JP2017101133A - Fluidity reduction agent of solid-solution mixture - Google Patents
Fluidity reduction agent of solid-solution mixture Download PDFInfo
- Publication number
- JP2017101133A JP2017101133A JP2015234231A JP2015234231A JP2017101133A JP 2017101133 A JP2017101133 A JP 2017101133A JP 2015234231 A JP2015234231 A JP 2015234231A JP 2015234231 A JP2015234231 A JP 2015234231A JP 2017101133 A JP2017101133 A JP 2017101133A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- fluidity
- reducing agent
- liquid mixture
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 108
- 230000009467 reduction Effects 0.000 title abstract description 15
- 239000006104 solid solution Substances 0.000 title abstract 6
- 239000000835 fiber Substances 0.000 claims abstract description 43
- 239000000126 substance Substances 0.000 claims abstract description 18
- 238000004438 BET method Methods 0.000 claims abstract description 15
- 239000001913 cellulose Substances 0.000 claims abstract description 14
- 229920002678 cellulose Polymers 0.000 claims abstract description 14
- 229920001477 hydrophilic polymer Polymers 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 102
- 239000007788 liquid Substances 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 39
- 239000007791 liquid phase Substances 0.000 claims description 20
- 239000008187 granular material Substances 0.000 claims description 19
- 239000007790 solid phase Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000011800 void material Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 239000000243 solution Substances 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000002689 soil Substances 0.000 description 21
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000010802 sludge Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 108010059892 Cellulase Proteins 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 229940106157 cellulase Drugs 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000006114 decarboxylation reaction Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010893 paper waste Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 101710141626 Cellulose 1,4-beta-cellobiosidase (reducing end) CelS Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- -1 etc.) Polymers 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229910001678 gehlenite Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000002881 soil fertilizer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Treatment Of Sludge (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
本発明は、固液混合物の流動性低下剤に関する。 The present invention relates to a fluidity reducing agent for a solid-liquid mixture.
従来、河川の護岸工事等の土木工事においては、盛土箇所に劣化した掘削土を、改良土又は良質土と入れ換えるとき、その施工工程には多大な材料及び作業量が必要なため、当該強度を補強した改良土の入れ換えの簡略化の手法として、細かく細分化した古紙を活用する方法が提案されている(特許文献1、2及び3参照)。 Conventionally, in civil engineering work such as river revetment work, when excavated soil that has deteriorated at the embankment site is replaced with improved soil or high-quality soil, the construction process requires a large amount of materials and work, so the strength is As a technique for simplifying replacement of reinforced improved soil, a method of utilizing finely divided waste paper has been proposed (see Patent Documents 1, 2, and 3).
しかしながら、細かく細分化した古紙を用いた従来の手法では、土木工事に実用できるまでの強度性能をもつ改良土を実現することが困難であり、建設現場で得た掘削土から、実用上十分な強度を有する補強用改良土を、短い施行期間の間に、得ることができれば、実効性が大きいと考えられる。 However, it is difficult to realize improved soil with strength performance that can be practically used for civil engineering work with the conventional method using finely divided waste paper. If a reinforcing soil for reinforcement having strength can be obtained during a short enforcement period, it is considered that the effectiveness is large.
本発明者らは、劣化した掘削土が土壌の固体成分と水とを含む固液混合物である点に着目し、固液混合物の流動性を短時間で簡易な作業により低下させることができれば、土木工事における上記の困難点を克服できると考えた。また、本発明者らは、固液混合物の流動性を低下させる際、減容化、コスト等の観点から、容積増加を抑制することが必要であると考えた。 The present inventors pay attention to the fact that the degraded excavated soil is a solid-liquid mixture containing soil solid components and water, and if the fluidity of the solid-liquid mixture can be reduced by a simple operation in a short time, We thought that the above difficulties in civil engineering work could be overcome. Further, the present inventors considered that it is necessary to suppress an increase in volume from the viewpoints of volume reduction, cost, etc., when reducing the fluidity of the solid-liquid mixture.
本発明は、上記の課題に鑑みなされたものであって、固液混合物の化学的組成によらず、短時間で簡易な作業により、容積増加を抑制しつつ、固液混合物の流動性を低下させることができる、固液混合物の流動性低下剤を提供することを目的とする。 The present invention has been made in view of the above problems, and reduces the fluidity of the solid-liquid mixture while suppressing the increase in volume by a simple operation in a short time regardless of the chemical composition of the solid-liquid mixture. It is an object of the present invention to provide a fluidity reducing agent for a solid-liquid mixture that can be produced.
本発明者は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、具体的には、繊維が絡み合った構造を有する特定の粒状物を含む、固液混合物の流動性低下剤を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventor specifically includes a specific granular material having a structure in which fibers are intertwined by capturing and capturing the solid phase and liquid phase of the solid-liquid mixture in voids formed by the intertwining of fibers. It has been found that the above problem can be solved by using a fluidity lowering agent for a solid-liquid mixture, and the present invention has been completed.
本発明の第一の態様は、繊維が絡み合った構造を有する粒状物を含み、前記粒状物は、平均粒子径が300μm以下であり、BET法による比表面積が0.25m2/g以上100m2/g以下である、固液混合物の流動性低下剤である。 A first aspect of the present invention includes a granular material having a structure in which fibers are entangled, and the granular material has an average particle diameter of 300 μm or less, and a specific surface area by a BET method of 0.25 m 2 / g or more and 100 m 2. / G or less, a fluidity reducing agent for a solid-liquid mixture.
本発明の第二の態様は、繊維が絡み合った構造を有する粒状物を含み、前記粒状物は、(1−かさ密度/真密度)×100で計算される空隙率が50%以上であり、BET法による比表面積が0.25m2/g以上100m2/g以下である、固液混合物の流動性低下剤である。 The second aspect of the present invention includes a granular material having a structure in which fibers are intertwined, and the granular material has a porosity calculated by (1-bulk density / true density) × 100 is 50% or more, It is a fluidity reducing agent for a solid-liquid mixture having a specific surface area of 0.25 m 2 / g or more and 100 m 2 / g or less by the BET method.
本発明の第三の態様は、固液混合物と前記流動性低下剤とを混合して低流動性混合物を得ることを含む、低流動性混合物の製造方法である。 A third aspect of the present invention is a method for producing a low fluidity mixture, comprising mixing a solid-liquid mixture and the fluidity reducing agent to obtain a low fluidity mixture.
本発明の第四の態様は、上記方法により得た低流動性混合物を移動体に搭載して移動させることを含む、低流動性混合物の搬送方法である。 A fourth aspect of the present invention is a method for transporting a low fluidity mixture, which comprises moving the low fluidity mixture obtained by the above method on a moving body.
本発明の第五の態様は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、前記固液混合物の流動性低下の程度を向上させる方法である。 The fifth aspect of the present invention is a method for improving the degree of decrease in fluidity of the solid-liquid mixture by allowing the solid phase and liquid phase of the solid-liquid mixture to penetrate into and capture the voids formed by the entanglement of fibers. is there.
本発明の第六の態様は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、流動性低下の対象となる固液混合物の化学的組成の自由度を向上させる方法である。 According to a sixth aspect of the present invention, the chemical composition of the solid-liquid mixture subject to fluidity reduction is obtained by allowing the solid phase and liquid phase of the solid-liquid mixture to enter and capture in the voids formed by the entanglement of fibers. This is a method for improving the degree of freedom.
本発明の第七の態様は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、流動性低下後において固液混合物の容積増加を抑制する方法である。 A seventh aspect of the present invention is a method for suppressing an increase in the volume of a solid-liquid mixture after the fluidity is lowered by allowing the solid phase and the liquid phase of the solid-liquid mixture to enter and capture in voids formed by entanglement of fibers. It is.
本発明によれば、固液混合物の化学的組成によらず、短時間で簡易な作業により、容積増加を抑制しつつ、固液混合物の流動性を低下させることができる、固液混合物の流動性低下剤を提供することができる。 According to the present invention, regardless of the chemical composition of the solid-liquid mixture, the fluidity of the solid-liquid mixture can be reduced by a simple operation in a short time while suppressing the increase in volume while reducing the fluidity of the solid-liquid mixture. Property-reducing agents can be provided.
