JP2017101967A - Nondestructive inspection method and device - Google Patents

Nondestructive inspection method and device Download PDF

Info

Publication number
JP2017101967A
JP2017101967A JP2015233865A JP2015233865A JP2017101967A JP 2017101967 A JP2017101967 A JP 2017101967A JP 2015233865 A JP2015233865 A JP 2015233865A JP 2015233865 A JP2015233865 A JP 2015233865A JP 2017101967 A JP2017101967 A JP 2017101967A
Authority
JP
Japan
Prior art keywords
ray
scattered
thinning
rays
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015233865A
Other languages
Japanese (ja)
Other versions
JP6598205B2 (en
Inventor
祐嗣 大石
Suketsugu Oishi
祐嗣 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015233865A priority Critical patent/JP6598205B2/en
Publication of JP2017101967A publication Critical patent/JP2017101967A/en
Application granted granted Critical
Publication of JP6598205B2 publication Critical patent/JP6598205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection method and its device capable of detecting an inspection object extensively and further capable of performing inspection without causing a problem of restriction in an installation position of a detector when Compton scattering γ ray is used.SOLUTION: A nondestructive inspection method includes a first process in which an X ray or a γ ray (hereinafter, referred to as a γ ray as a whole) is radiated on an inspection object 31 and scattered γ ray energy distribution characteristics is detected representing a signal strength for energy of a twice scattering γ ray that appears at a higher energy side than a once scattering γ ray based on Compton scattering in the inspection object, and a second process in which whether thinning exists or not in the inspection object is detected based on the scattered γ ray energy distribution characteristics.SELECTED DRAWING: Figure 5

Description

本発明は非破壊検査方法および装置に関し、特にコンプトン散乱を利用した非破壊検査に適用して有用なものである。   The present invention relates to a nondestructive inspection method and apparatus, and is particularly useful when applied to a nondestructive inspection utilizing Compton scattering.

原子力設備の配管の検査等にはX線またはγ線(以下、本明細書において両者をまとめてγ線という)を利用した非破壊検査が汎用されている。これは検査対象物である配管等にγ線を照射し、これによる検査対象物の透過画像を解析して減肉の程度等を検出するものである(例えば特許文献1参照)。   Non-destructive inspection using X-rays or γ-rays (hereinafter collectively referred to as γ-rays in the present specification) is widely used for inspection of piping of nuclear facilities. In this method, γ-rays are irradiated to a pipe or the like that is an inspection object, and a transmission image of the inspection object is analyzed to detect the degree of thinning (for example, see Patent Document 1).

しかしながら、検査対象物の透過画像を得ることにより減肉の程度等を検査する場合においては、γ線を検出する検出器を、γ線を照射する線源に対し検査対象物を挟んで反対側に配置する必要がある。   However, when inspecting the degree of thinning by obtaining a transmission image of the inspection object, the detector for detecting γ rays is placed on the opposite side of the inspection object with respect to the radiation source that irradiates γ rays. Need to be placed in.

このため、線源に対する検査対象物の反対側が狭隘部であったり、他の配管等の障害物の存在により検出器を配設するための十分なスペースが確保できない場合も多い。   For this reason, the opposite side of the object to be inspected with respect to the radiation source is often a narrow part, or a sufficient space for disposing the detector cannot be secured due to the presence of obstacles such as other pipes.

一方、コンプトン後方散乱に基づく散乱γ線を利用すれば線源と検出器を検査対象物に対して同じ側に配設することもできる。コンプトン後方散乱とは、図10(a)に示すように、所定のγ線をターゲットTに照射したとき、γ線に対して角度Φの方向に飛び出す反跳電子Eとともに、エネルギーが変化した散乱γ線として元のγ線が散乱される現象をいう。ここで、散乱γ線の散乱角θはターゲットTに照射されるγ線のエネルギーEと散乱される散乱γ線のエネルギーEとで一意に定まる。散乱角θ>90°の領域に散乱する場合を、特に後方散乱という。 On the other hand, if scattered gamma rays based on Compton backscattering are used, the radiation source and the detector can be arranged on the same side with respect to the inspection object. In Compton backscattering, as shown in FIG. 10 (a), when the target T is irradiated with predetermined γ-rays, the energy has changed along with recoil electrons E e that jump in the direction of the angle Φ with respect to the γ-rays. A phenomenon in which the original γ rays are scattered as scattered γ rays. Here, the scattering angle θ of the scattered γ-ray is uniquely determined by the energy E 0 of the γ-ray irradiated to the target T and the energy E 1 of the scattered γ-ray scattered. The case of scattering in a region where the scattering angle θ> 90 ° is particularly referred to as backscattering.

したがって、図10(b)に示すように、γ線源01と検出器02とを散乱角θ>90°に合致するように配設すれば、γ線源01と検出器02とを検査対象物である配管03に対して同じ側に配設することができ、検出器02の配設条件を緩和することができる。ここで、検出器02では、図10(c)に示すように、散乱角θ(γ線源01の配設位置と検出器02の配設位置とがなす角度)で一意に特定される散乱γ線のエネルギーEで信号強度がピークとなる散乱γ線エネルギー分布が得られる。なお、図10(c)の横軸には、散乱γ線のエネルギーを採り、縦軸には検出器02で検出される散乱γ線信号の信号強度を採ってある。散乱γ線信号は、散乱γ線の強度を表す信号である。また、γ線源01および検出器02の前には、図示はしないが、通常コリメーターが配設される。 Accordingly, as shown in FIG. 10B, if the γ-ray source 01 and the detector 02 are arranged so as to match the scattering angle θ> 90 °, the γ-ray source 01 and the detector 02 are inspected. It can arrange | position on the same side with respect to the piping 03 which is a thing, and the arrangement | positioning conditions of the detector 02 can be eased. Here, in the detector 02, as shown in FIG. 10C, the scattering uniquely identified by the scattering angle θ (the angle formed by the arrangement position of the γ-ray source 01 and the arrangement position of the detector 02). A scattered γ-ray energy distribution in which the signal intensity reaches a peak at the γ-ray energy E 1 is obtained. In FIG. 10C, the horizontal axis represents the energy of the scattered γ-ray, and the vertical axis represents the signal intensity of the scattered γ-ray signal detected by the detector 02. The scattered γ-ray signal is a signal representing the intensity of the scattered γ-ray. Although not shown, a normal collimator is usually provided in front of the γ-ray source 01 and the detector 02.

一方、図11(a)に示すように、検査対象物である配管03が内周に減肉を生起することなく正常な状態を維持している場合の後方散乱γ線のエネルギーEの信号強度は、図11(b)に示すように、検査対象物である配管03の内周に減肉部03Aが形成されている場合よりも大きくなる。 On the other hand, as shown in FIG. 11 (a), the energy E 1 of the signal of the backscattered γ rays if that maintain normal state without occurring a reduction in thickness on the inner circumference pipe 03 which is an inspection object As shown in FIG. 11B, the strength is greater than when the thinned portion 03A is formed on the inner periphery of the pipe 03 that is the inspection object.

検査対象物である配管03の肉厚部分は鉄等の高密度物質であるのに対し、減肉部03Aは低密度の空気であるので、かかる空気部分でγ線の散乱強度が大きく低下するからである。例えば、γ線源01である放射性同位体イリジウム線源から照射されるγ線のエネルギーEが320keVとすると、散乱角θ=90°の場合の散乱γ線のエネルギーEは197keVと、一意に決まる。したがって、検査対象物である配管03に減肉部03Aが発生している場合には散乱γ線のエネルギーEの信号強度が小さくなる。 The thick portion of the pipe 03, which is the inspection object, is a high-density material such as iron, whereas the thinned portion 03A is low-density air, so that the γ-ray scattering intensity greatly decreases in the air portion. Because. For example, assuming that the energy E 0 of γ-rays irradiated from the radioisotope iridium source as the γ-ray source 01 is 320 keV, the energy E 1 of the scattered γ-rays when the scattering angle θ = 90 ° is 197 keV, which is unique. It is decided. Accordingly, the signal intensity of the energy E 1 of the scattered γ ray becomes small when the reduced thickness portion 03A on the pipe 03 which is an inspection object is occurring.

そこで、図10(c)に示す散乱γ線エネルギー分布において散乱γ線のエネルギーEの信号強度を検出することにより減肉の発生を検出し得る(例えば、非特許文献1参照)。 Therefore, occurrence of thinning can be detected by detecting the signal intensity of the scattered γ-ray energy E 1 in the scattered γ-ray energy distribution shown in FIG. 10C (see, for example, Non-Patent Document 1).

特開2006―177841号公報JP 2006-177841 A

(社)日本原子力学会「1995秋の大会」(1995年10月17日〜20日、原研) コンプトン散乱を用いた保温材表面からの点検技術、(株)東芝、宇高彰、濱島隆之、後藤哲夫(Japan) Atomic Energy Society of Japan "1995 Autumn Meeting" (October 17-20, 1995, JAERI) Inspection technology from the surface of thermal insulation material using Compton scattering, Toshiba Corporation, Akira Udaka, Takayuki Takashima, Goto Tetsuo

ところが、上述の如く図10図(c)に示す散乱γ線エネルギー分布特性における散乱γ線のエネルギーEの信号強度に基づき減肉を検出する場合には、1点で情報をもって判断しなければならないので、減肉の検出誤差が生じ易く、また、減肉の範囲を検出するためには、スキャンする必要があり、また、深さ方向の情報は検出が困難であるという問題がある。 However, as described above, when thinning is detected based on the signal intensity of the scattered γ-ray energy E 1 in the scattered γ-ray energy distribution characteristics shown in FIG. Therefore, there is a problem that a thinning detection error is likely to occur, and in order to detect the thinning range, scanning is necessary, and information in the depth direction is difficult to detect.

