 24c is removed via the cooling block 32, and the sample holder 20 is cooled.

本発明においては、上述の図3、図4に示すように、ガス流路41が外部に開放された分岐路42を有している。そして、分岐路42に取り付けられたマスフローコントローラ42aの開度を制御することにより、分岐路42から外部へ排出される混合ガスMの流量、ひいてはガス流路41からイオン源50へ導入される混合ガスMの流量を調整することができる。
そのため、ガス成分が多量に発生してガス濃度が高くなり過ぎたときには、分岐路42から外部へ排出される混合ガスMの流量を増やし、ガス流路41からイオン源50へ導入される混合ガスMの流量を減少させる。これにより、質量分析計110の検出範囲を超えて検出信号がオーバースケールして測定が不正確になることを抑制できる。
この際、分岐路42から外部へ排出される流量を調整すればよく、キャリアガス流量を増加させる必要がないため、キャリアガスの供給能力を大きくすることなく、装置を大型化せずにガス成分の検出精度を向上させることができる。
In the present invention, as shown in FIGS. 3 and 4 described above, the gas passage 41 has a branch passage 42 opened to the outside. Then, by controlling the opening degree of the mass flow controller 42 a attached to the branch path 42, the flow rate of the mixed gas M discharged from the branch path 42 to the outside, and hence the mixing introduced into the ion source 50 from the gas path 41. The flow rate of the gas M can be adjusted.
Therefore, when a large amount of gas components are generated and the gas concentration becomes too high, the flow rate of the mixed gas M discharged from the branch passage 42 to the outside is increased, and the mixed gas introduced from the gas flow passage 41 to the ion source 50 is increased. Reduce the flow rate of M. Thereby, it can suppress that a detection signal exceeds the detection range of the mass spectrometer 110, and a measurement becomes inaccurate due to overscale.
At this time, it is only necessary to adjust the flow rate discharged to the outside from the branch path 42, and it is not necessary to increase the flow rate of the carrier gas. Therefore, the gas component is not increased without increasing the supply capacity of the carrier gas and without increasing the size of the apparatus. Detection accuracy can be improved.

又、分析装置として質量分析計を用いる場合、その前段のイオン源50でガス成分をイオン化しているが、ガス成分が多量に発生したときに副成分のイオン化によって上述のイオンサプレッションが生じた場合には、検出信号がかえって低下する。
そこで、イオンサプレッションが生じている場合、検出信号判定部214から質量分析計110の検出信号のピーク強度を受信した流量制御部216は、検出信号のピーク強度が閾値未満と判定し、マスフローコントローラ42aに開度を大きくする制御信号を送信する。これにより、イオン源50へ導入される混合ガスMの流量が少なくなるので、副成分のイオン化が抑制され、検出信号の低下を抑制してガス成分の検出精度を向上させることができる。
When a mass spectrometer is used as the analyzer, the gas component is ionized by the ion source 50 in the preceding stage, but when the above-mentioned ion suppression occurs due to ionization of the subcomponent when a large amount of gas component is generated. In some cases, the detection signal is lowered.
Therefore, when ion suppression occurs, the flow rate control unit 216 that has received the peak intensity of the detection signal of the mass spectrometer 110 from the detection signal determination unit 214 determines that the peak intensity of the detection signal is less than the threshold, and the mass flow controller 42a. A control signal for increasing the opening degree is transmitted to. Thereby, since the flow rate of the mixed gas M introduced into the ion source 50 is reduced, ionization of the subcomponent is suppressed, and the detection accuracy of the gas component can be improved by suppressing the decrease in the detection signal.