[固液混合物の流動性低下剤]
本発明に係る流動性低下剤の一態様は、繊維が絡み合った構造を有する粒状物を含み、前記粒状物は、平均粒子径が300μm以下であり、BET法による比表面積が0.25m2/g以上100m2/g以下である、固液混合物の流動性低下剤である。また、本発明に係る流動性低下剤の別の態様は、繊維が絡み合った構造を有する粒状物を含み、前記粒状物は、(1−かさ密度/真密度)×100で計算される空隙率が50%以上であり、BET法による比表面積が0.25m2/g以上100m2/g以下である、固液混合物の流動性低下剤である。この別の態様において、流動性低下剤の平均粒子径は、300μm以下であってもよい。なお、本明細書において、平均粒子径とは、光学顕微鏡下で測定した流動性低下剤の粒子径の平均値をいう。
[Fluidity reducing agent for solid-liquid mixture]
One aspect of the fluidity reducing agent according to the present invention includes a granular material having a structure in which fibers are entangled, and the granular material has an average particle diameter of 300 μm or less and a specific surface area by a BET method of 0.25 m 2 / It is a fluidity reducing agent of a solid-liquid mixture which is not less than 100 g 2 / g. Moreover, another aspect of the fluidity reducing agent according to the present invention includes a granular material having a structure in which fibers are intertwined, and the granular material has a porosity calculated by (1−bulk density / true density) × 100. Is a fluidity reducing agent for a solid-liquid mixture having a BET method specific surface area of 0.25 m 2 / g to 100 m 2 / g. In another embodiment, the average particle size of the fluidity reducing agent may be 300 μm or less. In addition, in this specification, an average particle diameter means the average value of the particle diameter of the fluidity reducing agent measured under the optical microscope.
上記繊維としては、特に限定されず、例えば、親水性ポリマーを含有するものが挙げられる。上記繊維が親水性ポリマーを含有すると、固液混合物における液相が水を含む場合、上記繊維と上記液相との親和性が向上して、上記液相が流動性低下剤に捕捉されやすくなり、固液混合物の流動性低下の程度がより向上しやすい。親水性ポリマーとしては、特に限定されず、例えば、セルロース、ポリビニルアルコール、ポリアルキレングリコール(例えば、ポリエチレングリコール、ポリプロピレングリコール等)、ポリアクリル酸等が挙げられ、生分解性や中性域のpH(例えば、pH8前後)を有し、低環境負荷性に優れる点から、セルロースが好ましい。 The fiber is not particularly limited, and examples thereof include those containing a hydrophilic polymer. When the fiber contains a hydrophilic polymer, when the liquid phase in the solid-liquid mixture contains water, the affinity between the fiber and the liquid phase is improved, and the liquid phase is easily captured by the fluidity reducing agent. The degree of fluidity reduction of the solid-liquid mixture is more likely to be improved. The hydrophilic polymer is not particularly limited, and examples thereof include cellulose, polyvinyl alcohol, polyalkylene glycol (for example, polyethylene glycol, polypropylene glycol, etc.), polyacrylic acid, and the like. Biodegradability and neutral pH ( For example, cellulose is preferable because it has a pH of around 8 and is excellent in low environmental impact.
上記繊維が親水性ポリマーを含有する場合、本発明に係る流動性低下剤における前記親水性ポリマーの含有量は、40重量%以上であることが好ましく、45重量%以上であることがより好ましく、47重量%以上であることが更により好ましい。上記含有量が40重量%以上であると、固液混合物における液相が水を含む場合、上記繊維と上記液相との親和性が向上して、上記液相が流動性低下剤に捕捉されやすくなり、固液混合物の流動性低下の程度が更により向上しやすい。上記含有量の上限は、100重量%でもよいが、固液混合物の流動性低下の程度等を考慮すると、80重量%以下であることが好ましく、60重量%以下であることがより好ましく、57重量%以下が更により好ましい。 When the fiber contains a hydrophilic polymer, the content of the hydrophilic polymer in the fluidity reducing agent according to the present invention is preferably 40% by weight or more, more preferably 45% by weight or more, Even more preferably, it is 47% by weight or more. When the content is 40% by weight or more, when the liquid phase in the solid-liquid mixture contains water, the affinity between the fibers and the liquid phase is improved, and the liquid phase is captured by the fluidity reducing agent. It becomes easy to further improve the degree of decrease in fluidity of the solid-liquid mixture. The upper limit of the content may be 100% by weight, but is preferably 80% by weight or less, more preferably 60% by weight or less, considering the degree of fluidity reduction of the solid-liquid mixture, etc. Even more preferred is weight percent or less.
本発明に係る流動性低下剤は、本発明の目的を損ねない限り、任意成分として、炭酸カルシウム(CaCO3)、カオリン(Al4Si4O10(OH)8)、タルク(Mg3Si4O10(OH)2)等の無機充填剤を含んでもよい。 The fluidity reducing agent according to the present invention includes, as optional components, calcium carbonate (CaCO 3 ), kaolin (Al 4 Si 4 O 10 (OH) 8 ), talc (Mg 3 Si 4 ) unless the object of the present invention is impaired. An inorganic filler such as O 10 (OH) 2 ) may be included.
固液混合物としては、特に限定されず、例えば、泥土が挙げられる。固液混合物における液相の含有量は、特に限定されず、典型的には20〜90重量%、より典型的には30〜75重量%、更により典型的には40〜60重量%、特に典型的には45〜55重量%である。 It does not specifically limit as a solid-liquid mixture, For example, a mud is mentioned. The content of the liquid phase in the solid-liquid mixture is not particularly limited, and is typically 20 to 90% by weight, more typically 30 to 75% by weight, even more typically 40 to 60% by weight, in particular. Typically 45-55% by weight.
本発明に係る流動性低下剤の製造方法は、特に限定されず、例えば、材料片をミルによって粉砕することを含む方法が挙げられる。材料片としては、例えば、ミルによる粉砕により繊維を形成し得るものが挙げられ、より具体的には、シュレッダー屑、古紙等の紙片が挙げられる。このような方法により、繊維が絡み合った構造を有する粒状物が形成される。 The manufacturing method of the fluidity reducing agent according to the present invention is not particularly limited, and examples thereof include a method including grinding a piece of material with a mill. As a piece of material, what can form a fiber by the grinding | pulverization by a mill is mentioned, for example, More specifically, paper pieces, such as shredder waste and used paper, are mentioned. By such a method, a granular material having a structure in which fibers are intertwined is formed.
以下、本発明に係る流動性低下剤が示す以下の性質に沿って、この流動性低下剤を説明する。
(1)瞬間性
(2)作業簡易性
(3)汎用性
(4)低容積増加率
Hereinafter, this fluidity reducing agent will be described along the following properties of the fluidity reducing agent according to the present invention.
(1) Instantaneous (2) Ease of work (3) Versatile (4) Low volume increase rate
(1)瞬間性
従来のアプローチは、セメント系固化材を中心とした水和反応等の化学反応に伴う固化によるアプローチであり、反応時間、即ち「養生期間」を要する。一方、本発明に係る流動性低下剤は、物理的な吸液を主メカニズムとしており、反応時間を要しない。その結果、含水比の高い汚泥等の、流動性の高い固液混合物の発生から処理完了(低流動性混合物の完成)に至る時間の短縮が可能である。
(1) Instantaneousness The conventional approach is an approach by solidification accompanying a chemical reaction such as a hydration reaction centering on a cement-based solidified material, and requires a reaction time, that is, a “curing period”. On the other hand, the fluidity reducing agent according to the present invention is based on physical absorption and does not require reaction time. As a result, it is possible to shorten the time from the generation of a solid-liquid mixture having a high fluidity, such as sludge having a high water content, to the completion of the treatment (completion of a low fluidity mixture).