本発明は、上述の従来技術に鑑み、コンプトン散乱γ線を利用する場合において、検査対象物の状態を幅広く検出でき、さらに検出器の配設位置の制限という問題を生起することなく検出し得る非破壊検査方法およびその装置を提供することを目的とする。   In view of the above-described conventional technology, the present invention can detect the state of an inspection object widely when using Compton scattered γ-rays, and can detect without causing the problem of restriction of the arrangement position of the detector. An object is to provide a nondestructive inspection method and an apparatus therefor.

上記目的を達成する本発明は次の知見を基礎とするものである。図1(a)に示すように、コンプトン散乱は、前述の如く、エネルギーEのγ線がターゲットT1に照射されることにより、γ線に対して角度Φの方向に飛び出す反跳電子Eとともに、エネルギーが変化した散乱γ線として元のγ線が散乱される現象をいうが、かかる散乱は、所定の確率で複数回生起されることもある。図1(a)では、2回散乱の態様を示している。この場合、エネルギーEのγ線がターゲットT1に照射されてエネルギーE21の1回散乱γ線となり、さらに1回散乱γ線が同じターゲットT1で2回目の散乱を起こすことにより、エネルギーE22の2回散乱γ線となっている。このときの各γ線のエネルギーE,E21,E22および1回散乱角θ、2回散乱角θとの関係は、次式(1)、(2)で示される。 The present invention that achieves the above object is based on the following knowledge. As shown in FIG. 1 (a), Compton scattering, as described above, by the γ ray energy E 0 is irradiated to the target T1, recoil electrons E pops out direction of an angle Φ with respect to γ rays e In addition, a phenomenon in which the original γ-rays are scattered as scattered γ-rays whose energy has changed, and such scattering may occur multiple times with a predetermined probability. FIG. 1A shows a mode of two-time scattering. In this case, by γ ray energy E 0 is irradiated to the target T1 to become a single scattered γ ray energy E 21, once more scattered γ rays causes a second scattered at the same target T1, the energy E 22 The twice scattered γ rays. At this time, the relationship between the energy E 0 , E 21 , E 22 of each γ-ray, the one-time scattering angle θ 1 , and the two-time scattering angle θ 2 is expressed by the following equations (1) and (2).

ちなみに、エネルギーEのγ線がターゲットT1内で1回のみ散乱される場合の散乱角θ(=θ+θ)と散乱エネルギーEの関係は次式(3)で示される。 Incidentally, the relationship between the scattering angle θ (= θ 1 + θ 2 ) and the scattering energy E 1 when the γ-ray of energy E 0 is scattered only once in the target T1 is expressed by the following equation (3).

一般に、散乱回数が多くなるにつれ、信号強度が小さくなるので、散乱回数が増える程、図10(c)に示す散乱γ線エネルギー分布特性上では散乱γ線信号が検出されにくくなる。しかも、多重散乱に基づく散乱γ線信号は、通常、図10(c)に示す散乱γ線エネルギー分布特性上では1回散乱の場合の散乱γ線エネルギーよりも低エネルギー側に出現する。   In general, as the number of scattering increases, the signal intensity decreases. Therefore, as the number of scattering increases, the scattered γ-ray signal becomes harder to detect on the scattered γ-ray energy distribution characteristics shown in FIG. In addition, the scattered γ-ray signal based on multiple scattering usually appears on the lower energy side of the scattered γ-ray energy in the case of one-time scattering on the scattered γ-ray energy distribution characteristics shown in FIG.

ところが、図1(b)に示すように、γ線源1から検査対象物である配管3に照射するγ線のエネルギーEおよび散乱角θを適切に選び、かつ測定精度を上げることにより、検出器2ではエネルギーEの1回散乱の高エネルギー側に、エネルギーE22の2回散乱のピークを観測できる。すなわち、例えば、E=320keVで散乱角θ=90°とすると、上式(3)よりE=197keV、上式(1)、(2)よりE22=234keVとなる。 However, as shown in FIG. 1B, by appropriately selecting the energy E 0 and the scattering angle θ of the γ-rays irradiated from the γ-ray source 1 to the pipe 3 that is the inspection object, and increasing the measurement accuracy, the high energy side of the single scattering detector 2 in the energy E 1, can be observed a peak of two scattering energy E 22. That is, for example, when E 0 = 320 keV and the scattering angle θ = 90 °, E 1 = 197 keV from the above equation (3), and E 22 = 234 keV from the above equations (1) and (2).

ここで、2回の散乱により後方90°(=θ=θ+θ)に散乱されるための散乱角度として、1回目の散乱角θ=45°、2回目の散乱角θ=45°とした。図1(c)は、1回散乱とともに2回散乱のピークが出現した散乱γ線エネルギー分布特性を示す特性図である。同図に示す特性図においては、エネルギーEの信号強度P1よりも小さいが、エネルギーEの1回散乱ピークよりも高エネルギー側でエネルギーE22の2回散乱ピークを与える信号強度P2が観測されている。 Here, as a scattering angle for scattering back 90 ° (= θ = θ 1 + θ 2 ) by two scatterings, the first scattering angle θ 1 = 45 ° and the second scattering angle θ 2 = 45. °. FIG. 1C is a characteristic diagram showing a scattered γ-ray energy distribution characteristic in which a double scattering peak appears together with a single scattering. In the characteristic diagram shown in the figure, but less than the signal strength P1 of energy E 1, the signal strength P2 giving than once scattering peak energy E 1 at a high energy side twice scattering peaks of energy E 22 is observed Has been.

本発明では、コンプトン後方散乱の中で、2回散乱に起因するエネルギーE22を観察することにより、対象物の減肉を検出しようとするものである。
図1をさらに模式化したものを図2に示す。
図2で(a)は1回散乱であるが、図2(b)は本発明で用いる2回散乱である。すなわち、図2(a)の1回散乱では、エネルギーEを有する入射γ線γは、対象物3Aで散乱し、エネルギーEの1回散乱γ線γが検出される。図2(b)では、エネルギーEの入射γ線γは、対象物3Aで1回散乱が生じ、エネルギーE21の1回散乱γ線γ21となり、次いで、対象物3Bで2回目の散乱が生じ、エネルギーE22の2回散乱γ線γ22が生じ、これが検出される。
In the present invention, in the Compton backscattering, by observing the energy E 22 due to the two scattering, it is intended to detect the thickness decrease of the object.
FIG. 2 shows a further schematic diagram of FIG.
In FIG. 2, (a) shows one-time scattering, whereas FIG. 2 (b) shows two-time scattering used in the present invention. That is, in one scattering in FIG. 2 (a), the incident gamma rays gamma 0 having an energy E 0 is scattered by the object 3A, once scattered gamma rays gamma 1 energy E 1 is detected. In FIG. 2 (b), the incident gamma rays gamma 0 of energy E 0, a single scattering occurs in the object 3A, once scattered gamma rays gamma 21 next energy E 21, then the second time by the object 3B scattering occurs twice scattered gamma rays gamma 22 energy E 22 that is detected.

図3(a)では、2回散乱の場合において、エネルギーE22の2回散乱γ線γ22だけが検出される。一方、図3(b)では、エネルギーE22の2回散乱γ線γ22の他に、対象物3Aを透過し、対象物3Cで1回だけ散乱したエネルギーEの1回散乱γ線γも検出される。 In FIG. 3A, in the case of two-time scattering, only the two-time scattered γ-ray γ 22 having the energy E 22 is detected. On the other hand, in FIG. 3B, in addition to the twice-scattered γ-ray γ 22 having the energy E 22 , the one-time scattered γ-ray γ having the energy E 1 that has passed through the object 3A and was scattered only once by the object 3C. 1 is also detected.

本発明では、図3(a)の場合も、図3(b)の場合も想定されるが、図3(b)の場合には、E22の2回散乱γ線γ22と、エネルギーEの1回散乱γ線γとは、エネルギーの大きさが異なると共に、検出される時間が異なるので、両者を区別することは容易である。そして、エネルギーEの1回散乱γ線γについては、対象物3Cの減肉の有無の検出に使用することもできるし、必要ないものとして排除することもできる。 In the present invention, in the case of FIG. 3 (a), are also contemplated case of FIG. 3 (b), in the case of FIG. 3 (b), and 2 times the scattered gamma rays gamma 22 of E 22, the energy E Since the one-time scattered γ-ray γ 1 is different in energy magnitude and detected time, it is easy to distinguish the two. Then, the once-scattered γ-ray γ 1 with the energy E 1 can be used for detecting whether or not the object 3C is thinned, or can be excluded as unnecessary.

かかる2回散乱による減肉の検出の原理は、次のように考えられる。
図4(a)に示す2回散乱の場合において、γ線源1を点線源でペンシルビームを放出するものとし、さらに散乱γ線の観測点となる検出器2も理想的な鉛コリメーターを設置して1点のみとすると、検出器2おける2回散乱ピークの信号強度は、γ線照射軸と検査対象物との交点I、散乱γ線検出軸と検査対象物との交点Iおよびγ線照射軸と散乱γ線検出軸との交点Iとを含む面Pと検査対象物31とが交わる領域R内の散乱情報を得ていることになる。このため、2回散乱ピークは、1回散乱γ線γ21が鉄材料サンプル内の領域Rを通り、2散乱γ線γ22として検出される。一方、図4(b)に示す2回散乱の場合においては、1回散乱γ線γ21の一部は、減肉により、一部は空気中を通って、2散乱γ線γ22として検出される。ここで、空気よりも鉄の方が1回散乱γ線21の減衰割合が大きいので、従来の1回散乱を利用して減肉を検出する場合とは異なり、減肉が有る場合には、健全な場合と比較して、2回散乱γ線γ22の信号強度は大きくなり、その増加割合は減肉の大きさに依存する。
The principle of detecting the thinning due to such double scattering is considered as follows.
In the case of the two-time scattering shown in FIG. 4A, the γ-ray source 1 emits a pencil beam with a point source, and the detector 2 serving as the observation point of the scattered γ-ray is also an ideal lead collimator. Assuming that only one point is installed, the signal intensity of the double scattered peak in the detector 2 is the intersection point I 2 between the γ-ray irradiation axis and the inspection object, and the intersection point I 3 between the scattered γ-ray detection axis and the inspection object. In addition, the scattering information in the region R 1 where the surface P 1 including the intersection point I 1 between the γ-ray irradiation axis and the scattered γ-ray detection axis and the inspection object 31 intersect is obtained. Therefore, two scattering peaks, once scattered gamma rays gamma 21 passes through the region R 1 in the ferrous material sample, is detected as 2 scattered gamma rays gamma 22. On the other hand, in the case of the two-time scattering shown in FIG. 4B, a part of the once-scattered γ-ray γ 21 is detected as the two-scattered γ-ray γ 22 by thinning and partly in the air Is done. Here, since the attenuation ratio of the once scattered γ-ray 21 is larger in the iron than in the air, unlike the conventional case of detecting the thinning using the single scattering, when there is a thinning, as compared with a case healthy, signal strength of the two scattered gamma rays gamma 22 is increased, the rate of increase depends on the size of the thinning.

