JP2017101229A - Biaxially stretched polypropylene sheet - Google Patents

Biaxially stretched polypropylene sheet Download PDF

Info

Publication number
JP2017101229A
JP2017101229A JP2016225618A JP2016225618A JP2017101229A JP 2017101229 A JP2017101229 A JP 2017101229A JP 2016225618 A JP2016225618 A JP 2016225618A JP 2016225618 A JP2016225618 A JP 2016225618A JP 2017101229 A JP2017101229 A JP 2017101229A
Authority
JP
Japan
Prior art keywords
molecular weight
component
group
propylene
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225618A
Other languages
Japanese (ja)
Other versions
JP6787070B2 (en
Inventor
正人 高山
Masato Takayama
正人 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Publication of JP2017101229A publication Critical patent/JP2017101229A/en
Application granted granted Critical
Publication of JP6787070B2 publication Critical patent/JP6787070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially stretched polypropylene sheet that is resistant to uneven stretching when stretching a sheet, and has excellent uniform stretchability, and a heat molding thereof.SOLUTION: The present invention provides a biaxially stretched polypropylene sheet that is obtained by biaxially stretching an extrusion sheet comprising a polypropylene resin composition obtained by mixing 100-5 wt.% of a propylene polymer (A) satisfying specific (i)-(vi) requirements, 0-95 wt.% of a propylene polymer (B), and a molding thereof.SELECTED DRAWING: None

Description

本発明は、プロピレン系重合体を用いた二軸延伸ポリプロピレンシート及び成形体に関する。   The present invention relates to a biaxially stretched polypropylene sheet using a propylene polymer and a molded body.

従来より、ポリスチレン、ポリエチレンテレフタレート、ポリプロピレン等の熱可塑性樹脂を用いた包装製品が製造されている。熱可塑性樹脂の中でも、プロピレン系樹脂組成物は、耐熱性、剛性、耐衝撃性、または衛生面に優れていることから、食品等の包装として好適に用いられており、特に、高い耐熱性を必要とする電子レンジでのレンジアップ(加熱)製品、高温充填が必要な製品等に使用範囲が広がってきている。   Conventionally, packaging products using thermoplastic resins such as polystyrene, polyethylene terephthalate, and polypropylene have been manufactured. Among thermoplastic resins, the propylene-based resin composition is excellent in heat resistance, rigidity, impact resistance, or hygiene, and thus is suitably used as a packaging for foods, etc., and particularly has high heat resistance. The range of use has been expanded to products that require a range up (heating) in a microwave oven, products that require high-temperature filling, and the like.

しかしながら、プロピレン系重合体は、その高い結晶性のために、特にポリスチレン、ポリエチレンテレフタレートに比較して透明性が著しく劣るという欠点がある。
プロピレン系重合体の透明性を改良する方法として、例えば、プロピレンとα−オレフィンとの共重合を行って結晶性を低下させ透明性を改良する方法が使用される。プロピレンとα−オレフィンとの共重合を行って透明性を改良する方法では、α−オレフィン量を多くするほど透明性が良くなるが、製品の剛性が著しく低下するためα−オレフィンは少量しか使用できず、透明性改良効果はおのずと制限されるという問題点がある。
However, the propylene-based polymer has a disadvantage that its transparency is remarkably inferior particularly to polystyrene and polyethylene terephthalate because of its high crystallinity.
As a method for improving the transparency of the propylene-based polymer, for example, a method of improving the transparency by reducing the crystallinity by copolymerizing propylene and an α-olefin is used. In the method of improving transparency by copolymerization of propylene and α-olefin, transparency increases as the amount of α-olefin increases. However, the transparency improvement effect is naturally limited.

そこで、プロピレン系重合体にジベンジリデンソルビトール系、有機カルボン酸、有機カルボン酸の金属塩、有機リン酸金属塩等の造核剤を添加配合して透明性を改良する方法が一般に用いられている。特にジベンジリデンソルビトール系の造核剤が最も効果があり、食品、日用品等の包装製品として広く使用されている(特許文献1参照)。   Therefore, a method for improving transparency by adding and blending a propylene polymer with a nucleating agent such as dibenzylidene sorbitol, organic carboxylic acid, metal salt of organic carboxylic acid, metal salt of organic phosphate, etc. is generally used. . In particular, dibenzylidene sorbitol nucleating agents are most effective, and are widely used as packaging products for foods, daily necessities and the like (see Patent Document 1).

特開平4−339847号公報JP-A-4-339847

一方、熱可塑性樹脂をシート状に押出成形した後、そのシートを再加熱して所望の製品を得る、真空成形、真空圧空成形、固相圧空成形等の熱成形法は、成形し易く生産性が高いことから、大量生産に向く上、多層化製品を得るのも容易なことから、広く普及している。   On the other hand, after extruding a thermoplastic resin into a sheet shape, the sheet is reheated to obtain the desired product. Thermoforming methods such as vacuum forming, vacuum pressure forming, and solid pressure forming are easy to mold and productive. Since it is high, it is suitable for mass production and it is easy to obtain multi-layered products.

しかしながら、ポリプロピレンは結晶性樹脂であることから、ポリスチレン、ポリエチレンテレフタレートに比べ、押出シートを使用した真空成形、真空圧空成形等の熱成形法の場合は、シートを再加熱して製品とするため、透明性を得にくく、商品として価値のある製品を成形することが難しい。
このように、耐熱性の優れたポリプロピレンシートを用いて、透明性と剛性を兼備した熱成形体の包装製品が求められている。
However, since polypropylene is a crystalline resin, compared to polystyrene and polyethylene terephthalate, in the case of thermoforming methods such as vacuum forming using an extruded sheet, vacuum pressure forming, etc., to reheat the sheet to make a product, It is difficult to obtain transparency, and it is difficult to mold a product that is valuable as a product.
Thus, there is a demand for a packaged product of a thermoformed article that has both transparency and rigidity using a polypropylene sheet having excellent heat resistance.

本発明の目的は、低倍率延伸において均一延伸性を有する二軸延伸ポリプロピレンシート、及びこれを熱成形して得られる成形体を提供する事にある。   An object of the present invention is to provide a biaxially stretched polypropylene sheet having uniform stretchability at low magnification stretching, and a molded body obtained by thermoforming this.

本発明者は、上記課題を解決する為に鋭意研究を行った。ポリプロピレンシートは、二軸延伸により、剛性、透明性等の物性が向上する事は公知の通りである。
一般的に結晶性樹脂であるポリプロピレンは、降伏点が存在し、低倍率延伸を行うとネッキングが発生し、延伸ムラ(厚みにムラ)が生じる。OPPとして公知の逐次二軸延伸ポリプロピレンの延伸倍率は、通常、縦×横=5×10倍程度の高倍率で行われているが、高倍率延伸により目的の延伸シート(厚み0.1〜1mm)を得る事は、原反の厚みが問題となり不可能である。
The present inventor has intensively studied to solve the above problems. As is well known, the polypropylene sheet is improved in physical properties such as rigidity and transparency by biaxial stretching.
In general, polypropylene, which is a crystalline resin, has a yield point. When low magnification stretching is performed, necking occurs and stretching unevenness (thickness unevenness) occurs. The draw ratio of the sequential biaxially stretched polypropylene known as OPP is usually carried out at a high magnification of about length × width = 5 × 10 times, but the desired stretched sheet (thickness 0.1-1 mm) ) Cannot be obtained because the thickness of the raw material becomes a problem.

本発明者は、低倍率延伸において延伸ムラが生じにくいポリプロピレン樹脂の検討を行った結果、特定のプロピレン系重合体を用いた二軸延伸シート、並びに該プロピレン系重合体を含む樹脂組成物からなる二軸延伸シートが、低倍率延伸における厚みムラが生じにくく、均一延伸性に優れる事を見出し、本発明を完成するに至った。   As a result of investigating a polypropylene resin in which stretching unevenness hardly occurs in low-stretch stretching, the present inventor comprises a biaxially stretched sheet using a specific propylene polymer and a resin composition containing the propylene polymer. It has been found that the biaxially stretched sheet is less likely to cause thickness unevenness in low magnification stretching and is excellent in uniform stretchability, and has completed the present invention.

すなわち、本発明の第1の発明では、下記(i)〜(vi)に規定する要件を満たすことを特徴とするプロピレン系重合体(A)を100〜5重量%、DSCで測定した融点が150〜170℃であるプロピレン系重合体(B)を0〜95重量%を配合したポリプロピレン系樹脂組成物からなる押出シートを二軸方向に延伸して得られる二軸延伸ポリプロピレンシートが提供される。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.5g/10分以上、20g/10分以下である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5以上、10.5以下である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
That is, in the first invention of the present invention, the propylene-based polymer (A) characterized by satisfying the requirements defined in the following (i) to (vi) has a melting point measured by DSC of 100 to 5% by weight. A biaxially stretched polypropylene sheet obtained by biaxially stretching an extruded sheet made of a polypropylene resin composition containing 0 to 95% by weight of a propylene polymer (B) at 150 to 170 ° C is provided. .
(I) Melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 0.5 g / 10 min or more and 20 g / 10 min or less.
(Ii) The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 3.5 or more and 10.5 or less.
(Iii) In the molecular weight distribution curve obtained by GPC, the ratio of the component having a molecular weight (M) of 2 million or more to the total amount is 0.4% by weight or more and less than 10% by weight.
(Iv) In temperature rising elution fractionation (TREF) with orthodichlorobenzene (ODCB), the component eluted at a temperature of 40 ° C. or less is 3.0% by weight or less.
(V) The isotactic triad fraction (mm) measured by 13 C-NMR is 95% or more.
(Vi) The strain hardening degree (λmax) in the measurement of the extensional viscosity is 6.0 or more.

また、本発明の第2の発明によれば、第1の発明において、プロピレン系重合体(A)は、さらに、下記要件(vii)及び(viii)を満たすことを特徴とする二軸延伸ポリプロピレンシートが提供される。
(vii) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(viii) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
According to the second invention of the present invention, in the first invention, the propylene polymer (A) further satisfies the following requirements (vii) and (viii): A sheet is provided.
(Vii) (MT230 ° C.) ≧ 5 g
[In the formula, MT230 ° C. is measured using a melt tension tester, capillary: diameter 2.1 mm, cylinder diameter: 9.6 mm, cylinder extrusion speed: 10 mm / min, winding speed: 4.0 m / min, temperature: 230 It represents the melt tension when measured under the condition of ° C. ]
(Viii) (MaxDraw) ≧ 10 m / min [where, MaxDraw (maximum winding speed) is the winding speed immediately before the resin breaks when the winding speed is increased in the measurement of the melt tension. Represent. ]

また、本発明の第3の発明によれば、第1又は2の発明において、プロピレン系重合体(A)は、さらに、下記要件(ix)を満たすことを特徴とする二軸延伸ポリプロピレンシートが提供される。
(ix) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
さらに、本発明の第4の発明によれば、第1〜3のいずれかの発明において、プロピレン系重合体(A)は、さらに、下記要件(x)を満たすことを特徴とする二軸延伸ポリプロピレンシートが提供される。
(x)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
According to the third invention of the present invention, in the first or second invention, the propylene polymer (A) further satisfies the following requirement (ix): Provided.
(Ix) (ME) ≧ −0.26 × log (MFR) +1.9
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]
Furthermore, according to the fourth invention of the present invention, in any one of the first to third inventions, the propylene-based polymer (A) further satisfies the following requirement (x): A polypropylene sheet is provided.
(X) In the molecular weight distribution curve obtained by GPC, the common logarithm of the molecular weight corresponding to the peak position is Tp, and the common logarithm of the molecular weight at the position that is 50% of the peak height is L 50 and H 50 (L 50 is Tp Lower molecular weight side, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively, α / β is larger than 0.9 and 2 Less than 0.0.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明の延伸シートが、MD及びTDの各々で1.5倍以上に延伸され、面倍率にて3〜30倍延伸されてなる二軸延伸ポリプロピレンシートが提供される。   According to the fifth invention of the present invention, the stretched sheet of any one of the first to fourth inventions is stretched 1.5 times or more in each of MD and TD, and is 3 to 30 times in terms of surface magnification. A biaxially stretched polypropylene sheet obtained by stretching is provided.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、前記ポリプロピレン系樹脂組成物100質量部に対して、下記の一般式(1)で表される造核剤0.1〜1質量部配合する事を特徴とする二軸延伸ポリプロピレンシートが提供される。

Figure 2017101229
[但し、式中、nは、0〜2の整数であり、R1〜R5は、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、炭素数が2〜20のアルケニル基、炭素数が1〜20のアルコキシ基、カルボニル基、ハロゲン基またはフェニル基であり、R6は、水素原子または炭素数が1〜20のアルキル基である。 According to a sixth invention of the present invention, in any one of the first to fifth inventions, the nucleation represented by the following general formula (1) with respect to 100 parts by mass of the polypropylene resin composition A biaxially stretched polypropylene sheet characterized by containing 0.1 to 1 part by mass of an agent is provided.
Figure 2017101229
[In the formula, n is an integer of 0 to 2, and R1 to R5 are the same or different and each is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, a carbonyl group, a halogen group or a phenyl group, and R6 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.

また、本発明の第7の発明によれば、延伸後のシート厚みが0.1mm〜1mmである第1〜6のいずれかの発明の二軸延伸ポリプロピレンシートが提供される。   Moreover, according to the 7th invention of this invention, the biaxially stretched polypropylene sheet of any one of the 1st-6th invention whose sheet thickness after extending | stretching is 0.1 mm-1 mm is provided.

また、本発明の第8の発明によれば、延伸後のシート厚みの標準偏差が50以下となる第1〜7のいずれかの発明の二軸延伸ポリプロピレンシートが提供される。   Moreover, according to the 8th invention of this invention, the biaxially-stretched polypropylene sheet of any one of the 1st-7th invention in which the standard deviation of the sheet | seat thickness after extending | stretching becomes 50 or less is provided.

また、本発明の第9の発明によれば、第1〜8のいずれかの発明の二軸延伸ポリプロピレンシートを熱成形して得られる成形体が提供される。   According to the ninth aspect of the present invention, there is provided a molded body obtained by thermoforming the biaxially stretched polypropylene sheet of any one of the first to eighth aspects.

本発明の二軸延伸ポリプロピレンシート及び成形体は、均一延伸性に優れ、商品価値の高い熱成形製品として、食品、洗剤、医療用品等の各種分野の包装製品として広く用いることができる。   The biaxially stretched polypropylene sheet and molded product of the present invention can be widely used as packaged products in various fields such as foods, detergents and medical supplies as thermoformed products having excellent uniform stretchability and high commercial value.

本発明に係るプロピレン系重合体(A)のGPCにおける分子量分布曲線の一例を示す図である。It is a figure which shows an example of the molecular weight distribution curve in GPC of the propylene-type polymer (A) based on this invention. GPCにおけるクロマトグラムのベースラインと区間の説明の図である。It is a figure of the description of the base line of a chromatogram in GPC, and an area. 本発明に係るプロピレン系重合体(A)のGPCにおける[A−1]由来、[A−2]由来の分子量分布の一例を示す図である。It is a figure which shows an example of the molecular weight distribution derived from [A-1] in GPC of the propylene-type polymer (A) which concerns on this invention. 一軸伸長粘度計で測定された伸長粘度の一例を示すプロット図である。It is a plot figure which shows an example of the extensional viscosity measured with the uniaxial extensional viscometer. 本発明に係るプロピレン系重合体(A)のME(メモリーエフェクト)とMFRの相関を説明する図である。It is a figure explaining the correlation of ME (memory effect) and MFR of the propylene-type polymer (A) based on this invention.

本発明の二軸延伸ポリプロピレンシートは、下記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び(viii)、又はそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有するプロピレン系重合体(A)100〜5重量%と、DSCで測定した融点が150〜170℃であるプロピレン系重合体(B)0〜95重量%とを配合したプロピレン系樹脂組成物からなる二軸延伸ポリプロピレンシートである。
また、本発明の二軸延伸ポリプロピレンシートは、下記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び(viii)、又はそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有するプロピレン系重合体(A)100〜5重量%と、DSCで測定した融点が150〜170℃であるプロピレン系重合体(B)0〜95重量%とを配合したプロピレン系樹脂組成物からなる押出シートを、二軸方向に延伸させることよって得られるものである。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.5〜20g/10分である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5〜10.5である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
(vii) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(viii) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
(ix)(ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
(x)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
The biaxially oriented polypropylene sheet of the present invention includes the following (i) to (vi), or in addition to them, (vii) and (viii), or in addition to them, (ix) and / or (x) Propylene polymer (A) having the characteristics and properties of 100 to 5% by weight and a propylene polymer (B) having a melting point of 150 to 170 ° C. measured by DSC and 0 to 95% by weight It is a biaxially stretched polypropylene sheet made of a resin composition.
Moreover, the biaxially stretched polypropylene sheet of the present invention includes the following (i) to (vi), or in addition to them, (vii) and (viii), or in addition to them, (ix) and / or ( x) The propylene polymer (A) having the characteristics and properties of 100 to 5 to 5% by weight and the propylene polymer (B) having a melting point measured by DSC of 150 to 170 ° C. and 0 to 95% by weight were blended. It is obtained by stretching an extruded sheet made of a propylene-based resin composition in the biaxial direction.
(I) Melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 0.5 to 20 g / 10 min.
(Ii) The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 3.5 to 10.5.
(Iii) In the molecular weight distribution curve obtained by GPC, the ratio of the component having a molecular weight (M) of 2 million or more to the total amount is 0.4% by weight or more and less than 10% by weight.
(Iv) In temperature rising elution fractionation (TREF) with orthodichlorobenzene (ODCB), the component eluted at a temperature of 40 ° C. or less is 3.0% by weight or less.
(V) The isotactic triad fraction (mm) measured by 13 C-NMR is 95% or more.
(Vi) The strain hardening degree (λmax) in the measurement of the extensional viscosity is 6.0 or more.
(Vii) (MT230 ° C.) ≧ 5 g
[In the formula, MT230 ° C. is measured using a melt tension tester, capillary: diameter 2.1 mm, cylinder diameter: 9.6 mm, cylinder extrusion speed: 10 mm / min, winding speed: 4.0 m / min, temperature: 230 It represents the melt tension when measured under the condition of ° C. ]
(Viii) (MaxDraw) ≧ 10 m / min [where, MaxDraw (maximum winding speed) is the winding speed immediately before the resin breaks when the winding speed is increased in the measurement of the melt tension. Represent. ]
(Ix) (ME) ≧ −0.26 × log (MFR) +1.9
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]
(X) In the molecular weight distribution curve obtained by GPC, the common logarithm of the molecular weight corresponding to the peak position is Tp, and the common logarithm of the molecular weight at the position that is 50% of the peak height is L 50 and H 50 (L 50 is Tp Lower molecular weight side, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively, α / β is larger than 0.9 and 2 Less than 0.0.

以下、プロピレン系樹脂組成物の構成成分、ポリプロピレン系樹脂組成物の調製方法、二軸延伸ポリプロピレンシート等について詳細に説明する。
I.プロピレン系樹脂組成物の構成成分
1.プロピレン系重合体(A)
本発明の二軸延伸ポリプロピレンシートに用いられるプロピレン系樹脂組成物を構成するプロピレン系重合体(A)は、上記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び(viii)、又はそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有する。
以下、項目毎に、順次説明する。
Hereinafter, the components of the propylene-based resin composition, the method for preparing the polypropylene-based resin composition, the biaxially stretched polypropylene sheet, and the like will be described in detail.
I. Components of propylene-based resin composition Propylene polymer (A)
The propylene-based polymer (A) constituting the propylene-based resin composition used for the biaxially stretched polypropylene sheet of the present invention is the above (i) to (vi), or in addition to them, (vii) and (viii) ), Or in addition to these, (ix) and / or (x) characteristics / properties.
Hereinafter, each item will be described sequentially.

(1)プロピレン系重合体(A)の構造、長鎖分岐構造の規定と同定方法
本発明に係るプロピレン系重合体(A)は、溶融流動性や溶融張力を制御した、物性と溶融加工性のバランスに優れた長鎖分岐型のプロピレン系重合体である。
本発明に係るプロピレン系重合体(A)は、上記長鎖分岐が導入されることにより、溶融物性が格段に向上していると、考察されている。
一般的には、分岐構造や分岐数の検出、定量には、13C−NMRが用いられる。また、分岐数や分岐分布の検出、定量には、13C−NMRやGPC−vis、GPC−mallsが用いられる。
分岐構造に関しては、長鎖分岐ができる機構、メカニズムを考慮して、本発明者は、下記のように推察している。
(1) Definition of propylene polymer (A), long chain branched structure and identification method The propylene polymer (A) according to the present invention has controlled physical properties and melt processability with controlled melt fluidity and melt tension. It is a long-chain branched propylene polymer having an excellent balance.
It is considered that the propylene-based polymer (A) according to the present invention has a marked improvement in melt properties due to the introduction of the long chain branching.
In general, 13 C-NMR is used for detection and quantification of the branched structure and the number of branches. Further, 13 C-NMR, GPC-vis, and GPC-malls are used for detection and quantification of the number of branches and branch distribution.
Regarding the branched structure, the present inventor has inferred as follows in consideration of the mechanism and mechanism capable of long-chain branching.

すなわち、後述するプロピレン系重合体の製造方法で用いられる触媒成分[A−1]由来の活性種から、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により、ポリマー片末端が主としてプロペニル構造を示し、所謂マクロマーが生成する。
βメチル脱離反応で停止した末端のプロペニル構造を下記に示す(参照文献:Macromol. Rapid Commun. 2000,21,1103―1107)。
That is, from the active species derived from the catalyst component [A-1] used in the method for producing a propylene-based polymer described later, one end of the polymer mainly has a propenyl structure by a special chain transfer reaction generally called β-methyl elimination. A so-called macromer is generated.
The terminal propenyl structure terminated by the β-methyl elimination reaction is shown below (reference: Macromol. Rapid Commun. 2000, 21, 1103-1107).

Figure 2017101229
Figure 2017101229

このマクロマーは、より高分子量を生成することができ、より共重合性がよい触媒成分[A−2]由来の活性種に取り込まれ、マクロマー共重合が進行していると、推察している。
したがって、本発明に係るプロピレン系重合体(A)は、下記構造式(2)に示すような特定の分岐構造を有する。
構造式(2)において、Ca、Cb、Ccは、分岐炭素に隣接するメチレン炭素を示し、Cbrは、分岐鎖の根元のメチン炭素を示し、P、P、Pは、プロピレン系重合体残基を示す。
、P、Pは、それ自体の中に、構造式(2)に記載されたCbrとは、別の分岐炭素(Cbr)を含有することもあり得る。
It is speculated that this macromer is capable of producing a higher molecular weight and is taken in by the active species derived from the catalyst component [A-2] having a better copolymerization property, and the macromer copolymerization is proceeding.
Therefore, the propylene polymer (A) according to the present invention has a specific branched structure as shown in the following structural formula (2).
In Structural Formula (2), Ca, Cb, and Cc represent methylene carbon adjacent to the branched carbon, Cbr represents the methine carbon at the root of the branched chain, and P 1 , P 2 , and P 3 represent propylene-based heavy ions. Combined residues are indicated.
P 1 , P 2 , and P 3 may contain a branched carbon (Cbr) different from Cbr described in the structural formula (2) in itself.

Figure 2017101229
Figure 2017101229

このような分岐構造は、13C−NMR分析により同定される。各ピークの帰属は、Macromolecules,Vol.35、No.10.2002年、3839−3842頁の記載を参考にすることができる。すなわち、44.0〜44.1ppm,44.7〜44.8ppm及び44.8〜44.9ppmに、それぞれ1つ、合計3つのメチレン炭素(Ca、Cb、Cc)が観測され、31.6〜31.7ppmにメチン炭素(Cbr)が観測される。上記の31.6〜31.7ppmに観測されるメチン炭素を、以下、分岐炭素(Cbr)と略称することがある。
分岐メチン炭素Cbrに近接する3つのメチレン炭素が、ジアステレオトピックに非等価に3本に分かれて観測されることが特徴である。
Such a branched structure is identified by 13 C-NMR analysis. The assignment of each peak is described in Macromolecules, Vol. 35, no. 10. The description of 2002, pages 3839-3842 can be referred to. That is, a total of three methylene carbons (Ca, Cb, Cc) were observed at 44.0-44.1 ppm, 44.7-44.8 ppm, and 44.8-44.9 ppm, respectively. Methine carbon (Cbr) is observed at ˜31.7 ppm. Hereinafter, the methine carbon observed at 31.6 to 31.7 ppm may be abbreviated as branched carbon (Cbr).
It is characterized in that three methylene carbons adjacent to the branched methine carbon Cbr are observed in three non-equivalent diastereotopics.

本発明にいう13C−NMRで帰属される分岐鎖は、プロピレン系重合体の主鎖から分岐した炭素数5以上のプロピレン系重合体残基を示す。それと炭素数4以下の分岐とは、分岐炭素のピーク位置が異なることにより、区別できる(Macromol.chem.phys.2003年、Vol.204、1738頁参照)。 The branched chain assigned by 13 C-NMR referred to in the present invention represents a propylene polymer residue having 5 or more carbon atoms branched from the main chain of the propylene polymer. It can be distinguished from a branch having 4 or less carbon atoms by the difference in the peak position of the branched carbon (see Macromol. Chem. Phys. 2003, Vol. 204, page 1738).

一般的に、ポリマーの分岐の数と長さの規定について考察すると、分岐数が多いほど、溶融物性は、向上する。一方、分岐数が分子間で偏在すると、ゲルが発生してしまい、溶融物性向上の効果も小さくなると、考えられている。
分岐数は、上記の13C−NMRによる帰属を利用して、31.6〜31.7ppmに観測される分岐炭素(Cbr)の全骨格形成炭素1000個あたり個数を分岐数(密度)とする。但し、全骨格形成炭素とは、メチル炭素以外の全ての炭素原子を意味する。
In general, considering the definition of the number of branches and the length of the polymer, the higher the number of branches, the better the melt properties. On the other hand, it is considered that if the number of branches is unevenly distributed between molecules, a gel is generated and the effect of improving the melt properties is reduced.
The number of branches is defined as the number of branches (density) per 1000 total skeleton-forming carbons of the branched carbon (Cbr) observed at 31.6 to 31.7 ppm using the assignment by 13 C-NMR. . However, the total skeleton-forming carbon means all carbon atoms other than methyl carbon.

本発明に係る改良された溶融物性を示すプロピレン系重合体(A)には、レオロジー的観点から、分岐数が0.01以上であることが必要と考える。
また、分岐の量が多すぎると、ゲルが生成して成形品の外観を損ねるという懸念がある。さらに、分岐の量が多すぎると、成形時に高速で延伸した場合に、溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こすという問題がある。
したがって、分岐数は、0.4個以下がよく、好ましくは0.2個以下であり、更に好ましくは0.1未満である。
現在の高磁場NMRの13C−NMRを用いた場合でも、測定限界が0.1以上であり、現在までのところ定量まで至っていない。尚、分岐そのものは、検出される場合は、「trace」として評価される。
From the rheological point of view, the propylene polymer (A) showing improved melt properties according to the present invention needs to have a branch number of 0.01 or more.
Moreover, when there is too much quantity of branching, there exists concern that a gel will produce | generate and the external appearance of a molded article may be impaired. Furthermore, if the amount of branching is too large, there is a problem that when the melt is stretched at a high speed during molding, the melt breaks, that is, the so-called melt spreadability is deteriorated.
Therefore, the number of branches is preferably 0.4 or less, preferably 0.2 or less, and more preferably less than 0.1.
Even in the case of using the current 13 C-NMR of high magnetic field NMR, the measurement limit is 0.1 or more, and the quantification has not been reached so far. Note that the branch itself is evaluated as “trace” when it is detected.

また、本発明に係るプロピレン系重合体(A)は、分岐長に関して、ポリプロピレンの絡み合い分子量である7000以上が必要とされる。骨格炭素数に換算すると、約400以上に相当する。ここでいう骨格炭素とは、メチル炭素以外の全ての炭素原子を意味する。分岐長がより長くなると、溶融物性は、より向上すると考えられる。
したがって、本発明に係るプロピレン系重合体(A)の分岐鎖長は、骨格炭素数500(ポリプロピレン分子量換算:1.1万)以上であり、好ましくは骨格炭素数1000(ポリプロピレン分子量換算:2.1万)以上であり、更に好ましくは骨格炭素数2000(ポリプロピレン分子量換算:4.2万)以上である。
ここでいうポリプロピレン分子量換算値は、厳密にはGPCで測定される分子量値とは異なるものであるが、GPCで測定される数平均分子量(Mn)に近似している。
したがって、本発明に係るプロピレン系重合体(A)の分岐長は、GPCで測定される数平均分子量(Mn)で1.1万以上、好ましくは2.1万以上、さらに好ましくは4.2万以上と、置き換えられる。
In addition, the propylene polymer (A) according to the present invention is required to have a branching length of 7000 or more, which is an entangled molecular weight of polypropylene. When converted into skeleton carbon number, it corresponds to about 400 or more. As used herein, skeletal carbon means all carbon atoms other than methyl carbon. It is considered that the melt physical properties are further improved as the branch length becomes longer.
Therefore, the branched chain length of the propylene polymer (A) according to the present invention is 500 or more skeleton carbon atoms (polypropylene molecular weight conversion: 11,000), preferably 1000 skeleton carbon atoms (polypropylene molecular weight conversion: 2. 10,000) or more, and more preferably 2000 or more skeleton carbon atoms (polypropylene molecular weight conversion: 42,000).
The polypropylene molecular weight converted value here is strictly different from the molecular weight value measured by GPC, but approximates the number average molecular weight (Mn) measured by GPC.
Therefore, the branch length of the propylene-based polymer (A) according to the present invention is 11,000 or more, preferably 21,000 or more, more preferably 4.2 in terms of number average molecular weight (Mn) measured by GPC. Replaced with more than 10,000.

また、重合機構を考えた場合、触媒成分[A−1]由来の活性種から生成するマクロマーが主鎖に組み込まれて分岐構造を形成するので、マクロマーの平均分子量が、組み込まれた分岐鎖の平均分子量として、特徴付けられる。
例えば、本発明に係るプロピレン系重合体(A)では、[A−1]由来の活性種から生成するマクロマーの分子量は、数平均分子量で5万の場合、組み込まれた分岐鎖の平均分子量が5万あり、骨格炭素に換算すると2400個と、解釈される。
上記[A−1]由来の活性種から生成するマクロマーの数平均分子量は、GPCにおいて[A−1]由来の部分のピークトップ、または[A−1]単独で重合を行った場合の分子量から推定できる。
Further, when considering the polymerization mechanism, the macromer generated from the active species derived from the catalyst component [A-1] is incorporated into the main chain to form a branched structure, so that the average molecular weight of the macromer is that of the incorporated branched chain. Characterized as average molecular weight.
For example, in the propylene polymer (A) according to the present invention, when the molecular weight of the macromer produced from the active species derived from [A-1] is 50,000 in number average molecular weight, the average molecular weight of the incorporated branched chain is There are 50,000, and it is interpreted as 2400 when converted into skeleton carbon.
The number average molecular weight of the macromer generated from the active species derived from the above [A-1] is based on the molecular weight when the polymerization is carried out by the peak top of the portion derived from [A-1] in GPC or [A-1] alone. Can be estimated.