本発明に係る流動性低下剤は、繊維が絡み合った構造を有し、実施例で示す通り、上記構造は綿状を呈する。この綿状構造は、連通性のある空隙を多く持ち、上記流動性低下剤が汚泥等の含液比の高い固液混合物に添加され、上記空隙へ水や汚泥を構成する細粒子が浸入する際に、内圧が働きにくい。その結果、空隙を満たしている空気と、水や細粒子の入れ替えが迅速に行われる。このようにして、水や細粒子は、上記流動性低下剤の綿状構造内の連通性空隙を満たしていた空気を極小空気(バブル)化し、これら空気とともに、連通性空隙に物理的に拘束される。 The fluidity reducing agent according to the present invention has a structure in which fibers are intertwined, and the structure has a cotton-like shape as shown in Examples. This cotton-like structure has many communicating voids, the fluidity reducing agent is added to a solid-liquid mixture having a high liquid content such as sludge, and fine particles constituting water and sludge enter the voids. The internal pressure is difficult to work. As a result, the replacement of the air filling the gap with water and fine particles is performed quickly. In this way, the water and fine particles make the air that has filled the communicating voids in the cotton-like structure of the fluidity reducing agent into a minimum air (bubble), and together with these airs, physically constrained to the communicating voids. Is done.
液性を有していた含水比の高い汚泥等の固液混合物は、このようにして、繊維構造によって自由な動きを拘束され、上記流動性低下剤の添加・撹拌(上記流動性低下剤の固液混合物への分散)後、即時に塑性がもたらされる。なお、上記流動性低下剤を構成する繊維の主体がセルロース等の親水性ポリマーであり、固液混合物の液相が水を含む場合、親水性ポリマーは分子側鎖に親水基を多く持つことから、水分子と空隙を構成する繊維との間に電気的な引力が作用し、連通性空隙に浸入した水の出ていきにくさ(拘束力)に寄与する。 In this way, the solid-liquid mixture such as sludge having a high water content, which has liquidity, is restrained from free movement by the fiber structure, and the addition and stirring of the fluidity reducing agent (the fluidity reducing agent Plasticity is brought about immediately after dispersion into the solid-liquid mixture). When the main component of the fiber constituting the fluidity reducing agent is a hydrophilic polymer such as cellulose and the liquid phase of the solid-liquid mixture contains water, the hydrophilic polymer has many hydrophilic groups in the molecular side chain. In addition, an electrical attractive force acts between the water molecules and the fibers constituting the voids, contributing to the difficulty (restraint force) of the water that has entered the communicating voids.
また、上記流動性低下剤を構成している粒状物は、一態様において、平均粒子径が300μm以下と極小である。このことは、上記流動性低下剤を固液混合物へ添加し、撹拌を行う際の上記流動性低下剤の分散性の高さに寄与しており、上記物理的な拘束メカニズムとともに、瞬間性に寄与している。上記分散性の観点から、上記平均粒子径は、好ましくは250μm以下、より好ましくは200μm以下である。なお、上記平均粒子径の下限は、特に限定されないが、典型的には3μm以上、より典型的には50μm以上である。 Moreover, the granular material which comprises the said fluidity reducing agent has the average particle diameter of 300 micrometers or less in one aspect | mode, and its minimum. This contributes to the high dispersibility of the fluidity reducing agent when the fluidity reducing agent is added to the solid-liquid mixture and agitated. Has contributed. From the viewpoint of the dispersibility, the average particle diameter is preferably 250 μm or less, more preferably 200 μm or less. The lower limit of the average particle diameter is not particularly limited, but is typically 3 μm or more, more typically 50 μm or more.
一方で、上記流動性低下剤のBET法による比表面積は、0.25m2/g以上100m2/g以下である。上記流動性低下剤を構成する繊維そのものも、微細な空隙を有しているが、吸湿材等で用いられるシリカゲル(BET法による比表面積:約500m2/g)や、吸着等に用いられる活性炭(BET法による比表面積:約1000m2/g)と比較して、BET法による比表面積が小さい。シリカゲルや活性炭は材料の中に無数のオングストロームオーダーの空隙(細孔)を有するのに対し、上記流動性低下剤は、その粒子構成繊維そのものは、オングストロームオーダーの細孔を多く有しているわけではないことを意味する。ガスの吸着性能には、この細孔が大きく影響する一方、吸液の場合は、特に短時間では、細孔の影響はあまり大きくないことを勘案すると、上記流動性低下剤の比表面積の測定値は、上記流動性低下剤を構成する繊維同士の絡み合いによる連通性空隙による物理的拘束メカニズムを主原理とした瞬間吸液原理を裏付けるものである。 On the other hand, the specific surface area by BET method of the flowable lowering agent is 0.25 m 2 / g or more 100 m 2 / g or less. The fiber itself constituting the fluidity reducing agent also has fine voids, but silica gel used for a hygroscopic material (specific surface area by BET method: about 500 m 2 / g) and activated carbon used for adsorption and the like. Compared with (specific surface area by BET method: about 1000 m 2 / g), the specific surface area by BET method is small. Silica gel and activated carbon have innumerable angstrom-order voids (pores) in the material, whereas the fluidity reducing agent has a lot of angstrom-order pores in the particle-constituting fiber itself. Means not. While the pores greatly influence the gas adsorption performance, in the case of liquid absorption, the specific surface area of the fluidity reducing agent is measured considering that the influence of the pores is not so great particularly in a short time. The value confirms the instantaneous liquid absorption principle based on the physical principle of the physical restraint mechanism by the communication gap due to the entanglement of the fibers constituting the fluidity reducing agent.
上記流動性低下剤のBET法による比表面積は、上記流動性低下剤による吸液性能の観点から、好ましくは0.25m2/g以上100m2/g以下、より好ましくは0.5m2/g以上10m2/g以下、更により好ましくは0.75m2/g以上5m2/g以下、特により好ましくは1m2/g以上2m2/g以下である。 The specific surface area by the BET method of the fluidity reducing agent is preferably from 0.25 m 2 / g to 100 m 2 / g, more preferably from 0.5 m 2 / g, from the viewpoint of liquid absorption performance by the fluidity reducing agent. above 10 m 2 / g or less, still more preferably 0.75 m 2 / g or more 5 m 2 / g or less, more particularly preferably at most 1 m 2 / g or more 2m 2 / g.
(2)作業簡易性
本発明に係る流動性低下剤は、上記のような物理的な拘束による吸液によって、液性を有する固液混合物に塑性をもたらしていることから、処理に要する作業は、即ち、上記流動性低下剤の固液混合物への添加と撹拌のみである。よって、複数の薬剤の添加や、複数の薬剤添加に伴う添加の順番、配合量のバランスといった複雑な手順・作業・検討事項等を要せず、作業は誰でもできる簡易なものとなる。
(2) Work simplicity Since the fluidity reducing agent according to the present invention brings plasticity to a liquid-solid mixture by liquid absorption due to physical restraint as described above, the work required for processing is That is, only the addition and stirring of the fluidity reducing agent to the solid-liquid mixture. Therefore, complicated procedures / work / consideration items such as the addition of a plurality of medicines, the order of addition accompanying the addition of the plurality of medicines, and the balance of the blending amount are not required, and the work can be easily performed by anyone.
また、物理的な拘束メカニズムの場合、改良対象である固液混合物の化学的組成等を予め調べる必要はなく、添加・撹拌により即時に効果を確認できることから、測定に時間のかかる含液比についても、作業前に調査する必要はなく、固液混合物を現場でサンプリングし、上記流動性低下剤を少量ずつ添加・撹拌し、目的とする塑性を発揮する添加率を簡単に決定することができる。 In the case of a physical restraint mechanism, it is not necessary to examine the chemical composition of the solid-liquid mixture to be improved in advance, and the effect can be confirmed immediately by addition and stirring. However, it is not necessary to investigate before the work, the solid-liquid mixture is sampled on-site, and the above fluidity reducing agent is added and stirred little by little, and the addition rate that exhibits the desired plasticity can be easily determined. .