このように、本発明においては、検査対象物にγ線が入射して1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路を減肉の有無を検出する対象箇所とするものであり、1回散乱γ線γ21が検査対象物の構成物質そのものを通過するか、減肉により形成された空間を通過するかの違いにより、減肉の有無を検出するものである。 As described above, in the present invention, the path from the occurrence of the first Compton scattering to the second Compton scattering after the γ-rays are incident on the object to be inspected is the target location for detecting the presence or absence of thinning. are those, either once scattered gamma rays gamma 21 passes the constituents themselves of the test object, depending on whether the difference between passing through the space formed by the thinning, and detects the presence or absence of wall thinning.

かかる知見を基礎とする本発明の第1の態様は、X線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射して前記検査対象物におけるコンプトン散乱に基づく1回散乱γ線のエネルギーよりも高エネルギー側に出現する2回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を検出する第1の工程と、前記散乱γ線エネルギー分布特性に基づき前記検査対象物における減肉の有無を検出する第2の工程とを有することを特徴とする非破壊検査方法にある。   The first aspect of the present invention based on this knowledge is a one-time operation based on Compton scattering in the inspection object by irradiating the inspection object with X-rays or γ-rays (hereinafter collectively referred to as γ-rays). A first step of detecting a scattered γ-ray energy distribution characteristic representing a signal intensity with respect to the energy of the twice scattered γ-rays appearing on a higher energy side than the scattered γ-ray energy; And a second step of detecting the presence or absence of thinning in the inspection object.

本態様によれば、配管の減肉等、検査対象物の状態によってコンプトン散乱の2回散乱ピークに基づき、検出対象物における減肉の有無を検出しているので、かかる検出を含む所定の非破壊検査を簡便なものとすることができる。   According to this aspect, the presence or absence of thinning in the detection target is detected based on the two-time scattering peak of Compton scattering depending on the state of the inspection target, such as pipe thinning. Destructive inspection can be simplified.

本発明の第2の態様は、第1の態様に記載する非破壊検査方法において、前記検査対象物に対して、前記γ線を照射する側と、前記2回散乱γ線を検出する側は、同じ側であることを特徴とする非破壊検査方法にある。   According to a second aspect of the present invention, in the nondestructive inspection method described in the first aspect, the side that irradiates the inspection object with the γ-ray and the side that detects the twice-scattered γ-ray include The non-destructive inspection method is characterized by being on the same side.

本態様によれば、コンプトン後方散乱に起因して散乱された散乱γ線を検出して検査対象物の減肉等の状態を検出しているので、検査対象物に対して散乱γ線の検出をγ線の照射側と同じ側で行うことができる。この結果、検出器等の機器配置の自由度が大きく効率的な非破壊検査を実現し得る。   According to this aspect, the scattered γ-rays scattered due to Compton backscattering are detected to detect the state of thinning of the inspection object, so that the detection of the scattered γ-rays for the inspection object is detected. Can be performed on the same side as the γ-ray irradiation side. As a result, efficient non-destructive inspection can be realized with a large degree of freedom in arrangement of devices such as detectors.

本発明の第3の態様は、第2の態様に記載する非破壊検査方法において、前記検査対象物に前記γ線が入射して1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路が前記減肉の有無を検出する対象箇所であることを特徴とする非破壊検査方法にある。   According to a third aspect of the present invention, in the non-destructive inspection method described in the second aspect, the second Compton scattering occurs after the first Compton scattering occurs when the γ-ray enters the inspection object. The non-destructive inspection method is characterized in that the path to the target location is a target location for detecting the presence or absence of the thinning.

本態様によれば、経路中に減肉が有るか無いかにより、2回コンプトン散乱の信号強度が大きく変化するので、減肉の有無を有効に検出することができる。   According to this aspect, since the signal intensity of the two-time Compton scattering greatly changes depending on whether or not there is thinning in the path, it is possible to effectively detect the presence or absence of thinning.

本発明の第4の態様は、第2又は3の態様に記載する非破壊検査方法において、前記γ線を照射する方向に伸びる仮想の第1直線と、前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側とは反対側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査方法にある。   According to a fourth aspect of the present invention, in the nondestructive inspection method according to the second or third aspect, a virtual first straight line extending in a direction of irradiating the γ-ray and a direction in which the twice-scattered γ-ray is detected. The virtual second straight line extending in the direction intersects with the irradiation side of the γ-ray and the detection side of the twice-scattered γ-ray of the inspection object, and in this state, from the inspection object In the nondestructive inspection method, the presence or absence of thinning of the inspection object is detected based on a peak of twice scattered γ rays based on the scattered γ rays.

本態様によれば、検査対象物の手前側にスペースを確保でき、γ線の照射源と検出器を比較的容易に配置できる。   According to this aspect, a space can be secured in front of the inspection object, and the γ-ray irradiation source and the detector can be arranged relatively easily.

本発明の第5の態様は、第2又は3の態様に記載する非破壊検査方法において、前記γ線を照射する方向に伸びる仮想の第1直線と、前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側と同じ側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査方法にある。   According to a fifth aspect of the present invention, in the nondestructive inspection method according to the second or third aspect, a virtual first straight line extending in a direction of irradiating the γ-ray and a direction in which the twice-scattered γ-ray is detected. The virtual second straight line extending in the direction intersects with the irradiation side of the γ-ray and the detection side of the twice-scattered γ-ray of the inspection object, and in this state, from the inspection object In the nondestructive inspection method, the presence or absence of thinning of the inspection object is detected based on a peak of twice scattered γ rays based on scattered γ rays.

本態様によれば、検査対象物の手前側に、γ線の照射源と検出器を比較的コンパクトに配置できる。   According to this aspect, the γ-ray irradiation source and the detector can be arranged relatively compactly on the front side of the inspection object.

本発明の第6の態様は、第1〜5の何れかの態様に記載する非破壊検査方法において、前記検査対象物の前記減肉の有無を検出している部位とは異なる部位におけるコンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を検出し、前記異なる部位の減肉の有無を検出することを特徴とする非破壊検査方法にある。   According to a sixth aspect of the present invention, in the nondestructive inspection method according to any one of the first to fifth aspects, Compton scattering at a site different from a site where the presence or absence of the thinning of the inspection object is detected. The non-destructive inspection method is characterized by detecting a scattered γ-ray energy distribution characteristic representing a signal intensity with respect to energy of a once-scattered γ-ray based on the above, and detecting the presence or absence of thinning of the different parts.

本態様によれば、1回散乱γ線のエネルギーを検出することにより、2回散乱γ線のエネルギーの検出に基づく箇所とは異なる領域の減肉を一回の検出で検出することができる。   According to this aspect, by detecting the energy of the once-scattered γ-rays, it is possible to detect the thinning of the region different from the location based on the detection of the energy of the twice-scattered γ-rays by one detection.

本発明の第7の態様は、第6の態様に記載する非破壊検査方法において、前記検査対象物が前記γ線の照射方向に伸びる直線に前記γ線の照射側で交差する第1の壁部材および当該第1の壁部材の前記γ線の照射側とは反対側で前記直線に交差する第2の壁部材を有する場合であって、前記第1の壁部材および前記第2の壁部材の何れか一方の減肉の有無を前記2回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出し、他方の減肉の有無を前記コンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出することを特徴とする非破壊検査方法にある。   According to a seventh aspect of the present invention, in the nondestructive inspection method according to the sixth aspect, the first wall in which the inspection object intersects a straight line extending in the γ-ray irradiation direction on the γ-ray irradiation side. A member and a second wall member that intersects the straight line on a side opposite to the γ-ray irradiation side of the first wall member, the first wall member and the second wall member The presence or absence of thinning is detected by a scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the energy of the twice-scattered γ-rays, and the presence or absence of thinning is detected by one-time scattered γ-rays based on the Compton scattering. The non-destructive inspection method is characterized in that the detection is performed with a scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the energy of the light.

かかる態様では、第1の壁部材の減肉状態と、第2の壁部材の減肉状態とを検出することができる。   In this aspect, it is possible to detect the thinned state of the first wall member and the thinned state of the second wall member.

本発明の第8の態様は、第7の態様に記載する非破壊検査方法において、散乱γ線信号を検出する際に、前記γ線が照射された時点を基準として前記散乱γ線信号の時間軸に沿う成分を考慮し、前記第2の壁部材の減肉の有無を検出する際には前記第1の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第2の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、前記第1の壁部材の減肉の有無を検出する際には前記第2の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第1の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、減肉の有無を検出することを特徴とする非破壊検査方法にある。   According to an eighth aspect of the present invention, in the nondestructive inspection method according to the seventh aspect, when detecting the scattered γ-ray signal, the time of the scattered γ-ray signal is based on the time when the γ-ray is irradiated. In consideration of a component along the axis, when detecting the presence or absence of thinning of the second wall member, a portion based on scattered γ rays from the first wall member is removed, and the second wall When detecting the presence or absence of thinning of the first wall member by removing a part of the component along the time axis of the scattered γ-ray signal so that the portion based on the scattered γ-ray from the member is selected A portion based on the scattered γ-rays from the second wall member is removed, and a portion based on the scattered γ-rays from the first wall member is selected along the time axis of the scattered γ-ray signal. A nondestructive inspection method is characterized in that a part of the components is removed and the presence or absence of thinning is detected.