なお、検出信号のピーク強度を見ただけでは、イオンサプレッションが生じているか否かはわからず、単に測定対象のガス成分の含有量が少ないだけの場合もある。そこで、測定対象以外の夾雑物などの濃度が高い等の別の現象からイオンサプレッションの有無を判断する必要がある。この判断は、作業者が行うか、又は、後述するように試料またはガス成分毎にイオンサプレッションの有無をテーブルに記憶しておき、テーブルに基づいて流量制御部216が判断することもできる。
そして、流量制御部216は、検出信号のピーク強度が閾値を超えたとき(オーバースケール)、又はピーク強度が閾値未満のとき(イオンサプレッションが発生していると判断した場合)に、分岐路42から外部へ排出される混合ガスMの流量を増やす制御信号を生成する。
この場合、例えばガス成分毎にイオンサプレッションの有無をテーブルに記憶しておき、流量制御部216はこのテーブルを参照してイオンサプレッションの有無を判断し、イオンサプレッションが発生していると判断した場合に、マスフローコントローラ42aに開度を大きくする制御信号を送信してもよい。又、作業者が測定の都度、コンピュータ210の入力部から、その測定がイオンサプレッションが発生する測定であるか否かを入力(選択ボタン等)し、流量制御部216はこの入力信号を基に検出信号のピーク強度と閾値とを比較し、マスフローコントローラ42aに開度を大きくする制御信号を送信してもよい。
なお、イオンサプレッションを生じさせる場合としては、測定対象がフタル酸エステルで、副成分がフタル酸等の添加剤の場合が例示される。
Note that it is not possible to determine whether or not ion suppression has occurred simply by looking at the peak intensity of the detection signal. In some cases, the content of the gas component to be measured is merely small. Therefore, it is necessary to determine the presence or absence of ion suppression from another phenomenon such as a high concentration of impurities other than the measurement target. This determination can be performed by an operator, or the presence or absence of ion suppression for each sample or gas component can be stored in a table as described later, and the flow rate control unit 216 can determine based on the table.
The flow rate controller 216 then branches the branch path 42 when the peak intensity of the detection signal exceeds the threshold value (overscale) or when the peak intensity is less than the threshold value (when it is determined that ion suppression is occurring). A control signal for increasing the flow rate of the mixed gas M discharged from the outside to the outside is generated.
In this case, for example, the presence / absence of ion suppression for each gas component is stored in a table, and the flow rate controller 216 refers to this table to determine the presence / absence of ion suppression and determines that ion suppression is occurring. In addition, a control signal for increasing the opening degree may be transmitted to the mass flow controller 42a. Further, each time the operator performs measurement, an input (selection button or the like) is input from the input unit of the computer 210 as to whether or not the measurement is a measurement in which ion suppression occurs, and the flow rate control unit 216 is based on this input signal. The peak intensity of the detection signal may be compared with a threshold value, and a control signal for increasing the opening degree may be transmitted to the mass flow controller 42a.
In addition, as a case where ion suppression is generated, a case where the measurement target is a phthalic acid ester and an auxiliary component is an additive such as phthalic acid is exemplified.

なお、加熱炉10中で生じたガス成分が、分岐室41M近傍のガス流路41と分岐路42の内壁で冷却されて凝縮してトラップされ、その後再び気化してイオン源50で測定されることがある。この場合、測定が長時間になって作業効率が低下するのみならず、凝縮して再気化したガス成分が次の測定に影響を及ぼす可能性がある。
そこで、図7に示すように、分岐室41M近傍のガス流路41と分岐路42の少なくとも一方の周囲を加熱又は保温する保温部41H、42Hを設けてもよい。これにより、ガス流路41や分岐路42の内壁にガス成分がトラップされることを抑制できる。
なお、図7では、保温部41Hは分岐室41M近傍のガス流路41の周囲を加熱するコイルヒータであり、保温部42Hは分岐室41M近傍の分岐路42の周囲を加熱するコイルヒータである。
又、保温部41H、42Hとしてはヒータに限らず、ガス成分の凝固を防止できるものであれば、断熱材等であってもよい。又、保温部41H、42Hの少なくとも一方を設けても良く、両方を設けてもよい。
The gas component generated in the heating furnace 10 is cooled and condensed and trapped on the inner walls of the gas passage 41 and the branch passage 42 in the vicinity of the branch chamber 41M, and then vaporized again and measured by the ion source 50. Sometimes. In this case, not only does the measurement take a long time but the working efficiency decreases, but the condensed and re-vaporized gas component may affect the next measurement.
Therefore, as shown in FIG. 7, heat retaining portions 41H and 42H for heating or keeping heat around at least one of the gas flow path 41 and the branch path 42 in the vicinity of the branch chamber 41M may be provided. Thereby, it can suppress that a gas component is trapped on the inner wall of the gas flow path 41 or the branch path 42.
In FIG. 7, the heat retaining portion 41H is a coil heater that heats the periphery of the gas flow path 41 near the branch chamber 41M, and the heat retaining portion 42H is a coil heater that heats the periphery of the branch passage 42 near the branch chamber 41M. .
In addition, the heat retaining portions 41H and 42H are not limited to heaters, and may be a heat insulating material or the like as long as the gas components can be prevented from solidifying. Moreover, at least one of the heat retaining portions 41H and 42H may be provided, or both may be provided.