(3)汎用性
本発明に係る流動性低下剤は、上記のような物理的な拘束による吸液によって、液性を有する固液混合物に塑性をもたらしていることから、改良対象である固液混合物の化学的組成を問わずに使用することができる。例えば、固液混合物の固相は、無機物質であっても有機物質であってもよい。また、固液混合物の液相は、水でも有機溶媒でもよく、溶液であってもよい。溶液の場合、例えば、電解質等の溶質やイオンの濃度、種類等を問わない。
(3) Generality Since the fluidity reducing agent according to the present invention brings plasticity to a solid-liquid mixture having liquidity by liquid absorption due to physical restraint as described above, the solid-liquid to be improved It can be used regardless of the chemical composition of the mixture. For example, the solid phase of the solid-liquid mixture may be an inorganic substance or an organic substance. Further, the liquid phase of the solid-liquid mixture may be water, an organic solvent, or a solution. In the case of a solution, for example, the concentration and type of solutes such as an electrolyte and ions are not limited.
(4)低容積増加率
本発明に係る流動性低下剤は、上述の通り、空隙を有する。この空隙は、上記流動性低下剤を構成する繊維同士の絡み合いによる連通性空隙、繊維そのものが有する微細空隙、粒子間空隙である。本発明に係る流動性低下剤は、一態様において、(1−かさ密度/真密度)×100で計算される空隙率が50%以上である。上記空隙率は、上記流動性低下剤による吸液性能の観点から、好ましくは60%以上、より好ましくは70%以上、更により好ましくは80%以上、特に好ましくは85%以上である。上記空隙率の上限は、上記流動性低下剤の強度等の観点から、好ましくは95%以下、より好ましくは93%以下、更により好ましくは91%以下、特に好ましくは89%以下である。
(4) Low volume increase rate The fluidity reducing agent according to the present invention has voids as described above. This void is a communication void due to entanglement between fibers constituting the fluidity reducing agent, a fine void included in the fiber itself, or an interparticle void. In one aspect, the fluidity reducing agent according to the present invention has a porosity calculated by (1-bulk density / true density) × 100 of 50% or more. The porosity is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and particularly preferably 85% or more from the viewpoint of the liquid absorption performance by the fluidity reducing agent. The upper limit of the porosity is preferably 95% or less, more preferably 93% or less, still more preferably 91% or less, and particularly preferably 89% or less from the viewpoint of the strength of the fluidity reducing agent.
なお、本明細書において、かさ密度とは、流動性低下剤を、ある容積の容器に充填し、上部から特に荷重を掛けることなく、充填した流動化低下剤の内容積と重量とにより算出されるものである。 In the present specification, the bulk density is calculated by filling the fluidity reducing agent into a certain volume of the container and applying the load from the upper part without applying any particular load, and the volume and weight of the filled fluidization reducing agent. Is.
ここで、実施例2には、例えば、含水率48重量%の泥土を、「建設汚泥処理土利用技術基準」において規定される品質区分の一つである「第4種処理土」が有するコーン指数200kN/m2以上に改良する場合、1m3あたり25kgの流動性低下剤を添加する必要があることが示されている。実施例2で用いた流動性低下剤の真密度が1.9g/cm3であることを考慮すると、実施例2で添加された流動性低下剤の体積は、25×1000/(1.9×100×100×100)≒0.013m3である。つまり、実施例2で流動性低下剤を添加した後の構成繊維等による容積増加率は1%程度と計算できる。この容積増加率は、セメント系固化材等の水和反応による水和物生成を伴う固化方法、分子内に水を取り込むことで膨張する高分子ポリマー系による塑性化アプローチと比較して、容積の増加率が非常に小さい。 Here, in Example 2, for example, corn having a moisture content of 48 wt% is included in “type 4 treated soil” which is one of the quality categories defined in the “construction sludge treated soil use technical standards”. It has been shown that when improving to an index of 200 kN / m 2 or more, it is necessary to add 25 kg of fluidity reducing agent per m 3 . Considering that the true density of the fluidity reducing agent used in Example 2 is 1.9 g / cm 3 , the volume of the fluidity reducing agent added in Example 2 is 25 × 1000 / (1.9 × 100 × 100 × 100) ≈0.013 m 3 . That is, the volume increase rate by the constituent fibers after adding the fluidity reducing agent in Example 2 can be calculated to be about 1%. This volume increase rate is higher than that of the solidification method with hydrate formation by hydration reaction of cement-based solidification materials, etc., and the plasticization approach with a polymer polymer system that expands by incorporating water into the molecule. The rate of increase is very small.
また、流動性低下剤を構成する繊維の絡み合いにより構成される連通性空隙への物理的拘束は、一定の保水力を持つ一方で、セルドロンによって拘束された水は、圧縮等による物理的働きかけにより、押し出すことが可能である。よって、例えば、建設汚泥等の搬出における取り扱い性を向上させる一方、圧縮等の物理的脱水を図ることで、汚泥等の減容化及び軽量化を容易に行うことが可能になるため、高温焼成炉等での従来の減容化方法及び軽量化方法に比較して、低コストでの減容化及び軽量化を図ることが可能になる。 In addition, the physical restraint to the communication gap constituted by the entanglement of the fibers constituting the fluidity reducing agent has a certain water holding capacity, while the water restrained by the celldron is caused by physical action such as compression. It is possible to extrude. Therefore, for example, while improving the handleability in carrying out construction sludge, etc., it is possible to easily reduce the volume and weight of sludge by physical dehydration such as compression. Compared with the conventional volume reduction method and weight reduction method in a furnace or the like, it is possible to achieve volume reduction and weight reduction at a low cost.
(5)低環境負荷性
本発明に係る流動性低下剤を構成する繊維がセルロースを含有する場合について、低環境負荷性を説明する。セルロースは、セルラーゼによって分解されるものであり、土中に存在する菌類等によって分解されるため、環境中に添加された上記流動性低下剤は時間経過とともに、元の土に戻っていく。また、この生分解性は、セルラーゼといった分解酵素の添加によって、上記流動性低下剤により物理的に拘束した水や細粒子等をその拘束から解くことを可能にする。また、上記流動性低下剤のpHは中性域(pH8前後)であり、上記流動性低下剤添加後の土壌のpHは中性域にとどまることから、農地や周辺植生への影響が小さい。
(5) Low environmental impact property The low environmental impact property is demonstrated about the case where the fiber which comprises the fluidity reducing agent which concerns on this invention contains a cellulose. Cellulose is decomposed by cellulase and decomposed by fungi and the like present in the soil. Therefore, the fluidity reducing agent added to the environment returns to the original soil over time. In addition, this biodegradability makes it possible to release water, fine particles, and the like physically constrained by the fluidity reducing agent by the addition of a degrading enzyme such as cellulase. Moreover, since the pH of the fluidity reducing agent is in a neutral region (around pH 8) and the pH of the soil after the addition of the fluidity reducing agent remains in the neutral region, the influence on farmland and surrounding vegetation is small.
[低流動性混合物の製造方法]
本発明に係る、低流動性混合物の製造方法は、固液混合物と本発明に係る流動性低下剤とを混合して低流動性混合物を得ることを含む。混合方法は、特に限定されず、公知の方法でよい。固液混合物と混合する流動性低下剤の量としては、特に限定されず、固液混合物の流動性低下の程度等の観点から、固液混合物100重量部に対し、例えば、1.5重量部以上、好ましくは3重量部以上、より好ましくは4.5重量部以上、更により好ましくは9重量部以上である。また、上記量の上限としては、特に限定されず、容積増加を抑制しやすい点等から、固液混合物100重量部に対し、例えば、50重量部以下、好ましくは30重量部以下、より好ましくは20重量部以下、更により好ましくは15重量部以下である。
[Method for producing low fluidity mixture]
The method for producing a low fluidity mixture according to the present invention includes mixing the solid-liquid mixture and the fluidity reducing agent according to the present invention to obtain a low fluidity mixture. The mixing method is not particularly limited, and may be a known method. The amount of the fluidity reducing agent to be mixed with the solid-liquid mixture is not particularly limited, and is, for example, 1.5 parts by weight with respect to 100 parts by weight of the solid-liquid mixture from the viewpoint of the degree of fluidity reduction of the solid-liquid mixture. Above, preferably 3 parts by weight or more, more preferably 4.5 parts by weight or more, and still more preferably 9 parts by weight or more. The upper limit of the amount is not particularly limited, and is, for example, 50 parts by weight or less, preferably 30 parts by weight or less, more preferably 100 parts by weight or less with respect to 100 parts by weight of the solid-liquid mixture from the viewpoint of easily suppressing volume increase. 20 parts by weight or less, still more preferably 15 parts by weight or less.