かかる態様では、1回散乱γ線のエネルギーと2回散乱γ線のエネルギーとを容易に区別することができ、第1の壁部材の減肉状態と、第2の壁部材の減肉状態とを比較的容易に検出することができる。   In such an aspect, the energy of the once-scattered γ-ray and the energy of the twice-scattered γ-ray can be easily distinguished, and the thinned state of the first wall member and the thinned state of the second wall member Can be detected relatively easily.

本発明の第9の態様は、検査対象物に向けてγ線を照射するγ線源と、前記照射により検査対象物においてコンプトン散乱に起因して散乱された散乱γ線を検出する検出器とを有する非破壊検査装置において、前記散乱γ線エネルギーに対する前記散乱γ線信号の信号強度を表し、かつ1回散乱γ線のエネルギー線よりも高エネルギー側に出現する2回散乱γ線のエネルギーの散乱γ線エネルギー分布特性に基づき、前記2回散乱γ線の前記信号強度のピークである2回散乱γ線のピークにより前記検査対象物における減肉の有無を検出するように前記検出器を構成したことを特徴とする非破壊検査装置にある。   According to a ninth aspect of the present invention, there is provided a γ-ray source that irradiates γ-rays toward an inspection object, a detector that detects scattered γ-rays scattered due to Compton scattering in the inspection object by the irradiation, In the non-destructive inspection apparatus, the signal intensity of the scattered γ-ray signal with respect to the scattered γ-ray energy is expressed, and the energy of the twice-scattered γ-ray that appears on the higher energy side than the energy beam of the once-scattered γ-ray Based on the scattered γ-ray energy distribution characteristics, the detector is configured to detect the presence or absence of thinning in the inspection object based on the peak of the twice-scattered γ-ray that is the peak of the signal intensity of the twice-scattered γ-ray. It is in the nondestructive inspection device characterized by the above.

本態様によれば、配管の減肉等、検査対象物の状態によってコンプトン散乱の2回散乱ピークに基づき、検出対象物における減肉の有無を検出しているので、かかる検出を含む所定の非破壊検査を簡便なものとすることができる。   According to this aspect, the presence or absence of thinning in the detection target is detected based on the two-time scattering peak of Compton scattering depending on the state of the inspection target, such as pipe thinning. Destructive inspection can be simplified.

本発明の第10の態様は、第9の態様に記載する非破壊検査装置において、前記γ線源と、前記検出器とは、前記検査対象物に対して同じ側に配置されていることを特徴とする非破壊検査装置にある。   According to a tenth aspect of the present invention, in the nondestructive inspection apparatus described in the ninth aspect, the γ-ray source and the detector are disposed on the same side with respect to the inspection object. The characteristic non-destructive inspection device.

本態様によれば、コンプトン後方散乱に起因して散乱された散乱γ線を検出して検査対象物の減肉等の状態を検出しているので、検査対象物に対して散乱γ線の検出をγ線の照射側と同じ側で行うことができる。この結果、検出器等の機器配置の自由度が大きく効率的な非破壊検査を実現し得る。   According to this aspect, the scattered γ-rays scattered due to Compton backscattering are detected to detect the state of thinning of the inspection object, so that the detection of the scattered γ-rays for the inspection object is detected. Can be performed on the same side as the γ-ray irradiation side. As a result, efficient non-destructive inspection can be realized with a large degree of freedom in arrangement of devices such as detectors.

本発明の第11の態様は、第10の態様に記載する非破壊検査装置において、前記検査対象物に前記γ線が入射して1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路を前記減肉の有無を検出する対象箇所とすることを特徴とする非破壊検査装置にある。   According to an eleventh aspect of the present invention, in the nondestructive inspection apparatus according to the tenth aspect, the second Compton scattering occurs after the first γ-ray is incident on the inspection object and the first Compton scattering occurs. The non-destructive inspection apparatus is characterized in that the path up to is a target location for detecting the presence or absence of the thinning.

本態様によれば、経路中に減肉が有るか無いかにより、2回コンプトン散乱の信号強度が大きく変化するので、減肉の有無を有効に検出することができる。   According to this aspect, since the signal intensity of the two-time Compton scattering greatly changes depending on whether or not there is thinning in the path, it is possible to effectively detect the presence or absence of thinning.

本発明の第12の態様は、第10又は11の態様に記載する非破壊検査装置において、前記γ線源から前記γ線を照射する方向に伸びる仮想の第1直線と、前記検出器へ前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射及び前記2回散乱γ線の検出側とは反対側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査装置にある。   According to a twelfth aspect of the present invention, in the nondestructive inspection apparatus according to the tenth or eleventh aspect, a virtual first straight line extending in a direction of irradiating the γ-ray from the γ-ray source, and the detector The virtual second straight line extending in the direction of detecting twice-scattered γ-rays intersects the side of the inspection object opposite to the irradiation side of the γ-rays and the detection side of the twice-scattered γ-rays. In the state, the non-destructive inspection apparatus detects presence or absence of thinning of the inspection object based on a peak of twice-scattered γ-ray based on the scattered γ-ray from the inspection object.

本態様によれば、検査対象物の手前側にスペースが確保でき、γ線の照射源と検出器を比較的容易に配置できる。   According to this aspect, a space can be secured in front of the inspection object, and the γ-ray irradiation source and the detector can be arranged relatively easily.

本発明の第13の態様は、第10又は11の態様に記載する非破壊検査装置において、前記γ線源から前記γ線を照射する方向に伸びる仮想の第1直線と、前記検出器へ前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側と同じ側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査装置にある。   According to a thirteenth aspect of the present invention, in the nondestructive inspection apparatus according to the tenth or eleventh aspect, the virtual first straight line extending in the direction of irradiating the γ-ray from the γ-ray source, and the detector The virtual second straight line extending in the direction of detecting twice-scattered γ-rays intersects with the irradiation side of the γ-ray of the inspection object and the same side as the detection side of the twice-scattered γ-rays. In the state, the non-destructive inspection apparatus detects presence or absence of thinning of the inspection object based on a peak of twice-scattered γ-ray based on the scattered γ-ray from the inspection object.

本態様によれば、検査対象物の手前側に、γ線の照射源と検出器を比較的コンパクトに配置できる。   According to this aspect, the γ-ray irradiation source and the detector can be arranged relatively compactly on the front side of the inspection object.

本発明の第14の態様は、第9〜13の何れかの態様に記載する非破壊検査装置において、前記検査対象物の前記減肉の有無を検出している部位とは異なる部位におけるコンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を検出し、前記異なる部位の減肉の有無を検出するように前記検出器を構成したことを特徴とする非破壊検査装置にある。   In a fourteenth aspect of the present invention, in the nondestructive inspection apparatus according to any one of the ninth to thirteenth aspects, Compton scattering at a site different from a site where the presence or absence of the thinning of the inspection object is detected. Non-destructive, characterized in that the detector is configured to detect a scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the energy of the once-scattered γ-ray based on and to detect the presence or absence of thinning of the different parts In the inspection device.

本態様によれば、1回散乱γ線のエネルギーを検出することにより、2回散乱γ線のエネルギーの検出に基づく箇所とは異なる領域の減肉を一回の検出で検出することができる。   According to this aspect, by detecting the energy of the once-scattered γ-rays, it is possible to detect the thinning of the region different from the location based on the detection of the energy of the twice-scattered γ-rays by one detection.

本発明の第15の態様は、第14の態様に記載する非破壊検査装置において、前記検査対象物が前記γ線の照射方向に伸びる直線に前記γ線の照射側で交差する第1の壁部材および当該第1の壁部材の前記γ線の照射側とは反対側で前記直線に交差する第2の壁部材を有する場合において、前記第1の壁部材および前記第2の壁部材の何れか一方の減肉の有無を前記2回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出し、他方の減肉の有無を前記コンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出するように前記検出器を構成したことを特徴とする非破壊検査装置にある。   A fifteenth aspect of the present invention is the nondestructive inspection apparatus according to the fourteenth aspect, wherein the inspection object intersects a straight line extending in the γ-ray irradiation direction on the γ-ray irradiation side. In the case of having a second wall member that intersects the straight line on the side opposite to the γ-ray irradiation side of the member and the first wall member, whichever of the first wall member and the second wall member The presence or absence of one thinning is detected by the scattered γ-ray energy distribution characteristic indicating the signal intensity with respect to the energy of the two-time scattered γ-rays, and the presence or absence of the other thinning is detected by the energy of one-time scattered γ-rays based on the Compton scattering. The non-destructive inspection apparatus is characterized in that the detector is configured to detect with a scattered γ-ray energy distribution characteristic representing a signal intensity with respect to.

かかる態様では、第1の壁部材の減肉状態と、第2の壁部材の減肉状態とを検出することができる。   In this aspect, it is possible to detect the thinned state of the first wall member and the thinned state of the second wall member.