一方、保温部41H、42Hでガス成分(混合ガス)を加熱すると、分岐路42から排出されてマスフローコントローラ42aを流れる混合ガスが高温になり、耐熱型のマスフローコントローラ42aが必要になる場合がある。
そこで、図8に示すように、保温部41H、42Hを設ける代わりに、マスフローコントローラ42aよりも出側の分岐路42に排気ポンプ(強制排気部)42pを設けてもよい。これにより、分岐路42を流れる混合ガスMを強制排気し、分岐室41M近傍のガス流路41と分岐路42の気圧を下げ、トラップされたガス成分がイオン源50側に逆流することを抑制できる。
On the other hand, when the gas component (mixed gas) is heated by the heat retaining units 41H and 42H, the mixed gas discharged from the branch path 42 and flowing through the mass flow controller 42a becomes high temperature, and a heat-resistant mass flow controller 42a may be required. .
Therefore, as shown in FIG. 8, an exhaust pump (forced exhaust part) 42p may be provided in the branch path 42 on the outlet side of the mass flow controller 42a instead of providing the heat retaining parts 41H and 42H. As a result, the mixed gas M flowing through the branch path 42 is forcibly exhausted, the pressure in the gas flow path 41 and the branch path 42 near the branch chamber 41M is lowered, and the trapped gas component is prevented from flowing back to the ion source 50 side. it can.

又、図9に示すように、分岐室41M近傍のガス流路41と分岐路42において、ガス流路41のうち分岐路42との接点(接する部位)Pにおける第1軸線(ガス流路41の軸線)AX1と、分岐流路42のうち接点Pにおける第2軸線(分岐流路42の軸線)AX2とのなす角θが30〜60度であり、分岐路42は自然排気されていてもよい。
このようにすると、分岐路42を自然排気する際に、ガス流路41の上流側から流れてきた混合ガスMが分岐路42で急激に方向を曲げられることが無いので、分岐路42で乱流が発生することを抑制し、スムースに分岐路42から排気することができる。又、θ>60度(例えば90度)とする場合に比べ、分岐路42の高さが低くなり、省スペースとなる。なお、θ<30度であっても乱流発生を抑制できるが、分岐路42が水平に近くなって却ってスペースが必要になったり、分岐路42の長さが伸びてガス成分が分岐路42中でトラップされる可能性があり、さらに、分岐路42の加熱が難しくなることから、θを30度以上とした。
ここで、図9に示す分岐路42は、図3の紙面の奥側へ倒れ込むような構成となる。
なお、角θを30〜60度に設定するような分岐路42入側のガス流量は例えば0.5〜2ml/分とすることができるが、この範囲に限定されない。
Further, as shown in FIG. 9, in the gas flow path 41 and the branch path 42 in the vicinity of the branch chamber 41 </ b> M, the first axis (the gas flow path 41) at the contact point (the part in contact with) the branch path 42 of the gas flow path 41. The angle θ formed by AX1 and the second axis (axis of the branch flow path 42) AX2 at the contact P among the branch flow paths 42 is 30 to 60 degrees, and the branch path 42 is naturally exhausted. Good.
In this way, when the branch passage 42 is naturally exhausted, the mixed gas M flowing from the upstream side of the gas passage 41 is not suddenly bent in the branch passage 42, so It is possible to suppress the generation of a flow and smoothly exhaust air from the branch path 42. Further, compared to the case where θ> 60 degrees (for example, 90 degrees), the height of the branch path 42 is reduced, and the space is saved. Although the generation of turbulent flow can be suppressed even when θ <30 degrees, the branch path 42 becomes nearly horizontal and space is required, or the length of the branch path 42 is extended and the gas component is branched. Since it may be trapped inside, and heating of the branch path 42 becomes difficult, θ is set to 30 ° or more.
Here, the branch path 42 shown in FIG. 9 is configured to fall into the back side of the paper surface of FIG.
In addition, the gas flow rate at the entrance side of the branch path 42 in which the angle θ is set to 30 to 60 degrees can be set to 0.5 to 2 ml / min, for example, but is not limited to this range.

なお、接点Pは、ガス流路41の中心線と、分岐路42の中心線との交点とする。又、接点Pにおける第1軸線AX1と第2軸線AX2とのなす角θが30〜60度であれば、接点Pより下流側のガス流路41の軸線と、分岐路42の軸線とのなす角がこの範囲外であってもよい。
又、「分岐路が自然排気される」とは、分岐路42のマスフローコントローラ42aよりも出側に、分岐路42の流速を変える機構(図8の排気ポンプ42p等)を設けないことをいう。
又、接点Pは、ガス流路41のうちガスの流れが均一になっている部分に設ければよい。
The contact P is an intersection of the center line of the gas flow path 41 and the center line of the branch path 42. If the angle θ formed by the first axis AX1 and the second axis AX2 at the contact P is 30 to 60 degrees, the axis of the gas flow path 41 downstream from the contact P and the axis of the branch path 42 are formed. The corner may be outside this range.
Further, “the branch passage is naturally exhausted” means that a mechanism (such as the exhaust pump 42p in FIG. 8) for changing the flow velocity of the branch passage 42 is not provided on the outlet side of the mass flow controller 42a of the branch passage 42. .
Further, the contact P may be provided in a portion of the gas flow path 41 where the gas flow is uniform.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
測定対象としては、フタル酸エステルの他、欧州特定有害物質規制(RoHS)で規制される臭化物難燃剤(ポリ臭化ビフェニル(PBB)、ポリ臭化ジフェニルエーテル(PBDE))を例示できるが、これらに限定されない。
ガス流路41、分岐路42、及びスプリッタ40の構成、形状、配置状態等は上記した例に限定されない。又、検出手段も質量分析計に限定されない。
It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.
Examples of measurement targets include phthalate esters and bromide flame retardants (polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE)) regulated by the European Specified Hazardous Substances Regulation (RoHS). It is not limited.
The configuration, shape, arrangement state, and the like of the gas flow path 41, the branch path 42, and the splitter 40 are not limited to the above examples. The detection means is not limited to a mass spectrometer.

10 加熱部(加熱炉)
41 ガス流路
42 分岐路
42a 排出流量調整機構
41H、42H 保温部
42p 強制排気部
50 イオン化部(イオン源)
110 検出手段(質量分析計)
200 発生ガス分析装置
212 加熱制御部
216 流量制御部
S 試料
C キャリアガス
G ガス成分
M 混合ガス
P 接点
AX1 第1軸線
AX2 第2軸線
10 Heating section (heating furnace)
41 gas flow path 42 branch path 42a discharge flow rate adjustment mechanism 41H, 42H heat retaining section 42p forced exhaust section 50 ionization section (ion source)
110 Detection means (mass spectrometer)
200 Generated gas analyzer 212 Heating control unit 216 Flow rate control unit S Sample C Carrier gas G Gas component M Mixed gas P Contact point AX1 First axis AX2 Second axis

Claims (7)

試料を加熱してガス成分を発生させる加熱部と、
該加熱部で生成した前記ガス成分を検出する検出手段と、
前記加熱部と前記検出手段との間を接続し、前記ガス成分と、該ガス成分を前記検出手段へ導くキャリアガスとの混合ガスが流れるガス流路と、
を備えた発生ガス分析装置において、
前記ガス流路は外部に開放された分岐路を有し、
前記分岐路は、前記混合ガスの外部への排出流量を調整する排出流量調整機構を有し、
前記検出手段からの検出信号に基づいて、その検出信号が所定の範囲内になるように前記排出流量調整機構を制御する流量制御部をさらに備えたことを特徴とする発生ガス分析装置。
A heating unit for heating the sample to generate a gas component;
Detecting means for detecting the gas component generated in the heating unit;
A gas flow path through which a mixed gas of the gas component and a carrier gas that guides the gas component to the detection means flows, connected between the heating unit and the detection means;
In the evolved gas analyzer equipped with
The gas flow path has a branch path opened to the outside,
The branch path has a discharge flow rate adjusting mechanism for adjusting a discharge flow rate of the mixed gas to the outside,
The generated gas analyzer further comprising a flow rate control unit that controls the exhaust flow rate adjustment mechanism based on a detection signal from the detection means so that the detection signal falls within a predetermined range.
前記ガス流路又は前記分岐路を、加熱又は保温する保温部を有する請求項1記載の発生ガス分析装置。   The generated gas analyzer according to claim 1, further comprising a heat retaining unit that heats or heats the gas flow path or the branch path. 前記分岐路の排出側に、該分岐路を流れる前記混合ガスを強制排気する強制排気部を有する請求項1記載の発生ガス分析装置。   The generated gas analyzer according to claim 1, further comprising: a forced exhaust section that forcibly exhausts the mixed gas flowing through the branch path on a discharge side of the branch path. 前記ガス流路のうち前記分岐路との接点における第1軸線と、前記分岐流路のうち前記ガス路との接点における第2軸線とのなす角θが30〜60度であり、前記分岐路は自然排気される請求項1又は2記載の発生ガス分析装置。   An angle θ formed by a first axis at a contact with the branch path in the gas flow path and a second axis at a contact with the gas path in the branch flow path is 30 to 60 degrees, and the branch path The generated gas analyzer according to claim 1 or 2, wherein the gas is naturally exhausted. 前記加熱部を一定温度に保持する加熱制御部を備え、
前記検出手段は質量分析計である1〜4のいずれか一項記載の発生ガス分析装置。
A heating control unit for maintaining the heating unit at a constant temperature;
The generated gas analyzer according to any one of claims 1 to 4, wherein the detection means is a mass spectrometer.
前記検出手段は質量分析計であり、前記ガス流路と前記質量分析計との間に前記混合ガス中の前記ガス成分をイオン化するイオン化部を有し、
前記流量制御部は、前記検出手段からの検出信号が所定の範囲未満になったときに、前記混合ガスの前記排出流量を増大させるように前記排出流量調整機構を制御する請求項1〜5のいずれか一項記載の発生ガス分析装置。
The detection means is a mass spectrometer, and has an ionization unit that ionizes the gas component in the mixed gas between the gas flow channel and the mass spectrometer.
The said flow control part controls the said discharge flow volume adjustment mechanism so that the said discharge flow volume of the said mixed gas may be increased when the detection signal from the said detection means becomes less than the predetermined range. The generated gas analyzer according to any one of the preceding claims.
試料を加熱して発生したガス成分をキャリアガスと混合して混合ガスを生成し、該混合ガスをガス流路を介して検出手段へ導入し、前記検出手段により前記ガス成分を検出する発生ガス分析方法において、
前記検出手段からの検出信号に基づいて、その検出信号が所定の範囲内になるように、前記ガス流路に設けられて外部に開放された分岐路から前記混合ガスの一部を外部に排出することを特徴とする発生ガス分析方法。
A gas generated by heating a sample and mixing a gas component with a carrier gas to generate a mixed gas, introducing the mixed gas into a detection means via a gas flow path, and detecting the gas component by the detection means In the analysis method,
Based on the detection signal from the detection means, a part of the mixed gas is discharged to the outside from a branch path provided in the gas flow path and opened to the outside so that the detection signal is within a predetermined range. A method for analyzing generated gas.
JP2016173396A 2015-11-20 2016-09-06 Generated gas analyzer and generated gas analysis method Active JP6280964B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW105133069A TWI687685B (en) 2015-11-20 2016-10-13 Generated gas analysis device and generated gas analysis method
KR1020160133533A KR102074968B1 (en) 2015-11-20 2016-10-14 Apparatus and method for analyzing evolved gas
CN201611016231.7A CN107037071B (en) 2015-11-20 2016-11-18 Generated gas analyzing apparatus and generated gas analyzing method
US15/356,580 US9831077B2 (en) 2015-11-20 2016-11-19 Method for analyzing evolved gas and evolved gas analyzer
KR1020190154588A KR102388642B1 (en) 2015-11-20 2019-11-27 Apparatus and method for analyzing evolved gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227371 2015-11-20
JP2015227371 2015-11-20

Publications (2)

Publication Number Publication Date
JP2017102102A true JP2017102102A (en) 2017-06-08
JP6280964B2 JP6280964B2 (en) 2018-02-14

Family

ID=59017226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173396A Active JP6280964B2 (en) 2015-11-20 2016-09-06 Generated gas analyzer and generated gas analysis method

Country Status (4)

Country Link
JP (1) JP6280964B2 (en)
KR (2) KR102074968B1 (en)
CN (1) CN107037071B (en)
TW (1) TWI687685B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023570A (en) * 2017-07-21 2019-02-14 株式会社日立ハイテクサイエンス Evolved gas analysis device and evolved gas analysis method
JPWO2020021712A1 (en) * 2018-07-27 2021-06-24 株式会社島津製作所 Analysis equipment
CN116571056A (en) * 2023-07-12 2023-08-11 国网甘肃省电力公司电力科学研究院 Sulfur hexafluoride gas recovery and purification device and method for GIS equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055323B2 (en) * 2017-07-21 2022-04-18 株式会社日立ハイテクサイエンス Mass spectrometer and mass spectrometry method
CN116990091B (en) * 2023-09-25 2024-02-13 黑龙江省农业科学院农产品质量安全研究所 Rice aroma collection and ingredient determination integrated equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287743A (en) * 1998-04-03 1999-10-19 Ulvac Corp Thermal desorbing/analyzing chamber for wafer process monitor
JP2004265674A (en) * 2003-02-28 2004-09-24 Anelva Corp Mass spectrometer utilizing ion adhesion and mass spectrometry
JP2005098705A (en) * 2003-09-22 2005-04-14 Hitachi Ltd Apparatus and method for monitoring chemical substance
US20080206882A1 (en) * 2007-02-26 2008-08-28 Thermo Fisher Scientific Inc. Apparatus and method for detecting incomplete combustion in a combustion analyzer
JP2012202887A (en) * 2011-03-28 2012-10-22 Shimadzu Corp Analyzer
JP2015011801A (en) * 2013-06-27 2015-01-19 株式会社日立ハイテクノロジーズ Mass spectrometry and mass spectroscope

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814612A (en) * 1983-08-30 1989-03-21 Research Corporation Method and means for vaporizing liquids for detection or analysis
JP3123843B2 (en) * 1992-12-17 2001-01-15 日本電子株式会社 Sample vaporizer using plasma flame
JP2000180316A (en) * 1998-12-21 2000-06-30 Mitsubishi Heavy Ind Ltd Dioxins extracting method, quantitative analysis method, and its system
JP4400973B2 (en) * 1999-01-25 2010-01-20 大陽日酸株式会社 Method and apparatus for analyzing trace impurities in gas
JP2001028251A (en) 1999-07-14 2001-01-30 Jeol Ltd Thermal gravimetric-mass spectrometer
FI119940B (en) * 2007-09-06 2009-05-15 Outotec Oyj Method and tape sintering equipment for continuous sintering and pre-reduction of pelleted mineral material
CN101832923A (en) * 2010-06-03 2010-09-15 中国石油集团川庆钻探工程有限公司长庆录井公司 Infrared gas detection system suitable for oil-containing gas analysis of reservoir
CN103998914B (en) * 2011-09-06 2016-04-06 Atonarp株式会社 Gas collecting device and testing fixture
FR2990756B1 (en) 2012-05-18 2014-12-26 Ge Energy Products France Snc METHOD FOR CREATING A COLLISION BETWEEN A CURRENT GAS AND PARTICLES AND A TARGET
JP6115483B2 (en) 2014-01-22 2017-04-19 株式会社島津製作所 Carbon measuring device
JP6224823B2 (en) 2014-04-16 2017-11-01 株式会社日立ハイテクノロジーズ Mass spectrometer and cartridge used in mass spectrometer
CN104407161B (en) * 2014-11-24 2016-01-13 汇众翔环保科技河北有限公司 Smoke on-line monitoring system and monitoring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287743A (en) * 1998-04-03 1999-10-19 Ulvac Corp Thermal desorbing/analyzing chamber for wafer process monitor
JP2004265674A (en) * 2003-02-28 2004-09-24 Anelva Corp Mass spectrometer utilizing ion adhesion and mass spectrometry
JP2005098705A (en) * 2003-09-22 2005-04-14 Hitachi Ltd Apparatus and method for monitoring chemical substance
US20080206882A1 (en) * 2007-02-26 2008-08-28 Thermo Fisher Scientific Inc. Apparatus and method for detecting incomplete combustion in a combustion analyzer
JP2012202887A (en) * 2011-03-28 2012-10-22 Shimadzu Corp Analyzer
JP2015011801A (en) * 2013-06-27 2015-01-19 株式会社日立ハイテクノロジーズ Mass spectrometry and mass spectroscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023570A (en) * 2017-07-21 2019-02-14 株式会社日立ハイテクサイエンス Evolved gas analysis device and evolved gas analysis method
US11646188B2 (en) 2017-07-21 2023-05-09 Hitachi High-Tech Science Corporation Apparatus and method for analyzing evolved gas
JPWO2020021712A1 (en) * 2018-07-27 2021-06-24 株式会社島津製作所 Analysis equipment
JP7211421B2 (en) 2018-07-27 2023-01-24 株式会社島津製作所 Analysis equipment
CN116571056A (en) * 2023-07-12 2023-08-11 国网甘肃省电力公司电力科学研究院 Sulfur hexafluoride gas recovery and purification device and method for GIS equipment
CN116571056B (en) * 2023-07-12 2023-12-15 国网甘肃省电力公司电力科学研究院 Sulfur hexafluoride gas recovery and purification device and method for GIS equipment

Also Published As

Publication number Publication date
KR20170059384A (en) 2017-05-30
JP6280964B2 (en) 2018-02-14
KR102388642B1 (en) 2022-04-20
TW201719165A (en) 2017-06-01
KR20190134581A (en) 2019-12-04
CN107037071A (en) 2017-08-11
CN107037071B (en) 2020-07-10
KR102074968B1 (en) 2020-02-07
TWI687685B (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6280964B2 (en) Generated gas analyzer and generated gas analysis method
JP6730140B2 (en) Evolved gas analysis method and evolved gas analyzer
JP6622570B2 (en) Method for calibrating evolved gas analyzer and evolved gas analyzer
JP6366657B2 (en) Generated gas analyzer and generated gas analysis method
US9831077B2 (en) Method for analyzing evolved gas and evolved gas analyzer
KR102556761B1 (en) Apparatus and method for analyzing evolved gas
US10847355B2 (en) Mass analysis apparatus and method
US20170146503A1 (en) Evolved gas analyzer and method for analyzing evolved gas
JP7064765B2 (en) Mass spectrometer and mass spectrometry method
JP7055323B2 (en) Mass spectrometer and mass spectrometry method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6280964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250