[低流動性混合物の搬送方法]
本発明に係る、低流動性混合物の搬送方法は、本発明に係る、低流動性混合物の製造方法により得た低流動性混合物を移動体に搭載して移動させることを含む。移動体としては、例えば、ダンプトラック等が挙げられる。搬送された低流動性混合物は、移動先で工事等に用いられてもよいし、廃棄されてもよい。
[Conveying method of low fluidity mixture]
The conveyance method of the low fluidity mixture which concerns on this invention includes carrying the low fluidity mixture obtained by the manufacturing method of the low fluidity mixture which concerns on this invention on a moving body, and moving it. An example of the moving body is a dump truck. The conveyed low fluidity mixture may be used for construction or the like at the destination, or may be discarded.
[固液混合物の流動性低下の程度を向上させる方法]
本発明の別の態様は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、前記固液混合物の流動性低下の程度を向上させる方法である。この方法においては、例えば、本発明に係る流動性低下剤を用いることができる。この流動性低下剤は、繊維の絡み合いにより形成された空隙を有し、この空隙には、固液混合物の固相及び液相が侵入して捕捉されるからである。
[Method for improving the degree of fluidity reduction of a solid-liquid mixture]
Another aspect of the present invention is a method for improving the degree of decrease in fluidity of the solid-liquid mixture by allowing the solid phase and the liquid phase of the solid-liquid mixture to enter and capture in the voids formed by the entanglement of fibers. . In this method, for example, the fluidity reducing agent according to the present invention can be used. This is because the fluidity reducing agent has voids formed by the entanglement of fibers, and the solid phase and the liquid phase of the solid-liquid mixture enter and are trapped in the voids.
[流動性低下の対象となる固液混合物の化学的組成の自由度を向上させる方法]
本発明の別の態様は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、流動性低下の対象となる固液混合物の化学的組成の自由度を向上させる方法である。この方法においては、例えば、本発明に係る流動性低下剤を用いることができる。上述の通り、本発明に係る流動性低下剤は、固液混合物の化学的組成を問わずに使用することができ、流動性低下の対象となる固液混合物の化学的組成の自由度を向上させることができる。
[Method for improving the degree of freedom in chemical composition of a solid-liquid mixture subject to fluidity reduction]
Another aspect of the present invention is the freedom of the chemical composition of the solid-liquid mixture that is subject to fluidity degradation by allowing the solid phase and liquid phase of the solid-liquid mixture to enter and capture in the voids formed by fiber entanglement. It is a method to improve the degree. In this method, for example, the fluidity reducing agent according to the present invention can be used. As described above, the fluidity reducing agent according to the present invention can be used regardless of the chemical composition of the solid-liquid mixture, and improves the degree of freedom of the chemical composition of the solid-liquid mixture that is subject to fluidity reduction. Can be made.
[流動性低下後において固液混合物の容積増加を抑制する方法]
本発明の別の態様は、繊維の絡み合いにより形成した空隙に固液混合物の固相及び液相を侵入させて捕捉することにより、流動性低下後において固液混合物の容積増加を抑制する方法である。この方法においては、例えば、本発明に係る流動性低下剤を用いることができる。上述の通り、本発明に係る流動性低下剤は、流動性低下後において固液混合物の容積増加を抑制することができる。
[Method for suppressing increase in volume of solid-liquid mixture after fluidity drop]
Another aspect of the present invention is a method for suppressing an increase in the volume of a solid-liquid mixture after the fluidity is lowered by allowing the solid phase and the liquid phase of the solid-liquid mixture to penetrate into and capture the void formed by the entanglement of fibers. is there. In this method, for example, the fluidity reducing agent according to the present invention can be used. As described above, the fluidity reducing agent according to the present invention can suppress an increase in the volume of the solid-liquid mixture after the fluidity reduction.
以下、実施例を示して本発明を更に具体的に説明するが、本発明の範囲は、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further more concretely, the scope of the present invention is not limited to these Examples.
[実施例1:流動性低下剤の調製]
シュレッダー屑(BET法による比表面積0.23m2/g)をミルによって粉砕して、平均粒子径200μm、BET法による比表面積1.6m2/gの粒状物からなる流動性低下剤を得た。この粒状物を光学顕微鏡で観察したところ、繊維が絡み合った構造を有し、この構造は綿状を呈していた(図1)。この粒状物の真密度を島津製作所製乾式密度計で測定したところ、1.9g/cm3であった。また、この粒状物のかさ密度は0.25g/cm3であった。よって、この粒状物の空隙率は(1−0.25/1.9)×100≒87%であった。
[Example 1: Preparation of fluidity reducing agent]
Shredder scrap (specific surface area by BET method 0.23 m 2 / g) was ground by mill to obtain an average particle diameter of 200 [mu] m, the fluidity reducing agent comprising a particulate having a specific surface area of 1.6 m 2 / g by the BET method . When this granular material was observed with an optical microscope, it had a structure in which fibers were intertwined, and this structure had a cotton-like shape (FIG. 1). It was 1.9 g / cm < 3 > when the true density of this granular material was measured with the Shimadzu dry density meter. Moreover, the bulk density of this granular material was 0.25 g / cm 3 . Therefore, the porosity of this granular material was (1-0.25 / 1.9) × 100≈87%.
[実施例2〜5及び比較例1:流動性低下剤と泥土との混合]
含水率48重量%の泥土と実施例1で得た流動性低下剤とを、表1に示す重量で混合した。混合後の土について、JIS A 1228に準拠して、コーン指数を測定した。結果を表1に示す。なお、表1において、割合とは、上記泥土に対する上記流動性低下剤の重量比をいう。
[Examples 2 to 5 and Comparative Example 1: Mixing of fluidity reducing agent and mud]
The mud having a water content of 48% by weight and the fluidity reducing agent obtained in Example 1 were mixed at the weight shown in Table 1. Regarding the soil after mixing, the cone index was measured in accordance with JIS A 1228. The results are shown in Table 1. In Table 1, the ratio refers to the weight ratio of the fluidity reducing agent to the mud.
表1から明らかな通り、含水率48重量%の泥土に対し、1.6重量%以上の上記流動性低下剤を混合することにより、「建設汚泥処理土利用技術基準」において規定される品質区分の一つである「第4種処理土」が有するコーン指数200kN/m2以上という範囲が満たされ、泥土の流動性を低下させることができた。 As is clear from Table 1, by mixing the fluidity-reducing agent of 1.6% by weight or more with mud with a moisture content of 48% by weight, the quality classification defined in the “Technology Standards for Construction Sludge Treatment Soil” The range of a cone index of 200 kN / m 2 or more possessed by “type 4 treated soil” as one of the above was satisfied, and the fluidity of the mud could be reduced.
含水率60重量%の泥土に対し10重量%の上記流動性低下剤を混合した後の状態を図2に示す。図2に示す通り、土の微粒子は、流動性低下剤において繊維が絡み合った綿状構造中の空隙に捕捉されていた。なお、写真撮影のため、水分は乾燥により蒸発させた。 FIG. 2 shows a state after mixing 10% by weight of the fluidity reducing agent with 60% by weight of mud. As shown in FIG. 2, the soil fine particles were trapped in the voids in the cotton-like structure in which the fibers were entangled in the fluidity reducing agent. For photography, the water was evaporated by drying.