本発明の第16の態様は、第15の態様に記載する非破壊検査装置において、散乱γ線信号を検出する際に、前記γ線が照射された時点を基準として前記散乱γ線信号の時間軸に沿う成分を考慮し、前記第2の壁部材の減肉の有無を検出する際には前記第1の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第2の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、前記第1の壁部材の減肉の有無を検出する際には前記第2の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第1の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、減肉の有無を検出するように前記検出器を構成したことを特徴とする非破壊検査装置にある。   According to a sixteenth aspect of the present invention, in the nondestructive inspection apparatus according to the fifteenth aspect, when the scattered γ-ray signal is detected, the time of the scattered γ-ray signal is based on the time point when the γ-ray is irradiated. In consideration of a component along the axis, when detecting the presence or absence of thinning of the second wall member, a portion based on scattered γ rays from the first wall member is removed, and the second wall When detecting the presence or absence of thinning of the first wall member by removing a part of the component along the time axis of the scattered γ-ray signal so that the portion based on the scattered γ-ray from the member is selected A portion based on the scattered γ-rays from the second wall member is removed, and a portion based on the scattered γ-rays from the first wall member is selected along the time axis of the scattered γ-ray signal. The detector is configured to remove some of the components and detect the presence or absence of thinning. In the non-destructive inspection apparatus that.

かかる態様では、1回散乱γ線のエネルギーと2回散乱γ線のエネルギーとを容易に区別することができ、第1の壁部材の減肉状態と、第2の壁部材の減肉状態とを比較的容易に検出することができる。   In such an aspect, the energy of the once-scattered γ-ray and the energy of the twice-scattered γ-ray can be easily distinguished, and the thinned state of the first wall member and the thinned state of the second wall member Can be detected relatively easily.

本発明によれば、配管の減肉等、検査対象物の状態によってコンプトン散乱の2回散乱ピークに基づき、検出対象物における減肉の有無を検出しているので、かかる検出を含む所定の非破壊検査を簡便なものとすることができる。また、検査対象物に衝突して散乱する後方散乱γ線による2回散乱ピークが観察できる散乱γ線の散乱γ線エネルギー分布特性により、検査対象物の減肉等、検査対象物の状態を検出するようにしたので、γ線源と検出器とを検査対象物に対して同じ側に配設することができ、γ線源と検出器との配設条件の緩和を図ることができるばかりでなく、簡便に所望の非破壊検査を行うことができる。   According to the present invention, since the presence or absence of thinning in the detection target is detected based on the two-time scattering peak of Compton scattering depending on the state of the inspection target, such as pipe thinning, Destructive inspection can be simplified. In addition, the scattered γ-ray energy distribution characteristics of the scattered γ-rays, which can observe the double scattering peak due to the backscattered γ-rays that collide with the inspection object and scatter, detect the state of the inspection object such as thinning of the inspection object. As a result, the γ-ray source and the detector can be arranged on the same side with respect to the inspection object, and the arrangement conditions of the γ-ray source and the detector can be eased. The desired nondestructive inspection can be easily performed.

コンプトン後方散乱の2回散乱を利用する本発明の原理を模式的に示す図で、(a)は2回散乱を概念的に示す説明図、(b)はこの場合の機器配置を示す説明図、(c)は2回散乱ピークが観察される散乱γ線エネルギー分布特性を示す特性図である。It is a figure which shows typically the principle of this invention using the Compton backscattering 2 times scattering, (a) is explanatory drawing which shows 2 times scattering conceptually, (b) is explanatory drawing which shows apparatus arrangement | positioning in this case (C) is a characteristic view showing the scattered γ-ray energy distribution characteristic in which a double scattering peak is observed. 本発明の原理を模式的に示す図で、(a)が1回散乱の場合、(b)が2回散乱の場合である。It is a figure which shows the principle of this invention typically, and (a) is a case of 1 time scattering, (b) is a case of 2 time scattering. 本発明の原理を模式的に示す図で、(a)が交点に対象物が無い場合、(b)が有る場合である。In the figure which shows the principle of this invention typically, (a) is a case where there is no target object in an intersection, and (b) is a case. コンプトン後方散乱における2回散乱の場合において、鉄サンプルに照射されたγ線の経路を示す説明図であり、(a)はサンプルが健全である場合、(b)はサンプルに減肉が有る場合である。In the case of twice scattering in Compton backscattering, it is explanatory drawing which shows the path | route of the gamma ray irradiated to the iron sample, (a) when a sample is healthy, (b) when there is thinning in a sample It is. 本発明の第1の実施の形態に係る非破壊検査装置を示すブロック図である。1 is a block diagram showing a nondestructive inspection apparatus according to a first embodiment of the present invention. 本発明の非破壊検査装置のバリエーションを説明する図である。It is a figure explaining the variation of the nondestructive inspection apparatus of this invention. 第2の実施の形態非破壊検査装置を示すブロック図である。It is a block diagram which shows 2nd Embodiment nondestructive inspection apparatus. 本発明の第2の実施の形態に係る非破壊検査装置を説明する図である。It is a figure explaining the nondestructive inspection apparatus which concerns on the 2nd Embodiment of this invention. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 従来周知のコンプトン後方散乱(1回散乱)の原理を模式的に示す説明図である。It is explanatory drawing which shows the principle of conventionally well-known Compton backscattering (single-time scattering) typically. コンプトン後方散乱を利用して配管の減肉を非破壊検査する従来技術の原理を模式的に示す説明図である。It is explanatory drawing which shows typically the principle of the prior art which carries out nondestructive inspection of the thinning of piping using Compton backscattering.

以下、本発明の実施の形態を図面に基づき詳細に説明する。なお、各図において、同一部分には、同一番号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same number is attached to the same part, and duplicate explanation is omitted.

<第1の実施の形態>
図5は本発明の第1の実施の形態に係る非破壊検査装置を示すブロック図である。同図に示すように、本形態に係る非破壊検査装置は、本形態における検査対象物である検査対象物31にγ線を照射するγ線源1と、検査対象物31に照射されたγ線に基づき生成される2回コンプトン後方散乱γ線を入射して所定の処理を行う検出器2とを有する。γ線源1と、2回コンプトン後方散乱γ線を入射する検出器2とは、検査対象物31に対し同じ側(図では左側)に配設されている。
<First Embodiment>
FIG. 5 is a block diagram showing the nondestructive inspection apparatus according to the first embodiment of the present invention. As shown in the figure, the nondestructive inspection apparatus according to the present embodiment includes a γ-ray source 1 that irradiates an inspection target 31 that is an inspection target in the present embodiment with γ rays, and a γ that is irradiated to the inspection target 31. And a detector 2 that performs a predetermined process by entering twice Compton backscattered γ-rays generated based on the line. The γ-ray source 1 and the detector 2 that receives the Compton backscattered γ-ray twice are disposed on the same side (left side in the figure) with respect to the inspection object 31.

ここで、γ線源1は、図示していないが、鉛コリメーター等を設置することで指向性を高め、照射γ線の進行軸が定まるようにされた状態で、検査対象物31に照射される。γ線の照射により、検査対象物31においてはコンプトン後方散乱による散乱γ線が生成される。検出器2は、散乱γ線を検出するように、検査対象物31に対しγ線源1と同じ側に配設してある。   Here, although not shown, the γ-ray source 1 irradiates the inspection object 31 in a state where the directivity is improved by setting a lead collimator or the like and the traveling axis of the irradiation γ-ray is determined. Is done. By the irradiation of γ-rays, scattered γ-rays due to Compton backscattering are generated at the inspection object 31. The detector 2 is disposed on the same side as the γ-ray source 1 with respect to the inspection object 31 so as to detect scattered γ-rays.

検出器2にも鉛コリメーター等を設置することにより、検出する散乱γ線の軸が定まるようにされている。本形態においては、図5に示すように照射γ線の進行軸と散乱γ線の検出軸は、検査対象物31に対してγ線源1および検出器2とは反対側の交点Iで交差している。 By installing a lead collimator or the like in the detector 2 as well, the axis of scattered γ-rays to be detected is determined. In this embodiment, as shown in FIG. 5, the traveling axis of the irradiation γ rays and the detection axis of the scattered γ rays are at an intersection I 1 on the opposite side of the γ-ray source 1 and the detector 2 with respect to the inspection object 31. Crossed.

また、本形態においては、γ線源1から検査対象物31に向かう直線が検査対象物31の表面に入射する入射角α1と、コンプトン後方散乱γ線の散乱角α2とが同一となるように、γ線源1に対する検出器2の相対位置が選定されている。ここで、入射角α1と散乱角α2との基準となる線上には鉛ブロック11が配設してある。鉛ブロック11はγ線源1側と検出器2側とを分離するためのものである。このように分離することでγ線源1側で検査対象物31の表面等で反射されたγ線を遮蔽して検出器2に入射されるのを防止している。なお、このように鉛ブロック11を配設することは必須ではない。また、γ線源1と検出器2とが上述の如き位置関係(α1=α2)とすることも必須ではない。さらに、理想的には、γ線源1はペンシルビームと呼ばれる極めて細いγ線を照射し、検出器2は入射面が可及的に点に近い面を有するものとする。   In this embodiment, the incident angle α1 at which the straight line from the γ-ray source 1 toward the inspection object 31 is incident on the surface of the inspection object 31 and the scattering angle α2 of the Compton backscattered γ-ray are the same. The relative position of the detector 2 with respect to the γ-ray source 1 is selected. Here, a lead block 11 is disposed on a line that serves as a reference between the incident angle α1 and the scattering angle α2. The lead block 11 is for separating the γ-ray source 1 side and the detector 2 side. By separating in this way, the γ-ray reflected from the surface of the inspection object 31 on the γ-ray source 1 side is shielded and prevented from entering the detector 2. In addition, it is not essential to arrange the lead block 11 in this way. Further, it is not essential that the γ-ray source 1 and the detector 2 have the above positional relationship (α1 = α2). Further, ideally, the γ-ray source 1 emits extremely thin γ-rays called a pencil beam, and the detector 2 has an incident surface as close to a point as possible.