一方、ポリマーの分岐分布に関しては、GPC−visやGPC−mallsで測定が可能であるが、重合機構から考察すると、[A−1]由来のマクロマーが、より高分子量でより共重合性が高い成分[A−2]由来の活性種に取り込まれて、分岐が生成していると考えられるため、[A−2]由来の分子量成分に長鎖分岐が導入されていると考察している。
触媒成分[A−2]由来の分子量成分は、[A−1]由来の分子量成分と比べて、より高分子量であるので、分岐分布としては、高分子量側([A−2]由来側)にも、分岐が導入された分布形態になっていると考察している。
また、[A−1]由来の分子量成分には、[A−1]自身でマクロマーを取り込んで、できた分岐構造も存在する。
上記[A−1]由来、[A−2]由来の分子量分布の一例を、図3に示す。
On the other hand, the branched distribution of the polymer can be measured by GPC-vis or GPC-malls, but considering the polymerization mechanism, the macromer derived from [A-1] has a higher molecular weight and higher copolymerization. It is considered that a long chain branch is introduced into the molecular weight component derived from [A-2] because it is considered that a branch is generated by incorporation into the active species derived from the component [A-2].
Since the molecular weight component derived from the catalyst component [A-2] has a higher molecular weight than the molecular weight component derived from [A-1], the branched distribution has a high molecular weight side ([A-2] derived side). In addition, it is considered that the distribution form is introduced with branching.
In addition, the molecular weight component derived from [A-1] also has a branched structure formed by incorporating the macromer by [A-1] itself.
An example of the molecular weight distribution derived from [A-1] and [A-2] is shown in FIG.

分岐数と分岐分布の関係について説明すると、溶融物性を改良するためには、分岐数が多いことが一般に必要と考えられており、特開2007−154121号公報には、分岐数0.1/1000骨格炭素以上のプロピレン単独重合体が開示されている。
しかしながら、伸長粘度の測定における歪硬化度は6未満であり、本発明に係るプロピレン系重合体(A)の伸長粘度の測定における歪硬化度(λmax)が6.0以上と比べても、改良効果は十分ではない。これは単一の錯体で製造するため、望ましい分岐成分が十分に導入されていないためであり、分岐が単純に平均的に多くても、溶融物性改良の効果が小さいことを意味している。
本発明に係るプロピレン系重合体(A)は、平均的な分岐数が0.1個未満であるが、複数の錯体を組み合わせることで分岐を高分子量側にも導入することにより、溶融物性が顕著に改良されたものである。
Describing the relationship between the number of branches and the branch distribution, it is generally considered that a large number of branches is necessary in order to improve the melt properties. Japanese Patent Application Laid-Open No. 2007-154121 discloses that the number of branches is 0.1 / A propylene homopolymer having 1000 skeleton carbons or more is disclosed.
However, the degree of strain hardening in the measurement of the extensional viscosity is less than 6, and even when the degree of strain hardening (λmax) in the measurement of the extensional viscosity of the propylene polymer (A) according to the present invention is 6.0 or more, it is improved. The effect is not enough. This is because the desired branching component is not sufficiently introduced because it is produced from a single complex, meaning that the effect of improving the melt properties is small even if the number of branches is simply large on average.
The propylene-based polymer (A) according to the present invention has an average number of branches of less than 0.1, but by introducing a branch also to the high molecular weight side by combining a plurality of complexes, the melt properties are improved. This is a significant improvement.

また、側鎖の立体規則性について説明すると、主鎖および側鎖の立体規則性は、それぞれ用いる[A−1]および[A−2]の持つ立体規則能力によって決まる。側鎖の立体規則性が低いと、例え主鎖の結晶性が高くても、全体の結晶性を落としてしまう。そこでより高剛性の重合体を得るためには、側鎖、主鎖とも立体規則性が高いことが好ましい。その値としては、主鎖、側鎖とも、mm分率で95%以上である。特に好ましくは96%以上であり、更に好ましくは97%以上である。
側鎖の立体規則性は、[A−1]単独による重合体の立体規則性と等しいと考えられる。
Further, the stereoregularity of the side chain will be described. The stereoregularity of the main chain and the side chain is determined by the stereoregular ability of [A-1] and [A-2] used respectively. If the stereoregularity of the side chain is low, even if the crystallinity of the main chain is high, the overall crystallinity is deteriorated. Therefore, in order to obtain a higher-rigidity polymer, it is preferable that the side chain and the main chain have high stereoregularity. As the value, both the main chain and the side chain are 95% or more in mm fraction. Especially preferably, it is 96% or more, More preferably, it is 97% or more.
The stereoregularity of the side chain is considered to be equal to the stereoregularity of the polymer by [A-1] alone.

(2)プロピレン系重合体(A)の物性
本発明におけるプロピレン系重合体(A)は、溶融流動性や溶融張力を制御した、物性と溶融加工性のバランスに優れている。プロピレン系重合体(A)の物性について、説明する。
(2) Physical property of propylene polymer (A) The propylene polymer (A) in this invention is excellent in the balance of the physical property and melt processability which controlled melt fluidity and melt tension. The physical properties of the propylene polymer (A) will be described.

(2−1)メルトフローレート(MFR):
本発明に係るプロピレン系重合体(A)は、温度230℃、2.16kg荷重で測定するメルトフローレート(MFR)が0.5〜20g/10分であることを必要とする。
プロピレン系重合体(A)のメルトフローレート(MFR)は0.5〜20g/10分であり、0.5〜15g/10分が好ましく、0.9〜10g/10分の範囲にあるのがより好ましい。MFRがこの範囲にあると原反のシート成形性が優れる。
尚、メルトフローレート(MFR)は、JIS K6921−2の「プラスチック−ポリプロピレン(PP)成形用及び押出用材料−第2部:試験片の作り方及び性質の求め方」に準拠して、試験条件:230℃、荷重2.16kgfで測定した値である。
(2-1) Melt flow rate (MFR):
The propylene polymer (A) according to the present invention needs to have a melt flow rate (MFR) measured at a temperature of 230 ° C. and a load of 2.16 kg of 0.5 to 20 g / 10 minutes.
The melt flow rate (MFR) of the propylene polymer (A) is 0.5 to 20 g / 10 minutes, preferably 0.5 to 15 g / 10 minutes, and is in the range of 0.9 to 10 g / 10 minutes. Is more preferable. When the MFR is in this range, the sheet formability of the original fabric is excellent.
The melt flow rate (MFR) is a test condition in accordance with JIS K6921-2 “Plastics—Polypropylene (PP) molding and extrusion materials—Part 2: How to make test pieces and properties”. : A value measured at 230 ° C. and a load of 2.16 kgf.

(2−2)GPCで測定する平均分子量及び分子量分布(Mw、Mn、Q値):
本発明に係るプロピレン系重合体(A)は、ゲルパーミエーションクロマトグラフィー(GPC)測定による重量平均分子量(Mw)と数平均分子量(Mn)の比、Mw/Mn(Q値)が、3.5〜10.5の範囲であることが必要である。
Q値は、分子量分布の広がりを表す指標であり、この値が大きいほど、分子量分布が広いことを意味する。Q値が小さすぎると、分布が狭い為に、溶融流動性と加工性のバランスが悪くなる。したがって、Q値は3.5以上が必要であり、好ましくは4.0以上である。更に好ましくは4.5以上である。一方、Q値が大きすぎると、必要としない(低)分子量成分の量が増えて、満足する物性のものが得られない。したがって、Q値は10.5以下が必要であり、好ましくは8.0以下であり、更に好ましくは7.5以下である。
(2-2) Average molecular weight and molecular weight distribution (Mw, Mn, Q value) measured by GPC:
The propylene polymer (A) according to the present invention has a weight-average molecular weight (Mw) to number-average molecular weight (Mn) ratio, Mw / Mn (Q value) of 3 by gel permeation chromatography (GPC) measurement. It must be in the range of 5 to 10.5.
The Q value is an index representing the spread of the molecular weight distribution, and the larger the value, the wider the molecular weight distribution. If the Q value is too small, the distribution is narrow, and the balance between melt fluidity and workability becomes poor. Accordingly, the Q value needs to be 3.5 or more, preferably 4.0 or more. More preferably, it is 4.5 or more. On the other hand, if the Q value is too large, the amount of unnecessary (low) molecular weight components increases, and satisfactory physical properties cannot be obtained. Therefore, the Q value needs to be 10.5 or less, preferably 8.0 or less, and more preferably 7.5 or less.

(2−3)GPCによる分子量分布曲線から得られる分子量分布の広がりの高分子量側への偏り:
本発明に係るプロピレン系重合体(A)は、GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満であることが望ましい。ここで、α/βは、分子量分布の広がりの高分子量側への偏りを表す指標である。
分子量分布の広がり方に関しては、GPCによって得られる分子量分布曲線で示される。即ち、分子量(MW)の常用対数を横軸として、縦軸に、当該MWに相当する分子の相対微分質量をプロットしたグラフが作成される。
なお、ここにいう分子量(MW)とは、プロピレン単独重合体を構成する個々の分子の分子量であって、プロピレン単独重合体の重量平均分子量(Mw)とは、異なるものである。図1は、分子量分布曲線の一例を示す図である。作成したグラフからαおよびβが求められる。本発明においては、上記のように、α/βが0.9より大きく、2.0未満であることが望ましい。
(2-3) Bias of molecular weight distribution obtained from GPC molecular weight distribution curve toward high molecular weight side:
In the molecular weight distribution curve obtained by GPC, the propylene-based polymer (A) according to the present invention has a common logarithm of the molecular weight corresponding to the peak position as Tp and a common logarithm of the molecular weight at a position where the peak height is 50%. L 50 and H 50 (L 50 is lower molecular weight side than Tp, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively. It is desirable that / β is greater than 0.9 and less than 2.0. Here, α / β is an index representing the deviation of the molecular weight distribution toward the high molecular weight side.
The spread of the molecular weight distribution is indicated by a molecular weight distribution curve obtained by GPC. That is, a graph is created by plotting the common logarithm of molecular weight (MW) on the horizontal axis and the relative differential mass of the molecule corresponding to the MW on the vertical axis.
The molecular weight (MW) referred to here is the molecular weight of individual molecules constituting the propylene homopolymer, and is different from the weight average molecular weight (Mw) of the propylene homopolymer. FIG. 1 is a diagram showing an example of a molecular weight distribution curve. Α and β are obtained from the created graph. In the present invention, as described above, it is desirable that α / β is greater than 0.9 and less than 2.0.

通常、単一活性点を持つ触媒で均一な重合を行った場合、分子量分布は最も確からしい分布の形状となる。この最も確からしい分布のα/βは、0.9と算出される。
したがって、本発明のプロピレン単独重合体の分子量分布は、単一活性点で均一な重合をした重合体の分子量分布と比べて、より高分子量側に一層広がっていることを意味している。
本発明に係るプロピレン系重合体(A)は、α/βが0.9より大きいことが望ましく、好ましくは1.0以上であり、更に好ましくは1.1以上である。α/βが0.9より大きい、高分子量成分の量が相対的に十分あるため、溶融張力やスウェル比が高く、成形性が良好である。
また、本発明に係るプロピレン系重合体(A)は、α/βが2.0未満であることが望ましく、好ましくは1.7未満であり、更に好ましくは1.6未満である。α/βが2.0未満であると、高分子量成分の量が多くなり過ぎることがなく、流動性が良好である。
なお、分子量分布曲線において、ピークが2つ以上現れることがある。その場合は、最大ピークを本発明のピークと置き換えることができる。また、H50が2つ以上現れる場合は、一番高分子量側の分子量で置き換えることができる。同様に、L50が2つ以上現れる場合は、一番低分子量側の分子量で置き換えることができる。
Usually, when uniform polymerization is carried out with a catalyst having a single active site, the molecular weight distribution has the most probable distribution shape. The most probable distribution α / β is calculated as 0.9.
Therefore, the molecular weight distribution of the propylene homopolymer of the present invention means that the molecular weight distribution of the polymer obtained by uniform polymerization at a single active site is further spread to the higher molecular weight side.
In the propylene polymer (A) according to the present invention, α / β is desirably greater than 0.9, preferably 1.0 or more, and more preferably 1.1 or more. Since α / β is greater than 0.9 and the amount of the high molecular weight component is relatively sufficient, the melt tension and swell ratio are high, and the moldability is good.
Moreover, as for the propylene polymer (A) based on this invention, it is desirable that (alpha) / (beta) is less than 2.0, Preferably it is less than 1.7, More preferably, it is less than 1.6. When α / β is less than 2.0, the amount of the high molecular weight component does not increase excessively and the fluidity is good.
In the molecular weight distribution curve, two or more peaks may appear. In that case, the maximum peak can be replaced with the peak of the present invention. Also, if the H 50 appears two or more may be replaced with the molecular weight of the lowest molecular weight side. Similarly, when two or more L 50 appear, the molecular weight on the lowest molecular weight side can be replaced.

(2−4)GPCによる分子量分布曲線における分子量(M)が200万以上の成分の比率:
本発明に係るプロピレン系重合体(A)は、GPCによって得られる分子量分布曲線において、重合体全量に対して、分子量(M)が200万以上の成分の比率(以下、分子量M(≧200万)又はW(200万以上)と略称することがある。)が0.4重量%以上10重量%未満である。
上記200万以上の比率(W(200万以上))は、重合体中に含まれる非常に高い分子量成分の比率を示す指標である。
上記非常に高い分子量成分の比率であるW(200万以上)は、GPCによって得られる積分分子量分布曲線(全量を1に規格化)において、分子量(M)が200万(Log(M)=6.3)以下までの積分値を、1から減じた値として定義する。積分分子量分布曲線の一例を同じく図1に示す。
(2-4) Ratio of components having a molecular weight (M) of 2 million or more in the molecular weight distribution curve by GPC:
In the molecular weight distribution curve obtained by GPC, the propylene-based polymer (A) according to the present invention has a ratio of components having a molecular weight (M) of 2 million or more to the total amount of the polymer (hereinafter, molecular weight M (≧ 2 million). ) Or W (may be abbreviated as 2 million or more).) Is 0.4 wt% or more and less than 10 wt%.
The ratio of 2 million or more (W (2 million or more)) is an index indicating the ratio of a very high molecular weight component contained in the polymer.
The very high molecular weight component ratio W (2 million or more) is an integral molecular weight distribution curve obtained by GPC (the total amount is normalized to 1), and the molecular weight (M) is 2 million (Log (M) = 6). .3) The integral value up to the following is defined as a value obtained by subtracting from 1. An example of the integrated molecular weight distribution curve is also shown in FIG.

本発明に係るプロピレン系重合体(A)は、望ましくは、W(200万以上)が0.4重量%以上である必要があり、好ましくは1.0重量%以上であり、更に好ましくは2.0重量%以上である。W(200万以上)が0.4重量%以上であると、分子量の高い成分、中でも非常に分子量の高い成分を少量含有することになり、溶融張力やスウェル比が高く、成形性が良好となる。なお、この非常に分子量の高い成分には、前述したような分岐成分を含んでいると考えられる。
また、本発明に係るプロピレン系重合体(A)は、望ましくは、W(200万以上)が10重量%未満である必要があり、好ましくは6.0重量%未満、更に好ましくは5重量%未満である。W(200万以上)が10重量%未満であると、流動性が良好で、非常に分子量の高い成分に起因するゲルの生成が抑制され、成形品の外観も良好である。また、W(200万以上)が10重量%未満であると、成形時に高速で延伸した場合に、溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こすことも防止できる。
The propylene polymer (A) according to the present invention desirably has W (2 million or more) of 0.4% by weight or more, preferably 1.0% by weight or more, and more preferably 2%. 0.0% by weight or more. When W (2 million or more) is 0.4% by weight or more, a small amount of a component having a high molecular weight, especially a component having a very high molecular weight, is contained, the melt tension and swell ratio are high, and the moldability is good. Become. In addition, it is thought that this very high molecular weight component contains a branched component as described above.
The propylene polymer (A) according to the present invention desirably has W (2 million or more) less than 10% by weight, preferably less than 6.0% by weight, more preferably 5% by weight. Is less than. When W (2 million or more) is less than 10% by weight, the fluidity is good, the formation of a gel due to a very high molecular weight component is suppressed, and the appearance of the molded product is also good. Moreover, when W (2 million or more) is less than 10% by weight, it is possible to prevent so-called deterioration of melt ductility that the melt breaks when stretched at a high speed during molding.

上記で定義される重量平均分子量(Mw)、Q値、α/β、及びW(200万以上)の値は、いずれも、ゲルパーミエーションクロマトグラフィー(GPC)によって得られるものであるが、その測定法、測定機器の詳細は、以下の通りである。   The weight average molecular weight (Mw), Q value, α / β, and W (over 2 million) values defined above are all obtained by gel permeation chromatography (GPC). Details of the measuring method and measuring equipment are as follows.

装置:Waters社製GPC(ALC/GPC、150C)
検出器:FOXBORO社製MIRAN、1A、IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本直列)
移動相溶媒:o−ジクロロベンゼン(ODCB)
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
Equipment: GPC manufactured by Waters (ALC / GPC, 150C)
Detector: MIRAN, 1A, IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 in series) manufactured by Showa Denko KK
Mobile phase solvent: o-dichlorobenzene (ODCB)
Measurement temperature: 140 ° C
Flow rate: 1.0 ml / min Injection volume: 0.2 ml

試料の調製は、試料をODCB(0.5mg/mLのBHTを含む)を用いて、1mg/mLの溶液を調製し、140℃で約1時間を要して、溶解させて行う。
なお、得られたクロマトグラムのベースラインと区間は、図2のように行う。
また、GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー社製の以下の銘柄である。
銘柄:F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるように、ODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して、較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。
分子量への換算に使用する粘度式:[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
The sample is prepared by preparing a 1 mg / mL solution using ODCB (containing 0.5 mg / mL BHT) and dissolving it at 140 ° C. for about 1 hour.
The baseline and section of the obtained chromatogram are performed as shown in FIG.
Further, the conversion from the retention capacity obtained by GPC measurement to the molecular weight is performed using a standard curve prepared in advance by standard polystyrene. The standard polystyrenes used are all the following brands manufactured by Tosoh Corporation.
Brand: F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000
Inject 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL to create a calibration curve. The calibration curve uses a cubic equation obtained by approximation by the least square method.
Viscosity formula used for conversion to molecular weight: [η] = K × M α uses the following numerical values.
PS: K = 1.38 × 10 −4 , α = 0.7
PP: K = 1.03 × 10 −4 , α = 0.78

(2−5)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF):
本発明に係るプロピレン系重合体(A)は、昇温溶出分別(TREF)測定によって得られる溶出曲線において、40℃以下の温度で溶出する成分が3.0重量%以下である必要があり、好ましくは2.0重量%以下であり、更に好ましくは1.0重量%以下あり、非常に好ましくは0.5重量%以下である。40℃以下の温度で溶出する成分が3.0重量%以下であると、40℃以下の温度で溶出する低結晶性成分に起因する、製品全体の結晶性の低下や、製品の剛性といった機械的強度の低下を抑制することができる。
(2-5) Temperature rising elution fractionation with orthodichlorobenzene (ODCB) (TREF):
The propylene-based polymer (A) according to the present invention, in an elution curve obtained by temperature rising elution fractionation (TREF) measurement, the component eluting at a temperature of 40 ° C. or less needs to be 3.0% by weight or less, Preferably it is 2.0 weight% or less, More preferably, it is 1.0 weight% or less, Most preferably, it is 0.5 weight% or less. If the component eluting at a temperature of 40 ° C. or less is 3.0% by weight or less, the machine may have a decrease in crystallinity of the entire product or a product rigidity due to a low crystalline component eluted at a temperature of 40 ° C. or less. The decrease in the mechanical strength can be suppressed.

昇温溶出分別(TREF)による溶出成分の測定法の詳細は、以下の通りである。
試料を140℃でオルトジクロロベンゼンに溶解し溶液とする。これを140℃のTREFカラムに導入した後、8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で40℃まで冷却後、10分間保持する。その後、溶媒であるオルトジクロロベンゼンを1mL/分の流速でカラムに流し、TREFカラム中で40℃のオルトジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
The details of the measurement method of the eluted component by temperature rising elution fractionation (TREF) are as follows.
A sample is dissolved in orthodichlorobenzene at 140 ° C. to obtain a solution. This is introduced into a 140 ° C. TREF column, cooled to 100 ° C. at a rate of 8 ° C./min, and then cooled to 40 ° C. at a rate of 4 ° C./min, and held for 10 minutes. Thereafter, orthodichlorobenzene as a solvent is caused to flow through the column at a flow rate of 1 mL / min, and components dissolved in 40 ° C orthodichlorobenzene are eluted in the TREF column for 10 minutes, and then the heating rate is 100 ° C / hour. The column is linearly heated to 140 ° C. to obtain an elution curve.

カラムサイズ:4.3mmφ×150mm
カラム充填材:100μm表面不活性処理ガラスビーズ
溶媒:オルトジクロロベンゼン
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速:1mL/分
検出器:波長固定型赤外検出器、FOXBORO社製、MIRAN、1A
測定波長:3.42μm
Column size: 4.3mmφ × 150mm
Column packing material: 100 μm surface inert treatment glass beads Solvent: Orthodichlorobenzene Sample concentration: 5 mg / mL
Sample injection volume: 0.1 mL
Solvent flow rate: 1 mL / min Detector: Fixed wavelength infrared detector, manufactured by FOXBORO, MIRAN, 1A
Measurement wavelength: 3.42 μm

(2−6)13C−NMRで測定するアイソタクチックトライアッド分率(mm):
本発明に係るプロピレン系重合体(A)は、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が95%以上の立体規則性を有するものである。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合である。このmm分率は、ポリプロピレン分子鎖中のメチル基の立体構造がアイソタクチックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。
mm分率がこの値より小さいと、製品の弾性率が低下するなど機械的物性が低下してしまう。従って、mm分率は、好ましくは96%以上であり、さらに好ましくは97%以上である。
また、主鎖および側鎖の立体規則性は、後述するプロピレン系重合体(A)の製造方法で用いられる触媒成分[A−1]および[A−2]のもつ立体規則能力によって決まる。側鎖の立体規則性が低いと、例え主鎖の結晶性が高くても全体の結晶性を落としてしまう。そこでより高剛性の重合体を得るためには側鎖、主鎖とも立体規則性が高いことが好ましい。その値としては、主鎖、側鎖ともmm分率で95%以上である。特に好ましくは96%以上であり、更に好ましくは97%以上である。
(2-6) Isotactic triad fraction (mm) measured by 13 C-NMR:
The propylene polymer (A) according to the present invention has a stereoregularity in which the mm fraction of the three propylene units obtained by 13 C-NMR is 95% or more.
The mm fraction is the ratio of three propylene unit chains in which the direction of methyl branching in each propylene unit is the same among arbitrary three propylene unit chains composed of head-to-tail bonds in the polymer chain. This mm fraction is a value indicating that the steric structure of the methyl group in the polypropylene molecular chain is controlled isotactically, and the higher the value, the higher the degree of control.
If the mm fraction is smaller than this value, the mechanical properties such as the elastic modulus of the product are lowered. Therefore, the mm fraction is preferably 96% or more, and more preferably 97% or more.
The stereoregularity of the main chain and the side chain is determined by the stereoregular ability of the catalyst components [A-1] and [A-2] used in the production method of the propylene polymer (A) described later. If the stereoregularity of the side chain is low, even if the crystallinity of the main chain is high, the overall crystallinity is degraded. Therefore, in order to obtain a higher rigidity polymer, it is preferable that the side chain and the main chain have high stereoregularity. As the value, the main chain and the side chain are 95% or more in mm fraction. Especially preferably, it is 96% or more, More preferably, it is 97% or more.

13C−NMRによるプロピレン単位3連鎖のmm分率の測定法の詳細は、以下の通りである。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2、−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定した。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定した。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
The detail of the measuring method of mm fraction of the propylene unit 3 chain | strand by 13 C-NMR is as follows.
A sample of 375 mg was completely dissolved in 2.5 ml of deuterated 1,1,2,2, -tetrachloroethane in an NMR sample tube (10φ), and then measured at 125 ° C. by a proton complete decoupling method. The chemical shift was set to 74.2 ppm in the middle of the three peaks of deuterated 1,1,2,2-tetrachloroethane. The chemical shift of other carbon peaks is based on this.
Flip angle: 90 degrees Pulse interval: 10 seconds Resonance frequency: 100 MHz or more Integration frequency: 10,000 times or more Observation range: -20 ppm to 179 ppm
Number of data points: 32768

mm分率の測定は、前記の条件により測定された13C−NMRスペクトルを用いて行う。
スペクトルの帰属は、Macromolecules,(1975年)8卷,687頁やPolymer,30巻 1350頁(1989年)を参考に行った。
The mm fraction is measured using a 13 C-NMR spectrum measured under the above conditions.
Spectral assignments were made with reference to Macromolecules, (1975) 8 pp. 687 and Polymer, 30 pages 1350 (1989).

以下に、mm分率決定のより具体的な方法を述べる。
プロピレン単位を中心として頭尾結合した3連鎖の中心プロピレンのメチル基に由来するピークは、その立体配置に応じて、3つの領域に生じる。
mm:約24.3〜約21.1ppm
mr:約21.2〜約20.5ppm
rr:約20.5〜約19.8ppm
各領域の化学シフト範囲は、分子量や、共重合体組成により若干シフトするが、上記3領域の識別は、容易である。
ここで、mm、mrおよびrrは、それぞれ下記の構造で表される。
A more specific method for determining the mm fraction will be described below.
Peaks derived from the methyl group of the three-chain central propylene bonded head-to-tail around the propylene unit occur in three regions depending on the configuration.
mm: about 24.3 to about 21.1 ppm
mr: about 21.2 to about 20.5 ppm
rr: about 20.5 to about 19.8 ppm
The chemical shift range of each region slightly shifts depending on the molecular weight and copolymer composition, but the above three regions can be easily identified.
Here, mm, mr, and rr are each represented by the following structure.

Figure 2017101229
Figure 2017101229

mm分率は、次の数式(I)から、算出される。
mm分率=mm領域のピーク面積/(mm領域のピーク面積+mr領域のピーク面積+rr領域のピーク面積)×100 [%] (I)
The mm fraction is calculated from the following mathematical formula (I).
mm fraction = mm area peak area / (mm area peak area + mr area peak area + rr area peak area) × 100 [%] (I)

また、本発明に係るプロピレン系重合体(A)には、エチレン単位を含む以下の部分構造を持ち得る。   Moreover, the propylene polymer (A) according to the present invention may have the following partial structure containing an ethylene unit.

Figure 2017101229
Figure 2017101229

部分構造PPEの中心プロピレン単位のメチル基(PPE−メチル基)は、20.9ppm付近のmr領域で共鳴し、部分構造EPEの中心プロピレン単位のメチル基(EPE−メチル基)は、20.2ppm付近のrr領域で共鳴するため、このような部分構造を有する場合には、mr、rr両領域のピーク面積から、PPE−メチル基及びEPE−メチル基に基づくピーク面積を減ずる必要がある。PPE−メチル基に基づくピーク面積は、対応するメチン基(31.0ppm付近で共鳴)のピーク面積により評価でき、EPE−メチル基に基づくピーク面積は、対応するメチン基(33.3ppm付近で共鳴)のピーク面積により評価できる。   The methyl group (PPE-methyl group) of the central propylene unit of the partial structure PPE resonates in the mr region around 20.9 ppm, and the methyl group (EPE-methyl group) of the central propylene unit of the partial structure EPE is 20.2 ppm. Since resonance occurs in the vicinity of the rr region, in the case of having such a partial structure, it is necessary to reduce the peak areas based on the PPE-methyl group and the EPE-methyl group from the peak areas of both the mr and rr regions. The peak area based on the PPE-methyl group can be evaluated by the peak area of the corresponding methine group (resonance at around 31.0 ppm), and the peak area based on the EPE-methyl group is resonant at the corresponding methine group (around 33.3 ppm). ) Peak area.

また、位置不規則ユニットを含む部分構造として、下記構造(i)、構造(ii)、構造(iii)および構造(iv)を有することがある。   Moreover, as a partial structure containing a position irregular unit, it may have the following structure (i), structure (ii), structure (iii), and structure (iv).

Figure 2017101229
Figure 2017101229

このうち、炭素A、A’、A”ピークは、mr領域に、炭素B、B’ピークは、rr領域に現れる。さらに、炭素C、C’ピークは、16.8〜17.8ppmに現れる。
従って、式(I)においてmm分率を算出する場合には、それぞれmr領域のピーク面積、rr領域のピーク面積から、頭−尾結合した3連鎖に基づかないピークでmr及びrr領域に現れる炭素A、A’、A”、B、B’に基づくピーク面積を減ずる必要がある。
Among them, the carbon A, A ′, A ″ peaks appear in the mr region, and the carbon B, B ′ peaks appear in the rr region. Further, the carbon C, C ′ peaks appear in 16.8 to 17.8 ppm. .
Therefore, when calculating the mm fraction in the formula (I), the carbon appearing in the mr and rr regions from the peak area of the mr region and the peak area of the rr region, respectively, with peaks not based on the head-to-tail three-linkage. It is necessary to reduce the peak areas based on A, A ′, A ″, B, and B ′.

炭素Aに基づくピーク面積は、位置不規則部分構造[構造(i)]の炭素D(42.4ppm付近で共鳴)、炭素E及びG(36.0ppm付近で共鳴)及び炭素F(38.7ppm付近で共鳴)のピーク面積の和の1/4より評価できる。
炭素A’に基づくピーク面積は、位置不規則部分構造[構造(ii)及び構造(iii)]の炭素H及びI(34.7ppm付近及び35.0ppm付近で共鳴)と炭素J(34.1ppm付近で共鳴)のピーク面積の和の2/5と炭素K(33.7ppm付近で共鳴)のピーク面積の和により評価できる。
炭素A”に基づくピーク面積は、炭素L(27.7ppm付近で共鳴)のピーク面積の和により評価できる。
炭素Bに基づくピーク面積は、炭素Jにより評価できる。また、炭素B’に基づくピーク面積は、炭素Kにより評価できる。
なお、炭素Cピーク及び炭素C’ピークの位置は、注目するmm、mr、rr領域と全く関与しないので考慮する必要はない。
以上により、mm、mrおよびrrのピーク面積を評価することができるので、上記数式(I)に従って、プロピレン単位を中心として頭−尾結合からなる3連鎖部のmm分率を求めることができる。
The peak areas based on carbon A are carbon D (resonance around 42.4 ppm), carbon E and G (resonance around 36.0 ppm), and carbon F (38.7 ppm) in the position irregular substructure [structure (i)]. It can be evaluated from 1/4 of the sum of the peak areas of resonance in the vicinity.
The peak areas based on carbon A ′ are carbon H and I (resonance around 34.7 ppm and around 35.0 ppm) and carbon J (34.1 ppm) in the position irregular substructure [structure (ii) and structure (iii)]. It can be evaluated by 2/5 of the sum of the peak areas of resonance in the vicinity and the sum of the peak areas of carbon K (resonance at around 33.7 ppm).
The peak area based on carbon A ″ can be evaluated by the sum of the peak areas of carbon L (resonance at around 27.7 ppm).
The peak area based on carbon B can be evaluated by carbon J. The peak area based on carbon B ′ can be evaluated by carbon K.
Note that the positions of the carbon C peak and the carbon C ′ peak need not be considered because they are not related to the focused mm, mr, and rr regions.
As described above, since the peak areas of mm, mr, and rr can be evaluated, it is possible to obtain the mm fraction of the triple chain portion composed of the head-to-tail bond with the propylene unit as the center according to the above formula (I).

(2−7)伸長粘度の測定における歪硬化度(λmax):
本発明に係るプロピレン系重合体(A)は、伸長粘度の測定における歪硬化度(λmax)が6.0以上であることが必要である。
歪硬化度(λmax)は、溶融時強度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。したがって、この歪硬化度は、6.0以上が必要であり、好ましくは10.0以上、より好ましくは15.0以上である。
また、この歪硬化度は、伸長粘度の非線形性を表す指標であり、通常、分子の絡み合いが多いほど、この値が大きくなると言われている。分子の絡み合いは、分岐の量、分岐鎖の長さに影響を受ける。したがって、分岐の量、分岐の長さが長いほど、歪硬化度は、大きくなる。
(2-7) Strain hardening degree (λmax) in measurement of elongational viscosity:
The propylene polymer (A) according to the present invention needs to have a strain hardening degree (λmax) of 6.0 or more in the measurement of elongational viscosity.
The strain hardening degree (λmax) is an index representing the strength at the time of melting, and when this value is large, there is an effect of improving the melt tension. Therefore, the strain hardening degree needs to be 6.0 or more, preferably 10.0 or more, more preferably 15.0 or more.
The degree of strain hardening is an index representing the nonlinearity of elongational viscosity, and it is usually said that this value increases as the molecular entanglement increases. Molecular entanglement is affected by the amount of branching and the length of the branched chain. Therefore, the greater the amount of branching and the length of branching, the greater the degree of strain hardening.

一般的に、高い歪硬化度を示すには、分岐の長さとして、ポリプロピレンの絡みあい分子量である7,000以上が必要とされる。骨格炭素数に換算すると、約400以上に相当する。ここでいう骨格炭素とは、メチル炭素以外の全ての炭素原子を意味する。分岐長がより長くなると、溶融物性は、より向上すると考えられる。特により長い分岐鎖が導入されると、伸長粘度の測定において、より遅い歪速度領域においても、歪硬化が検出されるようになると考えられている。
したがって、本発明に係るプロピレン系重合体(A)の分岐鎖長は、前記したとおり、骨格炭素数500(ポリプロピレン分子量換算:1.1万)以上であり、好ましくは骨格炭素数1000(ポリプロピレン分子量換算:2.1万)以上であり、更に好ましくは骨格炭素数2000(ポリプロピレン分子量換算:4.2万)以上である。
ここでいうポリプロピレン分子量換算値は、前記したとおり、厳密にはGPCで測定される分子量値とは異なるものであるが、GPCで測定される数平均分子量(Mn)に近似している。したがって本発明のプロピレン系重合体の分岐長は、GPCで測定される数平均分子量(Mn)で1.1万以上、好ましくは2.1万以上、さらに好ましくは4.2万以上と、置き換えて考えられる。
In general, in order to show a high degree of strain hardening, a branching length of 7,000 or more, which is an entanglement molecular weight of polypropylene, is required. When converted into skeleton carbon number, it corresponds to about 400 or more. As used herein, skeletal carbon means all carbon atoms other than methyl carbon. It is considered that the melt physical properties are further improved as the branch length becomes longer. In particular, when a longer branched chain is introduced, strain hardening is considered to be detected even in a slower strain rate region in the measurement of elongational viscosity.
Therefore, the branched chain length of the propylene-based polymer (A) according to the present invention is, as described above, a skeleton carbon number of 500 (polypropylene molecular weight conversion: 11,000) or more, preferably a skeleton carbon number of 1000 (polypropylene molecular weight). Conversion: 21,000) or more, and more preferably 2000 or more skeleton carbon atoms (polypropylene molecular weight conversion: 42,000).
As described above, the polypropylene molecular weight conversion value here is strictly different from the molecular weight value measured by GPC, but approximates the number average molecular weight (Mn) measured by GPC. Therefore, the branch length of the propylene-based polymer of the present invention is replaced with 11,000 or more, preferably 21,000 or more, more preferably 42,000 or more in terms of number average molecular weight (Mn) measured by GPC. Can be considered.

ここで、歪硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られるが、例えば、測定方法及び測定機器の詳細は、公知文献Polymer 42(2001)8663に記載の方法があるが、好ましい測定方法及び測定機器として、以下を挙げることができる。   Here, regarding the method for measuring the strain hardening degree, the same value can be obtained in principle by any method as long as the uniaxial extensional viscosity can be measured. For example, the details of the measuring method and measuring instrument are disclosed in Polymer 42. Although there are methods described in (2001) 8663, examples of preferable measuring methods and measuring instruments include the following.

測定方法1:
装置:Rheometorics社製 Ares
冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
Measuring method 1:
Apparatus: Ales manufactured by Rheometrics
Jig: EXTENSIONAL VISUALITY FIXTURE, manufactured by TA Instruments
Measurement temperature: 180 ° C
Strain rate: 0.1 / sec
Preparation of test piece: A sheet of 18 mm × 10 mm and a thickness of 0.7 mm is formed by press molding.

測定方法2:
装置:東洋精機製作所社製、Melten Rheometer
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:東洋精機製作所社製キャピログラフを用い、180℃で内径3mmのオリフィスを用いて、速度10〜50mm/minで押し出しストランドを作成する。
Measurement method 2:
Apparatus: Toyo Seiki Seisakusho, Melten Rheometer
Measurement temperature: 180 ° C
Strain rate: 0.1 / sec
Preparation of test piece: An extruded strand is prepared at a speed of 10 to 50 mm / min using an orifice having an inner diameter of 3 mm at 180 ° C. using a capilograph manufactured by Toyo Seiki Seisakusho.

算出方法:
歪み速度:0.1/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似し、歪量が4.0となるまでの伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする。
図4は、伸長粘度のプロット図の一例である。ηmax/ηlinを、λmaxと定義し、歪硬化度の指標とする。
なお、歪速度は、0.001/secから10.0/secの範囲で測定可能であり、歪硬化度は歪速度の違いで変化する。この歪硬化度の歪速度依存性は、導入された分岐の形態や長さで変化すると考えられる。
Calculation method:
The elongational viscosity at a strain rate of 0.1 / sec is plotted as a log-log graph of time t (second) on the horizontal axis and elongational viscosity ηE (Pa · second) on the vertical axis. On the logarithmic graph, the viscosity immediately before strain hardening is approximated by a straight line, the maximum value (ηmax) of the extensional viscosity ηE until the amount of strain becomes 4.0 is obtained, and on the approximate straight line up to that time Let ηlin be the viscosity.
FIG. 4 is an example of a plot of elongational viscosity. ηmax / ηlin is defined as λmax and is used as an index of strain hardening degree.
The strain rate can be measured in the range of 0.001 / sec to 10.0 / sec, and the strain hardening degree varies depending on the difference in strain rate. The strain rate dependence of the strain hardening degree is considered to change depending on the form and length of the introduced branch.

(2−8)メモリーエフェクト(ME):
本発明に係るプロピレン系重合体(A)は、メモリーエフェクト(ME)が下記式(I−1)を満たすことが望ましい。
(ME) ≧ −0.26×log(MFR)+1.9 (I−1)
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
(2-8) Memory effect (ME):
In the propylene polymer (A) according to the present invention, the memory effect (ME) preferably satisfies the following formula (I-1).
(ME) ≧ −0.26 × log (MFR) +1.9 (I-1)
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]

本発明に係るプロピレン系重合体(A)は、好ましくは、ポリマー中の高分子量成分の存在比率を表す指標となるメモリーエフェクト(ME)とポリマーの平均分子量を表す指標であるMFRとの相関が特定の関係(上記式(I−1))にあることを特徴とする。
MEは、ポリマーの非ニュートン性を表す指標であり、MEが大きいことはその重合体に緩和時間の長い成分が存在することを示している。すなわち同一のMFRでMEが大きい場合には、より長期緩和成分が重合体に分布していることを意味する。
また、MEは、Log(MFR)と、1次の相関を有することが経験的に知られており、一般には、分子量が大きくなるほど(すなわちMFRの値が小さくなるほど)、MEの値は大きくなる。
The propylene-based polymer (A) according to the present invention preferably has a correlation between a memory effect (ME) serving as an index representing the abundance ratio of a high molecular weight component in a polymer and MFR serving as an index representing an average molecular weight of the polymer. It is in a specific relationship (the above formula (I-1)).
ME is an index representing the non-Newtonian property of a polymer, and a large ME indicates that a component having a long relaxation time exists in the polymer. That is, when ME is large with the same MFR, it means that the long-term relaxation component is distributed in the polymer.
Further, it is empirically known that ME has a first-order correlation with Log (MFR), and generally, the larger the molecular weight (that is, the smaller the MFR value), the larger the ME value. .

本発明に係るプロピレン系重合体(A)は、ポリマー鎖に分岐成分が存在することにより、図5に示されるように、MFR見合いでのMEが従来公知のポリマーと比較して、大きいことが特徴である。より好ましくは下記式(I−2)を満足することである。
(ME) ≧ −0.26×log(MFR)+2.20 (I−2)
更に好ましくは下記式(I−3)を満足することである。
(ME) ≧ −0.26×log(MFR)+2.40 (I−3)
The propylene-based polymer (A) according to the present invention has a large ME in MFR match as compared with a conventionally known polymer as shown in FIG. 5 due to the presence of a branched component in the polymer chain. It is a feature. More preferably, the following formula (I-2) is satisfied.
(ME) ≧ −0.26 × log (MFR) +2.20 (I-2)
More preferably, the following formula (I-3) is satisfied.
(ME) ≧ −0.26 × log (MFR) +2.40 (I-3)

メモリーエフェクト(ME)の測定方法としては、タカラ社製のメルトインデクサーを用い、190℃でオリフィス径1.0mm、長さ8.0mm中を、荷重をかけて押し出し、押し出し速度が0.1g/分になるように荷重を調節し、その速度の時に、オリフィスから押し出されたポリマーを、エタノール中で急冷し、その際のストランド径の値をオリフィス径で除した値とする。   The memory effect (ME) was measured using a melt indexer manufactured by Takara, and extruded at 190 ° C. with an orifice diameter of 1.0 mm and length of 8.0 mm under a load. The extrusion speed was 0.1 g. The load is adjusted so as to be / min., And at that speed, the polymer extruded from the orifice is rapidly cooled in ethanol, and the value of the strand diameter at that time is divided by the orifice diameter.

(2−9)溶融張力と溶融延展性:
本発明に係るプロピレン系重合体(A)は、制御された分岐構造(分岐量、分岐長、分岐分布)を持つために、溶融物性が顕著に改良される。すなわち、高い溶融張力を持ちながら、優れた溶融流動性をもつ。溶融張力と溶融流動性の指標として、以下の測定方法で測定する溶融張力(MT)と最高巻取速度(MaxDraw)のバランスで表すことができる。
(2-9) Melt tension and melt spreadability:
Since the propylene polymer (A) according to the present invention has a controlled branch structure (branch amount, branch length, branch distribution), melt properties are remarkably improved. That is, it has excellent melt fluidity while having high melt tension. As an index of melt tension and melt fluidity, it can be expressed by a balance between melt tension (MT) and maximum winding speed (MaxDraw) measured by the following measurement method.

溶融張力(MT)および最高巻取速度(MaxDraw)の測定方法について説明する。
東洋精機製作所社製キャピログラフ1Bを用い、下記の条件で樹脂を紐状に押し出して、ローラーに巻き取っていった時にプーリーに検出される張力を溶融張力(MT)とする。
キャピラリー:直径2.1mm
シリンダー径:9.6mm
シリンダー押出速度:10mm/分
巻き取り速度:4.0m/分
温度:230℃
A method for measuring the melt tension (MT) and the maximum winding speed (MaxDraw) will be described.
Using the Capillograph 1B manufactured by Toyo Seiki Seisakusho Co., Ltd., the tension detected by the pulley when the resin is extruded in a string shape under the following conditions and wound on a roller is defined as melt tension (MT).
Capillary: 2.1mm in diameter
Cylinder diameter: 9.6mm
Cylinder extrusion speed: 10 mm / min Winding speed: 4.0 m / min Temperature: 230 ° C.

また、巻き取り速度を4.0m/分から徐々に上げていったとき(加速度:5.4cm/s)、紐状物が切断する直前の巻き取り速度を、最高巻取速度(MaxDraw)とする。
ここで、MTの値が大きい方が、溶融張力が高いことを意味し、MaxDrawが大きい方が、流動性や延展性が良いことを意味する。
本発明のプロピレン系重合体は、分子量分布を広げ分岐を導入することにより、溶融張力が改善されており、したがって、MTは、好ましくは5g以上であり、より好ましくは10g以上、更に好ましくは15g以上である。
When the winding speed is gradually increased from 4.0 m / min (acceleration: 5.4 cm / s 2 ), the winding speed immediately before the string-like material is cut is the maximum winding speed (MaxDraw). To do.
Here, a larger MT value means higher melt tension, and a larger MaxDraw means better fluidity and spreadability.
The propylene-based polymer of the present invention is improved in melt tension by broadening the molecular weight distribution and introducing branching. Therefore, MT is preferably 5 g or more, more preferably 10 g or more, and further preferably 15 g. That's it.

また、上述したように、高分子量成分を増やしたり、分岐数を多くすると、MTの値を大きくすることができるが、逆に、重合体の高分子量成分が多すぎたり、分岐が偏在したりすると、巻き取り中に粘度が高くなりすぎて、紐状物の破断を引き起こし、MaxDrawは大きくならない。すなわち溶融延展性が悪化してしまう。
本発明に係るプロピレン系重合体(A)は、分岐成分を制御することにより、高いMTを保ったまま、大きなMaxDrawを持つことができ、溶融張力と溶融延展性のバランスが改善されている。
したがって、本発明に係るプロピレン系重合体(A)は、MaxDrawが、好ましくは10m/分以上であり、より好ましくは20m/分以上であり、更に好ましくは30m/分以上である。
In addition, as described above, increasing the high molecular weight component or increasing the number of branches can increase the MT value, but conversely, the polymer has too many high molecular weight components or the branches are unevenly distributed. Then, the viscosity becomes too high during winding, causing breakage of the string-like material, and MaxDraw does not increase. That is, the melt ductility is deteriorated.
The propylene polymer (A) according to the present invention can have a large MaxDraw while maintaining a high MT by controlling the branched component, and the balance between melt tension and melt spreadability is improved.
Therefore, the propylene polymer (A) according to the present invention has a MaxDraw of preferably 10 m / min or more, more preferably 20 m / min or more, and further preferably 30 m / min or more.

(3)プロピレン系重合体(A)の製造方法
本発明に係るプロピレン系重合体(A)を製造する方法については、上記の溶融流動性や溶融張力を制御した、物性と加工性のバランスに優れる長鎖分岐型のプロピレン系重合体が得られる方法であればよく、特に制限はないが、例えば、制御した分岐成分を導入する方法としては、下記のような複数の錯体を用いる方法を挙げることができる。
(3) Propylene Polymer (A) Production Method About the method of producing the propylene polymer (A) according to the present invention, the balance between physical properties and processability is controlled by controlling the melt fluidity and melt tension. There is no particular limitation as long as it is a method for obtaining an excellent long-chain branched propylene-based polymer. For example, examples of a method for introducing a controlled branched component include a method using a plurality of complexes as described below. be able to.

すなわち、上記の長鎖分岐型のプロピレン系重合体を製造する方法であって、プロピレン重合触媒として、下記の触媒成分(A)、(B)及び(C)を用いることを特徴とするプロピレン系重合体の製造方法が挙げられる。
(A):下記一般式(1)で表される化合物である成分[A−1]から少なくとも1種類、および一般式(2)で表される化合物である成分[A−2]から少なくとも1種類、選んだ2種以上の周期律表4族の遷移金属化合物
成分[A−1]:一般式(3)で表される化合物
成分[A−2]:一般式(4)で表される化合物
(B):イオン交換性層状珪酸塩
(C):有機アルミニウム化合物
That is, a method for producing the long-chain branched propylene-based polymer, wherein the following catalyst components (A), (B), and (C) are used as propylene polymerization catalysts: The manufacturing method of a polymer is mentioned.
(A): at least one from component [A-1] which is a compound represented by the following general formula (1), and at least one from component [A-2] which is a compound represented by general formula (2) Two or more types of transition metal compounds selected from Group 4 of the periodic table Component [A-1]: Compound represented by general formula (3) Component [A-2]: Represented by general formula (4) Compound (B): Ion exchange layered silicate (C): Organoaluminum compound

以下、触媒成分(A)、(B)及び(C)について、詳細に説明する。
(イ)触媒成分(A)
(i)成分[A−1]:一般式(3)で表される化合物
Hereinafter, the catalyst components (A), (B), and (C) will be described in detail.
(A) Catalyst component (A)
(I) Component [A-1]: Compound represented by the general formula (3)

Figure 2017101229
Figure 2017101229

[一般式(3)中、R11およびR12は、それぞれ独立して、炭素数4〜16の窒素、酸素又は硫黄を含有する複素環基を示す。また、R13およびR14は、それぞれ独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい炭素数6〜16のアリール基、炭素数6〜16の窒素、酸素又は硫黄を含有する複素環基を表す。さらに、X11及びY11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q11は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。] [In General Formula (3), R 11 and R 12 each independently represent a heterocyclic group containing nitrogen, oxygen or sulfur having 4 to 16 carbon atoms. R 13 and R 14 each independently represent halogen, silicon, oxygen, sulfur, nitrogen, boron, phosphorus, or a C 6-16 aryl that may contain a plurality of hetero elements selected from these. Represents a heterocyclic group containing nitrogen, oxygen or sulfur having 6 to 16 carbon atoms. X 11 and Y 11 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated group having 1 to 20 carbon atoms. Represents a hydrocarbon group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q 11 is a divalent hydrocarbon group having 1 to 20 carbon atoms, It represents a silylene group or a germylene group which may have a hydrocarbon group having 1 to 20 carbon atoms. ]

11およびR12の炭素数4〜16の窒素、酸素又は硫黄を含有する複素環基は、好ましくは2−フリル基、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基であり、さらに好ましくは、置換された2−フリル基である。
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基、トリアルキルシリル基が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、R11およびR12として、特に好ましくは、2−(5−メチル)−フリル基である。また、R11およびR12は、互いに同一である場合が好ましい。
The heterocyclic group containing nitrogen, oxygen or sulfur having 4 to 16 carbon atoms of R 11 and R 12 is preferably 2-furyl group, substituted 2-furyl group, substituted 2-thienyl group, substituted 2-furfuryl group, more preferably a substituted 2-furyl group.
Examples of the substituted 2-furyl group, substituted 2-thienyl group, and substituted 2-furfuryl group include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, Examples thereof include halogen atoms such as fluorine atom and chlorine atom, alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group, and trialkylsilyl groups. Of these, a methyl group and a trimethylsilyl group are preferable, and a methyl group is particularly preferable.
Further, R 11 and R 12 are particularly preferably a 2- (5-methyl) -furyl group. R 11 and R 12 are preferably the same as each other.

13およびR14の炭素数6〜16の、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン、又は、これらから選択される複数のヘテロ元素を含有してもよいアリール基としては、炭素数6〜16になる範囲で、アリール環状骨格上に、1つ以上の、炭素数1〜6の炭化水素基、炭素数1〜6の珪素含有炭化水素基、炭素数1〜6のハロゲン含有炭化水素基を置換基として有していてもよい。
13およびR14としては、好ましくは少なくとも1つが、フェニル基、4−t−ブチルフェニル基、2,3―ジメチルフェニル基、3,5―ジ−t−ブチルフェニル基、4−フェニル−フェニル基、クロロフェニル基、ナフチル基、又はフェナンスリル基であり、更に好ましくはフェニル基、4−t−ブチルフェニル基、4−クロロフェニル基である。また、2つのRが互いに同一である場合が好ましい。
The aryl group having 6 to 16 carbon atoms of R 13 and R 14 , which may contain halogen, silicon, oxygen, sulfur, nitrogen, boron, phosphorus, or a plurality of hetero elements selected from these, includes carbon Within the range of 6 to 16, on the aryl cyclic skeleton, one or more hydrocarbon group having 1 to 6 carbon atoms, silicon-containing hydrocarbon group having 1 to 6 carbon atoms, halogen containing 1 to 6 carbon atoms You may have a hydrocarbon group as a substituent.
At least one of R 13 and R 14 is preferably a phenyl group, 4-t-butylphenyl group, 2,3-dimethylphenyl group, 3,5-di-t-butylphenyl group, 4-phenyl-phenyl. Group, chlorophenyl group, naphthyl group or phenanthryl group, more preferably phenyl group, 4-t-butylphenyl group and 4-chlorophenyl group. Moreover, the case where two R < 2 > is mutually the same is preferable.

一般式(3)中、X11およびY11は、補助配位子であり、成分(B)の助触媒と反応して、オレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限り、X11とY11は、配位子の種類が制限されるものではなく、それぞれ独立して、水素、ハロゲン基、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基、トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基または炭素数1〜20のケイ素含有炭化水素基を示す。 In the general formula (3), X 11 and Y 11 are auxiliary ligands, and react with the co-catalyst of the component (B) to generate an active metallocene having olefin polymerization ability. Therefore, as long as this object is achieved, X 11 and Y 11 are not limited to the type of ligand, and are independently hydrogen, halogen groups, hydrocarbon groups having 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an alkylamide group having 1 to 20 carbon atoms, a trifluoromethanesulfonic acid group, a phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms or a silicon-containing hydrocarbon group having 1 to 20 carbon atoms is shown. .

一般式(3)中、Q11は、二つの五員環を結合する、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基の何れかを示す。上述のシリレン基またはゲルミレン基上に2個の炭化水素基が存在する場合は、それらが互いに結合して環構造を形成していてもよい。
上記のQ11の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン、等のアルキレン基;ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、または、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。
In the general formula (3), Q 11 couples the two five-membered ring, a divalent hydrocarbon group having 1 to 20 carbon atoms, which may have a hydrocarbon group having 1 to 20 carbon atoms silylene Represents either a group or a germylene group. When two hydrocarbon groups are present on the above-mentioned silylene group or germylene group, they may be bonded to each other to form a ring structure.
Specific examples of Q 11 include alkylene groups such as methylene, methylmethylene, dimethylmethylene and 1,2-ethylene; arylalkylene groups such as diphenylmethylene; silylene groups; methylsilylene, dimethylsilylene, diethylsilylene, di Alkylsilylene groups such as (n-propyl) silylene, di (i-propyl) silylene, di (cyclohexyl) silylene, (alkyl) (aryl) silylene groups such as methyl (phenyl) silylene; arylsilylene groups such as diphenylsilylene; Alkyl oligosilylene groups such as tetramethyldisilene; germylene groups; alkylgermylene groups in which silicon in the above-mentioned divalent hydrocarbon groups having 1 to 20 carbon atoms is replaced with germanium; (alkyl) (aryl) Germylene group; arylgermylene Examples include groups. In these, the silylene group which has a C1-C20 hydrocarbon group, or the germylene group which has a C1-C20 hydrocarbon group is preferable, and an alkylsilylene group and an alkylgermylene group are especially preferable.

上記一般式(3)で表される化合物のうち、好ましい化合物として、以下に具体的に例示する。
ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−トリメチルシリル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−フェニル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(4,5−ジメチル−2−フリル)−4−フェニル−インデニル}]ハフニウムジクロライド、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−ベンゾフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−メチル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−イソプロピル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フルフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−フルオロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル2−−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル2−−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレン(2−メチル−4−フェニル−インデニル){2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレン(2−メチル−4−フェニル−インデニル){2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、などを挙げることができる。
Of the compounds represented by the general formula (3), preferred compounds are specifically exemplified below.
Dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-thienyl) -4-phenyl -Indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-diphenylsilylenebis {2 -(5-Methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl} ] Hafnium, dichloro [1,1'-dimethylgermylenebis {2- (5-methyl-2-thienyl) -4-phenyl-indenyl}] hafnium, dic B [1,1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5- Trimethylsilyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-phenyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2- (4,5-dimethyl-2-furyl) -4-phenyl-indenyl}] hafnium dichloride, dichloro [1,1′-dimethylsilylenebis {2- (2-benzofuryl) ) -4-Phenyl-indenyl}] hafnium, dichloro [1,1′-diphenylsilylenebis {2- (5-methyl-2-furyl) -4- Enyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-methyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2- (5-Methyl-2-furyl) -4-isopropyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furfuryl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-chlorophenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5 -Methyl-2-furyl) -4- (4-fluorophenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-Methyl-2-furyl) -4- (4-trifluoromethylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4 -(4-t-butylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4- (1-naphthyl) -indenyl}] hafnium, dichloro [1 , 1′-dimethylsilylenebis {2- (2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4- (9-phenanthryl) -indenyl}] hafni Dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (1-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -(5-Methyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- ( 2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (9-phenanthryl) -indenyl}] hafnium, dichloro [1, 1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4- (1-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -(5-t-butyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-tert-butyl-2-furyl) -4- (9-phenanthryl) -indenyl}] Hafnium, dichloro [1,1′-dimethylsilylene (2-methyl-4-phenyl-indenyl) {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1 ′ -Dimethylsilylene (2-methyl-4-phenyl-indenyl) {2- (5-methyl-2-thienyl) -4-phenyl-indenyl}] hafnium, and the like. .

これらのうち、更に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−ナフチル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、である。   Of these, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethyl gel are more preferable. Mylenebis {2- (5-methyl-2-thienyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- ( 4-chlorophenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-naphthyl-indenyl}] hafnium, dichloro [1,1′-dimethyl Silylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium.

また、特に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−ナフチル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、である。   Particularly preferred is dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2- (5-Methyl-2-furyl) -4-naphthyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t -Butylphenyl) -indenyl}] hafnium.

(ii)成分[A−2]:一般式(4)で表される化合物 (Ii) Component [A-2]: Compound represented by the general formula (4)

Figure 2017101229
Figure 2017101229

[一般式(4)中、R21およびR22は、それぞれ独立して、炭素数1〜6の炭化水素基であり、R23およびR24は、それぞれ独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい炭素数6〜16のアリール基である。X21及びY21は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q21は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。M21は、ジルコニウムまたはハフニウムである。] [In General Formula (4), R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, and R 23 and R 24 are each independently halogen, silicon, oxygen, It is a C6-C16 aryl group which may contain sulfur, nitrogen, boron, phosphorus, or a plurality of heteroelements selected from these. X 21 and Y 21 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon having 1 to 20 carbon atoms. Group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q 21 is a divalent hydrocarbon group having 1 to 20 carbon atoms, carbon number It represents a silylene group or a germylene group which may have 1 to 20 hydrocarbon groups. M 21 is zirconium or hafnium. ]

21およびR22は、それぞれ独立して、炭素数1〜6の炭化水素基であり、好ましくはアルキル基であり、さらに好ましくは炭素数1〜4のアルキル基である。具体的な例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、n−ペンチル、i−ペンチル、n−ヘキシル等が挙げられ、好ましくはメチル、エチル、n−プロピルである。
また、上記R23およびR24は、それぞれ独立して、炭素数6〜30の、好ましくは炭素数6〜24の、ハロゲン、ケイ素、又は、これらから選択される複数のヘテロ元素を含有してもよいアリール基である。好ましい例としてはフェニル、3−クロロフェニル、4−クロロフェニル、3−フルオロフェニル、4−フルオロフェニル、4−メチルフェニル、4−i−プロピルフェニル、4−t−ブチルフェニル、4−トリメチルシリルフェニル、4−(2−フルオロ−4−ビフェニル)、4−(2−クロロ−4−ビフェニル)、1−ナフチル、2−ナフチル、4−クロロ−2−ナフチル、3−メチル−4−トリメチルシリルフェニル、3,5−ジメチル−4−t−ブチルフェニル、3,5−ジメチル−4−トリメチルシリルフェニル、3,5−ジクロロ−4−トリメチルシリルフェニル等が挙げられる。
R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms. Specific examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, n-pentyl, i-pentyl, n-hexyl, and preferably methyl. , Ethyl, n-propyl.
R 23 and R 24 each independently contain a halogen having 6 to 30 carbon atoms, preferably 6 to 24 carbon atoms, halogen, silicon, or a plurality of hetero elements selected from these. It is a good aryl group. Preferred examples include phenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-fluorophenyl, 4-methylphenyl, 4-i-propylphenyl, 4-t-butylphenyl, 4-trimethylsilylphenyl, 4- (2-fluoro-4-biphenyl), 4- (2-chloro-4-biphenyl), 1-naphthyl, 2-naphthyl, 4-chloro-2-naphthyl, 3-methyl-4-trimethylsilylphenyl, 3,5 -Dimethyl-4-t-butylphenyl, 3,5-dimethyl-4-trimethylsilylphenyl, 3,5-dichloro-4-trimethylsilylphenyl and the like.

また、上記X21及びY21は、補助配位子であり、成分(B)の助触媒と反応してオレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限りX21及びY21は、配位子の種類が制限されるものではなく、それぞれ独立して、水素、ハロゲン基、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基、トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基または炭素数1〜20のケイ素含有炭化水素基を示す。 Further, the X 21 and Y 21 are auxiliary ligands to generate an active metallocene having olefin polymerizability reacts with the cocatalyst component (B). Therefore, as long as this object is achieved, X 21 and Y 21 are not limited in the type of ligand, and are independently hydrogen, halogen group, hydrocarbon group having 1 to 20 carbon atoms, carbon An alkoxy group having 1 to 20 carbon atoms, an alkylamide group having 1 to 20 carbon atoms, a trifluoromethanesulfonic acid group, a phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms, or a silicon-containing hydrocarbon group having 1 to 20 carbon atoms is shown.

また、上記Q21は、二つの共役五員環配位子を架橋する結合性基であり、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有するシリレン基または炭素数1〜20の炭化水素基を有するゲルミレン基であり、好ましくは置換シリレン基又は置換ゲルミレン基である。ケイ素、ゲルマニウムに結合する置換基は、炭素数1〜12の炭化水素基が好ましく、二つの置換基が連結していてもよい。具体的な例としては、メチレン、ジメチルメチレン、エチレン−1,2−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルゲルミレン、ジエチルゲルミレン、ジフェニルゲルミレン、メチルフェニルゲルミレン等が挙げられる。 Q 21 is a binding group that crosslinks two conjugated five-membered ring ligands, and a silylene having a divalent hydrocarbon group having 1 to 20 carbon atoms and a hydrocarbon group having 1 to 20 carbon atoms. Or a germylene group having a hydrocarbon group having 1 to 20 carbon atoms, preferably a substituted silylene group or a substituted germylene group. The substituent bonded to silicon and germanium is preferably a hydrocarbon group having 1 to 12 carbon atoms, and two substituents may be linked. Specific examples include methylene, dimethylmethylene, ethylene-1,2-diyl, dimethylsilylene, diethylsilylene, diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylsilylene, diethylsilylene, Examples thereof include diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylgermylene, diethylgermylene, diphenylgermylene, methylphenylgermylene and the like.

さらに、上記M21は、ジルコニウムまたはハフニウムであり、好ましくはハフニウムである。 Further, M 21 is zirconium or hafnium, preferably hafnium.

上記一般式(4)で表されるメタロセン化合物の非限定的な例として、下記のものを挙げることができる。
ただし、煩雑な多数の例示を避けて代表的例示化合物のみ記載した。また中心金属がハフニウムの化合物を記載したが、同様のジルコニウム化合物も使用可能であり、種々の配位子や架橋結合基又は補助配位子を任意に使用し得ることは自明である。
ジクロロ{1,1’−ジメチルシリレンビス(2−メチル−4−フェニル−4−ヒドロアズレニル)}ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(1−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−クロロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(9−フェナントリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−n−プロピル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、などが挙げられる。
The following can be mentioned as a non-limiting example of the metallocene compound represented by the general formula (4).
However, only representative exemplary compounds are described avoiding many complicated examples. Moreover, although the compound whose center metal is hafnium was described, it is obvious that the same zirconium compound can be used, and various ligands, crosslinking groups, or auxiliary ligands can be arbitrarily used.
Dichloro {1,1′-dimethylsilylenebis (2-methyl-4-phenyl-4-hydroazurenyl)} hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4 -Hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2-methyl-4- (4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-t-butylphenyl)- 4-Hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-methyl) -4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium , Dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl -4- (1-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1, 1'-dimethylsilylenebis {2-methyl-4- (4-chloro-2-naphthyl) -4-hydroazule Nil}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-fluoro-4-biphenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2-methyl-4- (2-chloro-4-biphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (9-phenanthryl) -4-hydroazulenyl} ] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chlorophenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-n-propyl-] 4- (3-Chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1 ′ Dimethylsilylenebis {2-ethyl-4- (3-chloro-4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2-ethyl-4- (3- Methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (2-fluoro-4-biphenyl) -4-hydroazurenyl}] hafnium, Dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9 -Diyl) bis {2-ethyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1'-dimethyl Tylsilylenebis {2-ethyl-4- (4-chloro-2-naphthyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (2-fluoro-4-biphenyl) ) -4-Hydroazulenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4 -Hydroazulenyl}] hafnium, and the like.

これらの中で好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。   Of these, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- Methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (2-fluoro-4-biphenyl) -4 -Hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chloro-2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-Ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] Hough Dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, is there.

また、特に好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。   Particularly preferably, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl -4- (2-Fluoro-4-biphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4- Hydroazurenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] Hafnium.

(ロ)触媒成分(B)
次に、本発明に係るプロピレン系重合体(A)の重合に用いられる触媒成分(B)は、イオン交換性層状珪酸塩である。
(i)イオン交換性層状珪酸塩の種類
本発明において、原料として使用するイオン交換性層状珪酸塩(以下、単に珪酸塩と略記する)とは、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、成分(B)に含まれる。
尚、本発明の原料とは、後述する本発明の化学処理を行う前段階の珪酸塩をさす。また、本発明で使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよい。それらを含んでもよい。
(B) Catalyst component (B)
Next, the catalyst component (B) used for the polymerization of the propylene-based polymer (A) according to the present invention is an ion-exchange layered silicate.
(I) Types of ion-exchangeable layered silicate In the present invention, the ion-exchangeable layered silicate used as a raw material (hereinafter simply abbreviated as “silicate”) means that the surfaces formed by ionic bonds or the like have a binding force to each other. The silicate compound has a crystal structure stacked in parallel with each other, and the contained ions are exchangeable. Most silicates are naturally produced mainly as a main component of clay minerals, and therefore often contain impurities (quartz, cristobalite, etc.) other than ion-exchangeable layered silicates. But you can. Depending on the type, amount, particle diameter, crystallinity, and dispersion state of these impurities, it may be preferable to pure silicate, and such a complex is also included in component (B).
In addition, the raw material of this invention refers to the silicate of the previous stage which performs the chemical treatment of this invention mentioned later. Further, the silicate used in the present invention is not limited to a natural product, and may be an artificial synthetic product. You may include them.

珪酸塩の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
すなわち、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等である。
Specific examples of the silicate include the following layered silicates described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1995).
That is, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stemite and other smectites, vermiculite and other vermiculites, mica, illite, sericite and sea chlorite and other mica, attapulgite, sepiolite and palygorskite , Bentonite, pyrophyllite, talc, chlorite group, etc.

本発明で原料として使用する珪酸塩は、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属又はアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。   The silicate used as a raw material in the present invention is preferably a silicate in which the main component silicate has a 2: 1 type structure, more preferably a smectite group, and particularly preferably montmorillonite. The type of interlayer cation is not particularly limited, but a silicate containing an alkali metal or an alkaline earth metal as a main component of the interlayer cation is preferable from the viewpoint of being relatively easy and inexpensive to obtain as an industrial raw material.

(ii)イオン交換性層状珪酸塩の化学処理
本発明に係る触媒成分(B)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここでイオン交換性層状珪酸塩の化学処理とは、表面に付着している不純物を除去する表面処理と粘土の構造に影響を与える処理のいずれをも用いることができ、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。
(Ii) Chemical treatment of ion-exchange layered silicate The ion-exchange layered silicate of the catalyst component (B) according to the present invention can be used as it is without any particular treatment, but it is preferable to perform a chemical treatment. . Here, the chemical treatment of the ion-exchange layered silicate may be any of a surface treatment for removing impurities adhering to the surface and a treatment that affects the structure of the clay. Treatment, alkali treatment, salt treatment, organic matter treatment and the like.

<酸処理>:
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg、等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸から選択される。
処理に用いる塩類(次項で説明する)および酸は、2種以上であってもよい。塩類および酸による処理条件は、特には制限されないが、通常、塩類および酸濃度は、0.1〜50重量%、処理温度は、室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は、一般的には水溶液で用いられる。
なお、本発明では、以下の酸類、塩類を組み合わせたものを処理剤として用いてもよい。また、これら酸類、塩類の組み合わせであってもよい。
<Acid treatment>:
In addition to removing impurities on the surface, the acid treatment can elute part or all of cations such as Al, Fe, Mg, etc. having a crystal structure.
The acid used in the acid treatment is preferably selected from hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and oxalic acid.
Two or more salts (described in the next section) and acid may be used for the treatment. The treatment conditions with salts and acids are not particularly limited. Usually, the salt and acid concentrations are 0.1 to 50% by weight, the treatment temperature is room temperature to boiling point, and the treatment time is 5 minutes to 24 hours. It is preferable to carry out the process under the condition of selecting and eluting at least a part of the substance constituting at least one compound selected from the group consisting of ion-exchangeable layered silicates. In addition, salts and acids are generally used in an aqueous solution.
In the present invention, a combination of the following acids and salts may be used as the treatment agent. Moreover, the combination of these acids and salts may be sufficient.

<塩類処理>:
本発明においては、塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの40%以上、好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンとCl、Br、I、F、PO、SO、NO、CO、C、ClO、OOCCH、CHCOCHCOCH、OCl、O(NO、O(ClO、O(SO)、OH、OCl、OCl、OOCH、OOCCHCH、CおよびCから成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。
<Salt treatment>:
In the present invention, 40% or more, preferably 60% or more of the exchangeable Group 1 metal cation contained in the ion-exchangeable layered silicate before being treated with salts is dissociated from the salts shown below. It is preferable to ion exchange with cations.
The salt used in the salt treatment for the purpose of ion exchange is a group consisting of a cation containing at least one atom selected from the group consisting of group 1 to 14 atoms, a halogen atom, an inorganic acid, and an organic acid. A compound comprising at least one anion selected from the group consisting of at least one anion selected from the group consisting of 2 to 14 atoms, and Cl, Br, I, F, PO. 4 , SO 4 , NO 3 , CO 3 , C 2 O 4 , ClO 4 , OOCCH 3 , CH 3 COCHCOCH 3 , OCl 2 , O (NO 3 ) 2 , O (ClO 4 ) 2 , O (SO 4 ), At least one anion selected from the group consisting of OH, O 2 Cl 2 , OCl 3 , OOCH, OOCCH 2 CH 3 , C 2 H 4 O 4 and C 5 H 5 O 7 Is a compound consisting of

このような塩類の具体例としては、LiF、LiCl、LiBr、LiI、LiSO、Li(CHCOO)、LiCO、Li(C)、LiCHO、LiC、LiClO、LiPO、CaCl、CaSO、CaC、Ca(NO、Ca(C、MgCl、MgBr、MgSO、Mg(PO、Mg(ClO、MgC、Mg(NO、Mg(OOCCH、MgC等が挙げられる。
また、Ti(OOCCH、Ti(CO、Ti(NO、Ti(SO、TiF、TiCl、Zr(OOCCH、Zr(CO、Zr(NO、Zr(SO、ZrF、ZrCl、ZrOCl、ZrO(NO、ZrO(ClO、ZrO(SO)、HF(OOCCH、HF(CO、HF(NO、HF(SO、HFOCl、HFF、HFCl、V(CHCOCHCOCH、VOSO、VOCl、VCl、VCl、VBr等が挙げられる。
Specific examples of such salts, LiF, LiCl, LiBr, LiI , Li 2 SO 4, Li (CH 3 COO), LiCO 3, Li (C 6 H 5 O 7), LiCHO 2, LiC 2 O 4 , LiClO 4 , Li 3 PO 4 , CaCl 2 , CaSO 4 , CaC 2 O 4 , Ca (NO 3 ) 2 , Ca 3 (C 6 H 5 O 7 ) 2 , MgCl 2 , MgBr 2 , MgSO 4 , Mg ( PO 4 ) 2 , Mg (ClO 4 ) 2 , MgC 2 O 4 , Mg (NO 3 ) 2 , Mg (OOCCH 3 ) 2 , MgC 4 H 4 O 4 and the like.
Further, Ti (OOCCH 3 ) 4 , Ti (CO 3 ) 2 , Ti (NO 3 ) 4 , Ti (SO 4 ) 2 , TiF 4 , TiCl 4 , Zr (OOCCH 3 ) 4 , Zr (CO 3 ) 2 , Zr (NO 3 ) 4 , Zr (SO 4 ) 2 , ZrF 4 , ZrCl 4 , ZrOCl 2 , ZrO (NO 3 ) 2 , ZrO (ClO 4 ) 2 , ZrO (SO 4 ), HF (OOCCH 3 ) 4 , HF (CO 3 ) 2 , HF (NO 3 ) 4 , HF (SO 4 ) 2 , HFOCl 2 , HFF 4 , HFCl 4 , V (CH 3 COCHCOCH 3 ) 3 , VOSO 4 , VOCl 3 , VCl 3 , VCl 4 , VBr 3 and the like.

また、Cr(CHCOCHCOCH、Cr(OOCCHOH、Cr(NO、Cr(ClO、CrPO、Cr(SO、CrOCl、CrF、CrCl、CrBr、CrI、Mn(OOCCH、Mn(CHCOCHCOCH、MnCO、Mn(NO、MnO、Mn(ClO、MnF、MnCl、Fe(OOCCH、Fe(CHCOCHCOCH、FeCO、Fe(NO、Fe(ClO、FePO、FeSO、Fe(SO、FeF3、FeCl、FeC等が挙げられる。 Also, Cr (CH 3 COCHCOCH 3 ) 3 , Cr (OOCCH 3 ) 2 OH, Cr (NO 3 ) 3 , Cr (ClO 4 ) 3 , CrPO 4 , Cr 2 (SO 4 ) 3 , CrO 2 Cl 2 , CrF 3, CrCl 3, CrBr 3, CrI 3, Mn (OOCCH 3) 2, Mn (CH 3 COCHCOCH 3) 2, MnCO 3, Mn (NO 3) 2, MnO, Mn (ClO 4) 2, MnF 2, MnCl 2 , Fe (OOCCH 3 ) 2 , Fe (CH 3 COCHCOCH 3 ) 3 , FeCO 3 , Fe (NO 3 ) 3 , Fe (ClO 4 ) 3 , FePO 4 , FeSO 4 , Fe 2 (SO 4 ) 3 , FeF 3 FeCl 3 , FeC 6 H 5 O 7 and the like.

また、Co(OOCCH、Co(CHCOCHCOCH、CoCO、Co(NO、CoC、Co(ClO、Co(PO、CoSO、CoF、CoCl、NiCO、Ni(NO、NiC、Ni(ClO、NiSO、NiCl、NiBr等が挙げられる。 In addition, Co (OOCCH 3 ) 2 , Co (CH 3 COCHCOCH 3 ) 3 , CoCO 3 , Co (NO 3 ) 2 , CoC 2 O 4 , Co (ClO 4 ) 2 , Co 3 (PO 4 ) 2 , CoSO 4 , CoF 2 , CoCl 2 , NiCO 3 , Ni (NO 3 ) 2 , NiC 2 O 4 , Ni (ClO 4 ) 2 , NiSO 4 , NiCl 2 , NiBr 2 and the like.

さらに、Zn(OOCCH、Zn(CHCOCHCOCH、ZnCO、Zn(NO、Zn(ClO、Zn(PO、ZnSO、ZnF、ZnCl、AlF、AlCl、AlBr、AlI、Al(SO、Al(C、Al(CHCOCHCOCH、Al(NO、AlPO、GeCl、GeBr、GeI等が挙げられる。 Furthermore, Zn (OOCCH 3 ) 2 , Zn (CH 3 COCHCOCH 3 ) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (ClO 4 ) 2 , Zn 3 (PO 4 ) 2 , ZnSO 4 , ZnF 2 , ZnCl 2 , AlF 3 , AlCl 3 , AlBr 3 , AlI 3 , Al 2 (SO 4 ) 3 , Al 2 (C 2 O 4 ) 3 , Al (CH 3 COCHCOCH 3 ) 3 , Al (NO 3 ) 3 , AlPO 4 , GeCl 4 , GeBr 4 , GeI 4 and the like.

<アルカリ処理>:
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)、Ca(OH)、Sr(OH)、Ba(OH)などが例示される。
<Alkali treatment>:
In addition to acid and salt treatment, the following alkali treatment or organic matter treatment may be performed as necessary. Examples of the treating agent used in the alkali treatment include LiOH, NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 and the like.

<有機物処理>:
また、有機物処理に用いられる有機処理剤の例としては、トリメチルアンモニウム、トリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム、等が挙げられる。
また、有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えばヘキサフルオロフォスフェート、テトラフルオロボレート、テトラフェニルボレートなどが例示されるが、これらに限定されるものではない。
<Organic treatment>:
Examples of the organic treatment agent used for organic treatment include trimethylammonium, triethylammonium, N, N-dimethylanilinium, triphenylphosphonium, and the like.
Examples of the anion constituting the organic treatment agent include hexafluorophosphate, tetrafluoroborate, and tetraphenylborate other than the anion exemplified as the anion constituting the salt treatment agent. It is not limited to these.

また、これらの処理剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。これらの組み合わせは、処理開始時に添加する処理剤について組み合わせて用いてもよいし、処理の途中で添加する処理剤について、組み合わせて用いてもよい。また化学処理は、同一または異なる処理剤を用いて複数回行うことも可能である。   Moreover, these processing agents may be used independently and may be used in combination of 2 or more types. These combinations may be used in combination for the treatment agent added at the start of the treatment, or may be used in combination for the treatment agent added during the treatment. The chemical treatment can be performed a plurality of times using the same or different treatment agents.

これらイオン交換性層状珪酸塩には、通常、吸着水および層間水が含まれる。本発明においては、これらの吸着水および層間水を除去して成分(B)として使用するのが好ましい。
イオン交換性層状珪酸塩の吸着水および層間水の加熱処理方法は、特に制限されないが、層間水が残存しないように、また、構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.5時間以上、好ましくは1時間以上である。その際、除去した後の成分(B)の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下、であることが好ましい。
These ion-exchange layered silicates usually contain adsorbed water and interlayer water. In the present invention, it is preferable to remove these adsorbed water and interlayer water and use them as the component (B).
The heat treatment method of the ion-exchange layered silicate adsorbed water and interlayer water is not particularly limited, but it is necessary to select conditions so that interlayer water does not remain and structural destruction does not occur. The heating time is 0.5 hour or longer, preferably 1 hour or longer. At that time, the water content of the component (B) after removal is 3% by weight or less, preferably 0% by weight when the water content is 0% by weight when dehydrated for 2 hours under the conditions of a temperature of 200 ° C. and a pressure of 1 mmHg. Is preferably 1% by weight or less.

以上のように、本発明において、成分(B)として、特に好ましいものは、塩類処理および/または酸処理を行って得られた、水分含有率が3重量%以下の、イオン交換性層状珪酸塩である。   As described above, in the present invention, as the component (B), an ion-exchange layered silicate having a water content of 3% by weight or less obtained by performing salt treatment and / or acid treatment is particularly preferable. It is.

イオン交換性層状珪酸塩は、触媒形成または触媒として使用する前に、後述する成分(C)で処理を行うことが可能で、好ましい。イオン交換性層状珪酸塩1gに対する成分(C)の使用量に制限は無いが、通常20mmol以下、好ましくは0.5mmol以上、10mmol以下で行う。処理温度や時間の制限は無く、処理温度は、通常0℃以上、70℃以下、処理時間は10分以上、3時間以下で行う。処理後に洗浄することも可能で、好ましい。溶媒は後述する予備重合やスラリー重合で使用する溶媒と同様の炭化水素溶媒を使用する。   The ion-exchange layered silicate can be treated with the component (C) described later before formation of the catalyst or use as a catalyst, which is preferable. Although there is no restriction | limiting in the usage-amount of the component (C) with respect to 1g of ion-exchange layered silicate, Usually, 20 mmol or less, Preferably it is 0.5 mmol or more and 10 mmol or less. There is no limitation on the treatment temperature and time, the treatment temperature is usually 0 ° C. or more and 70 ° C. or less, and the treatment time is 10 minutes or more and 3 hours or less. It is also possible and preferable to wash after the treatment. As the solvent, the same hydrocarbon solvent as that used in the preliminary polymerization and slurry polymerization described later is used.

また、成分(B)は、平均粒径が5μm以上の球状粒子を用いるのが好ましい。粒子の形状が球状であれば、天然物又は市販品をそのまま使用してもよいし、造粒、分粒、分別等により粒子の形状および粒径を制御したものを用いてもよい。   The component (B) is preferably a spherical particle having an average particle size of 5 μm or more. If the particle shape is spherical, a natural product or a commercially available product may be used as it is, or a particle whose particle shape and particle size are controlled by granulation, sizing, fractionation, or the like may be used.

ここで用いられる造粒法は、例えば攪拌造粒法、噴霧造粒法が挙げられるが、市販品を利用することもできる。
また、造粒の際に、有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。
上記のようにして得られた球状粒子は、重合工程での破砕や微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。
Examples of the granulation method used here include agitation granulation method and spray granulation method, but commercially available products can also be used.
Moreover, you may use organic substance, an inorganic solvent, inorganic salt, and various binders in the case of granulation.
The spherical particles obtained as described above desirably have a compressive fracture strength of 0.2 MPa or more, particularly preferably 0.5 MPa or more, in order to suppress crushing and generation of fine powder in the polymerization process. In the case of such particle strength, the effect of improving the particle properties is effectively exhibited especially when prepolymerization is performed.

(ハ)触媒成分(C)
本発明に係るプロピレン系重合体(A)の重合に用いられる触媒成分(C)は、有機アルミニウム化合物である。成分(C)として用いられる有機アルミニウム化合物は、一般式:(AlR15 3−qで示される化合物が適当である。
本発明では、この式で表される化合物を単独で、複数種混合して又は併用して使用することができることは言うまでもない。この式中、R15は、炭素数1〜20の炭化水素基を示し、Zは、ハロゲン、水素、アルコキシ基、アミノ基を示す。qは1〜3の、pは1〜2の整数を各々表す。R15としては、アルキル基が好ましく、またZは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
(C) Catalyst component (C)
The catalyst component (C) used for the polymerization of the propylene-based polymer (A) according to the present invention is an organoaluminum compound. As the organoaluminum compound used as the component (C), a compound represented by the general formula: (AlR 15 q Z 3-q ) p is appropriate.
In this invention, it cannot be overemphasized that the compound represented by this formula can be used individually, in mixture of multiple types, or in combination. In this formula, R 15 represents a hydrocarbon group having 1 to 20 carbon atoms, and Z represents a halogen, hydrogen, an alkoxy group or an amino group. q represents an integer of 1 to 3, and p represents an integer of 1 to 2, respectively. R 15 is preferably an alkyl group, and Z is a chlorine atom when it is a halogen atom, a C 1-8 alkoxy group when it is an alkoxy group, and a C 1 atom when it is an amino group. Eight amino groups are preferred.

有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち、好ましくは、p=1、q=3のトリアルキルアルミニウム及びアルキルアルミニウムヒドリドである。さらに好ましくは、R15が炭素数1〜8であるトリアルキルアルミニウムである。 Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethylaluminum. Examples thereof include sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, and diisobutylaluminum chloride. Of these, trialkylaluminum and alkylaluminum hydride having p = 1 and q = 3 are preferable. More preferably, R 15 is a trialkylaluminum having 1 to 8 carbon atoms.

(ニ)触媒の形成・予備重合について
本発明による触媒は、上記の各成分を(予備)重合槽内で、同時にもしくは連続的に、又は一度にもしくは複数回にわたって、接触させることによって形成させることができる。
各成分の接触は、脂肪族炭化水素又は芳香族炭化水素溶媒中で行うのが普通である。接触温度は、特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては、合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば次の通りである。
成分(C)を使用する場合、成分(A)と成分(B)を接触させる前に、成分(A)と、又は成分(B)と、または成分(A)及び成分(B)の両方に成分(C)を接触させること、または、成分(A)と成分(B)を接触させるのと同時に成分(C)を接触させること、または、成分(A)と成分(B)を接触させた後に成分(C)を接触させることが可能であるが、好ましくは、成分(A)と成分(B)を接触させる前に、成分(C)といずれかに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素又は芳香族炭化水素溶媒にて洗浄することが可能である。
(D) Formation of catalyst / preliminary polymerization The catalyst according to the present invention is formed by bringing the above-mentioned components into contact with each other in the (preliminary) polymerization tank simultaneously or continuously, or once or several times. Can do.
The contacting of each component is usually performed in an aliphatic hydrocarbon or aromatic hydrocarbon solvent. Although a contact temperature is not specifically limited, It is preferable to carry out between -20 degreeC and 150 degreeC. As the contact order, any desired combination can be used, but particularly preferable ones for each component are as follows.
When using component (C), before contacting component (A) with component (B), component (A), or component (B), or both component (A) and component (B) The component (C) is contacted, or the component (A) and the component (B) are contacted at the same time as the component (C) is contacted, or the component (A) and the component (B) are contacted. Although it is possible to contact the component (C) later, a method of contacting the component (C) with any of the components (A) and the component (B) is preferable.
Moreover, after making each component contact, it is possible to wash | clean with an aliphatic hydrocarbon or an aromatic hydrocarbon solvent.

本発明で使用する成分(A)、(B)および(C)の使用量は任意である。例えば、成分(B)に対する成分(A)の使用量は、成分(B)1gに対し、好ましくは0.1μmol〜1000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。成分(B)に対する成分(C)の使用量は、成分(B)1gに対し、好ましくはAlの量が0.01〜1000mmol、特に好ましくは0.05〜500mmolの範囲である。したがって、成分(A)に対する成分(C)の量は、遷移金属のモル比で、好ましくは0.01〜5×10、特に好ましくは0.1〜100、の範囲内が好ましい。 The amount of components (A), (B) and (C) used in the present invention is arbitrary. For example, the amount of component (A) used relative to component (B) is preferably in the range of 0.1 μmol to 1000 μmol, particularly preferably 0.5 μmol to 500 μmol, relative to 1 g of component (B). The amount of component (C) used relative to component (B) is preferably such that the amount of Al is 0.01 to 1000 mmol, particularly preferably 0.05 to 500 mmol, relative to 1 g of component (B). Therefore, the amount of the component (C) relative to the component (A) is preferably in the range of 0.01 to 5 × 10 6 , particularly preferably 0.1 to 100, in terms of the molar ratio of the transition metal.

本発明で使用する成分[A−1]と成分[A−2]の割合は、プロピレン重合体の特性を満たす範囲において任意であるが、各成分[A−1]と[A−2]の合計量に対する[A−1]の遷移金属のモル比で、好ましくは、0.30以上0.99以下である。
成分[A−1]からは、低分子量の末端ビニルマクロマーを生成し、成分[A−2]からは、一部マクロマーを共重合した高分子量体を生成する。したがって、成分[A−1]の割合を変化させることで、生成する重合体の平均分子量、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。
また、使用する水素量に対する、平均分子量と触媒活性のバランスを調整することが可能である。
より高い溶融物性と高い触媒活性が必要な用途のプロピレン系重合体製造のために、特に好ましくは0.40以上であり、さらに好ましくは0.5以上である。また上限値は、特に好ましくは0.90以下であり、更に好ましくは0.8以下の範囲である。
The ratio of the component [A-1] and the component [A-2] used in the present invention is arbitrary as long as the properties of the propylene polymer are satisfied. The molar ratio of [A-1] transition metal to the total amount is preferably 0.30 or more and 0.99 or less.
From component [A-1], a low molecular weight terminal vinyl macromer is produced, and from component [A-2], a high molecular weight product obtained by copolymerizing a part of the macromer is produced. Therefore, by changing the ratio of the component [A-1], the average molecular weight, molecular weight distribution, bias of the molecular weight distribution toward the high molecular weight side, very high molecular weight component, branch (amount, length, Distribution) can be controlled, whereby the melt physical properties such as strain hardening degree, melt tension, and melt spreadability can be controlled.
Further, it is possible to adjust the balance between the average molecular weight and the catalyst activity with respect to the amount of hydrogen used.
In order to produce a propylene-based polymer for applications requiring higher melt properties and high catalytic activity, it is particularly preferably 0.40 or more, and further preferably 0.5 or more. The upper limit is particularly preferably 0.90 or less, and more preferably 0.8 or less.

本発明に係る触媒は、これにオレフィンを接触させて少量重合されることからなる予備重合処理に付される。予備重合処理を行うことにより、本重合を行った際に、ゲルの生成を防止できる。その理由としては、本重合を行った際の重合体粒子間で長鎖分岐を均一に分布させることができるためと考えられ、また、そのことにより溶融物性を向上することができる。   The catalyst according to the present invention is subjected to a prepolymerization treatment consisting of a small amount of polymerization by bringing an olefin into contact therewith. By performing the prepolymerization treatment, gel formation can be prevented when the main polymerization is performed. The reason is considered to be that long-chain branches can be uniformly distributed among the polymer particles when the main polymerization is performed, and the melt physical properties can be improved thereby.

予備重合時に使用するオレフィンは、特に限定はないが、プロピレン、エチレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等を例示することができる。オレフィンのフィード方法は、オレフィンを反応槽に定速的に又は定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等、任意の方法が可能である。予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、予備重合ポリマー量が成分(B)に対し、好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に成分(C)を添加、又は追加することもできる。また、予備重合終了後に洗浄することも可能である。   The olefin used in the prepolymerization is not particularly limited, but propylene, ethylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane, Styrene and the like can be exemplified. The olefin feed method may be any method such as a feed method for maintaining the olefin at a constant rate or a constant pressure in the reaction tank, a combination thereof, or a stepwise change. The prepolymerization temperature and time are not particularly limited, but are preferably in the range of −20 ° C. to 100 ° C. and 5 minutes to 24 hours, respectively. The amount of prepolymerization is preferably 0.01 to 100, more preferably 0.1 to 50 with respect to the component (B). Moreover, a component (C) can also be added or added at the time of prepolymerization. It is also possible to wash after the prepolymerization.

また、上記の各成分の接触の際または接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、チタニア等の無機酸化物の固体を共存させる等の方法も可能である。   In addition, a method in which a polymer such as polyethylene or polypropylene, or a solid of an inorganic oxide such as silica or titania is allowed to coexist during or after the contact of each component described above is also possible.

(ホ)触媒の使用/プロピレン重合について
重合様式は、前記成分(A)、成分(B)及び成分(C)を含むオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用し得る。
具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いる、所謂バルク法、溶液重合法又は実質的に液体溶媒を用いず各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合を行う方法も適用される。また、単段重合以外に、2段以上の多段重合することも可能である。
(E) Use of Catalyst / Propylene Polymerization Any polymerization method may be used as long as the olefin polymerization catalyst including the component (A), the component (B) and the component (C) is in efficient contact with the monomer. obtain.
Specifically, a slurry method using an inert solvent, a so-called bulk method, a solution polymerization method, or a substantially liquid solvent without using an inert solvent as a solvent. A gas phase method can be used. Moreover, the method of performing continuous polymerization and batch type polymerization is also applied. In addition to single-stage polymerization, multistage polymerization of two or more stages is also possible.

スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。
また、重合温度は、0℃以上150℃以下である。特に、バルク重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は80℃以下が好ましく、更に好ましくは75℃以下である。
さらに、気相重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は100℃以下が好ましく、更に好ましくは90℃以下である。
In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene, or the like is used alone or as a polymerization solvent.
The polymerization temperature is 0 ° C. or higher and 150 ° C. or lower. In particular, when bulk polymerization is used, the temperature is preferably 40 ° C or higher, more preferably 50 ° C or higher. The upper limit is preferably 80 ° C. or lower, more preferably 75 ° C. or lower.
Furthermore, when using vapor phase polymerization, it is preferably 40 ° C or higher, more preferably 50 ° C or higher. The upper limit is preferably 100 ° C. or lower, more preferably 90 ° C. or lower.

重合圧力は、1.0MPa以上5.0MPa以下である。特に、バルク重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は4.0MPa以下が好ましく、更に好ましくは3.5MPa以下である。
さらに、気相重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は2.5MPa以下が好ましく、更に好ましくは2.0MPa以下である。
The polymerization pressure is 1.0 MPa or more and 5.0 MPa or less. In particular, when bulk polymerization is used, the pressure is preferably 1.5 MPa or more, more preferably 2.0 MPa or more. The upper limit is preferably 4.0 MPa or less, more preferably 3.5 MPa or less.
Furthermore, when using vapor phase polymerization, 1.5 MPa or more is preferable, and 2.0 MPa or more is more preferable. The upper limit is preferably 2.5 MPa or less, more preferably 2.0 MPa or less.

さらに、分子量調節剤として、また活性向上効果のために、補助的に水素を用いることができる。
水素は、プロピレンに対してフィード比で、0〜1mol%の範囲で用いるのがよく、好ましくは0.0001mol%以上であり、さらに好ましくは0.001mol%以上用いるのがよい。
使用する水素の量を変化させることで、生成する重合体の平均分子量の他に、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。
Further, hydrogen can be used as a molecular weight regulator and for the purpose of improving the activity.
Hydrogen is used in a feed ratio of 0 to 1 mol% with respect to propylene, preferably 0.0001 mol% or more, and more preferably 0.001 mol% or more.
By changing the amount of hydrogen used, in addition to the average molecular weight of the polymer produced, the molecular weight distribution, the deviation of the molecular weight distribution toward the high molecular weight side, very high molecular weight components, branching (amount, length, distribution) The melt physical properties such as strain hardening degree, melt tension, and melt spreadability can be controlled.

また、プロピレンモノマー以外に、炭素数2〜20(モノマーとして使用するものを除く)程度のα−オレフィンをコモノマーとして使用する共重合を行ってもよい。プロピレン系重合体中の(総)コモノマー含量は、0モル%以上、20モル%以下の範囲であり、上記コモノマーを複数種使用することも可能である。具体的には、エチレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテンである。
この中では、本発明に係るプロピレン系重合体(A)を溶融物性と触媒活性をバランスよく得るためには、エチレンを5モル%以下で用いるのが好ましい。特に剛性の高い重合体を得るためには重合体中に含まれるエチレンを1モル%以下になるようにエチレンを用いるのがよく、更に好ましくはプロピレン単独重合である。
In addition to the propylene monomer, copolymerization using an α-olefin having about 2 to 20 carbon atoms (excluding those used as a monomer) as a comonomer may be performed. The (total) comonomer content in the propylene-based polymer is in the range of 0 mol% or more and 20 mol% or less, and a plurality of the above-mentioned comonomers can be used. Specifically, they are ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene.
Among these, in order to obtain the propylene polymer (A) according to the present invention in a good balance between melt physical properties and catalytic activity, it is preferable to use ethylene at 5 mol% or less. In particular, in order to obtain a polymer having high rigidity, it is preferable to use ethylene so that ethylene contained in the polymer is 1 mol% or less, and propylene homopolymerization is more preferable.

(ヘ)重合メカニズムの考察
マクロマーの生成は、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により生成すると考察され、本発明では、特定の構造をもつ成分[A−1]は、比較的低温の温度領域(40℃〜80℃)で、成長停止反応中β−メチル脱離反応の選択性が高く、また、ポリマー成長反応に対するβ−メチル脱離反応の比が従来の構造の錯体と比べて、大きいことが、見出されている。
従来は、β−メチル脱離反応を優先的に起こすために、プロピレン濃度の薄いスラリー重合での特殊な条件下(低圧、高温重合、水素無添加)でしか製造できなかったのに対して、特定の構造をもつ成分[A−1]を用いることにより、工業的に有効なバルク重合や気相重合によって、しかも実用的な圧力条件(1.0〜3.0MPa)および温度条件(40℃〜80℃)下で、製造が可能であることが分かった。
(F) Consideration of polymerization mechanism It is considered that the formation of a macromer is caused by a special chain transfer reaction generally called β-methyl elimination. In the present invention, the component [A-1] having a specific structure is relatively In the low temperature range (40 ° C. to 80 ° C.), the selectivity of the β-methyl elimination reaction during the growth termination reaction is high, and the ratio of the β-methyl elimination reaction to the polymer growth reaction is higher than that of the complex having the conventional structure. It has been found that it is large in comparison.
Conventionally, in order to preferentially cause the β-methyl elimination reaction, it could only be produced under special conditions (low pressure, high temperature polymerization, no hydrogen addition) in slurry polymerization with a low propylene concentration, By using the component [A-1] having a specific structure, industrially effective bulk polymerization or gas phase polymerization, and practical pressure conditions (1.0 to 3.0 MPa) and temperature conditions (40 ° C. It was found that the production is possible under ˜80 ° C.).

さらに、驚くべきことに、水素を添加することで、従来の方法ではβ−メチル脱離反応よりも水素による連鎖移動反応が優勢となるのに対し、原因は不明であるが、本発明に係るプロピレン系重合体(A)の製造法では、水素を添加してもマクロマー生成と生長反応のバランスの変化が小さい特徴があり、水素存在下でもマクロマーの選択性は、殆ど変わらないことが分かった。しかも、水素は活性向上効果を有する。
このことは、従来は特殊な条件(低圧、高温、水素無添加)であるマクロマー生成工程を経た後に、マクロマー共重合を行う多段重合を行わなければならなかったのに対し、成分[A−2]と組み合わせることにより、マクロマー生成工程とマクロマー共重合工程を同条件で行うことができる、つまり、同時重合、単段重合できることが分かった。
Furthermore, surprisingly, by adding hydrogen, the chain transfer reaction by hydrogen is superior to the β-methyl elimination reaction in the conventional method, whereas the cause is unknown, but according to the present invention. The propylene-based polymer (A) production method is characterized by a small change in the balance between macromer formation and growth reaction even when hydrogen is added, and the macromer selectivity is hardly changed even in the presence of hydrogen. . Moreover, hydrogen has an activity improving effect.
This is because, in the past, it has been necessary to carry out a multi-stage polymerization in which a macromer copolymerization is performed after a macromer production step which is a special condition (low pressure, high temperature, no hydrogen addition), whereas the component [A-2 ], It was found that the macromer production step and the macromer copolymerization step can be performed under the same conditions, that is, simultaneous polymerization and single-stage polymerization can be performed.

一方、成分[A−2]は、特定の構造をもつことにより、ビニル構造の末端を生成する能力はなくても、マクロマーの共重合する能力が高く、更に、成分[A−1]とくらべて、より高分子量の重合体を生成する能力を有する。また、水素を添加すると、活性向上し、水素による連鎖移動により分子量が低下する。
従来は、マクロマー生成とマクロマー共重合を単一の錯体で製造しているため、すなわち、成分[A−1]と成分[A−2]を同一の錯体で重合体を製造するため、マクロマー生成能力またはマクロマー共重合能力のどちらかが不十分であったり、高分子量側に分岐成分の導入量が不十分であったり、また、分子量の調整に水素を用いると、マクロマー自体の生成量が減少してしまうという問題点があった。
On the other hand, the component [A-2] has a specific structure, so that it has a high ability to copolymerize macromers even though it does not have the ability to form a terminal vinyl structure, and further compared to the component [A-1]. And has the ability to produce higher molecular weight polymers. Further, when hydrogen is added, the activity is improved, and the molecular weight is lowered due to chain transfer by hydrogen.
Conventionally, macromer formation and macromer copolymerization are produced by a single complex, that is, in order to produce a polymer with the same complex of component [A-1] and component [A-2], If either the capacity or the macromer copolymerization capacity is insufficient, the amount of branching component introduced is insufficient on the high molecular weight side, or if hydrogen is used to adjust the molecular weight, the production amount of the macromer itself decreases. There was a problem of doing.

しかしながら、本発明では、マクロマー生成能力を有する特定の構造の成分[A−1]と、高分子量でマクロマー共重合能力を有する特定の構造の成分[A−2]を、特定の方法で組み合わせた触媒として、使用することにより、バルク重合や気相重合といった工業的に有効な方法で、特に実用的な圧力温度条件下の単段重合で、しかも、分子量調整剤である水素を用いて、目的とする物性を有する長鎖分岐含有プロピレン系重合体(A)の製造が可能である。
また、従来は、立体規則性の低い成分を使用して結晶性を落とすことによって、分岐生成効率を高めなければならなかったが、本発明の方法では、充分に立体規則性の高い成分を側鎖に簡便な方法で導入することが可能となった。
However, in the present invention, the component [A-1] having a specific structure having macromer generation ability and the component [A-2] having a specific structure having high molecular weight and macromer copolymerization ability are combined in a specific method. By using it as a catalyst, it is an industrially effective method such as bulk polymerization or gas phase polymerization, especially in single-stage polymerization under practical pressure-temperature conditions, and using hydrogen as a molecular weight regulator. It is possible to produce a long-chain branched propylene polymer (A) having the following physical properties:
Further, conventionally, it has been necessary to increase the branching efficiency by reducing the crystallinity by using a component having low stereoregularity, but in the method of the present invention, a component having sufficiently high stereoregularity is side by side. It became possible to introduce into the chain by a simple method.

(2)プロピレン系重合体(B)の重合法
本発明で用いるプロピレン系重合体(B)は、重合に用いられる触媒としては、チタン、マグネシウム及びハロゲンを必須成分として含有する固体触媒成分(a)と、有機アルミニウム成分(b)からなるプロピレン重合用触媒が好ましい。また、チタン、マグネシウム、ハロゲン及び電子供与体を必須成分とする固体触媒成分(a)と、有機アルミニウム成分(b)とから形成されるチーグラー・ナッタ触媒が、上記重合に用いられることがより好ましい。
(2) Polymerization Method of Propylene Polymer (B) The propylene polymer (B) used in the present invention is a solid catalyst component (a) containing titanium, magnesium and halogen as essential components as a catalyst used for polymerization. ) And an organoaluminum component (b). Further, it is more preferable that a Ziegler-Natta catalyst formed from a solid catalyst component (a) having an essential component of titanium, magnesium, halogen and an electron donor and an organoaluminum component (b) is used for the polymerization. .

さらに、固体触媒成分(a)は下記の(i)、(ii)、(iii)及び(iv)を接触させて得られるものを使用するのが好ましい。
(i)チタン、マグネシウム及びハロゲンを必須成分として含有する固体成分
(ii)Si−OR結合(ただし、Rは炭素数1から8の炭化水素基である。)を2つ以上含有する有機ケイ素化合物
(iii)ビニルシラン化合物
(iv)周期律I〜III族金属の有機金属化合物
Furthermore, it is preferable to use the solid catalyst component (a) obtained by contacting the following (i), (ii), (iii) and (iv).
(I) Solid component containing titanium, magnesium and halogen as essential components (ii) Organic containing two or more Si—OR 1 bonds (wherein R 1 is a hydrocarbon group having 1 to 8 carbon atoms) Silicon compound (iii) Vinylsilane compound (iv) Organometallic compound of Group I to III metals

<成分(i)>
成分(i)は、チタン、マグネシウム及びハロゲンを含有する原料固体成分である。これらチタン(Ti)−マグネシウム(Mg)−ハロゲンの三元素(三成分)はいずれも必須成分として含有するものである。ここで、「必須成分として含有する」ということは、挙示の三成分のほかに合目的的な他元素を含んでもよいこと、これらの元素はそれぞれが合目的的な任意の化合物として存在してもよいこと、ならびにこれら元素は相互に結合したものとして存在してもよいこと、を示すものである。チタン、マグネシウムおよびハロゲンを含む原料固体成分そのものは公知のものである。例えば、特開昭53−45688
号、同54−3894号、同54−31092号、同54−39483号、同54−94591号、同54−118484号、同54−131589号、同55−75411号、同55−90510号、同55−90511号、同55−90511号、同55−127405号、同55−147507号、同55−155003号、同56−18609号、同56−70005号、同56−72001号、同56−86905号、同56−90807号、同56−155206号、同57−92007号、同57−121003号、同58−5309号、同58−5310号、同58−5311号、同58−8706号、同58−27732号、同58−32604号、同58−32605号、同58−67703号、同58−117206号、同58−127708号、同58−183708号、同58−183709号、同59−149905号、同59−149906号、同60−130607号、同61−55104号、同61−204204号、同62−508号、同62−15209号、同62−20507号、同62−184005号、同62−236805号、同63−199207号、同63−264607号、同63−264608号、特開平1−79203号、同1−139601号、同1−215806号、同7−258328号、同7−269125号、同11−21309号、各公報等に記載のものが使用される。
<Component (i)>
Component (i) is a raw material solid component containing titanium, magnesium and halogen. These three elements (three components) of titanium (Ti) -magnesium (Mg) -halogen are contained as essential components. Here, “contained as an essential component” means that in addition to the listed three components, other suitable elements may be included, and each of these elements is present as an arbitrary desired compound. As well as the fact that these elements may exist as bonded to each other. The raw material solid components themselves containing titanium, magnesium and halogen are known. For example, JP-A-53-45688
, 54-3894, 54-31092, 54-39483, 54-94591, 54-118484, 54-131589, 55-75411, 55-90510, 55-90511, 55-90511, 55-127405, 55-147507, 55-155003, 56-18609, 56-70005, 56-72001, 56 -86905, 56-90807, 56-155206, 57-92007, 57-12003, 58-5309, 58-5310, 58-5311, 58-8706 58-27732, 58-32604, 58-32605, 58-67703, 58-117206 58-127708, 58-183708, 58-183709, 59-149905, 59-149906, 60-130607, 61-55104, 61-204204, 62-508, 62-15209, 62-20507, 62-184005, 62-236805, 63-199207, 63-264607, 63-264608, JP-A-1 -79203, 1-139601, 1-215806, 7-258328, 7-269125, 11-21309, each publication, etc. are used.

また、これらのものをタングステンやモリブテン化合物で処理したものなども挙げられる。   Moreover, the thing etc. which processed these with tungsten and a molybdenum compound are mentioned.

成分(i)のマグネシウム源となるマグネシウム化合物としては、マグネシウムハライド、ジアルコキシマグネシウム、アルコキシマグネシウムハライド、マグネシウムオキシハライド、ジアルキルマグネシウム、酸化マグネシウム、水酸化マグネシウム、マグネシウムのカルボン酸塩等が挙げられる。これらのうちで好ましいのはマグネシウムハライド、ジアルコキシマグネシウム、アルコキシマグネシウムハライドである。   Examples of the magnesium compound serving as the magnesium source of component (i) include magnesium halide, dialkoxymagnesium, alkoxymagnesium halide, magnesium oxyhalide, dialkylmagnesium, magnesium oxide, magnesium hydroxide, magnesium carboxylate, and the like. Of these, preferred are magnesium halide, dialkoxymagnesium and alkoxymagnesium halide.

また、成分(i)のチタン源となるチタン化合物は、一般式Ti(OR4−q(ここで、Rは、炭化水素基、好ましくは炭素数1〜10程度のものであり、Xはハロゲンを示し、qは0≦q≦4である。)で表される化合物が挙げられる。具体例としては、TiCl、TiBr、Ti(OC)Cl、Ti(OCCl、Ti(OCCl、Ti(O−i−C)Cl、Ti(O−n−C)Cl、Ti(O−n−CCl、Ti(OC)Br、Ti(OC)(O−n−CCl、Ti(O−n−CCl、Ti(OC)Cl、Ti(O−i−CCl、Ti(OC11)Cl、Ti(OC13)Cl、Ti(OC、Ti(O−n−C、Ti(O−n−C、Ti(O−i−C、Ti(O−n−C13、Ti(O−n−C17、Ti(OCHCH(C)C等が挙げられる。 Further, the titanium compound serving as a titanium source component (i) has the general formula Ti (OR 2) 4-q X q ( where, R 2 is a hydrocarbon group, preferably of the order of 1 to 10 carbon atoms Yes, X represents halogen, and q is 0 ≦ q ≦ 4.) Specific examples include TiCl 4 , TiBr 4 , Ti (OC 2 H 5 ) Cl 3 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (OC 2 H 5 ) 3 Cl, Ti (O-i-C 3). H 7) Cl 3, Ti ( O-n-C 4 H 9) Cl 3, Ti (O-n-C 4 H 9) 2 Cl 2, Ti (OC 2 H 5) Br 3, Ti (OC 2 H 5) (O-n-C 4 H 9) 2 Cl, Ti (O-n-C 4 H 9) 3 Cl, Ti (OC 6 H 5) Cl 3, Ti (O-i-C 4 H 9) 2 Cl 2 , Ti (OC 5 H 11 ) Cl 3 , Ti (OC 6 H 13 ) Cl 3 , Ti (OC 2 H 5 ) 4 , Ti (On-C 3 H 7 ) 4 , Ti (O— n-C 4 H 9) 4 , Ti (O-i-C 4 H 9) 4, Ti (O-n-C 6 H 13) 4, Ti (O- -C 8 H 17) 4, Ti (OCH 2 CH (C 2 H 5) C 4 H 9) 4 , and the like.

また、TiX’(ここで、X’はハロゲンである。)に後述する電子供与体を反応させた分子化合物をチタン源として用いることもできる。そのような分子化合物の具体例としては、TiCl・CHCOC、TiCl・CHCO、TiCl・CNO、TiCl・CHCOCl、TiCl・CCOCl、TiCl・CCO、TiCl・ClCOC、TiCl・CO等が挙げられる。 Further, a molecular compound obtained by reacting an electron donor described later with TiX ′ 4 (where X ′ is a halogen) can also be used as a titanium source. Specific examples of such molecular compounds include TiCl 4 · CH 3 COC 2 H 5 , TiCl 4 · CH 3 CO 2 C 2 H 5 , TiCl 4 · C 6 H 5 NO 2 , TiCl 4 · CH 3 COCl, TiCl 4 · C 6 H 5 COCl, TiCl 4 · C 6 H 5 CO 2 C 2 H 5 , TiCl 4 · ClCOC 2 H 5 , TiCl 4 · C 4 H 4 O and the like can be mentioned.

また、TiCl(TiClを水素で還元したもの、アルミニウム金属で還元したもの、または有機金属化合物で還元したもの等を含む)、TiBr、Ti(OC)Cl、TiCl、ジシクロペンタジエニルチタニウムジクロライド、シクロペンタジエニルチタニウムトリクロライド等のチタン化合物の使用も可能である。 In addition, TiCl 3 (including those obtained by reducing TiCl 4 with hydrogen, those reduced with aluminum metal, or those reduced with an organometallic compound), TiBr 3 , Ti (OC 2 H 5 ) Cl 2 , TiCl 2 , It is also possible to use titanium compounds such as dicyclopentadienyl titanium dichloride and cyclopentadienyl titanium trichloride.

上記したこれらのチタン化合物の中でもTiCl、Ti(OC、Ti(OC)Cl等が、特に好ましい。 Among these titanium compounds described above, TiCl 4 , Ti (OC 4 H 9 ) 4 , Ti (OC 2 H 5 ) Cl 3 and the like are particularly preferable.

成分(i)のハロゲンは、上述のマグネシウム及び(又は)チタンのハロゲン化合物から供給されるのが普通であるが、他のハロゲン源、例えばAlCl等のアルミニウムのハロゲン化物、BCl等のホウ素のハロゲン化物、SiCl等のケイ素のハロゲン化物、PCl、PCl等のリンのハロゲン化物、WCl等のタングステンのハロゲン化物、MoCl等のモリブデンのハロゲン化物といった公知のハロゲン化剤から供給することもできる。固体触媒成分(a)中に含まれるハロゲンは、フッ素、塩素、臭素、ヨウ素又はこれらの混合物であってもよく、特に塩素が好ましい。 The halogen of component (i) is usually supplied from the aforementioned magnesium and / or titanium halogen compounds, but other halogen sources, for example, aluminum halides such as AlCl 3 , boron such as BCl 3, etc. Supplied from known halogenating agents such as halides of silicon, silicon halides such as SiCl 4 , phosphorus halides such as PCl 3 and PCl 5 , tungsten halides such as WCl 6 , molybdenum halides such as MoCl 5 You can also The halogen contained in the solid catalyst component (a) may be fluorine, chlorine, bromine, iodine or a mixture thereof, and chlorine is particularly preferable.

また、原料固体成分(i)の製造に利用できる電子供与体(内部ドナー)としては、アルコール類、フェノール類、ケトン類、アルデヒド類、カルボン酸類、有機酸または無機酸類のエステル類、エーテル類、酸アミド類、酸無水物類のような含酸素電子供与体、アンモニア、アミン、ニトリル、イソシアネートのような含窒素電子供与体、スルホン酸エステルのような含硫黄電子供与体などを例示することができる。   Examples of the electron donor (internal donor) that can be used for the production of the raw material solid component (i) include alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic acids or inorganic acids, ethers, Examples include oxygen-containing electron donors such as acid amides and acid anhydrides, nitrogen-containing electron donors such as ammonia, amines, nitriles, and isocyanates, and sulfur-containing electron donors such as sulfonate esters. it can.

より具体的には、(イ)メタノール、エタノール、プロパノール、ペンタノール、ヘキサノール、オクタノール、ドデカノール、オクタデシルアルコール、ベンジルアルコール、フェニルエチルアルコール、イソプロピルベンジルアルコールなどの炭素数1〜18のアルコール類、(ロ)フェノール、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、イソプロピルフェノール、ノニルフェノール、ナフトールなどのアルキル基を有してよい炭素数6〜25のフェノール類、(ハ)アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノンなどの炭素数3〜15のケトン類、(ニ)アセトアルデヒド、プロピオンアルデヒド、オクチルアルデヒド、ベンズアルデヒド、トルアルデヒド、ナフトアルデヒドなどの炭素数2〜15のアルデヒド類、   More specifically, (i) alcohols having 1 to 18 carbon atoms such as methanol, ethanol, propanol, pentanol, hexanol, octanol, dodecanol, octadecyl alcohol, benzyl alcohol, phenylethyl alcohol, isopropylbenzyl alcohol, ) Phenols having 6 to 25 carbon atoms which may have alkyl groups such as phenol, cresol, xylenol, ethylphenol, propylphenol, isopropylphenol, nonylphenol, naphthol, (c) acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, C3-C15 ketones such as benzophenone, (d) acetaldehyde, propionaldehyde, octylaldehyde, benzaldehyde, tolualdehyde, Aldehydes of 2 to 15 carbon atoms such as naphthaldehyde,

(ホ)ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、酢酸セロソルブ、プロピオン酸エチル、酪酸メチル、吉草酸エチル、ステアリン酸エチル、クロル酢酸メチル、ジクロル酢酸エチル、メタクリル酸メチル、クロトン酸エチル、シクロへキサンカルボン酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、安息香酸ベンジル、安息香酸セロソルブ、トルイル酸メチル、トルイル酸エチル、トルイル酸アミル、エチル安息香酸エチル、アニス酸メチル、アニス酸エチル、エトキシ安息香酸エチル、γ−ブチロラクトン、α−バレロラクトン、クマリン、フタリドなどの有機酸モノエステル、または、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、コハク酸ジエチル、マレイン酸ジブチル、1,2−シクロヘキサンカルボン酸ジエチル、炭酸エチレン、ノルボルナンジエニル−1,2−ジメチルカルボキシラート、シクロプロパン−1,2−ジカルボン酸−n−ヘキシル、1,1−シクロブタンジカルボン酸ジエチルなどの有機酸多価エステルの炭素数2〜20の有機酸エステル類、 (E) methyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, cellosolve acetate, ethyl propionate, methyl butyrate, ethyl valerate, ethyl stearate, methyl chloroacetate, ethyl dichloroacetate, Methyl methacrylate, ethyl crotonate, ethyl cyclohexanecarboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate, cellosolve benzoate , Organic acid monoesters such as methyl toluate, ethyl toluate, amyl toluate, ethyl ethyl benzoate, methyl anisate, ethyl anisate, ethyl ethoxybenzoate, γ-butyrolactone, α-valerolactone, coumarin, phthalide Or diethyl phthalate, dibutyl phthalate, diheptyl phthalate, diethyl succinate, dibutyl maleate, diethyl 1,2-cyclohexanecarboxylate, ethylene carbonate, norbornanedienyl-1,2-dimethylcarboxylate, cyclopropane C2-C20 organic acid esters of organic acid polyvalent esters such as -1,2-dicarboxylic acid-n-hexyl, diethyl 1,1-cyclobutanedicarboxylate,

(ヘ)ケイ酸エチル、ケイ酸ブチルなどのケイ酸エステルのような無機酸エステル類、(ト)アセチルクロリド、ベンゾイルクロリド、トルイル酸クロリド、アニス酸クロリド、塩化フタロイル、イソ塩化フタロイルなどの炭素数2〜15の酸ハライド類、(チ)メチルエーテル、エチルエーテル、イソプロピルエーテル、ブチルエーテル、アミルエーテル、テトラヒドロフラン、アニソール、ジフェニルエーテル、2,2−ジメチル−1,3−ジメトキシプロパン、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−s−ブチル−1,3−ジメトキシプロパン、2−t−ブチル−2−メチル−1,3−ジメトキシプロパン、2−t−ブチル−2−イソプロピル−1,3−ジメトキシプロパン、2,2−ジシクロペンチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2,2−ジフェニル−1,3−ジメトキシプロパン、2,2−ジメチル−1,3−ジエトキシプロパン、2,2−ジイソプロピル−1,3−ジエトキシプロパンなどの炭素数2〜20のエーテル類、 (F) Carbon number of inorganic acid esters such as silicate esters such as ethyl silicate and butyl silicate, (to) acetyl chloride, benzoyl chloride, toluic acid chloride, anisic acid chloride, phthaloyl chloride, isophthaloyl chloride 2-15 acid halides, (thi) methyl ether, ethyl ether, isopropyl ether, butyl ether, amyl ether, tetrahydrofuran, anisole, diphenyl ether, 2,2-dimethyl-1,3-dimethoxypropane, 2,2-diisopropyl- 1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2-isopropyl-2-s-butyl-1,3-dimethoxy Propane, 2-t-butyl-2- Til-1,3-dimethoxypropane, 2-t-butyl-2-isopropyl-1,3-dimethoxypropane, 2,2-dicyclopentyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3- 2-20 carbon atoms such as dimethoxypropane, 2,2-diphenyl-1,3-dimethoxypropane, 2,2-dimethyl-1,3-diethoxypropane, 2,2-diisopropyl-1,3-diethoxypropane Ethers of

(リ)酢酸アミド、安息香酸アミド、トルイル酸アミドなどの酸アミド類、(ヌ)メチルアミン、エチルアミン、ジエチルアミン、トリブチルアミン、ピペリジン、トリベンジルアミン、アニリン、ピリジン、ピコリン、テトラメチルエチレンジアミンなどのアミン類、(ル)アセトニトリル、ベンゾニトリル、トルニトリルなどのニトリル類、(ヲ)2−(エトキシメチル)−安息香酸エチル、2−(t−ブトキシメチル)−安息香酸エチル、3−エトキシ−2−フェニルプロピオン酸エチル、3−エトキシプロピオン酸エチル、3−エトキシ−2−s−ブチルプロピオン酸エチル、3−エトキシ−2−t−ブチルプロピオン酸エチルなどのアルコキシエステル化合物類、 (Li) Acid amides such as acetic acid amide, benzoic acid amide, toluic acid amide, (nu) amines such as methylamine, ethylamine, diethylamine, tributylamine, piperidine, tribenzylamine, aniline, pyridine, picoline, tetramethylethylenediamine , Nitriles such as (l) acetonitrile, benzonitrile, tolunitrile, (wo) 2- (ethoxymethyl) -ethyl benzoate, 2- (t-butoxymethyl) -ethyl benzoate, 3-ethoxy-2-phenylpropiyl Alkoxy ester compounds such as ethyl onate, ethyl 3-ethoxypropionate, ethyl 3-ethoxy-2-s-butylpropionate, ethyl 3-ethoxy-2-t-butylpropionate,

(ワ)2−ベンゾイル安息香酸エチル、2−(4’−メチルベンゾイル)安息香酸エチル、2−ベンゾイル−4,5−ジメチル安息香酸エチルなどのケトエステル化合物類、(カ)ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、p−トルエンスルホン酸エチル、p−トルエンスルホン酸イソプロピル、p−トルエンスルホン酸−n−ブチル、p−トルエンスルホン酸−s−ブチルなどのスルホン酸エステル類等を挙げることができる。 (Wa) Ketoester compounds such as ethyl 2-benzoylbenzoate, ethyl 2- (4′-methylbenzoyl) benzoate, ethyl 2-benzoyl-4,5-dimethylbenzoate, (f) methyl benzenesulfonate, benzene Examples thereof include sulfonic acid esters such as ethyl sulfonate, ethyl p-toluenesulfonate, isopropyl p-toluenesulfonate, n-butyl p-toluenesulfonate, and s-butyl p-toluenesulfonate.

これらの電子供与体は、二種類以上用いることもできる。
これらの中で、より好ましいのは有機酸エステル化合物、酸ハライド化合物及びエーテル化合物であり、特に好ましいのはフタル酸ジエステル化合物及びフタル酸ジハライド化合物からなる群から選択されるものである。
Two or more kinds of these electron donors can be used.
Among these, organic acid ester compounds, acid halide compounds and ether compounds are more preferable, and particularly preferable are those selected from the group consisting of phthalic acid diester compounds and phthalic acid dihalide compounds.

固体触媒成分(a)は、必要により他成分を用いて、例えば以下のような製造方法により製造される。
(イ)ハロゲン化マグネシウムと電子供与体、チタン含有化合物を接触させる方法。
(ロ)アルミナ又はマグネシアをハロゲン化リン化合物で処理し、それにハロゲン化マグネシウム、電子供与体、チタンハロゲン含有化合物を接触させる方法。
The solid catalyst component (a) is produced, for example, by the following production method using other components as necessary.
(A) A method of contacting a magnesium halide with an electron donor and a titanium-containing compound.
(B) A method in which alumina or magnesia is treated with a halogenated phosphorus compound, and a magnesium halide, an electron donor, and a titanium halogen-containing compound are brought into contact therewith.

(ハ)ハロゲン化マグネシウムとチタンテトラアルコキシド及び特定のポリマーケイ素化合物を接触させて得られる固体成分に、チタンハロゲン化合物及び/又はケイ素のハロゲン化合物、電子供与体を接触させた反応生成物を不活性有機溶媒で洗浄させる方法。なお、ここで用いられるポリマーケイ素化合物としては、下式で示されるものが適当である。
−[Si(H)(R)−O−]
ここで、上式中、Rは炭素数1〜10程度の炭化水素基であり、xはこのポリマーケイ素化合物の粘度が1〜100センチストークス程度となるような重合度を示す。
具体的には、メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、フェニルハイドロジェンポリシロキサン、シクロヘキシルハイドロジェンポリシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5,7,9−ペンタメチルシクロペンタシロキサン等が好ましい。
(C) Inert reaction products obtained by contacting a titanium halide compound and / or a silicon halogen compound and an electron donor with a solid component obtained by contacting magnesium halide with titanium tetraalkoxide and a specific polymer silicon compound. A method of washing with an organic solvent. In addition, as a polymer silicon compound used here, what is shown by a following formula is suitable.
-[Si (H) (R 3 ) -O-] X-
Here, in the above formula, R 3 is a hydrocarbon group having about 1 to 10 carbon atoms, and x represents a degree of polymerization such that the viscosity of the polymer silicon compound is about 1 to 100 centistokes.
Specifically, methyl hydrogen polysiloxane, ethyl hydrogen polysiloxane, phenyl hydrogen polysiloxane, cyclohexyl hydrogen polysiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5,7 , 9-pentamethylcyclopentasiloxane is preferred.

(ニ)マグネシウム化合物をチタンテトラアルコキシドおよび/または電子供与体で溶解させて、ハロゲン化剤またはチタンハロゲン化合物で析出させた固体成分に、チタン化合物、および電子供与体を接触させるかまたは、各々別に接触させる方法。
(ホ)グリニャール試薬等の有機マグネシウム化合物をハロゲン化剤、還元剤等と作用させた後、これに必要に応じて電子供与体を接触させ、次いでチタン化合物、および電子供与体を接触させるかまたは、各々別に接触させる方法。
(ヘ)アルコキシマグネシウム化合物にハロゲン化剤および/またはチタン化合物を電子供与体の存在下もしくは不存在下に接触させるかまたは、各々別に接触させる方法。
(D) A magnesium compound is dissolved with a titanium tetraalkoxide and / or an electron donor, and the titanium compound and the electron donor are brought into contact with a solid component precipitated with a halogenating agent or a titanium halogen compound. How to contact.
(E) An organomagnesium compound such as a Grignard reagent is allowed to act on a halogenating agent, a reducing agent, etc., and then contacted with an electron donor as necessary, and then contacted with a titanium compound and an electron donor , How to contact each one separately.
(F) A method in which an alkoxymagnesium compound is contacted with a halogenating agent and / or a titanium compound in the presence or absence of an electron donor, or each is contacted separately.

これらの製造方法の中でも、上記(イ)、(ハ)、(ニ)および(ヘ)が特に好ましい。   Among these production methods, the above (a), (c), (d) and (f) are particularly preferable.

<成分(ii)>
本発明の固体触媒成分(a)を製造するために好ましく使用される成分(ii)は、Si−OR結合(ただし、Rは炭素数1〜8の炭化水素基)を2つ以上含有する有機ケイ素化合物である。
<Component (ii)>
The component (ii) preferably used for producing the solid catalyst component (a) of the present invention contains two or more Si—OR 1 bonds (where R 1 is a hydrocarbon group having 1 to 8 carbon atoms). It is an organosilicon compound.

ケイ素原子に結合している−OR基以外の結合残基として、水素、ハロゲン、炭化水素基(例えば、アルキル基、シクロアルキル基、アリール基等)およびシロキシ基等から選ばれる結合残基を有するものを使用するが通常である。 As bond residues other than —OR 1 group bonded to a silicon atom, a bond residue selected from hydrogen, halogen, a hydrocarbon group (for example, an alkyl group, a cycloalkyl group, an aryl group, etc.) and a siloxy group What you have is usually used.

好ましい有機ケイ素化合物は、少なくとも1つの炭化水素基を有するものであり、さらに好ましくは、ケイ素原子に隣接する炭素原子、すなわちα−位炭化水素原子が2級または3級の炭素原子で炭素数3〜20の分岐鎖状炭化水素基を有するものである。   Preferred organosilicon compounds are those having at least one hydrocarbon group, more preferably a carbon atom adjacent to the silicon atom, that is, the α-position hydrocarbon atom is a secondary or tertiary carbon atom and has 3 carbon atoms. It has -20 branched chain hydrocarbon groups.

成分(ii)の有機ケイ素化合物の具体例としては、(CHCSi(CH)(OCH、(CHCSi(CH(CH)(OCH、(CHCSi(CH)(OC、(CHCSi(C)(OCH、(CHCSi(n−C)(OCH、(CHCSi(n−C13)(OCH、(CCSi(CH)(OCH、(CH)(C)CHSi(CH)(OCH、((CHCHCHSi(OCH、(C)(CHCSi(CH)(OCH、(C)(CHCSi(CH)(OC、(CHCSi(OCH、(CHCSi(OC、(CH)(C)CHSi(OCH、(CHCH(CHCSi(CH)(OCH、((CHC)Si(OCH、(C)(CHCSi(OCH、(C)(CHCSi(OC、(CHCSi(OC(CH)(OCH、((CHCH)Si(OCH、((CHCH)Si(OC、(CSi(OCH、(CSi(OC、(C)(CH)Si(OCH、(C)((CHCHCH)Si(OCH、(C11)Si(CH)(OCH、(C11Si(OCH、(C11)((CHCHCH)Si(OCH、((CHCHCH)((C)(CH)CH)Si(OCH、((CHCHCH)((CHCH)Si(OC11、HC(CHC(CHSi(CH)(OCH、HC(CHC(CHSi(CH)(OC、HC(CHC(CHSi(OCH、(CHCSi(OCH(CH)(OCH、(CHCSi(OC(CH)(OCH等が挙げられる。 Specific examples of the organosilicon compound of component (ii) include (CH 3 ) 3 CSi (CH 3 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (CH (CH 3 ) 2 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (CH 3 ) (OC 2 H 5 ) 2 , (CH 3 ) 3 CSi (C 2 H 5 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (n—C 3 H 7 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (n—C 6 H 13 ) (OCH 3 ) 2 , (C 2 H 5 ) 3 CSi (CH 3 ) (OCH 3 ) 2 , (CH 3 ) (C 2 H 5) CHSi (CH 3 ) (OCH 3) 2, ((CH 3) 2 CHCH 2) 2 Si (OCH 3) 2, (C 2 H 5) (CH 3) 2 CSi (CH 3) (OCH 3) 2, (C 2 H 5) (CH 3) 2 CSi (C 3) (OC 2 H 5) 2, (CH 3) 3 CSi (OCH 3) 3, (CH 3) 3 CSi (OC 2 H 5) 3, (CH 3) (C 2 H 5) CHSi (OCH 3 ) 3 , (CH 3 ) 2 CH (CH 3 ) 2 CSi (CH 3 ) (OCH 3 ) 2 , ((CH 3 ) 3 C) 2 Si (OCH 3 ) 2 , (C 2 H 5 ) (CH 3 ) 2 CSi (OCH 3 ) 3 , (C 2 H 5 ) (CH 3 ) 2 CSi (OC 2 H 5 ) 3 , (CH 3 ) 3 CSi (OC (CH 3 ) 3 ) (OCH 3 ) 2 , ( (CH 3 ) 2 CH) 2 Si (OCH 3 ) 2 , ((CH 3 ) 2 CH) 2 Si (OC 2 H 5 ) 2 , (C 5 H 9 ) 2 Si (OCH 3 ) 2 , (C 5 H 9) 2 Si (OC 2 H 5) 2, (C 5 H 9) (CH 3) S (OCH 3) 2, (C 5 H 9) ((CH 3) 2 CHCH 2) Si (OCH 3) 2, (C 6 H 11) Si (CH 3) (OCH 3) 2, (C 6 H 11 ) 2 Si (OCH 3 ) 2 , (C 6 H 11 ) ((CH 3 ) 2 CHCH 2 ) Si (OCH 3 ) 2 , ((CH 3 ) 2 CHCH 2 ) ((C 2 H 5 ) (CH 3 ) CH) Si (OCH 3 ) 2 , ((CH 3 ) 2 CHCH 2 ) ((CH 3 ) 2 CH) Si (OC 5 H 11 ) 2 , HC (CH 3 ) 2 C (CH 3 ) 2 Si ( CH 3) (OCH 3) 2 , HC (CH 3) 2 C (CH 3) 2 Si (CH 3) (OC 2 H 5) 2, HC (CH 3) 2 C (CH 3) 2 Si (OCH 3 ) 3, (CH 3) 3 CSi (OCH (CH 3) 2) (O H 3) 2, include 2 or the like (CH 3) 3 CSi (OC (CH 3) 3) (OCH 3).

また、これらの中で好ましいものとしては、(CHCSi(CH)(OCH、(CHCSi(CH(CH)(OCH、(CHCSi(CH)(OC、(CHCSi(C)(OCH、(CHCSi(n−C)(OCH、(CHCSi(n−C13)(OCH、(CSi(OCH、(CSi(OC、(C11)Si(CH)(OCH、(C11Si(OCH等が挙げられる。 Among these, preferred are (CH 3 ) 3 CSi (CH 3 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (CH (CH 3 ) 2 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (CH 3 ) (OC 2 H 5 ) 2 , (CH 3 ) 3 CSi (C 2 H 5 ) (OCH 3 ) 2 , (CH 3 ) 3 CSi (n—C 3 H 7 ) (OCH 3 ) 2, (CH 3) 3 CSi (n-C 6 H 13) (OCH 3) 2, (C 5 H 9) 2 Si (OCH 3) 2, (C 5 H 9) 2 Si (OC 2 H 5 ) 2 , (C 6 H 11 ) Si (CH 3 ) (OCH 3 ) 2 , (C 6 H 11 ) 2 Si (OCH 3 ) 2 and the like.

<成分(iii)>
固体触媒成分(a)を形成するために好ましく使用される成分(iii)は、ビニルシラン化合物である。ビニルシラン化合物としては、モノシラン(SiH)中の少なくとも一つの水素原子がビニル基(CH=CH−)に置き換えられ、そして残りの水素原子のうちのいくつかが、ハロゲン(好ましくはCl)、炭化水素基(好ましくは炭素数1〜12のアルキル基)、アリール基(好ましくはフェニル基)、アルコキシ基(好ましくは炭素数1〜12のアルコキシ基)、その他で置き換えられた構造を示すものである。
<Ingredient (iii)>
Component (iii) preferably used to form solid catalyst component (a) is a vinyl silane compound. As the vinylsilane compound, at least one hydrogen atom in monosilane (SiH 4 ) is replaced with a vinyl group (CH 2 ═CH—), and some of the remaining hydrogen atoms are halogen (preferably Cl), It shows a structure substituted with a hydrocarbon group (preferably an alkyl group having 1 to 12 carbon atoms), an aryl group (preferably a phenyl group), an alkoxy group (preferably an alkoxy group having 1 to 12 carbon atoms), or the like. is there.

より具体的には、CH=CH−SiH、CH=CH−SiH(CH)、CH=CH−SiH(CH、CH=CH−Si(CH、CH=CH−SiCl、CH=CH−SiCl(CH)、CH=CH−SiCl(CH、CH=CH−SiH(Cl)(CH)、CH=CH−Si(C、CH=CH−SiCl(C、CH=CH−SiCl(C)、CH=CH−Si(CH(C)、CH=CH−Si(CH)(C)、(CH=CH)−SiH、(CH=CH)−SiH(CH)、(CH=CH)−SiH(CH)、(CH=CH)−Si(CH、(CH=CH)−SiCl、(CH=CH)−SiCl(CH)、(CH=CH)−SiH(Cl)、(CH=CH)−Si(C、(CH=CH)−SiCl(C)、(CH=CH)−Si(CH)(C)、(CH=CH)−SiH、(CH=CH)−Si(CH)、(CH=CH)−SiCl、(CH=CH)−Si(C)、(CH=CH)−Si等を例示することができる。これらのうちでは、特に、CH=CH−Si(CH、(CH=CH)−Si(CHが好ましい。 More specifically, CH 2 = CH-SiH 3 , CH 2 = CH-SiH 2 (CH 3), CH 2 = CH-SiH (CH 3) 2, CH 2 = CH-Si (CH 3) 3, CH 2 = CH-SiCl 3, CH 2 = CH-SiCl 2 (CH 3), CH 2 = CH-SiCl (CH 3) 2, CH 2 = CH-SiH (Cl) (CH 3), CH 2 = CH -Si (C 2 H 5) 3 , CH 2 = CH-SiCl (C 2 H 5) 2, CH 2 = CH-SiCl 2 (C 2 H 5), CH 2 = CH-Si (CH 3) 2 ( C 2 H 5), CH 2 = CH-Si (CH 3) (C 2 H 5), (CH 2 = CH) 2 -SiH 2, (CH 2 = CH) 2 -SiH (CH 3), (CH 2 = CH) 2 -SiH (CH 3), (CH 2 = CH) -Si (CH 3) 2, ( CH 2 = CH) 2 -SiCl 2, (CH 2 = CH) 2 -SiCl (CH 3), (CH 2 = CH) 2 -SiH (Cl), (CH 2 = CH) 2 -Si (C 2 H 5) 2, (CH 2 = CH) 2 -SiCl (C 2 H 5), (CH 2 = CH) 2 -Si (CH 3) (C 2 H 5), ( CH 2 = CH) 3 -SiH, (CH 2 = CH) 3 -Si (CH 3), (CH 2 = CH) 3 -SiCl, (CH 2 = CH) 3 -Si (C 2 H 5), ( CH 2 ═CH) 4 —Si and the like can be exemplified. Of these, CH 2 ═CH—Si (CH 3 ) 3 and (CH 2 ═CH) 2 —Si (CH 3 ) 2 are particularly preferable.

<成分(iv)>
固体触媒成分(a)を形成するために好ましく使用される成分(iv)は、周期律I〜III族の有機金属化合物である。有機金属化合物であることからこの化合物は少なくとも一つの有機基・金属結合を持つ。その場合の有機基としては、炭素数1〜10程度、好ましくは1〜6程度、の炭化水素基が代表的である。この化合物の金属としては、リチウム、マグネシウム、アルミニウムおよび亜鉛、特にアルミニウムが代表的である。
<Component (iv)>
Component (iv) preferably used to form the solid catalyst component (a) is an organometallic compound of periodic group I-III. Since it is an organometallic compound, this compound has at least one organic group / metal bond. The organic group in that case is typically a hydrocarbon group having about 1 to 10 carbon atoms, preferably about 1 to 6 carbon atoms. Typical metals for this compound are lithium, magnesium, aluminum and zinc, especially aluminum.

原子価の少なくとも一つを有機基で充足されている有機金属化合物の金属の残りの原子価(もしあれば)は、水素原子、ハロゲン原子、炭化水素基(炭化水素基は、炭素数1〜10程度、好ましくは1〜6程度)、または炭素原子を介した当該金属(具体的には、メチルアルモキサンの−O−Al(CH)−)、その他で充足される。 The remaining valence (if any) of the metal of the organometallic compound in which at least one of the valences is filled with an organic group is a hydrogen atom, a halogen atom, a hydrocarbon group (the hydrocarbon group has 1 to 10, (specifically, methylalumoxane -O-Al (CH 3) preferably having about 1 to 6 is), or the metal through a carbon atom -), is satisfied otherwise.

このような有機金属化合物の具体例を挙げれば、(イ)メチルリチウム、n−ブチルリチウム、第三ブチルリチウム等の有機リチウム化合物、(ロ)ブチルエチルマグネシウム、ジブチルマグネシウム、ヘキシルエチルマグネシウム、ブチルマグネシウムクロリド、第三ブチルマグネシウムブロミド等の有機マグネシウム化合物、(ハ)ジエチル亜鉛、ジブチル亜鉛等の有機亜鉛化合物、(ニ)トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウム、トリ−n−デシルアルミニウム、ジエチルアルミニウムモノクロライド、ジイソブチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムフェノキシド、メチルアルミノキサン等の有機アルミニウム化合物が挙げられる。
これらのうちでは、特に有機アルミニウム化合物が好ましい。
Specific examples of such organometallic compounds include (a) organolithium compounds such as methyllithium, n-butyllithium and tert-butyllithium, (b) butylethylmagnesium, dibutylmagnesium, hexylethylmagnesium and butylmagnesium. Organic magnesium compounds such as chloride and tert-butylmagnesium bromide, (c) Organic zinc compounds such as diethylzinc and dibutylzinc, (d) Trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n -Octyl aluminum, tri-n-decyl aluminum, diethyl aluminum monochloride, diisobutyl aluminum monochloride, ethyl aluminum sesquichloride, ethyl aluminum dichloride Diethylaluminum hydride, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum phenoxide, and organic aluminum compounds such as methylaluminoxane.
Of these, organoaluminum compounds are particularly preferred.

<固体触媒成分(a)の製造>
固体触媒成分(a)は、該成分(a)を構成する各成分(i)〜(iv)、および必要により用いられる任意成分を、段階的にまたは一時的に相互に接触させて、その中間および/または最後に有機溶媒で洗浄することによって製造することができる。
具体的には、(イ):成分(i)と成分(iii)とを接触させた後に、成分(ii)及び成分(iv)を接触させ、最後に洗浄する方法、(ロ):成分(i)と成分(ii)を接触させた後に、成分(iii)、成分(iv)を接触させ、洗浄する方法、(ハ):成分(i)、(ii)、(iii)を同時に接触した後に、成分(iv)を接触させ、洗浄する方法などが採用される。
<Production of solid catalyst component (a)>
The solid catalyst component (a) is obtained by bringing the components (i) to (iv) constituting the component (a) and optional components used as necessary into contact with each other step by step or temporarily. And / or finally by washing with an organic solvent.
Specifically, (a): a method in which the component (i) and the component (iii) are contacted, then the component (ii) and the component (iv) are contacted, and finally washed (b): the component ( Method of contacting and washing component (iii) and component (iv) after contacting i) and component (ii), (c): contacting component (i), (ii), and (iii) simultaneously Later, a method of bringing component (iv) into contact and washing is employed.

有機溶剤洗浄に用いる溶剤としては、不活性有機溶媒、例えば、脂肪族または芳香族炭化水素溶媒(例えば、ヘキサン、ヘプタン、トルエン、シクロヘキサン等)、またはハロゲン化炭化水素溶媒(例えば、塩化−n−ブチル、1,2−ジクロロエチレン、四塩化炭素、クロルベンゼン等)を挙げることができる。   As the solvent used for the organic solvent washing, an inert organic solvent, for example, an aliphatic or aromatic hydrocarbon solvent (for example, hexane, heptane, toluene, cyclohexane, etc.), or a halogenated hydrocarbon solvent (for example, chloride-n-) is used. Butyl, 1,2-dichloroethylene, carbon tetrachloride, chlorobenzene, etc.).

固体触媒成分(a)を構成する各成分の接触条件は、酸素の不存在下で実施する必要があるものの、本発明の効果が認められる限り任意のものであり得るが、一般的には、次の条件が好ましい。
接触温度は、−50〜200℃程度、より好ましくは0〜100℃である。接触方法としては、回転ボールミル、振動ミル、ジェットミル、媒体撹拌粉砕機などによる機械的な方法、不活性希釈剤の存在下に撹拌により接触させる方法などがある。このとき使用する不活性希釈剤としては、脂肪族または芳香族の炭化水素およびハロ炭化水素、ポリシロキサン等が挙げられる。
Although the contact conditions of each component constituting the solid catalyst component (a) need to be carried out in the absence of oxygen, it can be arbitrary as long as the effect of the present invention is recognized. The following conditions are preferred.
The contact temperature is about −50 to 200 ° C., more preferably 0 to 100 ° C. Examples of the contact method include a mechanical method using a rotating ball mill, a vibration mill, a jet mill, a medium stirring pulverizer, and the like, and a method of contacting by stirring in the presence of an inert diluent. Examples of the inert diluent used at this time include aliphatic or aromatic hydrocarbons and halohydrocarbons, polysiloxanes, and the like.

固体触媒成分(a)を構成する各成分使用量の量比は、本発明の効果が認められる限り任意のものであり得るが、一般的には、次の範囲内が好ましい。
成分(i)のチタン化合物の使用量は、使用するマグネシウム化合物の使用量に対してモル比(Ti/Mg)で0.0001〜1,000、より好ましくは0.01〜10である。ハロゲン源としてそのための化合物を使用する場合は、その使用量はチタン化合物および(または)マグネシウム化合物がハロゲンを含む、含まないにかかわらず、使用するマグネシウムの使用量に対してモル比で0.01〜1,000がよく、より好ましくは0.1〜100である。電子供与体の使用量は、前記のマグネシウム化合物の使用量に対してモル比(ハロゲン/Mg)で0.001〜10がよく、より好ましくは0.01〜5である。
The amount ratio of each component used to constitute the solid catalyst component (a) can be any as long as the effect of the present invention is recognized, but generally it is preferably within the following range.
The usage-amount of the titanium compound of a component (i) is 0.0001-1,000 by mole ratio (Ti / Mg) with respect to the usage-amount of the magnesium compound to be used, More preferably, it is 0.01-10. When a compound therefor is used as the halogen source, the amount used is 0.01 by mole relative to the amount of magnesium used, regardless of whether the titanium compound and / or magnesium compound contains halogen. -1,000 is good, and more preferably is 0.1-100. The amount of the electron donor used is 0.001 to 10 in molar ratio (halogen / Mg) to the amount of magnesium compound used, and more preferably 0.01 to 5.

成分(i)と成分(ii)の量比は、成分(i)を構成するチタン成分に対する成分(ii)のケイ素の原子比(ケイ素/チタン)で0.01〜1,000、より好ましくは0.1〜100である。成分(iii)の成分(i)に対する量比は、成分(iii)中のケイ素原子の、成分(i)中のチタン原子に対する原子比(ケイ素/チタン)で0.01〜1,000、より好ましくは0.01〜300である。成分(iv)の有機金属化合物の使用量は、成分(i)を構成するチタン成分に対する金属の原子比(金属原子/チタン)で0.1〜100、より好ましくは1〜50である。
なお、固体触媒成分(a)の製造の中間および/または最後には、前記溶剤洗浄の他にも、該溶剤洗浄で用いられるのと同様の不活性有機溶媒での洗浄工程を付加することができる。
The quantity ratio of component (i) to component (ii) is 0.01 to 1,000, more preferably the atomic ratio (silicon / titanium) of silicon of component (ii) to the titanium component constituting component (i). 0.1-100. The quantity ratio of the component (iii) to the component (i) is 0.01 to 1,000 in terms of the atomic ratio (silicon / titanium) of the silicon atom in the component (iii) to the titanium atom in the component (i). Preferably it is 0.01-300. The amount of the organometallic compound of component (iv) used is 0.1 to 100, more preferably 1 to 50 in terms of the atomic ratio of metal to the titanium component constituting component (i) (metal atom / titanium).
In the middle and / or at the end of the production of the solid catalyst component (a), a washing step with an inert organic solvent similar to that used in the solvent washing may be added in addition to the solvent washing. it can.

また、有機アルミニウム成分(b)は、助触媒として用いられ、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムクロライド、ジイソブチルアルミニウムクロライドなどのアルキルアルミニウムハライド、ジエチルアルミニウムハイドライドなどのアルキルアルミニウムハイドライド、ジエチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド、メチルアルモキサン、テトラブチルアルモキサンなどのアルモキサン、トリアルキルアルミニウムとメチルボロン酸ジブチルの反応物、リチウムアルミニウムテトラエチルなどの複合有機アルミニウム化合物などが挙げられる。また、これらを2種類以上混合して使用することも可能である。   The organoaluminum component (b) is used as a co-catalyst, for example, trialkylaluminum such as trimethylaluminum, triethylaluminum and triisobutylaluminum, alkylaluminum halide such as diethylaluminum chloride and diisobutylaluminum chloride, diethylaluminum hydride and the like Alkyl aluminum hydrides, alkylaluminum alkoxides such as diethylaluminum ethoxide, alumoxanes such as methylalumoxane and tetrabutylalumoxane, reaction products of trialkylaluminum and dibutyl methylboronate, and composite organoaluminum compounds such as lithium aluminum tetraethyl It is done. It is also possible to use a mixture of two or more of these.

プロピレン系重合体(A)の配合量は100〜5重量%の範囲であり、100〜20重量%の範囲が好ましく、100〜50重量%の範囲がより好ましく、100〜70重量%の範囲がさらに好ましく、100〜80重量%の範囲が特に好ましく、100〜90重量%の範囲が最も好ましい。(A)の配合量が上記を下回ると均一延伸性を阻害する。   The amount of the propylene polymer (A) is in the range of 100 to 5% by weight, preferably in the range of 100 to 20% by weight, more preferably in the range of 100 to 50% by weight, and in the range of 100 to 70% by weight. More preferably, the range of 100 to 80% by weight is particularly preferable, and the range of 100 to 90% by weight is most preferable. If the blending amount of (A) is less than the above, uniform stretchability is inhibited.

本発明のプロピレン系重合体(B)の重合法としては、上記触媒の存在下に、不活性溶媒を用いたスラリー法、溶液法、実質的に溶媒を用いない気相法や、又は重合モノマーを溶媒とするバルク重合法等が挙げられる。本発明で用いるプロピレン系重合体(B)を得る方法としては、例えば、重合温度やコモノマー量を調節して、分子量および結晶性の分布を適宜制御することにより、所望のポリマーを得ることができる。
かかるプロピレン系重合体(B)は、ポリプロピレンとして市販されているものの中から適宜選択し使用することもできる。市販品としては、日本ポリプロ社製「ノバテック」等が挙げられる。
As a polymerization method of the propylene polymer (B) of the present invention, in the presence of the catalyst, a slurry method using an inert solvent, a solution method, a gas phase method substantially using no solvent, or a polymerization monomer And a bulk polymerization method using as a solvent. As a method for obtaining the propylene-based polymer (B) used in the present invention, for example, a desired polymer can be obtained by adjusting the polymerization temperature and the comonomer amount and appropriately controlling the molecular weight and the crystallinity distribution. .
Such a propylene polymer (B) can be appropriately selected from those commercially available as polypropylene and used. Examples of commercially available products include “NOVATEC” manufactured by Nippon Polypro Co., Ltd.

製造時に、さらに電子供与性化合物(外部ドナー)を使用することが好ましい。電子供与性化合物(外部ドナー)としては、固体成分(i)において電子供与性化合物(内部ドナー)として例示したもの、成分(ii)で例示したSi−OR結合を2つ以上含有する有機ケイ素化合物などを例示することができる。
この中で特にtert−ブチルメチルジメトキシシランを製造時に外部ドナーとして使用すると、プロピレン系重合体のアイソタクチックペンタッド分率(mmmm分率)がさらに高くなり、強いては剛性が向上する。
It is preferable to use an electron donating compound (external donor) at the time of production. Examples of the electron donating compound (external donor) include those exemplified as the electron donating compound (internal donor) in the solid component (i), and organic silicon containing two or more Si—OR 1 bonds exemplified in the component (ii). A compound etc. can be illustrated.
Among these, in particular, when tert-butylmethyldimethoxysilane is used as an external donor at the time of production, the isotactic pentad fraction (mmmm fraction) of the propylene-based polymer is further increased and the rigidity is improved.

上記固体触媒成分(a)および有機アルミニウム成分(b)からなる触媒系は、連鎖移動剤である水素の量でメルトフローレートが大きく変化することに特徴がある。   The catalyst system comprising the solid catalyst component (a) and the organoaluminum component (b) is characterized in that the melt flow rate varies greatly depending on the amount of hydrogen that is a chain transfer agent.

重合形式としては、原料のプロピレン(及びエチレン以下同じ)を気相状態下で重合する多段重合により行われることが好ましい。
気相重合工程の各工程は、それぞれ何段でもよい。
The polymerization is preferably performed by multistage polymerization in which raw material propylene (and ethylene is the same hereinafter) is polymerized in a gas phase.
Each step of the gas phase polymerization step may have any number of steps.

重合用の反応器としては、特に形状、構造を問わないが、流動床反応器、攪拌羽根を有する横型反応器などが挙げられる。   The polymerization reactor is not particularly limited in shape and structure, and examples thereof include a fluidized bed reactor and a horizontal reactor having a stirring blade.

重合槽は単独の他に2槽以上の直列に連結したものが用いられる。固体触媒成分(a)は、1番目の重合槽にのみに供給され、有機アルミニウム成分(b)については、1番目の重合槽にそのほとんどが供給されるが、2番目以降にも追加、供給されても構わない。   In addition to a single polymerization tank, two or more tanks connected in series are used. The solid catalyst component (a) is supplied only to the first polymerization tank, and most of the organoaluminum component (b) is supplied to the first polymerization tank. It does not matter.

1番目の重合槽では一定の重合圧力、温度のもと、所定量のプロピレンを連続的に供給し、当該プロピレンと水素の比が一定になるように触媒及び水素を制御する。生成したポリマーは、未反応原料と一緒に、順次、次段の重合槽に移送される。2番目以降の重合槽には触媒は供給せず、前段の重合槽から移送されるポリマー中に含まれている触媒で重合する。また、2番目以降の重合槽においてもプロピレンについては、重合圧力が所定値に維持されるように供給を続ける。水素については2番目の重合槽以降では供給しても、しなくてもよい。供給しない場合は前段の重合槽で未反応として残存した水素が、次段の反応器に移送され用いられる。   In the first polymerization tank, a predetermined amount of propylene is continuously supplied at a constant polymerization pressure and temperature, and the catalyst and hydrogen are controlled so that the ratio of propylene to hydrogen is constant. The produced polymer is sequentially transferred to the next stage polymerization tank together with the unreacted raw material. No catalyst is supplied to the second and subsequent polymerization tanks, and polymerization is carried out with the catalyst contained in the polymer transferred from the preceding polymerization tank. Further, in the second and subsequent polymerization tanks, the supply of propylene is continued so that the polymerization pressure is maintained at a predetermined value. Hydrogen may or may not be supplied after the second polymerization tank. When not supplied, the hydrogen remaining as unreacted in the preceding polymerization tank is transferred to the next reactor and used.

重合圧力に関しては特に限定されないが、通常0.2〜5MPa、好ましくは0.3〜2MPa程度で実施される。各段の重合圧力は同一でも異なっていてもよい。
また、重合温度は特に制限はないが、通常20〜100℃、好ましくは40〜80℃の範囲から選択される。各段の重合温度は同一でも異なっていてもよい。
Although it does not specifically limit regarding the polymerization pressure, Usually, 0.2-5 Mpa, Preferably it implements at about 0.3-2 Mpa. The polymerization pressure in each stage may be the same or different.
The polymerization temperature is not particularly limited, but is usually selected from the range of 20 to 100 ° C, preferably 40 to 80 ° C. The polymerization temperature in each stage may be the same or different.

重合時間も特に限定されないが、通常10分〜10時間で実施される。
また、多段の、各段のそれぞれの重合時間も特に限定されないが、例えば、1段目30分、2段目30分、3段目1時間のように設定される。
The polymerization time is not particularly limited, but is usually 10 minutes to 10 hours.
In addition, the polymerization time of each stage of the multistage is not particularly limited, but is set to 30 minutes for the first stage, 30 minutes for the second stage, and 1 hour for the third stage.

プロピレン系重合体(B)はDSCで測定した融点が150〜170℃であり、155〜165℃の範囲にあるのが好ましい。融点がこの範囲を下回るとシートの剛性が低下し、上回ると透明性が低下する。
また(B)の配合量は0〜95重量%の範囲であり、0〜80重量%の範囲が好ましく、0〜50重量%の範囲がより好ましく、0〜30重量%の範囲がさらに好ましく、0〜20重量%の範囲が特に好ましく、0〜10重量%の範囲が最も好ましい。(B)の配合量が上記を上回ると均一延伸性を阻害する。
The propylene polymer (B) has a melting point measured by DSC of 150 to 170 ° C, and preferably in the range of 155 to 165 ° C. When the melting point is below this range, the rigidity of the sheet is lowered, and when it is above, the transparency is lowered.
The blending amount of (B) is in the range of 0 to 95% by weight, preferably in the range of 0 to 80% by weight, more preferably in the range of 0 to 50% by weight, still more preferably in the range of 0 to 30% by weight, A range of 0 to 20% by weight is particularly preferred, and a range of 0 to 10% by weight is most preferred. If the blending amount of (B) exceeds the above, uniform stretchability is inhibited.

本発明において延伸シートの延伸倍率は、MD/TD共に1.5倍以上、面倍率は3〜30倍延伸であることが好ましく、面倍率は5〜25倍延伸がより好ましく、7〜20倍延伸がさらに好ましい。面倍率が上記を上回ると原反シートの厚みを厚くする必要が有り、現有設備ではシート成形および延伸工程に対応する事が困難となる場合がある。   In the present invention, the stretching ratio of the stretched sheet is preferably 1.5 times or more for both MD / TD, the surface ratio is preferably 3 to 30 times, the surface ratio is more preferably 5 to 25 times, and 7 to 20 times. Stretching is more preferable. If the surface magnification exceeds the above, it is necessary to increase the thickness of the original sheet, and it may be difficult to handle the sheet forming and stretching processes with the existing equipment.

本発明においては、下記の一般式(1)で表される造核剤が配合されるのがより好ましい。その好ましい配合量は、重合体混合物(プロピレン系重合体(A)+(B))100重量%に対し、造核剤0.1〜1重量%である。0.2〜1重量%がより好ましく、0.2〜0.8重量%がさらに好ましい。
造核剤の配合量が0.1重量%以上であると透明性の改良効果が十分であり、1重量%以下であると費用対前記効果(コスト・パフォーマンス)の点から有利である。
In the present invention, it is more preferable that a nucleating agent represented by the following general formula (1) is blended. The preferable compounding amount is 0.1 to 1% by weight of the nucleating agent with respect to 100% by weight of the polymer mixture (propylene polymer (A) + (B)). 0.2-1 weight% is more preferable and 0.2-0.8 weight% is further more preferable.
When the blending amount of the nucleating agent is 0.1% by weight or more, the effect of improving the transparency is sufficient, and when it is 1% by weight or less, it is advantageous from the viewpoint of the cost (the cost / performance).

造核剤としては、下記化学式(1)で表される造核剤が使用される。   As the nucleating agent, a nucleating agent represented by the following chemical formula (1) is used.

Figure 2017101229
[但し、式(1)中、nは、0〜2の整数であり、R1〜R5は、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、炭素数が2〜20のアルケニル基、炭素数が1〜20のアルコキシ基、カルボニル基、ハロゲン基またはフェニル基であり、R6は、水素原子または炭素数が1〜20のアルキル基である。]
Figure 2017101229
[In the formula (1), n is an integer of 0 to 2, and R1 to R5 are the same or different and each is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and 2 to 20 carbon atoms. An alkenyl group, an alkoxy group having 1 to 20 carbon atoms, a carbonyl group, a halogen group or a phenyl group, and R6 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]

造核剤は、市販のものを使用できる。例えば、新日本理化社製の商品名ゲルオールMD、ミリケン社の商品名ミラッド3988やミラッドNX8000Jなどが挙げられるが、ミラッドNX8000Jが最も好ましい。
なお、これら造核剤は2種以上を組み合わせて用いてもよい。
A commercially available nucleating agent can be used. For example, trade name “Gelall MD” manufactured by Shin Nippon Chemical Co., Ltd., trade names “Mirad 3988” and “Mirad NX8000J” manufactured by Milliken, etc. may be mentioned, with Mirad NX8000J being most preferred.
These nucleating agents may be used in combination of two or more.

また、本発明に使用するプロピレン系重合体には、酸化防止剤、中和剤、核剤、光安定剤、紫外線吸収剤、無機充填剤、ブロッキング防止剤、滑剤、帯電防止剤、金属不活性剤、過酸化物、着色剤など、通常ポリプロピレンに用いることのできる各種添加剤を、本発明の目的を損なわない範囲で配合することができる。
酸化防止剤としては、フェノール系酸化防止剤、フォスファイト系酸化防止剤およびチオ系酸化防止剤などが例示でき、中和剤としては、ステアリン酸カルシウムやステアリン酸亜鉛、ステアリン酸アルミニウムなどの高級脂肪酸塩類やハイドロタルサイト類が例示でき、光安定剤および紫外線吸収剤としては、ヒンダードアミン類、ニッケル錯化合物、ベンゾトリアゾール類、ベンゾフェノン類などが例示できる。
プロピレン系重合体組成物は、そのまま単独で使用することも、また、本発明の効果を損なわない範囲で、プロピレン系重合体(A)、(B)とは異なる別のポリプロピレンや、ポリエチレン、各種エラストマー、石油樹脂のような別のポリマーを添加して使用することも出来る。
In addition, the propylene polymer used in the present invention includes an antioxidant, a neutralizing agent, a nucleating agent, a light stabilizer, an ultraviolet absorber, an inorganic filler, an antiblocking agent, a lubricant, an antistatic agent, and a metal inertness. Various additives that can be usually used for polypropylene, such as an agent, a peroxide, and a colorant, can be blended within a range that does not impair the object of the present invention.
Examples of antioxidants include phenolic antioxidants, phosphite antioxidants, and thio antioxidants, and examples of neutralizing agents include higher fatty acid salts such as calcium stearate, zinc stearate, and aluminum stearate. And hydrotalcites, and examples of light stabilizers and ultraviolet absorbers include hindered amines, nickel complex compounds, benzotriazoles, and benzophenones.
The propylene polymer composition can be used alone as it is, or in a range not impairing the effects of the present invention, other polypropylenes different from the propylene polymers (A) and (B), polyethylene, Another polymer such as an elastomer or a petroleum resin can be added and used.

本発明で用いられるプロピレン系重合体は、必要に応じて前述の造核剤、各種添加剤、別のポリマーのそれぞれ所定量を配合したポリプロピレン系樹脂組成物として、結晶性プロピレン重合体のシートの製造に供することもでき、本発明の好ましい形態である。ポリプロピレン系樹脂組成物は、これら配合成分を、ヘンシェルミキサー(商品名)、スーパーミキサー、Vブレンダー、タンブラーミキサー、リボンブレンダー、バンバリーミキサー、ニーダーブレンダー、一軸又は二軸の押出機等の混合機又は溶融混練機にて混合又は溶融混練することによって調製することができる。   The propylene-based polymer used in the present invention is a polypropylene-based resin composition in which predetermined amounts of the above-described nucleating agent, various additives, and another polymer are blended as necessary. It can also be used for production and is a preferred form of the present invention. Polypropylene-based resin compositions are blended or melted with these compounding ingredients such as Henschel mixer (trade name), super mixer, V blender, tumbler mixer, ribbon blender, Banbury mixer, kneader blender, uniaxial or biaxial extruder. It can be prepared by mixing or melt-kneading in a kneader.

[二軸延伸ポリプロピレンシート]
本発明の二軸延伸ポリプロピレンシートは、少なくとも本発明のポリプロピレン系樹脂組成物を含む主層からなるシートであり、2層以上の多層構造であってもなんら差し支えない。例えば、主層の少なくとも片面に、エチレン−ビニルアルコール共重合体(EVOH)やポリアミド樹脂といったバリア性樹脂層および接着層を配置したバリアシートを設けても、さらに、最外層に高光沢層や低光沢層といった意匠性を持たせた層を配置することも可能である。
又、シートの片面および両面に、防曇剤、帯電防止剤、滑剤等の表面処理剤を塗布することもできる。
[Biaxially stretched polypropylene sheet]
The biaxially stretched polypropylene sheet of the present invention is a sheet composed of a main layer containing at least the polypropylene resin composition of the present invention, and may have a multilayer structure of two or more layers. For example, even if a barrier sheet in which a barrier resin layer such as ethylene-vinyl alcohol copolymer (EVOH) or polyamide resin and an adhesive layer are provided on at least one surface of the main layer, a high gloss layer or low It is also possible to arrange a layer having a design property such as a glossy layer.
In addition, a surface treatment agent such as an antifogging agent, an antistatic agent, or a lubricant can be applied to one side and both sides of the sheet.

本発明の二軸延伸ポリプロピレンシートは、前記ポリプロピレン系樹脂組成物を公知の押出機に供給して溶融し、冷却固化した未延伸シートを、2軸方向に延伸して製造される。
未延伸シートの製造は、公知の方法を用いることができ、例えば、Tダイから溶融押出した樹脂を冷却ロールに巻き付ける方法や、円形ダイスから溶融押出した樹脂を空冷または水冷により冷却固化する方法が挙げられる。
延伸方法は、公知の方法を用いることができ、例えば、テンター式延伸法、ロール間の速度差を利用したロール延伸法、パンタグラフ式バッチ延伸法などが挙げられる。
本発明で使用されるポリプロピレン系樹脂組成物を用いた原反シートの厚みは、1〜4mmであることが好ましく、1.5〜3.5mmがさらに好ましく、1.8〜3mmが特に好ましい。厚みが1mm以上であると、延伸後のシート肉厚を確保し易くなり、厚みが4mm以下であると、シート成形がし易くなる。
The biaxially stretched polypropylene sheet of the present invention is produced by supplying the polypropylene resin composition to a known extruder, melting it, and cooling and solidifying the unstretched sheet in a biaxial direction.
A known method can be used to manufacture the unstretched sheet. For example, a method in which a resin melt-extruded from a T die is wound around a cooling roll, or a method in which a resin melt-extruded from a circular die is cooled and solidified by air cooling or water cooling is used. Can be mentioned.
As the stretching method, a known method can be used, and examples thereof include a tenter-type stretching method, a roll stretching method using a speed difference between rolls, and a pantograph batch stretching method.
The thickness of the raw fabric sheet using the polypropylene resin composition used in the present invention is preferably 1 to 4 mm, more preferably 1.5 to 3.5 mm, and particularly preferably 1.8 to 3 mm. When the thickness is 1 mm or more, it becomes easy to ensure the thickness of the sheet after stretching, and when the thickness is 4 mm or less, the sheet is easily formed.

またプロピレン系重合体混合物の原反シートは、単層の他に通常ポリプロピレンの成形に用いられる複数の押出機を用い、フィードブロックやマルチマニホールドを用いて複数層のポリプロピレン系シートに成形することができる。
ポリプロピレン系シートの具体的製造法としては、ポリプロピレン系樹脂組成物に必要により他の成分(造核剤、各種添加剤、別のポリマー)を配合したポリプロピレン系樹脂組成物を、公知の単軸又は二軸のスクリュー押出機に通して、コートハンダーダイからシート状に押出した後、(内部で冷却水や油が循環している)金属ロール表面に、エアーナイフ、エアーチャンバー、硬質ゴムロール、スチールベルト、金属フレックスロール、金属ロールにて押さえつけ冷却固化されることによって得ることができる。又、シート両面をスチールベルトで挟んで冷却固化することもできる。
このようなシートの冷却方法の中では、シート両面に金属ロール及び/又はスチールベルト及び金属フレックスロールを使用する方法が表面凹凸の少ないシート表面、つまり透明性に優れたシートを得られることから最も好ましい方法である。
The raw sheet of the propylene polymer mixture can be formed into a multi-layer polypropylene sheet using a feed block or a multi-manifold using a plurality of extruders usually used for forming polypropylene in addition to a single layer. it can.
As a specific method for producing a polypropylene-based sheet, a polypropylene-based resin composition in which other components (nucleating agent, various additives, other polymers) are blended with the polypropylene-based resin composition as necessary may be a known uniaxial or After passing through a twin screw extruder and extruding from a coat solder die into a sheet, air knife, air chamber, hard rubber roll, steel belt on the metal roll surface (with cooling water and oil circulating inside) It can be obtained by pressing with a metal flex roll or metal roll and solidifying by cooling. It is also possible to cool and solidify both sides of the sheet with a steel belt.
Among such sheet cooling methods, the method using a metal roll and / or a steel belt and a metal flex roll on both sides of the sheet is most advantageous because a sheet surface with less surface irregularities, that is, a sheet having excellent transparency can be obtained. This is the preferred method.

[成形体]
本発明の成形体は、本発明の二軸延伸ポリプロピレン系シートを用いて熱成形された成形体である。
本発明の成形体の一つの側面は、本発明の二軸延伸ポリプロピレン系シートを用いて融解ピーク温度以下で0.2MPa以上の圧空圧力で真空圧空成形された成形体である。
[Molded body]
The molded product of the present invention is a molded product thermoformed using the biaxially stretched polypropylene sheet of the present invention.
One aspect of the molded body of the present invention is a molded body that is vacuum-pressure molded using the biaxially stretched polypropylene sheet of the present invention at a pressure lower than the melting peak temperature and at a pressure of 0.2 MPa or more.

このような熱成形における加熱方法としては、間接加熱、熱板加熱、熱ロール加熱などが挙げられる。シートの融解ピーク温度を超える温度で成形を行なうと、得られる成形体の透明性、光沢、肉厚均一性が悪化し、成形不能となりやすい。   Examples of the heating method in such thermoforming include indirect heating, hot plate heating, and hot roll heating. When the molding is performed at a temperature exceeding the melting peak temperature of the sheet, the transparency, gloss, and thickness uniformity of the resulting molded article are deteriorated and the molding tends to be impossible.

熱成形は、結晶性プロピレン重合体の融解ピーク温度以下で行う際、好ましくは、融解ピーク温度較差5〜30℃の範囲になるような温度で加熱をすることにより軟化させ、金型キャビティ側より真空吸引し、反対側より0.2MPa以上の圧空圧力を付加して該二軸延伸ポリプロピレン系シートを金型キャビティ表面に密着させることにより、成形することができる。
圧空圧力が0.2MPaを上回ると金型の形状を忠実に得ることが出来易くなる。圧空圧力は0.2MPa以上、好ましくは0.3MPa以上、さらに好ましくは0.35MPa以上である。
又、アシストプラグを設けることもでき、成形体の肉厚均一性が向上するので好ましい。
When thermoforming is carried out below the melting peak temperature of the crystalline propylene polymer, it is preferably softened by heating at a temperature within the melting peak temperature range of 5 to 30 ° C., from the mold cavity side. It can shape | mold by vacuum-sucking and applying the pneumatic pressure of 0.2 Mpa or more from the other side, and making this biaxially-stretched polypropylene-type sheet closely_contact | adhere to the mold cavity surface.
If the pressure pressure exceeds 0.2 MPa, the shape of the mold can be easily obtained. The pneumatic pressure is 0.2 MPa or more, preferably 0.3 MPa or more, more preferably 0.35 MPa or more.
Also, an assist plug can be provided, which is preferable because the thickness uniformity of the molded body is improved.

[成形体の用途]
本発明の成形体は、意匠性に優れ電子レンジ加熱が可能なため、食品包装用蓋、食品容器、洗剤容器、医療用容器等の各種分野の製品において、広く用いることができる。
[Use of molded body]
Since the molded article of the present invention is excellent in design and can be heated in a microwave oven, it can be widely used in products in various fields such as food packaging lids, food containers, detergent containers, and medical containers.

以下、本発明を実施例によって具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。なお、実施例および比較例において、二軸延伸ポリプロピレンシートまたはその構成成分についての諸物性は、下記の評価方法に従って測定、評価し、使用した樹脂として下記のものを用いた。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, the physical properties of the biaxially stretched polypropylene sheet or its constituent components were measured and evaluated according to the following evaluation methods, and the following resins were used.

1.評価方法
(1)メルトフローレート(MFR)[単位:g/10min]
プロピレン系樹脂は、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定し、エチレン・α−オレフィン共重合体は、JIS K6922−2:1997付属書に準拠し、190℃、荷重2.16kgで測定した。
(2)融点(Tm)および結晶化温度(Tc)
セイコーインスツルメンツ社製DSC6200を使用し、シート状にしたサンプル片を5mgアルミパンに詰め、室温から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した後に、10℃/分で20℃まで降温して、結晶化させた時の結晶最大ピーク温度(℃)として結晶化温度(Tc)を求め、その後、10℃/分で200℃まで昇温させた時の融解最大ピーク温度(℃)として融点(Tm)を求めた。
(3)分子量及び分子量分布(Mw/Mn、分子量M(≧200万)、α/β)
ゲルパーミエーションクロマトグラフィー(GPC)により、上記本明細書記載の方法で、測定及び算出した。
(4)昇温溶出分別(TREF)
TREF測定方法は、下記の装置を用い、前述した通りである。
(i)TREF部
TREFカラム:4.3mmφ×150mmステンレスカラム
カラム充填材:100μm表面不活性処理ガラスビーズ
加熱方式:アルミヒートブロック
冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷)
温度分布:±0.5℃
温調器:(株)チノー デジタルプログラム調節計KP1000(バルブオーブン)
加熱方式:空気浴式オーブン
測定時温度:140℃
温度分布:±1℃
バルブ:6方バルブ 4方バルブ
(ii)試料注入部
注入方式:ループ注入方式
注入量:ループサイズ 0.1ml
注入口加熱方式:アルミヒートブロック
測定時温度:140℃
(iii)検出部
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
検出波長:3.42μm
高温フローセル:LC−IR用ミクロフローセル 光路長1.5mm 窓形状2φ×4mm長丸 合成サファイア窓板
測定時温度:140℃
(iv)ポンプ部
送液ポンプ:センシュウ科学社製 SSC−3461ポンプ
(v)測定条件
溶媒:o−ジクロロベンゼン(0.5mg/mLのBHTを含む)
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速 :1mL/分
1. Evaluation method (1) Melt flow rate (MFR) [unit: g / 10 min]
The propylene-based resin conforms to JIS K7210: 1999 “Method for testing plastics-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR)”, condition M (230 ° C., 2.16 kg load). The ethylene / α-olefin copolymer was measured at 190 ° C. under a load of 2.16 kg in accordance with JIS K6922-2: 1997 appendix.
(2) Melting point (Tm) and crystallization temperature (Tc)
Using a Seiko Instruments DSC6200, the sheet-shaped sample piece was packed in a 5 mg aluminum pan, heated from room temperature to 200 ° C. at a heating rate of 100 ° C./minute, held for 5 minutes, and then 10 ° C./minute. The crystallization temperature (Tc) is obtained as the maximum crystal peak temperature (° C.) when the temperature is lowered to 20 ° C., and then the maximum melting peak when the temperature is increased to 200 ° C. at 10 ° C./min. The melting point (Tm) was determined as the temperature (° C.).
(3) Molecular weight and molecular weight distribution (Mw / Mn, molecular weight M (≧ 2 million), α / β)
Measurement and calculation were performed by gel permeation chromatography (GPC) by the method described in the present specification.
(4) Elevated temperature elution fractionation (TREF)
The TREF measurement method is as described above using the following apparatus.
(I) TREF part TREF column: 4.3 mmφ × 150 mm stainless steel column Column filler: 100 μm surface inactive glass beads Heating method: Aluminum heat block Cooling method: Peltier element (Peltier element is cooled by water)
Temperature distribution: ± 0.5 ° C
Temperature controller: Chino Corporation Digital Program Controller KP1000 (Valve Oven)
Heating method: Air bath oven Measurement temperature: 140 ° C
Temperature distribution: ± 1 ° C
Valve: 6-way valve 4-way valve (ii) Sample injection part Injection method: Loop injection method Injection amount: Loop size 0.1ml
Inlet heating method: Aluminum heat block Measurement temperature: 140 ° C
(Iii) Detection unit Detector: Fixed wavelength infrared detector MIRAN 1A manufactured by FOXBORO
Detection wavelength: 3.42 μm
High-temperature flow cell: Micro flow cell for LC-IR Optical path length 1.5mm Window shape 2φ x 4mm oval Synthetic sapphire window Measurement temperature: 140 ° C
(Iv) Pump unit Liquid feed pump: SSC-3461 pump manufactured by Senshu Kagaku Co. (v) Measurement conditions Solvent: o-dichlorobenzene (including 0.5 mg / mL BHT)
Sample concentration: 5 mg / mL
Sample injection volume: 0.1 mL
Solvent flow rate: 1 mL / min

(5)MT(メルトテンション)及び最大巻取速度
東洋精機製作所社製キャピログラフ1Bを用い、下記の条件で樹脂を紐状に押し出して、ローラーに巻き取っていった時にプーリーに検出される張力を溶融張力(MT)として測定した。
キャピラリー:直径2.1mm
シリンダー径:9.6mm
シリンダー押出速度:10mm/分
巻き取り速度:4.0m/分
温度:230℃
また、巻き取り速度を4.0m/分から徐々に上げていったとき(加速度:5.4cm/s)、紐状物が切断する直前の巻き取り速度を、最大巻取速度(MaxDraw)として測定した。
(6)ME(メモリーエフェクト)
タカラ社製のメルトインデクサーを用い、190℃でオリフィス径1.0mm、長さ8.0mm中を、荷重をかけて押し出し、押し出し速度が0.1g/分になるように荷重を調節し、その速度の時に、オリフィスから押し出されたポリマーを、エタノール中で急冷し、その際のストランド径の値をオリフィス径で除した値として算出した。この値は、Log(MFR)と相関する値であり、この値が大きいと、スウェルが大きく射出成形したときの製品外観がよくなることを示す。
(7)mm分率
日本電子社製、GSX−400、FT−NMRを用い、上記本明細書記載の方法で測定した。単位は%である。
(8)エチレン含量の測定
13C−NMRを用いて検量線を作成し、IRを用いて測定した。
(9)伸長粘度
上記本明細書記載の方法で測定した。
(10)組成分析
JIS法による化学分析により検量線を作成し、蛍光X線により測定した。
(5) MT (Melt Tension) and Maximum Winding Speed Using Capillograph 1B manufactured by Toyo Seiki Seisakusho Co., Ltd., the tension detected by the pulley when the resin is extruded in a string shape under the following conditions and wound on a roller. Measured as melt tension (MT).
Capillary: 2.1mm in diameter
Cylinder diameter: 9.6mm
Cylinder extrusion speed: 10 mm / min Winding speed: 4.0 m / min Temperature: 230 ° C.
Further, when the winding speed is gradually increased from 4.0 m / min (acceleration: 5.4 cm / s 2 ), the winding speed immediately before the string-like material is cut is defined as the maximum winding speed (MaxDraw). It was measured.
(6) ME (memory effect)
Using a melt indexer manufactured by Takara Co., Ltd., at 190 ° C., with an orifice diameter of 1.0 mm and a length of 8.0 mm, extruding with a load, adjusting the load so that the extrusion speed becomes 0.1 g / min, At that speed, the polymer extruded from the orifice was quenched in ethanol, and the strand diameter at that time was divided by the orifice diameter. This value correlates with Log (MFR), and a large value indicates that the product appearance is improved when the swell is large and injection molded.
(7) mm fraction Measured by the method described in the present specification using GSX-400, FT-NMR manufactured by JEOL Ltd. The unit is%.
(8) Measurement of ethylene content
A calibration curve was prepared using 13 C-NMR and measured using IR.
(9) Elongation viscosity Measured by the method described in the present specification.
(10) Composition analysis A calibration curve was prepared by chemical analysis by the JIS method and measured by fluorescent X-ray.

(11)標準偏差
以下のいずれかの評価方法に従って測定した。
95mm角に切削した延伸前原反シートの表面中央に、50mm角内に10mm間隔での碁盤をスタンプし、二軸延伸機(東洋精機製作所社製二軸延伸試験装置)を用いて二軸延伸し(製造−1)、引き伸ばされた碁盤の交点厚み(交点計25箇所)を測定、厚みの標準偏差値を求めた。延伸倍率は縦方向×横方向=4×4倍(面倍率=16倍)で行った。
95mm角に切削した延伸前原反シートの表面中央に、50mm角内に10mm間隔での碁盤をスタンプし、二軸延伸機(ブルックナー社製KAROIV)を用いて二軸延伸し(製造−2)、引き伸ばされた碁盤の交点厚み(交点計25箇所)を測定、厚みの標準偏差値を求めた。延伸倍率は縦方向×横方向=3×3倍(面倍率=9倍)で行った。
(11) Standard deviation It was measured according to any of the following evaluation methods.
In the center of the surface of the unstretched original fabric sheet cut to 95 mm square, a grid is stamped at 10 mm intervals within a 50 mm square, and biaxially stretched using a biaxial stretching machine (biaxial stretching test device manufactured by Toyo Seiki Seisakusho). (Manufacturing-1) The intersection thickness (25 intersection points) of the stretched board was measured, and the standard deviation value of the thickness was obtained. The draw ratio was longitudinal direction × lateral direction = 4 × 4 times (area magnification = 16 times).
In the center of the surface of the unstretched original fabric sheet cut to 95 mm square, a grid is stamped at intervals of 10 mm within a 50 mm square, and biaxially stretched using a biaxial stretching machine (KAROIV manufactured by Bruckner) (Production-2). The crossing thickness (25 crossing points) of the stretched board was measured, and the standard deviation value of the thickness was obtained. The draw ratio was longitudinal direction × lateral direction = 3 × 3 times (area magnification = 9 times).

2.使用材料
[1]プロピレン系重合体(A)
下記の製造例1〜2で製造したプロピレン系樹脂(PP−1)、プロピレン系樹脂(PP−2)を用いた。
2. Materials used [1] Propylene polymer (A)
The propylene-based resin (PP-1) and propylene-based resin (PP-2) produced in the following Production Examples 1 and 2 were used.

プロピレン系樹脂(PP−1)及びプロピレン系樹脂(PP−2)の製造例
[触媒成分(A)の合成例1]
(1)ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)インデニル}]ハフニウムの合成:(成分[A−1](錯体1)の合成):
(1−a)4−(4−t−ブチルフェニル)−インデンの合成:
1000mlのガラス製反応容器に、1−ブロモ−4−t−ブチル−ベンゼン(40g、0.19mol)、ジメトキシエタン(400ml)を加え、−70℃まで冷却した。ここに、t−ブチルリチウム−ペンタン溶液(260ml、0.38mol、1.46mol/L)を滴下した。滴下後、徐々に室温まで戻しながら5時間攪拌した。再び−70℃まで冷却し、そこにトリイソプロピルボレート(46ml、0.20mol)のジメトキシエタン溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
Production Examples of Propylene Resin (PP-1) and Propylene Resin (PP-2) [Synthesis Example 1 of Catalyst Component (A)]
(1) Synthesis of dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) indenyl}] hafnium: (component [A-1] (Synthesis of Complex 1):
(1-a) Synthesis of 4- (4-t-butylphenyl) -indene:
1-Bromo-4-t-butyl-benzene (40 g, 0.19 mol) and dimethoxyethane (400 ml) were added to a 1000 ml glass reaction vessel, and cooled to -70 ° C. A t-butyllithium-pentane solution (260 ml, 0.38 mol, 1.46 mol / L) was added dropwise thereto. After dropping, the mixture was stirred for 5 hours while gradually returning to room temperature. The mixture was cooled again to −70 ° C., and a dimethoxyethane solution (100 ml) of triisopropyl borate (46 ml, 0.20 mol) was added dropwise thereto. After dropping, the mixture was stirred overnight while gradually returning to room temperature.

反応液に蒸留水(100ml)を加え、30分間攪拌した後、炭酸ナトリウム50gの水溶液(150ml)、4−ブロモインデン(30g、0.15mol)、テトラキス(トリフェニルフォスフィノ)パラジウム(5g、4.3mmol)を順に加え、その後、低沸成分を除去し、80℃で5時間加熱した。
反応液を氷水(1L)中に注ぎ、そこから3回エーテル抽出を行い、エーテル層を飽和食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−t−ブチルフェニル)−インデン(37g、収率98%)を淡黄色液体として得た。
Distilled water (100 ml) was added to the reaction solution, and the mixture was stirred for 30 minutes, and then sodium carbonate 50 g in water (150 ml), 4-bromoindene (30 g, 0.15 mol), tetrakis (triphenylphosphino) palladium (5 g, 4 g .3 mmol) was added in turn, after which the low boiling components were removed and heated at 80 ° C. for 5 hours.
The reaction solution was poured into ice water (1 L), from which ether was extracted three times, and the ether layer was washed with saturated brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column to obtain 4- (4-tert-butylphenyl) -indene (37 g, yield 98%) as a pale yellow liquid.

(1−b)2−ブロモ−4−(4−t−ブチルフェニル)−インデンの合成
1000mlのガラス製反応容器に、4−(4−t−ブチルフェニル)−インデン(37g、0.15mol)、ジメチルスルホキシド(400ml)、蒸留水(11ml)を加え、そこにN−ブロモスクシンイミド(35g、0.20mol)を徐々に加え、そのまま室温で1時間攪拌した。
反応液を氷水(1L)中に注ぎ、そこから3回トルエンで抽出を行った。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸(4.3g、22mmol)を加え、水分を除去しながら2時間加熱還流させた。
反応液を分液ロートに移し食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−t−ブチルフェニル)−インデン(46g、収率95%)を淡黄色固体として得た。
(1-b) Synthesis of 2-bromo-4- (4-t-butylphenyl) -indene In a 1000 ml glass reaction vessel, 4- (4-t-butylphenyl) -indene (37 g, 0.15 mol) Dimethyl sulfoxide (400 ml) and distilled water (11 ml) were added, and N-bromosuccinimide (35 g, 0.20 mol) was gradually added thereto, followed by stirring at room temperature for 1 hour.
The reaction solution was poured into ice water (1 L), and extracted from it three times with toluene. The toluene layer was washed with saturated brine, p-toluenesulfonic acid (4.3 g, 22 mmol) was added, and the mixture was heated to reflux for 2 hours while removing moisture.
The reaction solution was transferred to a separatory funnel and washed with brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column to give 2-bromo-4- (4-t-butylphenyl) -indene (46 g, yield 95%) as a pale yellow solid. Obtained.

(1−c)4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデンの合成
1000mlのガラス製反応容器に、メチルフラン(13.8g、0.17mol)、ジメトキシエタン(400ml)を加え、−70℃まで冷却した。ここにn−ブチルリチウム−ヘキサン溶液(111ml、0.17mol、1.52mol/L)を滴下した。滴下後、徐々に室温まで戻しながら3時間攪拌した。再び70℃まで冷却し、そこにトリイソプロピルボレート(41ml、0.18mol)を含むジメトキシエタン溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水(50ml)を加え、30分間攪拌した後、炭酸ナトリウム54gの水溶液(100ml)、2−ブロモ−4−(4−t−ブチルフェニル)−インデン(46g、0.14mol)、テトラキス(トリフェニルフォスフィノ)パラジウム(5g、4.3mmol)を順に加え、その後、低沸成分を除去しながら加熱し80℃で3時間加熱した。
反応液を氷水(1L)中に注ぎ、そこから3回エーテル抽出を行い、エーテル層を飽和食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ヘキサンで再結晶を行い4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデン(30.7g、収率66%)を無色結晶として得た。
Synthesis of (1-c) 4- (4-t-butylphenyl) -2- (5-methyl-2-furyl) -indene In a 1000 ml glass reaction vessel, methyl furan (13.8 g, 0.17 mol) Dimethoxyethane (400 ml) was added and cooled to -70 ° C. An n-butyllithium-hexane solution (111 ml, 0.17 mol, 1.52 mol / L) was added dropwise thereto. After dropping, the mixture was stirred for 3 hours while gradually returning to room temperature. The mixture was cooled again to 70 ° C., and a dimethoxyethane solution (100 ml) containing triisopropyl borate (41 ml, 0.18 mol) was added dropwise thereto. After dropping, the mixture was stirred overnight while gradually returning to room temperature.
Distilled water (50 ml) was added to the reaction solution, and the mixture was stirred for 30 minutes, and then an aqueous solution (100 ml) of sodium carbonate 54 g, 2-bromo-4- (4-t-butylphenyl) -indene (46 g, 0.14 mol), Tetrakis (triphenylphosphino) palladium (5 g, 4.3 mmol) was added in order, and then heated while removing low boiling components and heated at 80 ° C. for 3 hours.
The reaction solution was poured into ice water (1 L), from which ether was extracted three times, and the ether layer was washed with saturated brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, the residue was purified with a silica gel column, recrystallized with hexane, and 4- (4-t-butylphenyl) -2- (5-methyl-2-furyl)- Indene (30.7 g, 66% yield) was obtained as colorless crystals.

(1−d)ジメチルビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}シランの合成
1000mlのガラス製反応容器に、4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデン(22g、66mmol)、THF(200ml)を加え、−70℃まで冷却した。ここにn−ブチルリチウム−ヘキサン溶液(42ml、67mmol、1.60mol/L)を滴下した。滴下後、徐々に室温まで戻しながら3時間攪拌した。再び−70℃まで冷却し、1−メチルイミダゾール(0.3ml、3.8mmol)を加え、ジメチルジクロロシラン(4.3g、33mmol)を含むTHF溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル))−インデニル)シランの淡黄色固体(22g、収率92%)を得た。
Synthesis of (1-d) dimethylbis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl} silane In a 1000 ml glass reaction vessel, 4- (4-t -Butylphenyl) -2- (5-methyl-2-furyl) -indene (22 g, 66 mmol) and THF (200 ml) were added and cooled to -70 ° C. An n-butyllithium-hexane solution (42 ml, 67 mmol, 1.60 mol / L) was added dropwise thereto. After dropping, the mixture was stirred for 3 hours while gradually returning to room temperature. The mixture was cooled again to −70 ° C., 1-methylimidazole (0.3 ml, 3.8 mmol) was added, and a THF solution (100 ml) containing dimethyldichlorosilane (4.3 g, 33 mmol) was added dropwise. After dropping, the mixture was stirred overnight while gradually returning to room temperature.
Distilled water was added to the reaction solution, transferred to a separatory funnel, and washed with brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified with a silica gel column. Dimethylbis (2- (5-methyl-2-furyl) -4- (4-t-butylphenyl))-indenyl) A pale yellow solid of silane (22 g, 92% yield) was obtained.

(1−e)rac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムの合成
500mlのガラス製反応容器に、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル)シラン9.6g(13.0ミリモル)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.59モル/リットルのn−ブチルリチウム−ヘキサン溶液16ml(26ミリモル)を滴下した。滴下後、室温に戻し3時間攪拌した。反応液の溶媒を減圧で留去し、トルエン250ml、ジエチルエーテル10mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.2g(13.0ミリモル)を加えた。その後、徐々に室温に戻しながら一夜攪拌した。
溶媒を減圧留去し、ジクロロメタン/ヘキサンで再結晶を行い、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムのラセミ体(純度99%以上)を、黄橙色結晶として1.3g(収率22%)得た。
Synthesis of (1-e) rac-dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium 500 ml glass 9.6 g (13.0 mmol) of dimethylbis (2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl) silane and 300 ml of diethyl ether were added to the reaction vessel. It cooled to -70 degreeC with the dry ice-methanol bath. 16 ml (26 mmol) of a 1.59 mol / liter n-butyllithium-hexane solution was added dropwise thereto. After dropping, the mixture was returned to room temperature and stirred for 3 hours. The solvent of the reaction solution was distilled off under reduced pressure, 250 ml of toluene and 10 ml of diethyl ether were added, and the solution was cooled to −70 ° C. in a dry ice-methanol bath. Thereto was added 4.2 g (13.0 mmol) of hafnium tetrachloride. Thereafter, the mixture was stirred overnight while gradually returning to room temperature.
The solvent was distilled off under reduced pressure, recrystallization was performed with dichloromethane / hexane, and dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl)- Indenyl}] 1.3 g of hafnium racemate (purity 99% or more) was obtained as yellow-orange crystals (yield 22%).

得られたラセミ体についてのプロトン核磁気共鳴法(H−NMR)による同定値を以下に記す。
H−NMR(CDCl)同定結果]:
ラセミ体:δ0.95(s,6H),δ1.18(s,18H),δ2.09(s,6H),δ5.80(d,2H),δ6.37(d,2H),δ6.75(dd,2H),δ7.09(d,2H),δ7.34(s,2H),δ7.33(d,2H),δ7.35(d,4H),δ7.87(d,4H)。
The resulting proton nuclear magnetic resonance method for racemate identified value according to (1 H-NMR) are shown below.
[1 H-NMR (CDCl 3 ) identification results:
Racemate: δ 0.95 (s, 6H), δ 1.18 (s, 18H), δ 2.09 (s, 6H), δ 5.80 (d, 2H), δ 6.37 (d, 2H), δ6. 75 (dd, 2H), δ 7.09 (d, 2H), δ 7.34 (s, 2H), δ 7.33 (d, 2H), δ 7.35 (d, 4H), δ 7.87 (d, 4H ).

[触媒成分(A)の合成例2]
(1)rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成:(成分[A−1](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11―240909号公報の実施例1に記載の方法と同様に、実施した。
[Synthesis Example 2 of Catalyst Component (A)]
(1) Synthesis of rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium: (synthesis of component [A-1] (complex 2) ):
The synthesis of rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium is carried out according to the method described in Example 1 of JP-A-11-240909. As well as.

(2)[触媒合成例1]
(2−1)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水3456gに96%硫酸(1044g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)600gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水2400gを加えた後にろ過したところケーキ状固体1230gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム648g、蒸留水1800gを加え硫酸リチウム水溶液としたところへ、上記ケーキ状固体を全量投入し、更に蒸留水522gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水1980gを加えた後にろ過し、更に蒸留水でpH3まで洗浄し、ろ過を行ったところ、ケーキ状固体1150gを得た。
得られた固体を窒素気流下130℃で2日間予備乾燥後、53μm以上の粗大粒子を除去し、更に215℃、窒素気流下、滞留時間10分の条件でロータリーキルン乾燥することにより、化学処理スメクタイト340gを得た。
この化学処理スメクタイトの組成は、Al:7.81重量%、Si:36.63重量%、Mg:1.27重量%、Fe:1.82重量%、Li:0.20重量%であり、Al/Si=0.222[mol/mol]であった。
(2) [Catalyst Synthesis Example 1]
(2-1) Chemical treatment of ion-exchangeable layered silicate 96% sulfuric acid (1044 g) was added to 3456 g of distilled water in a separable flask, and then montmorillonite (Menzawa Chemical Co., Ltd. Benclay SL: average particle size 19 μm) as a layered silicate. ) 600 g was added. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, 2400 g of distilled water was added and filtered, and 1230 g of cake-like solid was obtained.
Next, 648 g of lithium sulfate and 1800 g of distilled water were added to the separable flask to make a lithium sulfate aqueous solution, and the whole amount of the cake-like solid was added, and further 522 g of distilled water was added. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, filtered after adding 1980 g of distilled water, further washed with distilled water to pH 3, and filtered to obtain 1150 g of cake-like solid.
The obtained solid was preliminarily dried at 130 ° C. for 2 days under a nitrogen stream, and then coarse particles of 53 μm or more were removed, and further, rotary kiln drying was performed under a condition of 215 ° C. under a nitrogen stream for a residence time of 10 minutes. 340 g was obtained.
The composition of this chemically treated smectite is Al: 7.81 wt%, Si: 36.63 wt%, Mg: 1.27 wt%, Fe: 1.82 wt%, Li: 0.20 wt%, Al / Si = 0.222 [mol / mol].

(2−2)触媒調製及び予備重合
3つ口フラスコ(容積1L)中に、上で得られた化学処理スメクタイト10gを入れ、ヘプタン(65mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を34.6mL)を加えて1時間攪拌後、ヘプタンで1/1000まで洗浄し、全容量を100mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)インデニル}]ハフニウム(105μmol)をトルエン(30mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(45μmol)をトルエン(12mL)に溶解した(溶液2)。
(2-2) Catalyst Preparation and Prepolymerization In a three-necked flask (volume: 1 L), 10 g of the chemically treated smectite obtained above was added, and heptane (65 mL) was added to form a slurry, to which triisobutylaluminum (25 mmol) was added. : 34.6 mL of a heptane solution having a concentration of 143 mg / mL) was added and stirred for 1 hour, then washed to 1/1000 with heptane, and heptane was added so that the total volume became 100 mL.
In another flask (volume: 200 mL), rac-dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl)-] prepared in Synthesis Example 1 of the catalyst component (A) was used. 4- (4-t-butylphenyl) indenyl}] hafnium (105 μmol) is dissolved in toluene (30 mL) (solution 1), and further, the catalyst component (A) is synthesized in another flask (volume 200 mL). Rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium (45 μmol) prepared in Example 2 was dissolved in toluene (12 mL) (Solution 2 ).

先ほどの化学処理スメクタイトが入った1Lフラスコにトリイソブチルアルミニウム(0.6mmol:濃度143mg/mLのヘプタン溶液を0.83mL)を加えた後、上記溶液1を加え、さらに5分後に上記溶液2を加えて、1時間室温で攪拌した。
その後、ヘプタンを356mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのちプロピレンを10g/時の速度でフィードし、2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、50℃に昇温し、オートクレーブ内の圧力が0.05MPaになるまで残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を8.3mL)を加えて5分攪拌した。
この固体を2時間減圧乾燥することにより、乾燥予備重合触媒27.5gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.75であった(予備重合触媒1)。
Triisobutylaluminum (0.6 mmol: 0.83 mL of a heptane solution with a concentration of 143 mg / mL) was added to the 1 L flask containing the chemically treated smectite, and then the above solution 1 was added. In addition, the mixture was stirred for 1 hour at room temperature.
Thereafter, 356 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After the internal temperature of the autoclave was set to 40 ° C., propylene was fed at a rate of 10 g / hour, and prepolymerization was performed while maintaining 40 ° C. for 2 hours. Thereafter, the propylene feed was stopped, the temperature was raised to 50 ° C., and residual polymerization was performed until the pressure in the autoclave reached 0.05 MPa. After removing the supernatant of the resulting catalyst slurry by decantation, triisobutylaluminum (6 mmol: 8.3 mL of a heptane solution having a concentration of 143 mg / mL) was added to the remaining portion and stirred for 5 minutes.
This solid was dried under reduced pressure for 2 hours to obtain 27.5 g of a dry prepolymerized catalyst. The prepolymerization ratio (a value obtained by dividing the amount of the prepolymerized polymer by the amount of the solid catalyst) was 1.75 (preliminary polymerization catalyst 1).

(3)プロピレン系樹脂(PP−1)の製造
内容積200リットルの撹拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素7.8NL(0.70g)、トリイソブチルアルミニウム(0.12mol:濃度50g/Lのヘプタン溶液を0.47L)を加えた後、内温を70℃まで昇温した。次いで予備重合触媒を2.4g(予備重合ポリマーを除いた重量で)、アルゴンで圧入して重合を開始させ、内部温度を70℃に維持した。2時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより重合を停止した。得られたポリマーを90℃窒素気流下で1時間乾燥し、18.7kgの重合体を得た。
触媒活性は7800gPP/g触媒であった。MFRは2.3g/10分であった。
(3) Production of propylene-based resin (PP-1) After sufficiently replacing the inside of a stirring autoclave having an internal volume of 200 liters with propylene, 40 kg of sufficiently dehydrated liquefied propylene was introduced. Hydrogen 7.8NL (0.70 g) and triisobutylaluminum (0.12 mol: 0.47 L of a heptane solution with a concentration of 50 g / L) were added thereto, and the internal temperature was raised to 70 ° C. Next, 2.4 g of the prepolymerized catalyst (by weight excluding the prepolymerized polymer) was injected with argon to initiate the polymerization, and the internal temperature was maintained at 70 ° C. After 2 hours, 100 ml of ethanol was injected, purged of unreacted propylene, and the inside of the autoclave was purged with nitrogen to terminate the polymerization. The obtained polymer was dried for 1 hour under a nitrogen stream at 90 ° C. to obtain 18.7 kg of a polymer.
The catalytic activity was 7800 g PP / g catalyst. The MFR was 2.3 g / 10 minutes.

(4)プロピレン系樹脂(PP−2)の製造
添加する水素を9.9NL(0.88g)で行う以外はプロピレン系樹脂(PP−1)の製造と同様に実施し、23.5kgの重合体を得た。触媒活性は9800gPP/g触媒であった。MFRは9.0g/10分であった。
(4) Production of propylene-based resin (PP-2) This was carried out in the same manner as the production of propylene-based resin (PP-1) except that hydrogen to be added was 9.9 NL (0.88 g). Coalescence was obtained. The catalytic activity was 9800 g PP / g catalyst. The MFR was 9.0 g / 10 minutes.

[2]プロプレン系重合体(B)
市販のポリプロピレン樹脂(FL203D、FL4、FY4、FY6HA)を用いた。
(市販品の特性)
ノバテックFL203D(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=3.0g/10min、融点=160℃)
ノバテックFL4(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=5.0g/10min、融点=162℃)
ノバテックFY4(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=5.0g/10min、融点=160℃)
ノバテックFY6HA(商品名):
日本ポリプロ社製のプロピレン単独重合体(MFR=2.4g/10min、融点=162℃)
[2] Proprene polymer (B)
Commercially available polypropylene resins (FL203D, FL4, FY4, FY6HA) were used.
(Characteristics of commercial products)
Novatec FL203D (trade name):
Propylene homopolymer manufactured by Nippon Polypro Co., Ltd. (MFR = 3.0 g / 10 min, melting point = 160 ° C.)
Novatec FL4 (trade name):
Propylene homopolymer manufactured by Nippon Polypro Co., Ltd. (MFR = 5.0 g / 10 min, melting point = 162 ° C.)
Novatec FY4 (trade name):
Propylene homopolymer manufactured by Nippon Polypro Co., Ltd. (MFR = 5.0 g / 10 min, melting point = 160 ° C.)
Novatec FY6HA (trade name):
Propylene homopolymer manufactured by Nippon Polypro Co., Ltd. (MFR = 2.4 g / 10 min, melting point = 162 ° C.)

[実施例1]
(1)プロピレン系樹脂(PP−1)を100重量部に対し、フェノール系酸化防止剤としてIRGANOX1010(商品名、チバ・スペシャルティ・ケミカルズ社製)を0.05質量部、リン系酸化防止剤としてIRGAFOS168(商品名、チバ・スペシャルティ・ケミカルズ社)製を0.1質量部、中和剤としてステアリン酸カルシウムを0.03質量部を配合し、スーパーミキサーで窒素シール後、3分間混合した後、押出機にて溶融混錬しペレット化することで、ポリプロピレン系樹脂組成物1を得た。
得られたペレットについて測定した各種物性を表1に示す。
[Example 1]
(1) 100 parts by weight of propylene-based resin (PP-1), 0.05 parts by weight of IRGANOX 1010 (trade name, manufactured by Ciba Specialty Chemicals) as a phenol-based antioxidant, and phosphorus-based antioxidant IRGAFOS168 (trade name, manufactured by Ciba Specialty Chemicals) 0.1 parts by weight, calcium stearate 0.03 parts by weight as a neutralizer, blended with a super mixer, mixed for 3 minutes, extruded A polypropylene resin composition 1 was obtained by melting and kneading with a machine and pelletizing.
Various physical properties measured for the obtained pellets are shown in Table 1.

(2)ポリプロピレンシート及び二軸延伸シートの製造−1
上記で得られたペレットをスクリュー口径65mmの押出機に投入し、樹脂温度230℃にて加熱溶融可塑化してT型ダイスより押出して得たポリプロピレン系シートを、60℃の水で内部が冷却された鏡面仕上げの金属製キャストロ−ルと、同様に70℃の水で内部が冷却された鏡面仕上げの金属製キャストにて挟み冷却固化させながら2m/分の速度で連続的に引き取り、幅800mm、厚み2.0mmのシートを得た。
次いで、このシートを用いて、二軸延伸試験装置(東洋精機製作所社製)で、154℃で6分間の加熱後に、延伸速度1.0m/minにて縦方向及び横方向に同時に4×4倍まで延伸し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表1に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
(2) Production of polypropylene sheet and biaxially stretched sheet-1
The pellet obtained above is put into an extruder having a screw diameter of 65 mm, and the polypropylene sheet obtained by heat melt plasticizing at a resin temperature of 230 ° C. and extruding from a T-shaped die is cooled with water at 60 ° C. It was continuously taken up at a speed of 2 m / min while being cooled and solidified with a mirror-finished metal cast roll and a mirror-finished metal cast cooled with water at 70 ° C., and a width of 800 mm. A sheet having a thickness of 2.0 mm was obtained.
Next, using this sheet, after heating for 6 minutes at 154 ° C. with a biaxial stretching test apparatus (manufactured by Toyo Seiki Seisakusho Co., Ltd.), 4 × 4 simultaneously in the longitudinal and transverse directions at a stretching speed of 1.0 m / min. The film was stretched to double to obtain a biaxially stretched sheet.
This biaxially stretched sheet was evaluated as described above. The results are shown in Table 1.
The biaxially stretched polypropylene sheet satisfying the configuration of the present invention was excellent in uniform stretchability.

[実施例2]
実施例1で得られたポリプロピレン系樹脂組成物1を75重量%とプロピレン系重合体(B:FL4)を25重量%とをブレンドしたポリプロピレン系樹脂組成物を用い、二軸延伸装置の加熱温度を158℃とした以外は実施例1と同様に実施し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表1に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
[Example 2]
Using a polypropylene resin composition obtained by blending 75% by weight of the polypropylene resin composition 1 obtained in Example 1 and 25% by weight of a propylene polymer (B: FL4), the heating temperature of the biaxial stretching apparatus Was carried out in the same manner as in Example 1 except that the temperature was 158 ° C., and a biaxially stretched sheet was obtained.
This biaxially stretched sheet was evaluated as described above. The results are shown in Table 1.
The biaxially stretched polypropylene sheet satisfying the configuration of the present invention was excellent in uniform stretchability.

[実施例3]
プロピレン系樹脂(PP−1)の代わりに、プロピレン系樹脂(PP−2)を用い、二軸延伸装置の加熱温度を156℃とした以外は実施例1と同様に実施し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表1に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
[Example 3]
A biaxially stretched sheet was carried out in the same manner as in Example 1 except that a propylene resin (PP-2) was used instead of the propylene resin (PP-1) and the heating temperature of the biaxial stretching apparatus was 156 ° C. Got.
This biaxially stretched sheet was evaluated as described above. The results are shown in Table 1.
The biaxially stretched polypropylene sheet satisfying the configuration of the present invention was excellent in uniform stretchability.

[比較例1〜2]
表1に示す配合と二軸延伸装置の加熱温度にて、実施例1と同様に二軸延伸ポリプロピレンシートを得た結果を表1に示す。
本発明の構成を満たさない二軸延伸ポリプロピレンシートは、均一延伸性に劣り、熱成形用シートとして用いる事が不可能な物であった。
[Comparative Examples 1-2]
Table 1 shows the results of obtaining a biaxially stretched polypropylene sheet in the same manner as in Example 1 at the composition shown in Table 1 and the heating temperature of the biaxial stretching apparatus.
A biaxially stretched polypropylene sheet that does not satisfy the constitution of the present invention is inferior in uniform stretchability and cannot be used as a thermoforming sheet.

Figure 2017101229
Figure 2017101229

[実施例4]
(3)ポリプロピレンシート及び二軸延伸シートの製造−2
実施例1で得られたペレットをスクリュー口径65mmの押出機に投入し、樹脂温度230℃にて加熱溶融可塑化してT型ダイスより押出して得たポリプロピレン系シートを、80℃の水で内部が冷却された鏡面仕上げの金属製キャストロ−ルと、同様に90℃の水で内部が冷却された鏡面仕上げの金属製キャストにて挟み冷却固化させながら1.0m/分の速度で連続的に引き取り、幅700mm、厚み3.0mmのシートを得た。
次いで、このシートを用いて二軸延伸試験装置(ブルックナー社製KAROIV)で、155℃で3分間の加熱後に、延伸速度1.0m/minにて縦方向及び横方向に同時に3×3倍まで延伸し、二軸延伸シートを得た。
この二軸延伸シートについて、前述の評価を行った。結果を表2に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
[Example 4]
(3) Production of polypropylene sheet and biaxially oriented sheet-2
The pellet obtained in Example 1 was put into an extruder having a screw diameter of 65 mm, and a polypropylene sheet obtained by heating and plasticizing at a resin temperature of 230 ° C. and extruding from a T-shaped die was internally filled with 80 ° C. water. It is continuously picked up at a speed of 1.0 m / min while being cooled and solidified by sandwiching it between a cooled metal cast roll with a mirror finish and a mirror finish metal cast cooled with water at 90 ° C. A sheet having a width of 700 mm and a thickness of 3.0 mm was obtained.
Then, using this sheet, after heating at 155 ° C. for 3 minutes with a biaxial stretching test apparatus (Brookner KAROIV), simultaneously up to 3 × 3 times in the longitudinal and transverse directions at a stretching speed of 1.0 m / min. Stretched to obtain a biaxially stretched sheet.
This biaxially stretched sheet was evaluated as described above. The results are shown in Table 2.
The biaxially stretched polypropylene sheet satisfying the configuration of the present invention was excellent in uniform stretchability.

[実施例5〜11]
表2に示す配合と二軸延伸機の加熱温度にて、実施例4と同様に二軸延伸ポリプロピレンシートを得た。結果を表2に示す。
これらの二軸延伸シートについて、前述の評価を行った。結果を表2に示す。
本発明の構成を満足する二軸延伸ポリプロピレンシートは、均一延伸性に優れたものであった。
[Examples 5 to 11]
A biaxially oriented polypropylene sheet was obtained in the same manner as in Example 4 at the composition shown in Table 2 and the heating temperature of the biaxially oriented machine. The results are shown in Table 2.
These biaxially stretched sheets were evaluated as described above. The results are shown in Table 2.
The biaxially stretched polypropylene sheet satisfying the configuration of the present invention was excellent in uniform stretchability.

[比較例3]
表2に示す配合と二軸延伸機の加熱温度にて、実施例4と同様に二軸延伸ポリプロピレンシートを得た。結果を表2に示す。
本発明の構成を満たさない二軸延伸ポリプロピレンシートは、均一延伸性に劣り、熱成形用シートとして用いる事が不可能な物であった。
[Comparative Example 3]
A biaxially oriented polypropylene sheet was obtained in the same manner as in Example 4 at the composition shown in Table 2 and the heating temperature of the biaxially oriented machine. The results are shown in Table 2.
A biaxially stretched polypropylene sheet that does not satisfy the constitution of the present invention is inferior in uniform stretchability and cannot be used as a thermoforming sheet.

Figure 2017101229
Figure 2017101229

本発明の二軸延伸シートは、低倍率での均一延伸性に優れたものであり、熱成形製品の材料として好適に用いる事が出来る。   The biaxially stretched sheet of the present invention is excellent in uniform stretchability at a low magnification, and can be suitably used as a material for thermoformed products.

Claims (9)

下記(i)〜(vi)に規定する要件を満たすことを特徴とするプロピレン系重合体(A)100〜5重量%と、DSCで測定した融点が150〜170℃であるプロピレン系重合体(B)を0〜95重量%配合したポリプロピレン系樹脂組成物からなる押出シートを二軸方向に延伸して得られる二軸延伸ポリプロピレンシート。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.5g/10分以上、20g/10分以下である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5以上、10.5以下である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
Propylene polymer (A) 100 to 5% by weight characterized by satisfying the requirements defined in the following (i) to (vi), and a propylene polymer having a melting point of 150 to 170 ° C. measured by DSC ( A biaxially stretched polypropylene sheet obtained by stretching an extruded sheet made of a polypropylene resin composition containing 0 to 95% by weight of B) in a biaxial direction.
(I) Melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 0.5 g / 10 min or more and 20 g / 10 min or less.
(Ii) The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 3.5 or more and 10.5 or less.
(Iii) In the molecular weight distribution curve obtained by GPC, the ratio of the component having a molecular weight (M) of 2 million or more to the total amount is 0.4% by weight or more and less than 10% by weight.
(Iv) In temperature rising elution fractionation (TREF) with orthodichlorobenzene (ODCB), the component eluted at a temperature of 40 ° C. or less is 3.0% by weight or less.
(V) The isotactic triad fraction (mm) measured by 13 C-NMR is 95% or more.
(Vi) The strain hardening degree (λmax) in the measurement of the extensional viscosity is 6.0 or more.
プロピレン系重合体(A)は、さらに、下記要件(vii)及び(viii)を満たすことを特徴とする請求項1に記載の二軸延伸ポリプロピレンシート。
(vii) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(viii) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
The biaxially oriented polypropylene sheet according to claim 1, wherein the propylene polymer (A) further satisfies the following requirements (vii) and (viii).
(Vii) (MT230 ° C.) ≧ 5 g
[In the formula, MT230 ° C. is measured using a melt tension tester, capillary: diameter 2.1 mm, cylinder diameter: 9.6 mm, cylinder extrusion speed: 10 mm / min, winding speed: 4.0 m / min, temperature: 230 It represents the melt tension when measured under the condition of ° C. ]
(Viii) (MaxDraw) ≧ 10 m / min [where, MaxDraw (maximum winding speed) is the winding speed immediately before the resin breaks when the winding speed is increased in the measurement of the melt tension. Represent. ]
プロピレン系重合体(A)は、さらに、下記要件(ix)を満たすことを特徴とする請求項1又は2に記載の二軸延伸ポリプロピレンシート。
(ix) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
The biaxially oriented polypropylene sheet according to claim 1 or 2, wherein the propylene polymer (A) further satisfies the following requirement (ix).
(Ix) (ME) ≧ −0.26 × log (MFR) +1.9
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]
プロピレン系重合体(A)は、さらに、下記要件(x)を満たすことを特徴とする請求項1〜3のいずれか1項に記載の二軸延伸ポリプロピレンシート。
(x)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
The biaxially stretched polypropylene sheet according to any one of claims 1 to 3, wherein the propylene polymer (A) further satisfies the following requirement (x).
(X) In the molecular weight distribution curve obtained by GPC, the common logarithm of the molecular weight corresponding to the peak position is Tp, and the common logarithm of the molecular weight at the position that is 50% of the peak height is L 50 and H 50 (L 50 is Tp Lower molecular weight side, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively, α / β is larger than 0.9 and 2 Less than 0.0.
MD及びTDの各々で1.5倍以上延伸され、面倍率にて3〜30倍延伸されてなる事を特徴とする請求項1〜4のいずれか1項に記載の二軸延伸ポリプロピレンシート。   The biaxially stretched polypropylene sheet according to any one of claims 1 to 4, wherein the biaxially stretched polypropylene sheet is stretched 1.5 times or more in each of MD and TD, and stretched 3 to 30 times at a surface magnification. 前記ポリプロピレン系樹脂組成物100質量部に対し、下記の一般式(1)で表される造核剤0.1〜1質量部配合する事を特徴とする請求項1〜5のいずれか1項に記載の二軸延伸ポリプロピレンシート。
Figure 2017101229
[但し、式中、nは、0〜2の整数であり、R1〜R5は、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、炭素数が2〜20のアルケニル基、炭素数が1〜20のアルコキシ基、カルボニル基、ハロゲン基またはフェニル基であり、R6は、水素原子または炭素数が1〜20のアルキル基である。]
6. The composition according to claim 1, wherein 0.1 to 1 part by mass of a nucleating agent represented by the following general formula (1) is blended with respect to 100 parts by mass of the polypropylene resin composition. 2. A biaxially oriented polypropylene sheet according to 1.
Figure 2017101229
[In the formula, n is an integer of 0 to 2, and R1 to R5 are the same or different and each is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, a carbonyl group, a halogen group or a phenyl group, and R6 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. ]
延伸後のシート厚みが0.1mm〜1mmである請求項1〜6のいずれか1項に記載の二軸延伸ポリプロピレンシート。   The biaxially stretched polypropylene sheet according to any one of claims 1 to 6, wherein the sheet thickness after stretching is 0.1 mm to 1 mm. 延伸後のシート厚みの標準偏差が50以下となる請求項1〜7のいずれか1項に記載の二軸延伸ポリプロピレンシート。   The biaxially stretched polypropylene sheet according to any one of claims 1 to 7, wherein a standard deviation of the sheet thickness after stretching is 50 or less. 請求項1〜8のいずれか1項に記載の二軸延伸ポリプロピレンシートを熱成形して得られる成形体。   The molded object obtained by thermoforming the biaxially-stretched polypropylene sheet of any one of Claims 1-8.
JP2016225618A 2015-11-24 2016-11-21 Biaxially stretched polypropylene sheet Active JP6787070B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228707 2015-11-24
JP2015228707 2015-11-24

Publications (2)

Publication Number Publication Date
JP2017101229A true JP2017101229A (en) 2017-06-08
JP6787070B2 JP6787070B2 (en) 2020-11-18

Family

ID=59017989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225618A Active JP6787070B2 (en) 2015-11-24 2016-11-21 Biaxially stretched polypropylene sheet

Country Status (1)

Country Link
JP (1) JP6787070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221985A1 (en) * 2016-06-24 2017-12-28 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
WO2021162021A1 (en) * 2020-02-12 2021-08-19 王子ホールディングス株式会社 Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
JP2022512099A (en) * 2018-12-03 2022-02-02 ハンファ ソリューションズ コーポレーション Method for preparing catalyst for olefin polymerization
WO2022107706A1 (en) * 2020-11-17 2022-05-27 王子ホールディングス株式会社 Polypropylene film, polypropylene film integrated with metal layer, and film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299018A (en) * 2008-05-13 2009-12-24 Japan Polypropylene Corp Sheet for polypropylene-based heat-molded and deep-draw molded product therefrom
JP2011051120A (en) * 2009-08-31 2011-03-17 Dainippon Printing Co Ltd Laminate for deep drawing and deeply drawing container
JP2015021043A (en) * 2013-07-18 2015-02-02 日本ポリプロ株式会社 Polypropylene-based biaxially-stretched film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299018A (en) * 2008-05-13 2009-12-24 Japan Polypropylene Corp Sheet for polypropylene-based heat-molded and deep-draw molded product therefrom
JP2011051120A (en) * 2009-08-31 2011-03-17 Dainippon Printing Co Ltd Laminate for deep drawing and deeply drawing container
JP2015021043A (en) * 2013-07-18 2015-02-02 日本ポリプロ株式会社 Polypropylene-based biaxially-stretched film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221985A1 (en) * 2016-06-24 2017-12-28 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JPWO2017221985A1 (en) * 2016-06-24 2019-03-28 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JP2020193342A (en) * 2016-06-24 2020-12-03 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JP7068665B2 (en) 2016-06-24 2022-05-17 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitors
JP2022512099A (en) * 2018-12-03 2022-02-02 ハンファ ソリューションズ コーポレーション Method for preparing catalyst for olefin polymerization
JP7202462B2 (en) 2018-12-03 2023-01-11 ハンファ ソリューションズ コーポレーション Method for preparing catalyst for olefin polymerization
WO2021162021A1 (en) * 2020-02-12 2021-08-19 王子ホールディングス株式会社 Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
CN115087701A (en) * 2020-02-12 2022-09-20 王子控股株式会社 Polypropylene film, polypropylene film with integrated metal layer, and film capacitor
WO2022107706A1 (en) * 2020-11-17 2022-05-27 王子ホールディングス株式会社 Polypropylene film, polypropylene film integrated with metal layer, and film capacitor

Also Published As

Publication number Publication date
JP6787070B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6089765B2 (en) Polypropylene resin foam sheet and thermoformed article
JP6064668B2 (en) Polypropylene resin composition and foam sheet
JP4553966B2 (en) Propylene polymer
JP5342915B2 (en) Polypropylene thermoforming sheet and its deep-drawn molded body
JP5624851B2 (en) Polypropylene resin composition for foam sheet molding and foam sheet
JP6481279B2 (en) Polypropylene resin composition for sealant and film comprising the same
JP5297838B2 (en) Polypropylene expanded foam film
JP6098274B2 (en) Propylene-ethylene copolymer resin composition and film
JP5140625B2 (en) Propylene resin composition, food container using the same, and medical member
JP5342922B2 (en) Extrusion foam molding resin composition and foam using the same
JP6787070B2 (en) Biaxially stretched polypropylene sheet
JP4990218B2 (en) Propylene resin composition and molded article thereof
JP5124517B2 (en) Polypropylene blow molding
JP5862486B2 (en) Polypropylene resin composition for extrusion lamination and laminate
JP5256102B2 (en) Polypropylene injection blow molded body
JP5849913B2 (en) Polypropylene resin composition for extrusion lamination and laminate
JP5297834B2 (en) Polypropylene foam film
JP5286147B2 (en) Polypropylene deep-drawn body
JP2015054919A (en) Polypropylene resin composition for fusion cutting seal and polypropylene film
JP2009275081A (en) Propylene-based resin composition
JP5880369B2 (en) Polypropylene resin composition for extrusion lamination and laminate
JP6213179B2 (en) Polypropylene resin composition for extrusion lamination and laminate
JP6213176B2 (en) Polypropylene resin composition for extrusion lamination and laminate
JP2009299024A (en) Propylene-based composite resin composition and extruded product using the same
JP6213180B2 (en) Polypropylene resin composition for extrusion lamination and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6787070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250