[実施例6、比較例2、及び参考例1:セルラーゼによる分解試験]
セルラーゼによる分解試験には、下記の試料を用いた。
実施例6:実施例1で得た流動性低下剤
比較例2:実施例1において流動性低下剤を得るのに用いたシュレッダー屑
参考例1:Cellulose Microcrystalline(メルク社製)
[Example 6, Comparative Example 2, and Reference Example 1: Cellulase degradation test]
The following samples were used for the cellulase degradation test.
Example 6: Fluidity reducing agent obtained in Example 1 Comparative Example 2: Shredder waste used to obtain the fluidity reducing agent in Example 1 Reference Example 1: Cellulose Microcrystallin (Merck)
セルラーゼ剤(商品名:セルラーゼSS、ナガセケムテックス株式会社製)を0.1M酢酸緩衝液(pH5.5)により1/50の濃度となるように希釈して、酵素希釈液を調製した。この酵素希釈液0.5mlに試料25mgを添加し、撹拌を行った。その際、目視によれば、いずれの試料もほとんど溶解していないように観察された。その後、40℃で24時間保温した。保温から0時間及び24時間の時点の反応液について遠心分離(7,000×g、5分)を行って、上清を回収した。この上清を5分間煮沸して反応を停止させた。上清に含まれるグルコース量をグルコーステスト ワコーCII(和光純薬工業株式会社製)で測定した。結果を表2に示す。 A cellulase agent (trade name: Cellulase SS, manufactured by Nagase ChemteX Corporation) was diluted with 0.1 M acetate buffer (pH 5.5) to a concentration of 1/50 to prepare an enzyme dilution. 25 mg of a sample was added to 0.5 ml of this enzyme dilution and stirred. At that time, it was observed by visual observation that none of the samples was dissolved. Then, it kept warm at 40 degreeC for 24 hours. Centrifugation (7,000 × g, 5 minutes) was performed on the reaction solution at 0 and 24 hours from the incubation, and the supernatant was collected. The supernatant was boiled for 5 minutes to stop the reaction. The amount of glucose contained in the supernatant was measured with a glucose test Wako CII (manufactured by Wako Pure Chemical Industries, Ltd.). The results are shown in Table 2.
表2から明らかな通り、本発明に係る流動性低下剤は、比較例2のシュレッダー屑と比較して、セルラーゼにより効率よく分解することができ、生分解性に優れることが確認された。 As is clear from Table 2, it was confirmed that the fluidity reducing agent according to the present invention can be efficiently decomposed by cellulase as compared with the shredder waste of Comparative Example 2, and is excellent in biodegradability.
[実施例7:pH測定]
実施例3において上記泥土と上記流動性低下剤とを混合して得た試料10gをガラス容器に採取し、そこに純水25mlを加えて撹拌を行った後、1時間放置した。放置後の土壌懸濁液について、軽く撹拌を行った後、ガラス電極法にてpHを測定した。なお、試験方法については、日本土壌肥料学会監修「土壌環境分析法」第V章 土壌化学 1.pH(ガラス電極法)のpH(H2O)を参照した。
[Example 7: pH measurement]
In Example 3, 10 g of a sample obtained by mixing the mud and the fluidity reducing agent was collected in a glass container, 25 ml of pure water was added thereto, and the mixture was stirred and left for 1 hour. About the soil suspension after standing, after stirring lightly, pH was measured by the glass electrode method. As for the test method, “Soil environmental analysis method”, Chapter V, soil chemistry, supervised by the Japan Soil Fertilizer Society. Reference was made to pH (H 2 O) of pH (glass electrode method).
[実施例8:流動性低下剤の物性分析]
1.分析内容
実施例1で得た流動性低下剤について次の分析を行った。
(1)強熱減量(以下、ig−Lossともいう。)
(2)熱重量・示差分析(以下、TG−DTAともいう。)
(3)強熱灰分のX線回折分析(以下、XRDともいう。)
[Example 8: Physical property analysis of fluidity reducing agent]
1. Content of Analysis The following analysis was performed on the fluidity reducing agent obtained in Example 1.
(1) Loss on ignition (hereinafter also referred to as ig-Loss)
(2) Thermogravimetric / differential analysis (hereinafter also referred to as TG-DTA)
(3) X-ray diffraction analysis of ignition ash (hereinafter also referred to as XRD)
2.分析方法
(1)ig−Loss
磁性坩堝に上記流動性低下剤約8gを1/100gまで正確に計量し、電気炉に入れ約2時間で1,000℃まで加熱し、1時間保持した。その後、炉内で100℃付近まで除冷した磁性坩堝を炉内から取り出し、デシケータに入れた。室温まで冷却させ、すばやく秤量した。上記流動性低下剤は減量が大きいことが予想されるため、測定は3回行った。強熱減量は次式で求めた。
強熱減量=(加熱前の重量−加熱後の重量)/加熱前の重量
2. Analysis method (1) ig-Loss
About 8 g of the fluidity reducing agent was accurately weighed to 1/100 g in a magnetic crucible, placed in an electric furnace, heated to 1,000 ° C. in about 2 hours, and held for 1 hour. Thereafter, the magnetic crucible that had been cooled to around 100 ° C. in the furnace was taken out of the furnace and placed in a desiccator. It was cooled to room temperature and weighed quickly. Since the fluidity reducing agent is expected to have a large weight loss, the measurement was performed three times. The ignition loss was calculated by the following formula.
Loss on ignition = (weight before heating−weight after heating) / weight before heating
(2)TG−DTA
TG−DTAは、加熱によって材料が化学変化(燃焼を含む。)を起こす状況を、発熱吸熱挙動と重量変化で調べる方法で調べる方法である。実施例1で得た流動性低下剤について、リガク製Thermo Plus EVO2 差動型示熱天秤 TG8121を用いて、TG−DTAを計測した。なお、測定条件は、サンプル重量15mg、測定温度範囲20〜950℃、昇温速度20℃/分であった。
(2) TG-DTA
TG-DTA is a method of examining the state in which a material undergoes a chemical change (including combustion) by heating, using a method of examining exothermic endothermic behavior and weight change. About the fluidity reducing agent obtained in Example 1, TG-DTA was measured using Rigaku's Thermo Plus EVO2 differential type thermometer TG8121. The measurement conditions were a sample weight of 15 mg, a measurement temperature range of 20 to 950 ° C., and a temperature increase rate of 20 ° C./min.
(3)XRD
XRDは、個々の物質が固有の結晶構造を持っていることを利用した物質の定性・定量を行う分析方法である。上記(1)のig−Lossで生成した灰分を、メノウ乳鉢で粉砕し、メノウ乳鉢粉砕で生成した灰分を、メノウ乳鉢粉砕で生成した灰分を、メノウ乳鉢で粉砕し、XRD計測用ホルダーに詰めた。分析には、リガク製smart labを用いた。測定条件は、ゴニオメータ:MultiFlex+ゴニオメータ、X線:CuKα、40kV/30mA、走査モード:連続モード、スキャンスピード:2.0°/分、走査範囲:2θ=5〜65°とした。
(3) XRD
XRD is an analysis method for performing qualitative and quantitative analysis of substances using the fact that each substance has a unique crystal structure. The ash produced by the above-mentioned (1) ig-Loss is crushed in an agate mortar, the ash produced in the agate mortar is crushed in the agate mortar, and packed in an XRD measurement holder. It was. A Rigaku smart lab was used for the analysis. The measurement conditions were goniometer: MultiFlex + goniometer, X-ray: CuKα, 40 kV / 30 mA, scan mode: continuous mode, scan speed: 2.0 ° / min, scan range: 2θ = 5 to 65 °.
3.分析結果
(1)ig−Loss
結果を表3に示す。
3. Analysis result (1) ig-Loss
The results are shown in Table 3.