本形態におけるγ線源1は、例えば放射性同位体イリジウム線源を好適に適用し得る。検出器2は、コンプトン後方散乱γ線を入射する入射部2A、コンプトン後方散乱γ線を表すコンプトン後方散乱γ線信号を生成する信号処理部2B、コンプトン後方散乱γ線信号を処理して検査対象物31の減肉の状態を検出する演算処理部2C、減肉の状態を検出するための検査対象物31の基準データを記憶している記憶部2Dおよび演算処理部2Cで検出した検出結果を表示する表示部2Eを有している。さらに詳言すると、信号処理部2Bでは、コンプトン後方散乱γ線を処理して散乱γ線エネルギーに対するコンプトン後方散乱γ線信号の信号強度を表す散乱γ線エネルギー分布特性を生成する。記憶部2Dには、健全な(減肉を生起していない)検査対象物31の散乱γ線エネルギー分布特性(以下、基準散乱γ線エネルギー分布特性という)が予め記憶してある。   As the γ-ray source 1 in this embodiment, for example, a radioisotope iridium radiation source can be suitably applied. The detector 2 includes an incident unit 2A that receives Compton backscattered γ rays, a signal processing unit 2B that generates a Compton backscattered γray signal that represents Compton backscattered γrays, and a Compton backscattered γray signal that is processed by inspection. The calculation processing unit 2C that detects the thinning state of the object 31, the storage unit 2D that stores the reference data of the inspection object 31 for detecting the thinning state, and the detection result detected by the calculation processing unit 2C. It has a display section 2E for displaying. More specifically, the signal processing unit 2B processes the Compton backscattered γ-ray to generate a scattered γ-ray energy distribution characteristic representing the signal intensity of the Compton backscattered γ-ray signal with respect to the scattered γ-ray energy. The storage unit 2D stores in advance a scattered γ-ray energy distribution characteristic (hereinafter referred to as a reference scattered γ-ray energy distribution characteristic) of a healthy inspection object 31 (which does not cause thinning).

演算処理部2Cでは、入射部2Aを介してリアルタイムで入射されたγ線の実測データに基づき信号処理部2Bで得られた散乱γ線エネルギー分布特性と記憶部2Dに記憶している基準散乱γ線エネルギー分布特性とを比較して検査対象物31における減肉の有無および場合によってはその程度(減肉量)を検出する。ここで、検査対象物31に減肉部(図4(b)参照)を生起している場合、健全な場合と比較して、2回散乱γ線γ22の信号強度は大きくなり、その増加割合は減肉の大きさに依存する。そこで、基準散乱γ線エネルギー分布特性と実測データから得られた散乱γ線エネルギー分布特性とを比較すれば、検査対象物31における減肉の有無および場合によってはその程度(減肉量)を検出することができる。 In the arithmetic processing unit 2C, the scattered γ-ray energy distribution characteristic obtained by the signal processing unit 2B based on the actual measurement data of the γ rays incident in real time via the incident unit 2A and the reference scattering γ stored in the storage unit 2D By comparing with the line energy distribution characteristics, the presence or absence of thinning in the inspection object 31 and the degree (thickening amount) depending on the case are detected. Here, if occurred the reduced thickness portion on the inspection object 31 (see FIG. 4 (b)), as compared with the case healthy, signal strength of the two scattered gamma rays gamma 22 is increased, the increase The proportion depends on the size of the thinning. Therefore, by comparing the reference scattered γ-ray energy distribution characteristics and the scattered γ-ray energy distribution characteristics obtained from the actual measurement data, the presence or absence of thinning in the inspection object 31 and the extent (thickness reduction) in some cases are detected. can do.

演算処理部2Cにおける所定のデータ処理の結果の減肉の有無およびその程度等の情報は表示部2Eに表示される。   Information such as the presence or absence of thinning as a result of predetermined data processing in the arithmetic processing unit 2C and the degree thereof are displayed on the display unit 2E.

なお、上述した実施形態では、図6(a)に示すように、γ線の照射方向とγ線の検出方向との交点が検出対象物の後方に位置するようにγ線源1と検出器2とを配置したが、図6(b)に示すように、γ線の照射方向とγ線の検出方向との交点が検出対象物の手前側に位置するようにγ線源1と検出器2とを配置するようにすることができる。これによれば、装置全体をコンパクトに配置できるというメリットがある。   In the above-described embodiment, as shown in FIG. 6A, the γ-ray source 1 and the detector are arranged such that the intersection of the γ-ray irradiation direction and the γ-ray detection direction is located behind the detection target. However, as shown in FIG. 6B, the γ-ray source 1 and the detector are arranged so that the intersection of the γ-ray irradiation direction and the γ-ray detection direction is located in front of the detection target. 2 can be arranged. According to this, there exists an advantage that the whole apparatus can be arrange | positioned compactly.

<第2の実施の形態>
検査対象物31の一例である配管32(図7参照)には、これを横断する一つの直線上に2箇所の肉厚部(壁部)が存在する。すなわち、同一直線上におけるγ線源1側(以下、これを「手前側」と称する。)の肉厚部とその反対側(以下、これを「奥側」と称する。)の肉厚部である。上記第1の実施の形態は、検査対象物である配管32の手前側の肉厚部における減肉の有無等を検出するものである。これに対し、減肉は配管32の奥側の肉厚部にも発生する場合がある。本実施形態では、2回散乱γ線のγ線エネルギー分布特性により手前側の壁部の減肉を測定し、1回散乱γ線のγ線エネルギー分布特性により奥側の壁部の減肉を測定する例を説明する。
なお、γ線の照射方向とγ線の検出方向との交点Iは、領域IIの奥側の肉厚部の手前側の表面に位置するようにする。
<Second Embodiment>
A pipe 32 (see FIG. 7), which is an example of the inspection object 31, has two thick portions (wall portions) on one straight line that crosses the pipe 32 (see FIG. 7). That is, a thick portion on the same straight line on the γ-ray source 1 side (hereinafter referred to as “front side”) and a thick portion on the opposite side (hereinafter referred to as “back side”). is there. In the first embodiment, the presence or absence of thinning in the thick part on the near side of the pipe 32 that is the inspection object is detected. On the other hand, the thinning may occur also in the thick part on the back side of the pipe 32. In this embodiment, the thinning of the wall on the near side is measured by the γ-ray energy distribution characteristic of the twice-scattered γ-ray, and the thinning of the wall on the back side is measured by the γ-ray energy distribution characteristic of the once-scattered γ-ray. An example of measurement will be described.
Note that the intersection point I 1 between the γ-ray irradiation direction and the γ-ray detection direction is located on the front surface of the thick portion on the back side of the region II.

図7は本発明の第2の実施の形態に係る非破壊検査装置を示すブロック図である。同図に示すように、本形態に係る非破壊検査装置の検出器12は、信号処理部2Bと演算処理部2Cとの間に領域選択部2Fを介在させてある。領域選択部2Fは、信号処理部2B、入射部2Aを介して入射されたコンプトン後方散乱γ線を表す理論的なデータであるコンプトン後方散乱γ線信号から領域Iまたは領域IIの情報のみを選択する。すなわち、図8(a)に示すように、γ線源1から検出器2に至る光路長の違いに起因して時間軸上の位置が特定されるコンプトン後方散乱γ線信号Sγを、領域Iに相当する2回散乱γ線に基づくものと、領域IIに相当する1回散乱γ線に基づくものとに分離して検出する。   FIG. 7 is a block diagram showing a nondestructive inspection apparatus according to the second embodiment of the present invention. As shown in the figure, in the detector 12 of the nondestructive inspection apparatus according to this embodiment, an area selection unit 2F is interposed between the signal processing unit 2B and the arithmetic processing unit 2C. The region selection unit 2F selects only information on the region I or region II from the Compton backscattered γ-ray signal, which is theoretical data representing the Compton backscattered γ-ray incident through the signal processing unit 2B and the incident unit 2A. To do. That is, as shown in FIG. 8 (a), the Compton backscattered γ-ray signal Sγ whose position on the time axis is specified due to the difference in the optical path length from the γ-ray source 1 to the detector 2 is represented by the region I. Are detected separately from those based on twice-scattered γ-rays corresponding to and those based on once-scattered γ-rays corresponding to region II.

かかる本形態によれば、図8(b)に示すように、γ線源1から配管32の領域Iで2回散乱されて検出器2に入射されたコンプトン後方散乱γ線に基づく信号成分は領域選択部2Fで分離され、また、領域IIで1回散乱されて検出器2に入射された信号成分が分離され、それぞれが分離されて演算処理部2Cに供給される。   According to the present embodiment, as shown in FIG. 8B, the signal component based on the Compton backscattered γ-rays that are scattered twice from the γ-ray source 1 in the region I of the pipe 32 and incident on the detector 2 is The signal components separated by the region selection unit 2F and once scattered in the region II and incident on the detector 2 are separated, and each is separated and supplied to the arithmetic processing unit 2C.

このように、本実施形態によれば、γ線源1から照射されたγ線が、配管32の手前側の肉厚部のみを通り、検出器2に入射されるまでの時間と、配管32の奥側の肉厚部も通り、検出器2に入射されるまでの時間とを比較した場合、前者の時間がより短いことを利用して両者を分離している。すなわち、図8(a)に示すように理論的なデータに基づき、信号処理部2Bで得られる後方散乱γ線信号の信号強度の時間特性において、手前側の肉厚部に相当する領域である領域Iと、奥側の肉厚部に相当する領域である領域IIとのそれぞれに起因する散乱γ線のエネルギー分布を分離することができる。これにより、領域IIの1回散乱に基づく後方散乱γ線信号の散乱γ線エネルギー分布特性の変化により奥側の減肉部を検出することができ、また、手前側の2回散乱の情報により、手前側の減肉部を検出することができる。すなわち、領域IIの減肉の有無は、減肉が生じたことにより、領域IIからの1回散乱に基づく後方散乱γ線信号が減少することにより検出することができる。また、領域Iの減肉の観察は実施形態1と同様である。   Thus, according to the present embodiment, the time until the γ-rays irradiated from the γ-ray source 1 pass through only the thick portion on the near side of the pipe 32 and enter the detector 2, and the pipe 32. When the time until it enters the detector 2 is compared with the thick part on the back side, the two are separated by using the fact that the former time is shorter. That is, as shown in FIG. 8A, this is a region corresponding to the thick portion on the near side in the time characteristics of the signal intensity of the backscattered γ-ray signal obtained by the signal processing unit 2B based on theoretical data. It is possible to separate the energy distribution of the scattered γ rays caused by the region I and the region II that is a region corresponding to the thick portion on the back side. As a result, the back thinning portion can be detected by the change in the scattered γ-ray energy distribution characteristics of the backscattered γ-ray signal based on the one-time scattering in the region II. The thinned portion on the near side can be detected. That is, the presence or absence of thinning of the region II can be detected by reducing the backscattered γ-ray signal based on single scattering from the region II due to the occurrence of thinning. Further, the observation of the thinning of the region I is the same as that in the first embodiment.

<その他の実施の形態>
上述した第2の実施形態では、領域IIの減肉の観察を1回コンプトン散乱γ線のエネルギー分布の変化に求めるものとしたが、領域IIの減肉の観察も2回散乱ピークを用いて行うこともできる。すなわち、領域IIの奥側の肉厚部の奥側表面又は肉厚部を突き抜けたさらに奥側に、γ線の照射方向とγ線の検出方向との交点が位置するようにし、奥側の肉厚部において、1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路が奥側の肉厚部を通過するようにすれば、1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路中に減肉が存在するか否かにより、1回散乱γ線γ21が検査対象物の構成物質そのものを通過するか、減肉により形成された空間を通過するかの違いが生じ、領域Iと同様に減肉の有無を検出することができる。なお、この場合においても、領域Iのピークと、領域IIのピークとは時間特性を考慮して分離することができる。
<Other embodiments>
In the second embodiment described above, the observation of the thinning of the region II is obtained by changing the energy distribution of the Compton scattered γ ray once. However, the thinning of the region II is also observed using the double scattering peak. It can also be done. That is, the intersection of the irradiation direction of γ-rays and the detection direction of γ-rays is located on the back side of the thick part on the back side of region II or further through the thick part, In the thick part, if the path from the first Compton scattering to the second Compton scattering is made to pass through the thick part on the inner side, the second Compton scattering will occur after the first Compton scattering. by whether path thinning during up causing Compton scattering is present, or once scattered gamma rays gamma 21 passes the constituents themselves of the test object, passes through a space formed by thinning This difference occurs, and the presence or absence of thinning can be detected as in the region I. Even in this case, the peak of region I and the peak of region II can be separated in consideration of time characteristics.

図9には、第1の実施形態の構成において、模擬的に減肉を形成したサンプルについて2回コンプトン散乱γ線のエネルギー分布を測定したシミュレーション結果を示す。なお、ここでは検査対象物として厚さ10mmの鉄サンプルを用い、サンプルの奥10mm先にγ線の照射方向とγ線の検出方向との交点が位置するようにし、γ線の照射方向とγ線の検出方向との成す角は120°(入射角が60°)とした。   FIG. 9 shows a simulation result obtained by measuring the energy distribution of the Compton scattered γ-ray twice for the sample in which the thinning is formed in a simulated manner in the configuration of the first embodiment. Here, an iron sample having a thickness of 10 mm is used as an inspection object, and the intersection of the γ-ray irradiation direction and the γ-ray detection direction is located 10 mm ahead of the sample, and the γ-ray irradiation direction and γ The angle formed with the line detection direction was 120 ° (incident angle 60 °).

図9(a)は、減肉が生じていないサンプルであり、図9(b)は、奥側に5mmの深さで長さ20mmの減肉が生じた場合、図9(c)は、奥側に5mmの深さで長さ35mmの減肉が生じた場合を示す。   FIG. 9A shows a sample in which no thinning occurs, and FIG. 9B shows a case in which a thinning of 20 mm in length occurs at a depth of 5 mm on the back side, FIG. The case where a thickness reduction of 35 mm in length occurs at a depth of 5 mm on the back side is shown.

このように、減肉の大きさに応じて2回コンプトン散乱γ線のエネルギー分布が変化し、これを定量化することにより、減肉の大きさ等を検出することができることがわかった。   As described above, it was found that the energy distribution of the Compton scattered γ-ray twice changed according to the size of the thinning, and the size of the thinning can be detected by quantifying this.

本発明は配管等の検査対象物が錯綜して配設されている発電所等の保守、点検等に伴う非破壊検査を実施する産業分野で有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in an industrial field where non-destructive inspection is performed for maintenance, inspection, etc. of a power plant where inspection objects such as piping are arranged in a complicated manner.

I、II 領域
1 γ線源
2 検出器
3、31、32 配管(検査対象物)
I, II area 1 γ-ray source 2 Detector 3, 31, 32 Piping (inspection object)

Claims (16)

X線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射して前記検査対象物におけるコンプトン散乱に基づく1回散乱γ線のエネルギーよりも高エネルギー側に出現する2回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を検出する第1の工程と、
前記散乱γ線エネルギー分布特性に基づき前記検査対象物における減肉の有無を検出する第2の工程とを有することを特徴とする非破壊検査方法。
X-rays or γ-rays (hereinafter collectively referred to as γ-rays) are irradiated twice on the inspection object and appear twice on the higher energy side than the energy of the once-scattered γ-rays based on Compton scattering in the inspection object. A first step of detecting a scattered gamma ray energy distribution characteristic representing a signal intensity with respect to the energy of the scattered gamma ray;
And a second step of detecting the presence or absence of thinning in the inspection object based on the scattered γ-ray energy distribution characteristics.
請求項1に記載する非破壊検査方法において、
前記検査対象物に対して、前記γ線を照射する側と、前記2回散乱γ線を検出する側は、同じ側であることを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 1,
The non-destructive inspection method according to claim 1, wherein the side to be irradiated with the γ-ray and the side to detect the twice-scattered γ-ray are the same side.
請求項2に記載する非破壊検査方法において、
前記検査対象物に前記γ線が入射して1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路が前記減肉の有無を検出する対象箇所であることを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 2,
The path from the occurrence of the first Compton scattering after the γ-ray is incident on the inspection object until the second Compton scattering is a target location for detecting the presence or absence of the thinning. Destructive inspection method.
請求項2又は3に記載する非破壊検査方法において、
前記γ線を照射する方向に伸びる仮想の第1直線と、前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側とは反対側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 2 or 3,
The virtual first straight line extending in the direction of irradiating the γ-ray and the virtual second straight line extending in the direction of detecting the twice-scattered γ-ray are the irradiation side of the γ-ray of the inspection object and the 2 Crossing on the side opposite to the detection side of the double-scattered γ-ray, and in this state, based on the peak of the double-scattered γ-ray based on the scattered γ-ray from the inspection object, the thinning of the inspection object A nondestructive inspection method characterized by detecting presence or absence.
請求項2又は3に記載する非破壊検査方法において、
前記γ線を照射する方向に伸びる仮想の第1直線と、前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側と同じ側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 2 or 3,
The virtual first straight line extending in the direction of irradiating the γ-ray and the virtual second straight line extending in the direction of detecting the twice-scattered γ-ray are the irradiation side of the γ-ray of the inspection object and the 2 Crossing on the same side as the detection side of the double scattered γ-ray, and in this state, whether or not the inspection object is thinned based on the peak of the double scattered γ-ray based on the scattered γ-ray from the inspection object Non-destructive inspection method characterized by detecting
請求項1〜5の何れか一項に記載する非破壊検査方法において、
前記検査対象物の前記減肉の有無を検出している部位とは異なる部位におけるコンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を検出し、前記異なる部位の減肉の有無を検出することを特徴とする非破壊検査方法。
In the nondestructive inspection method according to any one of claims 1 to 5,
Detecting a scattered γ-ray energy distribution characteristic representing a signal intensity with respect to energy of a once-scattered γ-ray based on Compton scattering in a portion different from a portion where the presence or absence of the thinning of the inspection object is detected, and the different portion A non-destructive inspection method characterized by detecting the presence or absence of thinning of the metal.
請求項6に記載する非破壊検査方法において、
前記検査対象物が前記γ線の照射方向に伸びる直線に前記γ線の照射側で交差する第1の壁部材および当該第1の壁部材の前記γ線の照射側とは反対側で前記直線に交差する第2の壁部材を有する場合であって、
前記第1の壁部材および前記第2の壁部材の何れか一方の減肉の有無を前記2回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出し、他方の減肉の有無を前記コンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出することを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 6,
The first wall member that intersects the γ-ray irradiation side with the straight line extending in the γ-ray irradiation direction of the inspection object, and the straight line on the opposite side of the first wall member from the γ-ray irradiation side. Having a second wall member intersecting with
The presence or absence of thinning of one of the first wall member and the second wall member is detected by a scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the energy of the twice-scattered γ-ray, and the other thinning is performed. The non-destructive inspection method is characterized by detecting the presence or absence of a scattering γ-ray energy distribution characteristic representing the signal intensity with respect to the energy of the once-scattered γ-ray based on the Compton scattering.
請求項7に記載する非破壊検査方法において、
散乱γ線信号を検出する際に、前記γ線が照射された時点を基準として前記散乱γ線信号の時間軸に沿う成分を考慮し、前記第2の壁部材の減肉の有無を検出する際には前記第1の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第2の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、前記第1の壁部材の減肉の有無を検出する際には前記第2の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第1の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、減肉の有無を検出することを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 7,
When detecting the scattered γ-ray signal, a component along the time axis of the scattered γ-ray signal is taken into consideration with reference to the time point when the γ-ray is irradiated, and the presence or absence of thinning of the second wall member is detected. In this case, the time of the scattered γ-ray signal is such that the portion based on the scattered γ-rays from the first wall member is removed and the portion based on the scattered γ-rays from the second wall member is selected. When a part of the component along the axis is removed and the presence or absence of thinning of the first wall member is detected, a portion based on scattered γ rays from the second wall member is removed, and the first Non-destructive, characterized in that a part of the scattered γ-ray signal along the time axis is removed so that a portion based on scattered γ-rays from one wall member is selected and the presence or absence of thinning is detected Inspection method.
検査対象物に向けてγ線を照射するγ線源と、前記照射により検査対象物においてコンプトン散乱に起因して散乱された散乱γ線を検出する検出器とを有する非破壊検査装置において、
前記散乱γ線エネルギーに対する前記散乱γ線信号の信号強度を表し、かつ1回散乱γ線のエネルギー線よりも高エネルギー側に出現する2回散乱γ線のエネルギーの散乱γ線エネルギー分布特性に基づき、前記2回散乱γ線の前記信号強度のピークである2回散乱γ線のピークにより前記検査対象物における減肉の有無を検出するように前記検出器を構成したことを特徴とする非破壊検査装置。
In a nondestructive inspection apparatus having a γ-ray source that irradiates γ-rays toward an inspection object, and a detector that detects scattered γ-rays scattered due to Compton scattering in the inspection object by the irradiation,
Based on the scattered γ-ray energy distribution characteristic of the scattered γ-ray energy that represents the signal intensity of the scattered γ-ray signal relative to the scattered γ-ray energy and that appears on the higher energy side of the once scattered γ-ray energy line The non-destructive detector is characterized in that the detector is configured to detect the presence or absence of thinning in the inspection object based on a peak of the twice-scattered γ-ray that is a peak of the signal intensity of the twice-scattered γ-ray. Inspection device.
請求項9に記載する非破壊検査装置において、
前記γ線源と、前記検出器とは、前記検査対象物に対して同じ側に配置されていることを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 9,
The non-destructive inspection apparatus, wherein the γ-ray source and the detector are arranged on the same side with respect to the inspection object.
請求項10に記載する非破壊検査装置において、
前記検査対象物に前記γ線が入射して1回目のコンプトン散乱を生じてから2回目のコンプトン散乱を生じるまでの経路を前記減肉の有無を検出する対象箇所とすることを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 10,
The path from the occurrence of the first Compton scattering to the occurrence of the second Compton scattering after the γ-ray is incident on the inspection object is set as a target location for detecting the presence or absence of the thinning. Destructive inspection equipment.
請求項10又は11に記載する非破壊検査装置において、
前記γ線源から前記γ線を照射する方向に伸びる仮想の第1直線と、
前記検出器へ前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側とは反対側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 10 or 11,
A virtual first straight line extending in a direction of irradiating the γ-ray from the γ-ray source;
The virtual second straight line extending in the direction of detecting the twice-scattered γ-rays to the detector is the opposite side of the inspection object from the irradiation side of the γ-rays and the detection side of the twice-scattered γ-rays. Non-destructive inspection characterized in that, in this state, the presence or absence of thinning of the inspection object is detected based on the peak of the twice scattered γ-ray based on the scattered γ-ray from the inspection object. apparatus.
請求項10又は11に記載する非破壊検査装置において、
前記γ線源から前記γ線を照射する方向に伸びる仮想の第1直線と、
前記検出器へ前記2回散乱γ線を検出する方向に伸びる仮想の第2直線とは、前記検査対象物の前記γ線の照射側及び前記2回散乱γ線の検出側と同じ側で交差するようにし、この状態で、前記検査対象物からの散乱γ線に基づく2回散乱γ線のピークに基づき、前記検査対象物の減肉の有無を検出することを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 10 or 11,
A virtual first straight line extending in a direction of irradiating the γ-ray from the γ-ray source;
An imaginary second straight line extending in the direction of detecting the twice-scattered γ-rays to the detector intersects on the same side as the irradiation side of the γ-rays and the detection side of the twice-scattered γ-rays of the inspection object. In this state, the non-destructive inspection apparatus detects the presence or absence of thinning of the inspection object based on the peak of the twice-scattered γ-ray based on the scattered γ-ray from the inspection object. .
請求項9〜13の何れか一項に記載する非破壊検査装置において、
前記検査対象物の前記減肉の有無を検出している部位とは異なる部位におけるコンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を検出し、前記異なる部位の減肉の有無を検出するように前記検出器を構成したことを特徴とする非破壊検査装置。
In the nondestructive inspection device according to any one of claims 9 to 13,
Detecting a scattered γ-ray energy distribution characteristic representing a signal intensity with respect to energy of a once-scattered γ-ray based on Compton scattering in a portion different from a portion where the presence or absence of the thinning of the inspection object is detected, and the different portion A non-destructive inspection apparatus characterized in that the detector is configured to detect the presence or absence of thinning.
請求項14に記載する非破壊検査装置において、
前記検査対象物が前記γ線の照射方向に伸びる直線に前記γ線の照射側で交差する第1の壁部材および当該第1の壁部材の前記γ線の照射側とは反対側で前記直線に交差する第2の壁部材を有する場合において、
前記第1の壁部材および前記第2の壁部材の何れか一方の減肉の有無を前記2回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出し、他方の減肉の有無を前記コンプトン散乱に基づく1回散乱γ線のエネルギーに対する信号強度を表す散乱γ線エネルギー分布特性で検出するように前記検出器を構成したことを特徴とする非破壊検査装置。
The nondestructive inspection apparatus according to claim 14,
The first wall member that intersects the γ-ray irradiation side with the straight line extending in the γ-ray irradiation direction of the inspection object, and the straight line on the opposite side of the first wall member from the γ-ray irradiation side. In having a second wall member intersecting
The presence or absence of thinning of one of the first wall member and the second wall member is detected by a scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the energy of the twice-scattered γ-ray, and the other thinning is performed. The non-destructive inspection apparatus is characterized in that the detector is configured to detect the presence or absence of light by a scattered γ-ray energy distribution characteristic representing a signal intensity with respect to the energy of the once scattered γ-ray based on the Compton scattering.
請求項15に記載する非破壊検査装置において、
散乱γ線信号を検出する際に、前記γ線が照射された時点を基準として前記散乱γ線信号の時間軸に沿う成分を考慮し、前記第2の壁部材の減肉の有無を検出する際には前記第1の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第2の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、前記第1の壁部材の減肉の有無を検出する際には前記第2の壁部材からの散乱γ線に基づく部分が除去されるとともに、前記第1の壁部材からの散乱γ線に基づく部分が選択されるように前記散乱γ線信号の時間軸に沿う成分の一部を除去し、減肉の有無を検出するように前記検出器を構成したことを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 15,
When detecting the scattered γ-ray signal, a component along the time axis of the scattered γ-ray signal is taken into consideration with reference to the time point when the γ-ray is irradiated, and the presence or absence of thinning of the second wall member is detected. In this case, the time of the scattered γ-ray signal is such that the portion based on the scattered γ-rays from the first wall member is removed and the portion based on the scattered γ-rays from the second wall member is selected. When a part of the component along the axis is removed and the presence or absence of thinning of the first wall member is detected, a portion based on scattered γ rays from the second wall member is removed, and the first The detector is configured to detect the presence or absence of thinning by removing a part of the component along the time axis of the scattered γ-ray signal so that a portion based on the scattered γ-ray from one wall member is selected. Non-destructive inspection equipment characterized by
JP2015233865A 2015-11-30 2015-11-30 Nondestructive inspection method and apparatus Active JP6598205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015233865A JP6598205B2 (en) 2015-11-30 2015-11-30 Nondestructive inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015233865A JP6598205B2 (en) 2015-11-30 2015-11-30 Nondestructive inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2017101967A true JP2017101967A (en) 2017-06-08
JP6598205B2 JP6598205B2 (en) 2019-10-30

Family

ID=59017503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233865A Active JP6598205B2 (en) 2015-11-30 2015-11-30 Nondestructive inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP6598205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020091153A (en) * 2018-12-04 2020-06-11 東日本旅客鉄道株式会社 Structure inspection device and structure inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020091153A (en) * 2018-12-04 2020-06-11 東日本旅客鉄道株式会社 Structure inspection device and structure inspection method

Also Published As

Publication number Publication date
JP6598205B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2011046078A1 (en) Non-destructive examination method and device
Durham et al. Tests of cosmic ray radiography for power industry applications
US20200041455A1 (en) Method and system for determination of geometric features in objects
JP2023083597A (en) Non-destructive inspection method and device
JP2018036156A (en) Heavy element inclusion measuring apparatus and measuring method thereof
Moura et al. Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
WO2011046148A1 (en) Non-destructive examination method and device
JP6598205B2 (en) Nondestructive inspection method and apparatus
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JP6497701B2 (en) Nondestructive inspection method and apparatus
JP6441184B2 (en) Structure inspection apparatus and inspection method thereof
JP6299033B2 (en) Nondestructive inspection method and apparatus
US8976936B1 (en) Collimator for backscattered radiation imaging and method of using the same
JP6278457B2 (en) Nondestructive inspection method and apparatus
JP6277520B2 (en) Nondestructive inspection method and apparatus
Harara Deposit thickness measurement in pipes by tangential radiography using gamma ray sources
JP2019152497A (en) Method and device for nondestructive inspection of structure using muography
Wassink et al. Toward practical 3D radiography of pipeline girth welds
Foucher et al. New possibilities of simulation tools for NDT and applications
JP7223992B2 (en) Nondestructive inspection system and nondestructive inspection method
JP6685677B2 (en) Structure scanning device and structure scanning method
Zhuravskii et al. Calculating parameters of pinhole in collimation system of albedo computed tomography of steel products
Lemaire et al. Validation of CIVA RT module for nuclear applications
JP2014071102A (en) Board thickness inspection device and board thickness inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190925

R150 Certificate of patent or registration of utility model

Ref document number: 6598205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250