(2)TG−DTA
結果を図3(a)及び図3(b)に示す。図中、「TEMP」と表示されたラインは加熱温度を示し、「TG」と表示されたラインは重量変化(TG曲線)を示し、「DTA」と表示されたラインは発熱吸熱(DTA曲線)を示す。なお、図3(b)は、図3(a)中のDTA曲線の作図スケールを変えたものである。
(2) TG-DTA
The results are shown in FIGS. 3 (a) and 3 (b). In the figure, the line labeled “TEMP” indicates the heating temperature, the line labeled “TG” indicates the weight change (TG curve), and the line labeled “DTA” indicates the exothermic endotherm (DTA curve). Indicates. Note that FIG. 3B is a diagram in which the drawing scale of the DTA curve in FIG. 3A is changed.
(3)XRD
結果を図4に示す。
(3) XRD
The results are shown in FIG.
4.考察
(1)ig−Loss
3回の測定は、ほとんどバラツキがなく、ig−Lossは約74%であった。この強熱によって有機成分は燃焼・消失して、填料やその他無機系混在物が灰分として残ったと考えられる。詳細については次のTG−DTA及びXRDで考察する。
4). Discussion (1) ig-Loss
The measurement of 3 times had almost no variation, and ig-Loss was about 74%. It is considered that the organic component burns and disappears due to this intense heat, and fillers and other inorganic inclusions remain as ash. Details will be discussed in the following TG-DTA and XRD.
(2)TG−DTA
室温〜100℃で緩やかな吸熱ピークがあり、同温度でTG曲線が若干下がっている(減量している)のは、流動性低下剤に吸着していた水分が蒸発したことを示している。計測値から読み取ると、流動性低下剤が持っていた吸着水の重量割合は約3%であった。
(2) TG-DTA
There is a gentle endothermic peak at room temperature to 100 ° C., and the TG curve is slightly lowered (decreased) at the same temperature, indicating that the water adsorbed on the fluidity reducing agent has evaporated. When read from the measured value, the weight ratio of the adsorbed water possessed by the fluidity reducing agent was about 3%.
次に、250〜350℃に加熱したときにDTA曲線に大きな発熱ピークが見られ、同温度でTG曲線も大きく下がり減量していることが分かる。これはセルロースが燃焼し、水蒸気と二酸化炭素に分解して大気中に放出されたことを意味する(発熱量が大きすぎて、加熱制御が効かなくなって、「TEMP」と表示されたラインも上昇している。)。このときの減量は約49%であった。 Next, it can be seen that a large exothermic peak is observed in the DTA curve when heated to 250 to 350 ° C., and the TG curve also greatly decreases and decreases at the same temperature. This means that the cellulose burned, decomposed into water vapor and carbon dioxide and released into the atmosphere (the amount of heat generated was too large to control the heating, and the line labeled “TEMP” also rose. doing.). The weight loss at this time was about 49%.
セルロースの燃焼が終了すると、350〜570℃に少し緩やかな発熱ピークが現れた。この温度での発熱は、流動性低下剤が含有しているであろう物質から推測すると、リグニン、インクカーボン、又は300〜350℃での燃焼時に残った未燃カーボンの可能性がある。木質繊維は、セルロースの他に、ヘミセルロースとリグニンを多く含んでいるが、リグニンは粘性があり変色の原因になるため製紙工程で極力除去されることから、含有量は極めて少ない。したがって、セルロースの未燃カーボン及び/又は印字されたカーボンの燃焼と考える。この時点の減量は、計測値から約7%であった。 When the combustion of cellulose was completed, a slightly mild exothermic peak appeared at 350 to 570 ° C. The heat generation at this temperature can be lignin, ink carbon, or unburned carbon remaining during combustion at 300-350 ° C., as estimated from the material that the fluidity reducing agent would contain. The wood fiber contains a large amount of hemicellulose and lignin in addition to cellulose. However, since lignin is viscous and causes discoloration, it is removed as much as possible in the papermaking process, so its content is extremely small. Therefore, it is considered as combustion of unburned carbon of cellulose and / or printed carbon. The weight loss at this time was about 7% from the measured value.
700℃〜800℃で緩やかな吸熱ピークが現れ、同温度で重量も減量している。これは、流動性低下剤に含まれる填料の炭酸力ルシウムが脱炭酸反応している現象を捉えたものである。この脱炭酸の減量は、約12%であった。 A gentle endothermic peak appears at 700 ° C to 800 ° C, and the weight is reduced at the same temperature. This captures the phenomenon of decarboxylation of the carbonated lucium in the filler contained in the fluidity reducing agent. This decarboxylation loss was about 12%.
なお、製紙工程において様々な目的で、填料が使用されている。一般的に用いられる填料として、炭酸カルシウム(CaCO3)、カオリン(Al4Si4O10(OH)8)、タルク(Mg3Si4O10(OH)2)等が挙げられる。上記流動性低下剤にも炭酸カルシウム以外の填料が含まれている可能性は高い。炭酸カルシウムの熱分解(反応式:CaCO3+ΔH→CaO+CO2、ΔHは熱量)は、700℃以上であり、重量減少量(理論値44%)も多いため、明瞭に検出できる(文献によっては、炭酸カルシウムの熱分解は、600℃あたりから起こるという報告や、900℃近傍で起こるというデータもあるが、本測定条件では700〜800℃である。)。一方、カオリンやタルクの熱分解(これらは結晶水の脱水反応)の温度は、350〜650℃で幅広く、かつ重量減少量が10〜14%と小さいため、セルロースの燃焼反応と重なることから、TG−DTAでは検出が困難である。 Fillers are used for various purposes in the papermaking process. Commonly used fillers include calcium carbonate (CaCO 3 ), kaolin (Al 4 Si 4 O 10 (OH) 8 ), talc (Mg 3 Si 4 O 10 (OH) 2 ), and the like. The fluidity reducing agent is also likely to contain fillers other than calcium carbonate. The thermal decomposition of calcium carbonate (reaction formula: CaCO 3 + ΔH → CaO + CO 2 , ΔH is calorie) is 700 ° C. or more, and the weight loss (theoretical value 44%) is also large, so it can be clearly detected (depending on the literature, There are reports that the thermal decomposition of calcium carbonate occurs around 600 ° C. and data that it occurs around 900 ° C., but it is 700 to 800 ° C. under the present measurement conditions. On the other hand, the temperature of the thermal decomposition of kaolin and talc (these are dehydration reactions of crystal water) is wide at 350 to 650 ° C. and the weight loss is as small as 10 to 14%, which overlaps with the combustion reaction of cellulose. Detection is difficult with TG-DTA.
以上をまとめると、表5の通りである。
TG−DTA(950℃までの加熱)で求められた減量合計は72.12%であり、(1)の強熱減量(1000℃までの加熱)の73.72%とほぼ一致する。また、上記流動性低下剤に含まれるセルロースの含有量は、およそ48〜56%であった。 The total weight loss determined by TG-DTA (heating to 950 ° C.) is 72.12%, which is almost equal to 73.72% of the ignition loss (heating to 1000 ° C.) of (1). Moreover, content of the cellulose contained in the said fluidity reducing agent was about 48 to 56%.
なお、上記流動性低下剤について、JIS P 8251:2002に規定された灰化温度575℃での減量は、61.84%であった(ただし、この値には吸着水の減量分も含まれる。)。 In addition, about the said fluidity reducing agent, the reduction | decrease in the ashing temperature 575 degreeC prescribed | regulated to JISP8251: 2002 was 61.84% (however, this part also includes the reduction | decrease part of adsorption water). .)
(3)XRD
図4に示すXRDパターンから、灰分には、酸化カルシウム(CaO)、ゲーレナイト(Ca2Al(AlSi)O7)、マグネタイト(酸化鉄Fe203)、水酸化カルシウム(Ca(OH)2)が含まれていると思われる。検出ピークの高さから推定すると、灰分に含有され量は、酸化カルシウム>ゲーレナイト>>マグネタイト>水酸化カルシウムである。
(3) XRD
From the XRD pattern shown in FIG. 4, the ash contains calcium oxide (CaO), gehlenite (Ca 2 Al (AlSi) O 7 ), magnetite (iron oxide Fe 2 0 3 ), calcium hydroxide (Ca (OH) 2 ). Seems to be included. Assuming from the height of the detection peak, the amount contained in the ash is calcium oxide> gerenite >>magnetite> calcium hydroxide.
酸化カルシウムは、填料の炭酸カルシウムが強熱により脱炭酸して生成した物質であり、灰分の中にもっとも多く含まれていた。なお、微量検出された水酸化カルシウムは、試料中の酸化カルシウムが測定中に空気中の水分と反応したものである。次いで、カオリン等のクレー系填料が脱水・再結晶化して生成したと思われるゲーレナイトが含まれていた。灰分の主成分はこの2種で、填料に起因するものであることが分かる。 Calcium oxide is a substance produced by decarboxylation of calcium carbonate as a filler by high heat, and was most contained in ash. Note that the calcium hydroxide detected in a trace amount is obtained by reacting calcium oxide in the sample with moisture in the air during measurement. Next, gelenite, which was thought to be produced by dehydration and recrystallization of clay-based fillers such as kaolin, was included. It can be seen that the main components of ash are these two, which are attributed to the filler.
また、少量ではあるが、マグネタイトも見られる。これは、ホチキス、粉砕羽根の摩耗、インク成分等に起因する可能性がある。 Moreover, although it is a small amount, magnetite is also seen. This can be attributed to staples, grinding blade wear, ink components, and the like.
Claims (13)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015234231A JP5931267B1 (en) | 2015-11-30 | 2015-11-30 | Fluidity reducing agent for solid-liquid mixtures |
EP16870637.2A EP3385352A4 (en) | 2015-11-30 | 2016-11-29 | Agent for decreasing fluidity of solid-liquid mixture, and method for producing low-fluidity mixture |
US15/779,858 US20190127641A1 (en) | 2015-11-30 | 2016-11-29 | Agent for decreasing fluidity of solid-liquid mixture, and method for producing low-fluidity mixture |
SG11201804530TA SG11201804530TA (en) | 2015-11-30 | 2016-11-29 | Agent for decreasing fluidity of solid-liquid mixture, and method for producing low-fluidity mixture |
CN201680079741.0A CN108603092A (en) | 2015-11-30 | 2016-11-29 | The mobility depressant of solidliquid mixture and the manufacturing method of lazy flow mixture |
PCT/JP2016/085296 WO2017094700A1 (en) | 2015-11-30 | 2016-11-29 | Agent for decreasing fluidity of solid-liquid mixture, and method for producing low-fluidity mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015234231A JP5931267B1 (en) | 2015-11-30 | 2015-11-30 | Fluidity reducing agent for solid-liquid mixtures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5931267B1 JP5931267B1 (en) | 2016-06-08 |
JP2017101133A true JP2017101133A (en) | 2017-06-08 |
Family
ID=56102983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015234231A Active JP5931267B1 (en) | 2015-11-30 | 2015-11-30 | Fluidity reducing agent for solid-liquid mixtures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5931267B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020180311A (en) * | 2019-04-23 | 2020-11-05 | 日本製鉄株式会社 | Method for preventing slag outflow in converter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330039A (en) * | 1993-05-19 | 1994-11-29 | Sanki Kogyo Kk | Consolidation agent |
JPH11188392A (en) * | 1997-12-26 | 1999-07-13 | Kurita Water Ind Ltd | Modification/solidification method of mud earth, mud water, or sludge of high water content |
JP2000254699A (en) * | 1999-03-12 | 2000-09-19 | Terunaito:Kk | Non-fluidization method for dredging bottom mud |
JP2000264764A (en) * | 1999-03-12 | 2000-09-26 | Mitsubishi Paper Mills Ltd | Production of compost consisting of waste mud |
JP2000288589A (en) * | 1999-04-09 | 2000-10-17 | Terunaito:Kk | Regeneration treatment of construction sludge |
JP2000288600A (en) * | 1999-04-09 | 2000-10-17 | Terunaito:Kk | Dehydration treatment of dredged bottom mud |
JP2005248337A (en) * | 2004-03-01 | 2005-09-15 | Seihachiro Miura | Highly active cellulose fiber, method for producing the same, and dehydrating auxiliary using the same |
-
2015
- 2015-11-30 JP JP2015234231A patent/JP5931267B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06330039A (en) * | 1993-05-19 | 1994-11-29 | Sanki Kogyo Kk | Consolidation agent |
JPH11188392A (en) * | 1997-12-26 | 1999-07-13 | Kurita Water Ind Ltd | Modification/solidification method of mud earth, mud water, or sludge of high water content |
JP2000254699A (en) * | 1999-03-12 | 2000-09-19 | Terunaito:Kk | Non-fluidization method for dredging bottom mud |
JP2000264764A (en) * | 1999-03-12 | 2000-09-26 | Mitsubishi Paper Mills Ltd | Production of compost consisting of waste mud |
JP2000288589A (en) * | 1999-04-09 | 2000-10-17 | Terunaito:Kk | Regeneration treatment of construction sludge |
JP2000288600A (en) * | 1999-04-09 | 2000-10-17 | Terunaito:Kk | Dehydration treatment of dredged bottom mud |
JP2005248337A (en) * | 2004-03-01 | 2005-09-15 | Seihachiro Miura | Highly active cellulose fiber, method for producing the same, and dehydrating auxiliary using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020180311A (en) * | 2019-04-23 | 2020-11-05 | 日本製鉄株式会社 | Method for preventing slag outflow in converter |
JP7307319B2 (en) | 2019-04-23 | 2023-07-12 | 日本製鉄株式会社 | Method for preventing outflow of slag in converter |
Also Published As
Publication number | Publication date |
---|---|
JP5931267B1 (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rashid et al. | Sustainable improvement of tropical residual soil using an environmentally friendly additive | |
Perumal et al. | Upcycling of mechanically treated silicate mine tailings as alkali activated binders | |
Phair et al. | Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers” | |
Zhang et al. | Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution | |
Botana et al. | Effect of modified montmorillonite on biodegradable PHB nanocomposites | |
Stonys et al. | Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete | |
Kawatra et al. | Iron ore pelletization: Part i. Fundamentals | |
Casey | Organic binders for iron ore pelletization | |
Behera et al. | Sustainable transportation, leaching, stabilization, and disposal of fly ash using a mixture of natural surfactant and sodium silicate | |
Du et al. | A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes | |
TW201335060A (en) | Application of carbon nanotubes on agglomerates of fine ore to increase the mechanical strength | |
Chavali et al. | Characterization of expansive soils treated with lignosulfonate | |
Goodarzi et al. | Assessing geo-mechanical and leaching behavior of cement–silica-fume-stabilized heavy metal-contaminated clayey soil | |
CN103992114A (en) | Preparation method of boron carbide ceramic powder dispersion | |
Li et al. | Cost-effective and sustainable preparation of porous mullite-based ceramics combining MoO3 recovery from industrial calcine | |
Novais et al. | Highly efficient lead extraction from aqueous solutions using inorganic polymer foams derived from biomass fly ash and metakaolin | |
Li et al. | Dispersion and rheology of polypropylene/organoclay nanocomposites: effect of cation exchange capacity and number of alkyl tails | |
JP5931267B1 (en) | Fluidity reducing agent for solid-liquid mixtures | |
JP2008290923A (en) | Modified bentonite with improved water dispersibility and its manufacturing method | |
Ghani et al. | Hydrothermal extraction of amorphous silica from locally available slate | |
JP5959709B1 (en) | Method for producing a low fluidity mixture | |
Bah et al. | Solidification of (Pb–Zn) mine tailings by fly ash-based geopolymer I: influence of alkali reagents ratio and curing condition on compressive strength | |
Zheng et al. | Zinc sulfide nanoparticles template by bacterial cellulose and their optical properties | |
Sruthi et al. | Swelling behavior of alkali transformed kaolinitic clays treated with flyash and ground granulated blast furnace slag | |
WO2017094700A1 (en) | Agent for decreasing fluidity of solid-liquid mixture, and method for producing low-fluidity mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5931267 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |