JP2017100953A - Tetrahydro benzo-furo azepine derivatives and pharmaceutical application thereof - Google Patents
Tetrahydro benzo-furo azepine derivatives and pharmaceutical application thereof Download PDFInfo
- Publication number
- JP2017100953A JP2017100953A JP2015232678A JP2015232678A JP2017100953A JP 2017100953 A JP2017100953 A JP 2017100953A JP 2015232678 A JP2015232678 A JP 2015232678A JP 2015232678 A JP2015232678 A JP 2015232678A JP 2017100953 A JP2017100953 A JP 2017100953A
- Authority
- JP
- Japan
- Prior art keywords
- mmol
- azepine
- benzofuro
- added
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CC(C=*)OC(CN(C(OC(C)(C)C)=O)BrC)=C Chemical compound CC(C=*)OC(CN(C(OC(C)(C)C)=O)BrC)=C 0.000 description 2
- IMUAMXGGXQWFFQ-UHFFFAOYSA-N C(CNCC1)c2c1[o]c1ccccc21 Chemical compound C(CNCC1)c2c1[o]c1ccccc21 IMUAMXGGXQWFFQ-UHFFFAOYSA-N 0.000 description 1
- YLUPJJWZPAAUMD-UHFFFAOYSA-N CC(C)(C)OC(N(CC1)CCc2c1c1ccccc1[o]2)=O Chemical compound CC(C)(C)OC(N(CC1)CCc2c1c1ccccc1[o]2)=O YLUPJJWZPAAUMD-UHFFFAOYSA-N 0.000 description 1
- GMHPWGYTSXHHPI-UHFFFAOYSA-N O=C1CCNCCC1 Chemical compound O=C1CCNCCC1 GMHPWGYTSXHHPI-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、テトラヒドロベンゾフロアゼピン誘導体及びその医薬用途に関する。 The present invention relates to a tetrahydrobenzoflozepine derivative and a pharmaceutical use thereof.
腹圧性尿失禁とは、くしゃみや咳等で力んだ時、笑った時、走った時又は重いものを持ち上げた時等、日常生活で起こる一過性の腹圧上昇時に尿が漏れてしまう症状を特徴とする疾患である。その原因として、出産、閉経又は加齢等に伴い、尿道閉鎖組織である骨盤底筋群又は外尿道括約筋の、外傷、虚血状態又は除神経等が考えられており、潜在患者数は非常に多いことが報告されている(非特許文献1)。 Stress urinary incontinence means that urine leaks when transient abdominal pressure rises in daily life, such as when sneezing or coughing, laughing, running or lifting a heavy object It is a disease characterized by symptoms. The cause is thought to be due to trauma, ischemia or denervation of the pelvic floor muscle group or external urethral sphincter, which is a urethral closure tissue, due to childbirth, menopause or aging, etc. Many have been reported (Non-Patent Document 1).
腹圧性尿失禁の治療法としては、運動療法、外科的手術又は薬物療法がある。運動療法である骨盤底筋訓練は、継続的に毎日行うことにより、数週間から数ヶ月後に効果が得られるが(非特許文献2)、訓練を習慣化することができず継続できないことが少なくない(非特許文献3)。外科的手術は、一定の効果があることが示されているが、重症度や患者の意志に依存されるため、実際に手術を受ける患者は少ないのが現状である(非特許文献4)。 Treatment of stress urinary incontinence includes exercise therapy, surgery, or drug therapy. Pelvic floor muscle training, which is exercise therapy, can be effective after several weeks to several months by performing it continuously every day (Non-patent Document 2). No (non-patent document 3). Surgical surgery has been shown to have a certain effect, but since it depends on the severity and the will of the patient, there are currently few patients who actually undergo surgery (Non-patent Document 4).
薬物療法に関しては、腹圧性尿失禁を適応症とする治療剤として、デュロキセチン及びクレンブテロールのみが臨床で用いられている。デュロキセチンは、神経終末のセロトニン及びノルアドレナリンの再取込みを抑制することにより尿道を収縮させることで、治療効果をもたらす。クレンブテロールは、外尿道括約筋のアドレナリンβ2受容体を刺激し、尿道を収縮させることで、治療効果をもたらす。しかしながら、これらの薬物による治療割合や治療継続率は低く(非特許文献5)、腹圧性尿失禁に対する新たな治療剤又は予防剤の開発が切望されている。 Regarding drug therapy, only duloxetine and clenbuterol are clinically used as therapeutic agents for the indication of stress urinary incontinence. Duloxetine has a therapeutic effect by constricting the urethra by inhibiting the reuptake of nerve terminals serotonin and noradrenaline. Clenbuterol has a therapeutic effect by stimulating the adrenergic β2 receptor of the external urethral sphincter and contracting the urethra. However, the treatment rate and the treatment continuation rate with these drugs are low (Non-patent Document 5), and the development of a new therapeutic agent or preventive agent for stress urinary incontinence is eagerly desired.
セロトニン(以下、5−HT)2C受容体は、神経伝達物質セロトニンの受容体の一つであり、主に中枢神経系に分布している(非特許文献6)。例えば、5−HT2C受容体作動の作用として、摂食抑制作用が知られており(非特許文献7)、以下の一般式(A)で示されるベンズアゼピン誘導体が肥満及び関連障害の治療剤又は予防剤として用いることができることが報告されている(特許文献1)。
ただしR2がC1〜4アルキル、−CH2−O−(C1〜4アルキル)及び−CH2OHの場合は、R3及びR6はどちらも水素ではない。]
Serotonin (hereinafter, 5-HT) 2C receptor is one of the receptors for the neurotransmitter serotonin and is mainly distributed in the central nervous system (Non-patent Document 6). For example, as an action of 5-HT2C receptor operation, an antifeedant action is known (Non-patent Document 7), and a benzazepine derivative represented by the following general formula (A) is a therapeutic or preventive agent for obesity and related disorders. It has been reported that it can be used as an agent (Patent Document 1).
However, if R 2 is a C1 -4 alkyl, -CH 2 -O- (C1~4 alkyl) and -CH 2 OH, R 3 and R 6 are not both hydrogen. ]
近年、一過性の腹圧上昇時に尿道収縮を促す尿禁制反射機構が存在することが提唱され(非特許文献8)、5−HT2C受容体作動薬が尿禁制反射機構を促進的に作用し、腹圧性尿失禁の治療剤又は予防剤として期待できることが報告されている(特許文献2〜4及び非特許文献9)。 In recent years, it has been proposed that there is a urinary forbidden reflex mechanism that promotes urethral contraction when transient abdominal pressure rises (Non-patent Document 8), and 5-HT2C receptor agonists promote the urinary forbidden reflex mechanism. It has been reported that it can be expected as a therapeutic or preventive agent for stress urinary incontinence (Patent Documents 2 to 4 and Non-Patent Document 9).
一方、ベンゾフラン構造を有する5−HT受容体リガンドとして、テトラヒドロベンゾフロピリジン構造を有する化合物(特許文献5)が報告されている。 On the other hand, a compound having a tetrahydrobenzofuropyridine structure (Patent Document 5) has been reported as a 5-HT receptor ligand having a benzofuran structure.
しかしながら、特許文献1〜4及び非特許文献9には、本願のテトラヒドロベンゾフロアゼピン誘導体が5−HT2C受容体作動活性を有することについて記載はなく、その可能性についても示唆すらされていない。また、特許文献5には、5−HT2C受容体に関する記載はあるが、本願のテトラヒドロベンゾフロアゼピン誘導体の具体的な構造は全く開示されておらず、腹圧性尿失禁に対する有用性や、腹圧性尿失禁に係る具体的な薬効データについても一切記載されていない。 However, Patent Documents 1 to 4 and Non-Patent Document 9 do not describe that the tetrahydrobenzoflozepine derivative of the present application has 5-HT2C receptor agonist activity, nor does it even suggest the possibility. Patent Document 5 describes a 5-HT2C receptor, but does not disclose any specific structure of the tetrahydrobenzoflozepine derivative of the present application, and is useful for stress urinary incontinence, There is no specific medicinal data on urinary incontinence.
そこで本発明は、5−HT2C受容体作動活性を有する、腹圧性尿失禁の治療剤又は予防剤を提供することを目的とする。 Then, an object of this invention is to provide the therapeutic agent or preventive agent of stress urinary incontinence which has 5-HT2C receptor operation activity.
本発明者らは、上記の目的を達成するため鋭意研究を重ねた結果、強力な5−HT2C受容体作動活性を有する新規なテトラヒドロベンゾフロアゼピン誘導体を見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found a novel tetrahydrobenzoflozepine derivative having potent 5-HT2C receptor agonist activity, and have completed the present invention.
すなわち、本発明は、下記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩を提供する。
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩において、R1及びR3は、一方がメトキシ基又はメチルチオ基、他方が水素原子であり、R2は、水素原子であり、R3がメトキシ基を表す場合、R4は、水素原子又はメチル基であることが好ましく、R1及びR2が、水素原子であり、R3は、メトキシ基であり、R4は、メチル基であることがより好ましい。 In the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof, one of R 1 and R 3 is a methoxy group or a methylthio group, and the other is a hydrogen atom, R 2 is a hydrogen atom, and when R 3 represents a methoxy group, R 4 is preferably a hydrogen atom or a methyl group, R 1 and R 2 are a hydrogen atom, and R 3 is a methoxy group. And R 4 is more preferably a methyl group.
この場合、高い5−HT2C受容体作動活性が期待できる。 In this case, high 5-HT2C receptor agonist activity can be expected.
また、本発明は、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩を有効成分として含有する、医薬及び5−HT2C受容体作動薬を提供する。 The present invention also provides a pharmaceutical and a 5-HT2C receptor agonist, which contains, as an active ingredient, the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof. To do.
上記医薬は、腹圧性尿失禁の治療剤又は予防剤であることが好ましい。 The medicament is preferably a therapeutic or prophylactic agent for stress urinary incontinence.
本発明のテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩は、強力な5−HT2C受容体作動活性を有し、腹圧性尿失禁に対して優れた治療効果又は予防効果を発揮できる。 The tetrahydrobenzoflozepine derivative of the present invention or a pharmacologically acceptable acid addition salt thereof has a potent 5-HT2C receptor agonistic activity and has an excellent therapeutic effect or preventive effect on stress urinary incontinence. Can demonstrate.
本発明のテトラヒドロベンゾフロアゼピン誘導体は、下記一般式(I)で示されることを特徴としている。
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩のうち、好ましい具体例を表1に示すが、本発明はこれらに限定されるものではない。 Of the tetrahydrobenzoflozepine derivatives represented by the above general formula (I) or pharmacologically acceptable acid addition salts thereof, preferred specific examples are shown in Table 1, but the present invention is not limited thereto. .
表1に記載される化合物は、その薬理学的に許容される酸付加塩も包含する。 The compounds described in Table 1 also include pharmacologically acceptable acid addition salts thereof.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体の「薬理学的に許容される酸付加塩」としては、例えば、塩酸塩、硫酸塩、硝酸塩、臭化水素酸塩、ヨウ化水素酸塩若しくはリン酸塩等の無機酸塩、酢酸塩、トリフルオロ酢酸塩、乳酸塩、クエン酸塩、シュウ酸塩、グルタル酸塩、リンゴ酸塩、酒石酸塩、フマル酸塩、マンデル酸塩、マレイン酸塩、安息香酸塩若しくはフタル酸塩等の有機カルボン酸塩又はメタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、p−トルエンスルホン酸塩若しくはカンファースルホン酸塩等の有機スルホン酸塩が挙げられるが、塩酸塩、臭化水素酸塩、トリフルオロ酢酸塩、酒石酸塩又はメタンスルホン酸塩が好ましく、塩酸塩又はトリフルオロ酢酸塩がより好ましい。 Examples of the “pharmacologically acceptable acid addition salt” of the tetrahydrobenzoflozepine derivative represented by the general formula (I) include, for example, hydrochloride, sulfate, nitrate, hydrobromide, hydroiodic acid Inorganic acid salts such as salt or phosphate, acetate, trifluoroacetate, lactate, citrate, oxalate, glutarate, malate, tartrate, fumarate, mandelate, malein Organic carboxylates such as acid salts, benzoates or phthalates, or organic sulfonates such as methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate or camphorsulfonate Among them, hydrochloride, hydrobromide, trifluoroacetate, tartrate or methanesulfonate is preferable, and hydrochloride or trifluoroacetate is more preferable.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体(I)又はその薬理学的に許容される塩は、無水物であってもよいし、水和物等の溶媒和物を形成していても構わない。ここで溶媒和物としては、薬理学的に許容される溶媒和物が好ましい。薬理学的に許容される溶媒和物は、水和物又は非水和物のいずれであっても構わないが、水和物が好ましい。溶媒和物を構成する溶媒としては、例えば、メタノール、エタノール若しくはn−プロパノール等のアルコール系溶媒、N,N−ジメチルホルムアミド、ジメチルスルホキシド又は水が挙げられる。 The tetrahydrobenzoflozepine derivative (I) represented by the above general formula (I) or a pharmacologically acceptable salt thereof may be an anhydride or form a solvate such as a hydrate. It doesn't matter. Here, the solvate is preferably a pharmacologically acceptable solvate. The pharmacologically acceptable solvate may be either a hydrate or a non-hydrate, but a hydrate is preferable. Examples of the solvent constituting the solvate include alcohol solvents such as methanol, ethanol, and n-propanol, N, N-dimethylformamide, dimethyl sulfoxide, and water.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される塩は、その置換基の種類に由来する特徴に基づいた適切な方法で製造することができる。なお、これらの化合物の製造に使用する出発物質と試薬は、一般に購入することができるか又は公知の方法で製造することができる。 The tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof can be produced by an appropriate method based on characteristics derived from the type of the substituent. The starting materials and reagents used for the production of these compounds can be generally purchased or can be produced by known methods.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩並びにその製造に使用する中間体及び出発物質は、公知の手段によって単離精製することができる。単離精製のための公知の手段としては、例えば、溶媒抽出、再結晶又はクロマトグラフィーが挙げられる。 The tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof, and intermediates and starting materials used for the production thereof can be isolated and purified by known means. . Known means for isolation and purification include, for example, solvent extraction, recrystallization or chromatography.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される塩のなかで、R1〜R3のいずれか一つがメトキシ基である(Ia)又は(Ib)で表される化合物は、例えば、製造法1に記載の方法により得ることができる。
工程1
化合物(III)は、ブロモフェノール誘導体(II)とヒドロキシ−O−スルホン酸との反応により得ることができる。
Process 1
Compound (III) can be obtained by reaction of bromophenol derivative (II) with hydroxy-O-sulfonic acid.
ブロモフェノール誘導体(II)の当量は、ヒドロキシ−O−スルホン酸に対して1〜20当量が好ましく、1〜5当量がより好ましい。 The equivalent of the bromophenol derivative (II) is preferably 1 to 20 equivalents, more preferably 1 to 5 equivalents, based on hydroxy-O-sulfonic acid.
反応溶媒としては、例えば、メタノール、エタノール若しくはプロパノール等のアルコール系溶媒、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはテトラヒドロフラン(以下、THF)等のエーテル系溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include alcohol solvents such as methanol, ethanol, and propanol, halogen solvents such as dichloromethane, chloroform, and 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether, and tetrahydrofuran (hereinafter, THF); A mixed solvent thereof can be used.
塩基としては、水酸化ナトリウム、水酸化カリウム又は水酸化カルシウム等の無機塩基が挙げられる。 Examples of the base include inorganic bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide.
反応温度は、0℃〜100℃が好ましく、20℃〜90℃がより好ましい。 The reaction temperature is preferably 0 ° C to 100 ° C, more preferably 20 ° C to 90 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜24時間が好ましく、30分間〜5時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-24 hours are preferable, and 30 minutes-5 hours are more preferable.
反応開始時の濃度は、0.1mM〜3Mが好ましい。 The concentration at the start of the reaction is preferably 0.1 mM to 3M.
ブロモフェノール誘導体(II)及びヒドロキシ−O−スルホン酸は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。 The bromophenol derivative (II) and hydroxy-O-sulfonic acid can be purchased or can be produced by a known method or a method analogous thereto.
工程2
化合物(IV)は、化合物(III)とアゼパン−4−オン塩酸塩とのフィッシャーインドール反応により得ることができる。
Process 2
Compound (IV) can be obtained by a Fischer indole reaction between compound (III) and azepan-4-one hydrochloride.
アゼパン−4−オン塩酸塩の当量は、化合物(III)に対して1〜20当量が好ましく、1〜5当量がより好ましい。 1-20 equivalent is preferable with respect to compound (III), and, as for the equivalent of azepan-4-one hydrochloride, 1-5 equivalent is more preferable.
反応溶媒としては、例えば、メタノール、エタノール若しくはプロパノール等のアルコール系溶媒、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはTHF等のエーテル系溶媒、ベンゼン、トルエン若しくはキシレン等の炭化水素系溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include alcohol solvents such as methanol, ethanol or propanol, halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether or THF, benzene, toluene or xylene. A hydrocarbon solvent such as the above or a mixed solvent thereof can be used.
酸としては、塩酸、硫酸、硝酸、臭化水素酸、トリフルオロ酢酸又はリン酸等が挙げられるが、塩酸、硫酸又はリン酸が好ましい。 Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, trifluoroacetic acid, and phosphoric acid, and hydrochloric acid, sulfuric acid, and phosphoric acid are preferable.
反応温度は、0℃〜130℃が好ましく、20℃〜110℃がより好ましい。 The reaction temperature is preferably 0 ° C to 130 ° C, more preferably 20 ° C to 110 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜48時間が好ましく、30分間〜24時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-48 hours are preferable, and 30 minutes-24 hours are more preferable.
反応開始時の濃度は、0.1mM〜2Mが好ましい。 The concentration at the start of the reaction is preferably 0.1 mM to 2M.
工程3
化合物(V)は、化合物(IV)とビスピナコールジボランとのパラジウム触媒によるカップリング反応と、続く酸化反応により得ることができる。
Process 3
Compound (V) can be obtained by a palladium-catalyzed coupling reaction between compound (IV) and bispinacol diborane and a subsequent oxidation reaction.
ビスピナコールジボランの当量は、化合物(IV)に対して1〜20当量が好ましく、1〜5当量がより好ましい。 1-20 equivalent is preferable with respect to compound (IV), and, as for the equivalent of bispinacol diborane, 1-5 equivalent is more preferable.
パラジウム触媒としては、例えば、トリス(ジベンジリデンアセトン)ジパラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、酢酸パラジウム又は1,1’−ビス(ジフェニルホスフィノ)フェロセン−パラジウム(II)ジクロリド-ジクロロメタン錯体等が挙げられる。 Examples of the palladium catalyst include tris (dibenzylideneacetone) dipalladium, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, palladium acetate, or 1,1′-bis (diphenylphosphino) ferrocene-palladium ( II) Dichloride-dichloromethane complex and the like.
パラジウム触媒の当量は、化合物(IV)に対して0.01〜1当量が好ましい。 The equivalent of the palladium catalyst is preferably 0.01 to 1 equivalent with respect to the compound (IV).
塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム又は酢酸カリウム等が挙げられる。 Examples of the base include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, sodium acetate or potassium acetate.
塩基の当量は、1〜5当量が好ましい。 The equivalent of the base is preferably 1 to 5 equivalents.
反応溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはTHF等のエーテル系溶媒、ベンゼン、トルエン若しくはキシレン等の炭化水素系溶媒、N,N−ジメチルホルムアミド若しくはジメチルスルホキシド等の非プロトン性極性溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether or THF, hydrocarbon solvents such as benzene, toluene or xylene, N, N- An aprotic polar solvent such as dimethylformamide or dimethyl sulfoxide or a mixed solvent thereof can be used.
反応温度は、0℃〜120℃が好ましく、20℃〜100℃がより好ましい。 The reaction temperature is preferably 0 ° C to 120 ° C, more preferably 20 ° C to 100 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜48時間が好ましく、30分間〜5時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-48 hours are preferable, and 30 minutes-5 hours are more preferable.
反応開始時の濃度は、0.1mM〜1Mが好ましい。 The concentration at the start of the reaction is preferably 0.1 mM to 1M.
ビスピナコールジボランは、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。 Bispinacol diborane can be purchased, or can be produced by a known method or a method analogous thereto.
工程4
化合物(VI)は、化合物(V)とヨードメタンとの反応により得ることができる。
Process 4
Compound (VI) can be obtained by reacting compound (V) with iodomethane.
ヨードメタンの当量は、化合物(V)に対して1〜20当量が好ましく、1〜5当量がより好ましい。 The equivalent of iodomethane is preferably 1 to 20 equivalents, more preferably 1 to 5 equivalents, relative to compound (V).
反応溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはTHF等のエーテル系溶媒、N,N−ジメチルホルムアミド若しくはジメチルスルホキシド等の非プロトン性極性溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether or THF, and aprotic polar solvents such as N, N-dimethylformamide or dimethyl sulfoxide. Alternatively, a mixed solvent thereof can be used.
塩基としては、炭酸ナトリウム、炭酸カリウム又は炭酸水素ナトリウム等が好ましい。 As the base, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and the like are preferable.
反応温度は、0℃〜80℃が好ましく、0℃〜40℃がより好ましい。 The reaction temperature is preferably 0 ° C to 80 ° C, more preferably 0 ° C to 40 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜24時間が好ましく、5分間〜12時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-24 hours are preferable and 5 minutes-12 hours are more preferable.
反応開始時の濃度は、0.1mM〜1Mが好ましい。 The concentration at the start of the reaction is preferably 0.1 mM to 1M.
工程5
化合物(Ia)は、化合物(VI)の脱Boc化反応により得ることができる。
Process 5
Compound (Ia) can be obtained by de-Boc reaction of compound (VI).
反応溶媒としては、例えば、メタノール、エタノール若しくはプロパノール等のアルコール系溶媒、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはTHF等のエーテル系溶媒、ヘキサン若しくは酢酸エチル等の炭化水素系溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include alcohol solvents such as methanol, ethanol or propanol, halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether or THF, hexane or ethyl acetate, etc. Or a mixed solvent thereof can be used.
添加する酸としては、塩酸、硫酸、硝酸、臭化水素酸、ヨウ化水素酸又はトリフルオロ酢酸等が挙げられるが、塩酸又はトリフルオロ酢酸がより好ましい。 Examples of the acid to be added include hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hydroiodic acid, and trifluoroacetic acid, and hydrochloric acid and trifluoroacetic acid are more preferable.
反応温度は、0℃〜60℃が好ましく、0℃〜40℃がより好ましい。 The reaction temperature is preferably 0 ° C to 60 ° C, more preferably 0 ° C to 40 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜72時間が好ましく、5分間〜24時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-72 hours are preferable and 5 minutes-24 hours are more preferable.
工程6
化合物(Ib)は、化合物(Ia)と、アルデヒド誘導体又はケトン誘導体との還元的アミノ化反応により得ることができる。
Step 6
Compound (Ib) can be obtained by reductive amination reaction of compound (Ia) with an aldehyde derivative or a ketone derivative.
アルデヒド誘導体又はケトン誘導体の当量は、化合物(Ia)に対して、1〜20当量が好ましく、1〜10当量がより好ましい。 1-20 equivalent is preferable with respect to compound (Ia), and, as for the equivalent of an aldehyde derivative or a ketone derivative, 1-10 equivalent is more preferable.
還元剤としては、水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム又はシアノ水素化ホウ素ナトリウム等が挙げられる。 Examples of the reducing agent include sodium borohydride, sodium triacetoxyborohydride, sodium cyanoborohydride and the like.
反応溶媒としては、例えば、メタノール、エタノール若しくはプロパノール等のアルコール系溶媒、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはTHF等のエーテル系溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include alcohol solvents such as methanol, ethanol or propanol, halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether or THF, or a mixed solvent thereof. Can be used.
反応温度は、0℃〜100℃が好ましく、0℃〜80℃がより好ましい。 The reaction temperature is preferably 0 ° C to 100 ° C, more preferably 0 ° C to 80 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜48時間が好ましく、5分間〜24時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-48 hours are preferable, and 5 minutes-24 hours are more preferable.
アルデヒド誘導体又はケトン誘導体は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。 The aldehyde derivative or ketone derivative can be purchased, or can be produced by a known method or a method analogous thereto.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される塩のなかで、R1〜R3のいずれか一つがメチルチオ基である(Ic)で表される化合物は、例えば、製造法2に記載の方法により得ることができる。
工程1
化合物(VII)は、化合物(IV)とメチルメルカプタンナトリウムとのパラジウム触媒によるカップリング反応により得ることができる。
Process 1
Compound (VII) can be obtained by a palladium-catalyzed coupling reaction between compound (IV) and methyl mercaptan sodium.
メチルメルカプタンナトリウムの当量は、化合物(IV)に対して1〜20当量が好ましく、1〜10当量がより好ましい。 1-20 equivalent is preferable with respect to compound (IV), and, as for the equivalent of methyl mercaptan sodium, 1-10 equivalent is more preferable.
パラジウム触媒としては、例えば、トリス(ジベンジリデンアセトン)ジパラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、酢酸パラジウム又は1,1’−ビス(ジフェニルホスフィノ)フェロセン−パラジウム(II)ジクロリド-ジクロロメタン錯体等が挙げられる。 Examples of the palladium catalyst include tris (dibenzylideneacetone) dipalladium, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, palladium acetate, or 1,1′-bis (diphenylphosphino) ferrocene-palladium ( II) Dichloride-dichloromethane complex and the like.
パラジウム触媒の当量は、化合物(IV)に対して0.01〜1当量が好ましい。 The equivalent of the palladium catalyst is preferably 0.01 to 1 equivalent with respect to the compound (IV).
反応溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン、ジエチルエーテル若しくはTHF等のエーテル系溶媒、ベンゼン、トルエン若しくはキシレン等の炭化水素系溶媒又はN,N−ジメチルホルムアミド若しくはジメチルスルホキシド等の非プロトン性極性溶媒が挙げられる。 Examples of the reaction solvent include halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane, diethyl ether or THF, hydrocarbon solvents such as benzene, toluene or xylene, or N, N- Examples include aprotic polar solvents such as dimethylformamide or dimethyl sulfoxide.
反応温度は、0℃〜180℃が好ましく、30℃〜160℃がより好ましい。 The reaction temperature is preferably 0 ° C to 180 ° C, more preferably 30 ° C to 160 ° C.
反応時間は、基質又は反応条件により異なるが、1〜48時間が好ましく、1〜24時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 1 to 48 hours are preferable and 1 to 24 hours are more preferable.
反応開始時の濃度は、0.1mM〜1Mが好ましい。 The concentration at the start of the reaction is preferably 0.1 mM to 1M.
工程2
化合物(Ic)は、化合物(VII)の脱Boc化反応により得ることができる。
Process 2
Compound (Ic) can be obtained by de-Bocation reaction of compound (VII).
反応溶媒としては、例えば、メタノール、エタノール若しくはプロパノール等のアルコール系溶媒、ジクロロメタン、クロロホルム若しくは1,2−ジクロロエタン等のハロゲン系溶媒、ジオキサン若しくはジエチルエーテル等のエーテル系溶媒、ヘキサン若しくは酢酸エチル等の炭化水素系溶媒又はそれらの混合溶媒を用いることができる。 Examples of the reaction solvent include alcohol solvents such as methanol, ethanol or propanol, halogen solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as dioxane or diethyl ether, carbonization such as hexane or ethyl acetate. A hydrogen-based solvent or a mixed solvent thereof can be used.
添加する酸としては、塩酸、硫酸、硝酸、臭化水素酸、ヨウ化水素酸又はトリフルオロ酢酸等が挙げられるが、塩酸又はトリフルオロ酢酸がより好ましい。 Examples of the acid to be added include hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hydroiodic acid, and trifluoroacetic acid, and hydrochloric acid and trifluoroacetic acid are more preferable.
反応温度は、0℃〜60℃が好ましく、0℃〜40℃がより好ましい。 The reaction temperature is preferably 0 ° C to 60 ° C, more preferably 0 ° C to 40 ° C.
反応時間は、基質又は反応条件により異なるが、5分間〜72時間が好ましく、5分間〜24時間がより好ましい。 Although reaction time changes with substrates or reaction conditions, 5 minutes-72 hours are preferable and 5 minutes-24 hours are more preferable.
本発明の医薬及び5−HT2C受容体作動薬は、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩を有効成分として含有することを特徴としている。上記医薬は、腹圧性尿失禁の治療剤又は予防剤であることが好ましい。 The medicament of the present invention and a 5-HT2C receptor agonist contain the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof as an active ingredient. Yes. The medicament is preferably a therapeutic or prophylactic agent for stress urinary incontinence.
「5−HT2C受容体作動薬」とは、5−HT2C受容体と相互作用し、そのシグナル伝達を増強する作用を有する薬である。 A “5-HT2C receptor agonist” is a drug that interacts with the 5-HT2C receptor and has an action of enhancing its signal transduction.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩が、5−HT2C受容体作動活性を有することは、例えば、Jermanらの文献(European Journal of Pharmacology、2001年、第414巻、p.23−30)に準じた方法により、ヒト5−HT2C受容体を発現した細胞を用いたin vitroの実験系で確認できる。具体的には、例えば、ヒト5−HT2C受容体をヒト胎児腎臓由来のHEK―293細胞に強制発現させ、化合物の作動活性による細胞内カルシウム濃度の上昇を測定することで確認できる。 The tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof has 5-HT2C receptor agonist activity, for example, Jerman et al. (European Journal of Pharmacology, 2001, Vol. 414, p. 23-30) and can be confirmed in an in vitro experimental system using cells expressing human 5-HT2C receptor. Specifically, for example, human 5-HT2C receptor can be forcibly expressed in HEK-293 cells derived from human fetal kidney, and the increase in intracellular calcium concentration due to the agonistic activity of the compound can be measured.
また、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩が、腹圧性尿失禁の治療又は予防に有効であることは、蓄尿期の尿道抵抗を示す漏出時圧(Leak Point Pressure)を測定することで確認できる。 In addition, the fact that the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof is effective for the treatment or prevention of stress urinary incontinence indicates that urethral resistance in the urine accumulation phase It can be confirmed by measuring the leakage time pressure indicating Leak Point Pressure.
漏出時圧(Leak Point Pressure)とは、排尿筋の収縮がない状態において、尿漏れが生じた際の膀胱内圧のことであり、膀胱内圧の上昇に抵抗できる最大尿道抵抗を示す。動物モデルにおいて、漏出時圧を上昇させる作用を有する薬剤は腹圧性尿失禁の治療又は予防に有効であることを示している。 Leak Point Pressure is the intravesical pressure when urine leakage occurs in the absence of detrusor contraction, and indicates the maximum urethral resistance that can resist the increase in intravesical pressure. In an animal model, it has been shown that a drug having an effect of increasing the leakage pressure is effective for treating or preventing stress urinary incontinence.
漏出時圧を測定する方法としては、例えば、Leeらの文献(International Urogynecology Journal、2003年、第14巻、第1号、p.31−37)、又は、Miyazatoらの文献(American Journal of physiology:Renal physiology、2008年、第295巻、第1号、p.F264−271)に準じた方法が挙げられ、腹圧性尿失禁の治療薬であるデュロキセチンが、漏出時圧を上昇させることが報告されている(Miyazatoら、American Journal of physiology: Renal physiology、2008年、第295巻、第1号、p.F264−271)。 As a method for measuring the leakage time pressure, for example, Lee et al. (International Urology Journal, 2003, Vol. 14, No. 1, p. 31-37) or Miyazato et al. (American Journal of Physiology). : Renal physology, 2008, Vol. 295, No. 1, p.F264-271), and it is reported that duloxetine, a therapeutic agent for stress urinary incontinence, increases the pressure at the time of leakage (Miyazato et al., American Journal of Physiology: Renal physology, 2008, Vol. 295, No. 1, p. F264-271).
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、イヌ、サル、ウシ、ヒツジ又はヒト)、特にヒトに対して投与した場合に、有用な医薬(特に、腹圧性尿失禁の治療剤又は予防剤)として用いることができる。 The tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof can be used in mammals (for example, mouse, rat, hamster, rabbit, dog, monkey, cow, sheep or human). ), Especially when administered to humans, it can be used as a useful medicament (especially a therapeutic or preventive agent for stress urinary incontinence).
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩を医薬として臨床で使用する際には、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩をそのまま用いてもよいし、賦形剤、安定化剤、保存剤、緩衝剤、溶解補助剤、乳化剤、希釈剤又は等張化剤等の添加剤が適宜混合されていてもよい。また、上記医薬は、これらの薬剤用担体を適宜用いて、通常の方法によって製造することができる。上記医薬の投与形態としては、例えば、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤等による経口剤、吸入剤、注射剤、座剤若しくは液剤等による非経口剤又は局所投与をするための軟膏剤、クリーム剤若しくは貼付剤等が挙げられる。また、公知の持続型製剤としても構わない。 When the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof is used clinically as a pharmaceutical, the tetrahydrobenzoflozepine represented by the above general formula (I) Derivatives or pharmacologically acceptable acid addition salts thereof may be used as they are, such as excipients, stabilizers, preservatives, buffers, solubilizers, emulsifiers, diluents or isotonic agents. Additives may be mixed as appropriate. Moreover, the said pharmaceutical can be manufactured by a normal method using these pharmaceutical carriers suitably. Examples of the administration form of the medicine include oral preparations such as tablets, capsules, granules, powders or syrups, parenteral preparations such as inhalants, injections, suppositories or liquids, or ointments for topical administration. Agents, creams or patches. Further, it may be a known continuous preparation.
上記医薬は、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩を、0.00001〜90重量%含有することが好ましく、0.01〜70重量%含有することがより好ましい。用量は、患者の症状、年齢及び体重並びに投与方法に応じて適宜選択されるが、成人に対する有効成分量として、注射剤の場合1日0.1μg〜1g、経口剤の場合1μg〜10g、貼付剤の場合1μg〜10gが好ましく、それぞれ1回又は数回に分けて投与することができる。 The pharmaceutical preferably contains 0.00001 to 90% by weight of the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof, and 0.01 to 70%. It is more preferable to contain by weight. The dose is appropriately selected according to the patient's symptom, age and weight, and administration method. As an amount of the active ingredient for an adult, 0.1 μg to 1 g per day for an injection, 1 μg to 10 g for an oral formulation, affixed In the case of an agent, 1 μg to 10 g is preferable, and can be administered once or several times.
上記医薬の薬理学的に許容される担体又は希釈剤としては、例えば、結合剤(シロップ、ゼラチン、アラビアゴム、ソルビトール、ポリビニルクロリド又はトラガント等)、賦形剤(砂糖、乳糖、コーンスターチ、リン酸カルシウム、ソルビトール又はグリシン等)又は滑沢剤(ステアリン酸マグネシウム、ポリエチレングリコール、タルク又はシリカ等)が挙げられる。 Examples of the pharmacologically acceptable carrier or diluent of the pharmaceutical include, for example, binders (syrup, gelatin, gum arabic, sorbitol, polyvinyl chloride, tragacanth, etc.), excipients (sugar, lactose, corn starch, calcium phosphate, Sorbitol or glycine) or a lubricant (magnesium stearate, polyethylene glycol, talc, silica, etc.).
上記医薬は、その治療若しくは予防効果の補完又は増強あるいは投与量の低減のために、他の薬剤と適量配合又は併用して使用しても構わない。 The above medicines may be used in combination with or in combination with other drugs in order to supplement or enhance the therapeutic or preventive effect or reduce the dose.
以下、実施例、参考例及び比較例を用いて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, a reference example, and a comparative example, this invention is not limited to these.
なお、実施例化合物の合成に使用される化合物で合成法の記載のないものについては、市販の化合物を使用した。以下の実施例、参考例及び比較例中の「室温」は通常約10℃〜約35℃を示す。NMRデータ中に示される溶媒名は、測定に使用した溶媒を示す。また、400MHz NMRスペクトルは、JNM−AL400型核磁気共鳴装置(日本電子社)を用いて測定した。ケミカルシフトは、テトラメチルシランを基準として、δ(単位:ppm)で表し、シグナルはそれぞれs(一重線)、d(二重線)、t(三重線)、m(多重線)、brs(幅広)で表した。ESI−MSスペクトルは、Agilent Technologies 1200 Series、G6130A(AgilentTechnology社)を用いて測定した。シリカゲルはTLC Silica gel 60 F254(Merck KGaA社)を用いた。アミノシリカゲルはNHシリカ(富士シリシア化学社)を用いた。溶媒は全て市販のものを用いた。フラッシュクロマトグラフィーはYFLC W−prep2XY(山善社)を用いた。 In addition, the commercially available compound was used about the compound which is not described in the synthesis method by the compound used for the synthesis | combination of an Example compound. “Room temperature” in the following Examples, Reference Examples and Comparative Examples usually indicates about 10 ° C. to about 35 ° C. The solvent name shown in the NMR data indicates the solvent used for the measurement. The 400 MHz NMR spectrum was measured using a JNM-AL400 type nuclear magnetic resonance apparatus (JEOL Ltd.). The chemical shift is represented by δ (unit: ppm) based on tetramethylsilane, and the signals are s (single line), d (double line), t (triple line), m (multiple line), and brs (respectively). Wide). The ESI-MS spectrum was measured using Agilent Technologies 1200 Series, G6130A (Agilent Technology). As the silica gel, TLC Silica gel 60 F254 (Merck KGaA) was used. NH silica (Fuji Silysia Chemical) was used as the amino silica gel. All solvents were commercially available. YFLC W-prep2XY (Yamazensha) was used for flash chromatography.
(参考例1)O−(2−ブロモフェニル)ヒドロキシルアミンの合成:
1H NMR (400MHz, CDCl3) δ: 7.53 (1H, dd, J = 8.3, 1.5 Hz), 7.47 (1H, dd, J = 7.9, 1.6 Hz), 7.30-7.26 (1H, m), 6.84 (1H, td, J = 7.3, 1.5 Hz), 6.03 (2H, brs).
Reference Example 1 Synthesis of O- (2-bromophenyl) hydroxylamine:
1 H NMR (400MHz, CDCl 3 ) δ: 7.53 (1H, dd, J = 8.3, 1.5 Hz), 7.47 (1H, dd, J = 7.9, 1.6 Hz), 7.30-7.26 (1H, m), 6.84 ( 1H, td, J = 7.3, 1.5 Hz), 6.03 (2H, brs).
(参考例2)O−(3−ブロモフェニル)ヒドロキシルアミンの合成:
1H NMR (400MHz, CDCl3) δ: 7.38 (1H, t, J = 2.2 Hz), 7.12 (1H, t, J = 7.9 Hz), 7.07 (1H, dt, J = 7.8, 1.6 Hz), 7.02 (1H, dq, J = 7.8, 1.2 Hz), 5.87 (2H, brs).
Reference Example 2 Synthesis of O- (3-bromophenyl) hydroxylamine:
1 H NMR (400MHz, CDCl 3 ) δ: 7.38 (1H, t, J = 2.2 Hz), 7.12 (1H, t, J = 7.9 Hz), 7.07 (1H, dt, J = 7.8, 1.6 Hz), 7.02 (1H, dq, J = 7.8, 1.2 Hz), 5.87 (2H, brs).
(参考例3)O−(4−ブロモフェニル)ヒドロキシルアミンの合成:
1H NMR (400MHz, CDCl3) δ: 7.36 (2H, d, J = 6.2, 3.9 Hz), 7.03 (2H, t, J = 6.2, 3.9 Hz), 5.86 (2H, brs).
Reference Example 3 Synthesis of O- (4-bromophenyl) hydroxylamine:
1 H NMR (400MHz, CDCl 3 ) δ: 7.36 (2H, d, J = 6.2, 3.9 Hz), 7.03 (2H, t, J = 6.2, 3.9 Hz), 5.86 (2H, brs).
(参考例4)tert−ブチル 7−ブロモ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.38 (1H, d, J = 7.8 Hz), 7.33 (1H, t, J = 7.0 Hz), 7.08 (1H, t, J = 7.8 Hz), 3.69 (4H, td, J = 11.8, 6.2 Hz), 3.17 (1H, t, J = 5.4 Hz), 3.13 (1H, t, J = 5.6 Hz), 2.86 (1H, t, J = 5.2 Hz), 2.81 (1H, t, J = 5.5 Hz), 1.49 (9H, s).
MS(ESI) : 310 (M-tBu+H)+.
Reference Example 4 Synthesis of tert-butyl 7-bromo-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.38 (1H, d, J = 7.8 Hz), 7.33 (1H, t, J = 7.0 Hz), 7.08 (1H, t, J = 7.8 Hz), 3.69 (4H , td, J = 11.8, 6.2 Hz), 3.17 (1H, t, J = 5.4 Hz), 3.13 (1H, t, J = 5.6 Hz), 2.86 (1H, t, J = 5.2 Hz), 2.81 (1H , t, J = 5.5 Hz), 1.49 (9H, s).
MS (ESI): 310 (M-tBu + H) + .
(参考例5)tert−ブチル 9−ブロモ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.51 (1H, d, J = 2.3 Hz), 7.31 (1H, dd, J = 8.4, 2.3 Hz), 7.23 (1H, d, J = 8.6 Hz), 3.68 (4H, td, J = 11.3, 5.3 Hz), 3.11 (1H, t, J = 5.4 Hz), 3.05 (1H, t, J = 5.2 Hz), 2.82 (1H, t, J = 5.4 Hz), 2.78 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS(ESI) : 310 (M-tBu+H)+.
Reference Example 5 Synthesis of tert-butyl 9-bromo-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.51 (1H, d, J = 2.3 Hz), 7.31 (1H, dd, J = 8.4, 2.3 Hz), 7.23 (1H, d, J = 8.6 Hz), 3.68 (4H, td, J = 11.3, 5.3 Hz), 3.11 (1H, t, J = 5.4 Hz), 3.05 (1H, t, J = 5.2 Hz), 2.82 (1H, t, J = 5.4 Hz), 2.78 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS (ESI): 310 (M-tBu + H) + .
(参考例6)tert−ブチル 8−ブロモ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラート及びtert−ブチル 10−ブロモ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
tert−ブチル 8−ブロモ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラート:
1H NMR (400MHz, CDCl3) δ: 7.53 (1H, s), 7.32 (1H, dd, J = 8.3, 1.7 Hz), 7.24 (1H, d, J = 7.4 Hz), 3.68 (4H, td, J = 11.8, 5.9 Hz), 3.09 (1H, t, J = 5.2 Hz), 3.04 (1H, t, J = 5.2 Hz), 2.84 (1H, t, J = 5.1 Hz), 2.79 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS(ESI) : 310 (M-tBu+H)+.
tert−ブチル 10−ブロモ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラート:
1H NMR (400MHz, CDCl3) δ: 7.33 (1H, d, J = 7.6 Hz), 7.32 (1H, d, J = 8.0 Hz), 7.04 (1H, d, J = 8.0 Hz), 3.74-3.66 (4H, m), 3.34 (1H, t, J = 4.9 Hz), 3.29 (1H, t, J = 5.0 Hz), 3.10 (1H, t, J = 5.5 Hz), 3.06 (1H, t, J = 5.5 Hz), 1.50 (9H, s).
MS(ESI) : 310 (M-tBu+H)+.
Reference Example 6 tert-butyl 8-bromo-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate and tert-butyl 10-bromo-4,5-dihydro Synthesis of -1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
tert-Butyl 8-bromo-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.53 (1H, s), 7.32 (1H, dd, J = 8.3, 1.7 Hz), 7.24 (1H, d, J = 7.4 Hz), 3.68 (4H, td, J = 11.8, 5.9 Hz), 3.09 (1H, t, J = 5.2 Hz), 3.04 (1H, t, J = 5.2 Hz), 2.84 (1H, t, J = 5.1 Hz), 2.79 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS (ESI): 310 (M-tBu + H) + .
tert-Butyl 10-bromo-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.33 (1H, d, J = 7.6 Hz), 7.32 (1H, d, J = 8.0 Hz), 7.04 (1H, d, J = 8.0 Hz), 3.74-3.66 (4H, m), 3.34 (1H, t, J = 4.9 Hz), 3.29 (1H, t, J = 5.0 Hz), 3.10 (1H, t, J = 5.5 Hz), 3.06 (1H, t, J = 5.5 Hz), 1.50 (9H, s).
MS (ESI): 310 (M-tBu + H) + .
(参考例7)tert−ブチル 7−ヒドロキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.08 (1H, t, J = 7.8 Hz), 6.97 (1H, d, J = 6.3 Hz), 6.77 (1H, d, J = 7.8 Hz), 5.23 (1H, d, J = 14.9 Hz), 3.68 (4H, dt, J = 18.0, 6.2 Hz), 3.12 (1H, t, J = 5.5 Hz), 3.07 (1H, t, J = 5.5 Hz), 2.86 (1H, t, J = 5.2 Hz), 2.81 (1H, d, J = 5.2 Hz), 1.49 (9H, s).
MS(ESI) : 248 (M-tBu+H)+.
Reference Example 7 Synthesis of tert-butyl 7-hydroxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.08 (1H, t, J = 7.8 Hz), 6.97 (1H, d, J = 6.3 Hz), 6.77 (1H, d, J = 7.8 Hz), 5.23 (1H , d, J = 14.9 Hz), 3.68 (4H, dt, J = 18.0, 6.2 Hz), 3.12 (1H, t, J = 5.5 Hz), 3.07 (1H, t, J = 5.5 Hz), 2.86 (1H , t, J = 5.2 Hz), 2.81 (1H, d, J = 5.2 Hz), 1.49 (9H, s).
MS (ESI): 248 (M-tBu + H) + .
(参考例8)tert−ブチル 8−ヒドロキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.20 (1H, t, J = 8.3 Hz), 6.88 (1H, d, J = 2.2 Hz), 6.75 (1H, dd, J = 8.4, 2.6 Hz), 5.15 (1H, br s), 3.67 (4H, dt, J = 18.9, 6.6 Hz), 3.07 (1H, t, J = 5.5 Hz), 3.02 (1H, t, J = 5.2 Hz), 2.82 (1H, t, J = 5.4 Hz), 2.78 (1H, t, J = 5.1 Hz), 1.49 (9H, s).
MS(ESI) : 248 (M-tBu+H)+.
Reference Example 8 Synthesis of tert-butyl 8-hydroxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.20 (1H, t, J = 8.3 Hz), 6.88 (1H, d, J = 2.2 Hz), 6.75 (1H, dd, J = 8.4, 2.6 Hz), 5.15 (1H, br s), 3.67 (4H, dt, J = 18.9, 6.6 Hz), 3.07 (1H, t, J = 5.5 Hz), 3.02 (1H, t, J = 5.2 Hz), 2.82 (1H, t , J = 5.4 Hz), 2.78 (1H, t, J = 5.1 Hz), 1.49 (9H, s).
MS (ESI): 248 (M-tBu + H) + .
(参考例9)tert−ブチル 9−ヒドロキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.21 (1H, d, J = 8.5 Hz), 6.82 (1H, d, J = 12.2 Hz), 6.72 (1H, brs), 3.71-3.65 (4H, m), 3.08 (1H, t, J = 5.2 Hz), 3.03 (1H, t, J = 5.5 Hz), 2.82 (1H, t, J = 5.5 Hz), 2.75 (1H, t, J = 5.5 Hz), 1.49 (9H, s).
MS(ESI) : 248 (M-tBu+H)+.
Reference Example 9 Synthesis of tert-butyl 9-hydroxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.21 (1H, d, J = 8.5 Hz), 6.82 (1H, d, J = 12.2 Hz), 6.72 (1H, brs), 3.71-3.65 (4H, m) , 3.08 (1H, t, J = 5.2 Hz), 3.03 (1H, t, J = 5.5 Hz), 2.82 (1H, t, J = 5.5 Hz), 2.75 (1H, t, J = 5.5 Hz), 1.49 (9H, s).
MS (ESI): 248 (M-tBu + H) + .
(参考例10)tert−ブチル 10−ヒドロキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.01 (1H, t, J = 7.9 Hz), 6.95 (1H, t, J = 9.9 Hz), 6.50 (1H, dd, J = 10.0, 7.8 Hz), 3.71-3.66 (4H, m), 3.26 (1H, t, J = 5.1 Hz), 3.16 (1H, t, J = 5.5 Hz), 3.07 (1H, t, J = 5.0 Hz), 3.02 (1H, t, J = 5.7 Hz), 1.49 (9H, s).
MS(ESI) : 248 (M-tBu+H)+.
Reference Example 10 Synthesis of tert-butyl 10-hydroxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.01 (1H, t, J = 7.9 Hz), 6.95 (1H, t, J = 9.9 Hz), 6.50 (1H, dd, J = 10.0, 7.8 Hz), 3.71 -3.66 (4H, m), 3.26 (1H, t, J = 5.1 Hz), 3.16 (1H, t, J = 5.5 Hz), 3.07 (1H, t, J = 5.0 Hz), 3.02 (1H, t, J = 5.7 Hz), 1.49 (9H, s).
MS (ESI): 248 (M-tBu + H) + .
(参考例11)tert−ブチル 7−メトキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.13 (1H, t, J = 7.8 Hz), 7.01 (1H, d, J = 6.6 Hz), 6.76 (1H, d, J = 7.8 Hz), 4.00 (3H, s), 3.72-3.64 (4H, m), 3.14 (1H, t, J = 5.4 Hz), 3.09 (1H, t, J = 5.2 Hz), 2.86 (1H, t, J = 5.1 Hz), 2.81 (1H, t, J = 5.4 Hz), 1.49 (9H, s).
MS(ESI) : 262 (M-tBu+H)+.
Reference Example 11 Synthesis of tert-butyl 7-methoxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.13 (1H, t, J = 7.8 Hz), 7.01 (1H, d, J = 6.6 Hz), 6.76 (1H, d, J = 7.8 Hz), 4.00 (3H , s), 3.72-3.64 (4H, m), 3.14 (1H, t, J = 5.4 Hz), 3.09 (1H, t, J = 5.2 Hz), 2.86 (1H, t, J = 5.1 Hz), 2.81 (1H, t, J = 5.4 Hz), 1.49 (9H, s).
MS (ESI): 262 (M-tBu + H) + .
(参考例12)tert−ブチル 8−メトキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.24 (1H, d, J = 7.3 Hz), 6.93 (1H, s), 6.84 (1H, dd, J = 8.5, 2.2 Hz), 3.84 (3H, s), 3.71-3.64 (4H, m), 3.08 (1H, t, J = 5.5 Hz), 3.03 (1H, t, J = 5.1 Hz), 2.83 (1H, t, J = 5.1 Hz), 2.79 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS(ESI) : 262 (M-tBu+H)+.
Reference Example 12 Synthesis of tert-butyl 8-methoxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.24 (1H, d, J = 7.3 Hz), 6.93 (1H, s), 6.84 (1H, dd, J = 8.5, 2.2 Hz), 3.84 (3H, s) , 3.71-3.64 (4H, m), 3.08 (1H, t, J = 5.5 Hz), 3.03 (1H, t, J = 5.1 Hz), 2.83 (1H, t, J = 5.1 Hz), 2.79 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS (ESI): 262 (M-tBu + H) + .
(参考例13)tert−ブチル 9−メトキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.26 (1H, d, J = 9.0 Hz), 6.85 (1H, d, J = 2.4 Hz), 6.82 (1H, dd, J = 8.8, 2.7 Hz), 3.84 (3H, s), 3.72-3.64 (4H, m), 3.09 (1H, t, J = 5.1 Hz), 3.04 (1H, t, J = 5.1 Hz), 2.83 (1H, t, J = 5.2 Hz), 2.80 (1H, t, J = 5.0 Hz), 1.49 (9H, s).
MS(ESI) : 262 (M-tBu+H)+.
Reference Example 13 Synthesis of tert-butyl 9-methoxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.26 (1H, d, J = 9.0 Hz), 6.85 (1H, d, J = 2.4 Hz), 6.82 (1H, dd, J = 8.8, 2.7 Hz), 3.84 (3H, s), 3.72-3.64 (4H, m), 3.09 (1H, t, J = 5.1 Hz), 3.04 (1H, t, J = 5.1 Hz), 2.83 (1H, t, J = 5.2 Hz) , 2.80 (1H, t, J = 5.0 Hz), 1.49 (9H, s).
MS (ESI): 262 (M-tBu + H) + .
(参考例14)tert−ブチル 10−メトキシ−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.11 (1H, t, J = 8.2 Hz), 6.99 (1H, d, J = 8.3 Hz), 6.60 (1H, d, J = 8.0 Hz), 3.88 (3H, d, J = 6.6 Hz), 3.69-3.62 (4H, m), 3.19 (1H, t, J = 5.2 Hz), 3.15 (1H, t, J = 4.9 Hz), 3.07 (1H, t, J = 5.6 Hz), 3.02 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS(ESI) : 262 (M-tBu+H)+.
Reference Example 14 Synthesis of tert-butyl 10-methoxy-4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.11 (1H, t, J = 8.2 Hz), 6.99 (1H, d, J = 8.3 Hz), 6.60 (1H, d, J = 8.0 Hz), 3.88 (3H , d, J = 6.6 Hz), 3.69-3.62 (4H, m), 3.19 (1H, t, J = 5.2 Hz), 3.15 (1H, t, J = 4.9 Hz), 3.07 (1H, t, J = 5.6 Hz), 3.02 (1H, t, J = 5.2 Hz), 1.49 (9H, s).
MS (ESI): 262 (M-tBu + H) + .
(実施例1)7−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, DMSO-d6) δ: 9.31 (1H, brs), 7.17 (1H, t, J = 7.8 Hz), 7.11 (1H, dd, J = 7.8, 1.0 Hz), 6.90 (1H, d, J = 7.8 Hz), 3.91 (3H, s), 3.36 (4H, t, J = 5.6 Hz), 3.23 (2H, t, J = 5.1 Hz), 2.99 (2H, t, J = 5.1 Hz).
MS(ESI) : 218 (M+H)+.
Example 1 Synthesis of 7-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, DMSO-d 6 ) δ: 9.31 (1H, brs), 7.17 (1H, t, J = 7.8 Hz), 7.11 (1H, dd, J = 7.8, 1.0 Hz), 6.90 (1H, d, J = 7.8 Hz), 3.91 (3H, s), 3.36 (4H, t, J = 5.6 Hz), 3.23 (2H, t, J = 5.1 Hz), 2.99 (2H, t, J = 5.1 Hz) .
MS (ESI): 218 (M + H) + .
(比較例1)8−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, CD3OD) δ: 7.35 (1H, dd, J = 8.5, 2.0 Hz), 7.00 (1H, t, J = 2.2 Hz), 6.87 (1H, dt, J = 8.5, 2.3 Hz), 3.85 (3H, d, J = 2.4 Hz), 3.49 (4H, q, J = 5.8 Hz), 3.27 (2H, t, J = 5.7 Hz), 3.06 (2H, t, J = 5.6 Hz).
MS(ESI) : 218 (M+H)+.
Comparative Example 1 Synthesis of 8-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, CD 3 OD) δ: 7.35 (1H, dd, J = 8.5, 2.0 Hz), 7.00 (1H, t, J = 2.2 Hz), 6.87 (1H, dt, J = 8.5, 2.3 Hz) ), 3.85 (3H, d, J = 2.4 Hz), 3.49 (4H, q, J = 5.8 Hz), 3.27 (2H, t, J = 5.7 Hz), 3.06 (2H, t, J = 5.6 Hz).
MS (ESI): 218 (M + H) + .
(実施例2)9−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, DMSO-d6) δ: 9.23 (1H, brs), 7.39 (1H, d, J = 8.9 Hz), 7.09 (1H, d, J = 2.4 Hz), 6.85 (1H, dd, J = 9.0, 2.7 Hz), 3.78 (3H, s), 3.38-3.35 (4H, m), 3.21 (2H, t, J = 5.5 Hz), 3.00 (2H, t, J = 5.6 Hz).
MS(ESI) : 218 (M+H)+.
Example 2 Synthesis of 9-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, DMSO-d 6 ) δ: 9.23 (1H, brs), 7.39 (1H, d, J = 8.9 Hz), 7.09 (1H, d, J = 2.4 Hz), 6.85 (1H, dd, J = 9.0, 2.7 Hz), 3.78 (3H, s), 3.38-3.35 (4H, m), 3.21 (2H, t, J = 5.5 Hz), 3.00 (2H, t, J = 5.6 Hz).
MS (ESI): 218 (M + H) + .
(実施例3)10−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, CD3OD) δ: 7.18 (1H, t, J = 8.2 Hz), 7.00 (1H, t, J = 8.3 Hz), 6.72 (1H, d, J = 8.0 Hz), 3.90 (3H, s), 3.49-3.46 (4H, m), 3.39 (2H, t, J = 5.7 Hz), 3.25 (2H, t, J = 5.7 Hz).
MS(ESI) : 218 (M+H)+.
Example 3 Synthesis of 10-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, CD 3 OD) δ: 7.18 (1H, t, J = 8.2 Hz), 7.00 (1H, t, J = 8.3 Hz), 6.72 (1H, d, J = 8.0 Hz), 3.90 ( 3H, s), 3.49-3.46 (4H, m), 3.39 (2H, t, J = 5.7 Hz), 3.25 (2H, t, J = 5.7 Hz).
MS (ESI): 218 (M + H) + .
(参考例15)7−(メチルチオ)−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピンの合成:
1H NMR (400MHz, CDCl3) δ: 7.26-7.24 (1H, m), 7.18-7.13 (2H, m), 3.13-3.08 (6H, m), 2.76 (2H, t, J = 5.4 Hz), 2.58 (3H, s).
MS(ESI) : 234 (M+H)+.
Reference Example 15 Synthesis of 7- (methylthio) -2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine:
1 H NMR (400MHz, CDCl 3 ) δ: 7.26-7.24 (1H, m), 7.18-7.13 (2H, m), 3.13-3.08 (6H, m), 2.76 (2H, t, J = 5.4 Hz), 2.58 (3H, s).
MS (ESI): 234 (M + H) + .
(参考例16)tert−ブチル 9−(メチルチオ)−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.36 (1H, s), 7.30 (1H, d, J = 8.5 Hz), 7.21 (1H, dd, J = 8.5, 1.7 Hz), 3.68 (4H, dt, J = 18.0, 6.5 Hz), 3.10 (1H, t, J = 5.4 Hz), 3.05 (1H, t, J = 5.2 Hz), 2.85 (1H, t, J = 5.6 Hz), 2.80 (1H, t, J = 5.2 Hz), 2.51 (3H, s), 1.49 (9H, s).
MS(ESI) : 278 (M-tBu+H)+.
Reference Example 16 Synthesis of tert-butyl 9- (methylthio) -4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.36 (1H, s), 7.30 (1H, d, J = 8.5 Hz), 7.21 (1H, dd, J = 8.5, 1.7 Hz), 3.68 (4H, dt, J = 18.0, 6.5 Hz), 3.10 (1H, t, J = 5.4 Hz), 3.05 (1H, t, J = 5.2 Hz), 2.85 (1H, t, J = 5.6 Hz), 2.80 (1H, t, J = 5.2 Hz), 2.51 (3H, s), 1.49 (9H, s).
MS (ESI): 278 (M-tBu + H) + .
(参考例17)tert−ブチル 10−(メチルチオ)−4,5−ジヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.19 (1H, d, J = 8.8 Hz), 7.15 (1H, t, J = 7.7 Hz), 7.02 (1H, d, J = 7.1 Hz), 3.73-3.62 (4H, m), 3.39 (1H, t, J = 5.4 Hz), 3.33 (1H, t, J = 5.0 Hz), 3.09 (1H, t, J = 5.2 Hz), 3.05 (1H, t, J = 5.4 Hz), 2.51 (3H, s), 1.49 (9H, s).
MS(ESI) : 234 (M-Boc+H)+.
Reference Example 17 Synthesis of tert-butyl 10- (methylthio) -4,5-dihydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.19 (1H, d, J = 8.8 Hz), 7.15 (1H, t, J = 7.7 Hz), 7.02 (1H, d, J = 7.1 Hz), 3.73-3.62 (4H, m), 3.39 (1H, t, J = 5.4 Hz), 3.33 (1H, t, J = 5.0 Hz), 3.09 (1H, t, J = 5.2 Hz), 3.05 (1H, t, J = 5.4 Hz), 2.51 (3H, s), 1.49 (9H, s).
MS (ESI): 234 (M-Boc + H) + .
(実施例4)7−(メチルチオ)−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, D2O) δ: 7.30-7.28 (1H, m), 7.18-7.16 (2H, m), 3.39 (4H, t, J = 5.6 Hz), 3.19 (2H, d, J = 5.6 Hz), 2.96 (2H, t, J = 5.6 Hz), 2.44 (3H, s).
MS(ESI) : 234 (M+H)+.
Example 4 Synthesis of 7- (methylthio) -2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, D 2 O) δ: 7.30-7.28 (1H, m), 7.18-7.16 (2H, m), 3.39 (4H, t, J = 5.6 Hz), 3.19 (2H, d, J = 5.6 Hz), 2.96 (2H, t, J = 5.6 Hz), 2.44 (3H, s).
MS (ESI): 234 (M + H) + .
(実施例5)9−(メチルチオ)−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, D2O) δ: 7.37 (1H, d, J = 2.0 Hz), 7.31 (1H, d, J = 8.5 Hz), 7.17 (1H, dd, J = 8.7, 1.8 Hz), 3.41-3.38(4H, m), 3.16 (2H, t, J = 5.7 Hz), 2.95 (2H, t, J = 5.6 Hz), 2.39 (3H, s).
MS(ESI) : 234 (M+H)+.
Example 5 Synthesis of 9- (methylthio) -2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, D 2 O) δ: 7.37 (1H, d, J = 2.0 Hz), 7.31 (1H, d, J = 8.5 Hz), 7.17 (1H, dd, J = 8.7, 1.8 Hz), 3.41-3.38 (4H, m), 3.16 (2H, t, J = 5.7 Hz), 2.95 (2H, t, J = 5.6 Hz), 2.39 (3H, s).
MS (ESI): 234 (M + H) + .
(実施例6)10−(メチルチオ)−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, D2O) δ: 7.20 (1H, d, J = 8.3 Hz), 7.16 (1H, t, J = 7.7 Hz), 7.04 (1H, d, J = 7.1 Hz), 3.42-3.39 (6H, m), 3.16 (2H, t, J = 5.7 Hz), 2.41 (3H, s).
MS(ESI) : 234 (M+H)+.
Example 6 Synthesis of 10- (methylthio) -2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, D 2 O) δ: 7.20 (1H, d, J = 8.3 Hz), 7.16 (1H, t, J = 7.7 Hz), 7.04 (1H, d, J = 7.1 Hz), 3.42- 3.39 (6H, m), 3.16 (2H, t, J = 5.7 Hz), 2.41 (3H, s).
MS (ESI): 234 (M + H) + .
(参考例18)10−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピンの合成:
1H NMR (400MHz, CDCl3) δ: 7.10 (1H, t, J = 8.2 Hz), 6.99 (1H, d, J = 8.0 Hz), 6.59 (1H, d, J = 7.8 Hz), 3.88 (3H, s), 3.10 (4H, s), 3.08-3.05 (2H, m), 3.01-2.98 (2H, m).
MS(ESI) : 218 (M+H)+.
Reference Example 18 Synthesis of 10-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine:
1 H NMR (400MHz, CDCl 3 ) δ: 7.10 (1H, t, J = 8.2 Hz), 6.99 (1H, d, J = 8.0 Hz), 6.59 (1H, d, J = 7.8 Hz), 3.88 (3H , s), 3.10 (4H, s), 3.08-3.05 (2H, m), 3.01-2.98 (2H, m).
MS (ESI): 218 (M + H) + .
(実施例7)10−メトキシ−3−メチル−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, D2O) δ: 7.14 (1H, t, J = 8.2 Hz), 7.00 (1H, d, J = 8.3 Hz), 6.71 (1H, d, J = 8.0 Hz), 3.79 (3H, s), 3.36 (4H, dd, J = 8.9, 5.0 Hz), 3.22 (2H, t, J = 5.4 Hz), 3.13 (2H, t, J = 5.6 Hz), 2.82 (3H, s).
MS(ESI) : 232 (M+H)+.
Example 7 Synthesis of 10-methoxy-3-methyl-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, D 2 O) δ: 7.14 (1H, t, J = 8.2 Hz), 7.00 (1H, d, J = 8.3 Hz), 6.71 (1H, d, J = 8.0 Hz), 3.79 ( 3H, s), 3.36 (4H, dd, J = 8.9, 5.0 Hz), 3.22 (2H, t, J = 5.4 Hz), 3.13 (2H, t, J = 5.6 Hz), 2.82 (3H, s).
MS (ESI): 232 (M + H) + .
(実施例8)3−エチル−10−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, D2O) δ: 7.13 (1H, t, J = 8.0 Hz), 6.98 (1H, d, J = 8.0 Hz), 6.69 (1H, d, J = 8.0 Hz), 3.77 (3H, s), 3.47-3.44 (4H, m), 3.25-3.19 (4H, m), 3.13 (2H, t, J = 5.1 Hz), 1.24 (2H, t, J = 7.2 Hz).
MS(ESI) : 246 (M+H)+.
Example 8 Synthesis of 3-ethyl-10-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, D 2 O) δ: 7.13 (1H, t, J = 8.0 Hz), 6.98 (1H, d, J = 8.0 Hz), 6.69 (1H, d, J = 8.0 Hz), 3.77 ( 3H, s), 3.47-3.44 (4H, m), 3.25-3.19 (4H, m), 3.13 (2H, t, J = 5.1 Hz), 1.24 (2H, t, J = 7.2 Hz).
MS (ESI): 246 (M + H) + .
(比較例2)3−イソプロピル−10−メトキシ−2,3,4,5−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, D2O) δ: 7.14 (1H, t, J = 7.6 Hz), 6.99 (1H, d, J = 8.8 Hz), 6.70 (1H, d, J = 8.0 Hz), 3.78 (3H, s), 3.65-3.58 (1H, m), 3.44 (4H, brs), 3.27 (2H, brs), 3.15 (2H, d, J = 5.6 Hz), 1.25 (6H, d, J = 6.6 Hz).
MS(ESI) : 260 (M+H)+.
Comparative Example 2 Synthesis of 3-isopropyl-10-methoxy-2,3,4,5-tetrahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, D 2 O) δ: 7.14 (1H, t, J = 7.6 Hz), 6.99 (1H, d, J = 8.8 Hz), 6.70 (1H, d, J = 8.0 Hz), 3.78 ( 3H, s), 3.65-3.58 (1H, m), 3.44 (4H, brs), 3.27 (2H, brs), 3.15 (2H, d, J = 5.6 Hz), 1.25 (6H, d, J = 6.6 Hz ).
MS (ESI): 260 (M + H) + .
(参考例19)(5aS,10bS)−tert−ブチル 4,5,5a,10b−テトラヒドロ−1H−ベンゾフロ[2,3−d]アゼピン−3(2H)−カルボキシラートの合成:
1H NMR (400MHz, CDCl3) δ: 7.13 (1H, td, J = 8.0, 0.7 Hz), 7.09 (1H, d, J = 7.3 Hz), 6.86 (1H, td, J = 7.4, 0.8 Hz), 6.77 (1H, d, J = 8.0Hz), 5.04 (1H, td, J = 12.4, 4.8 Hz), 3.72-3.67 (1H, m), 3.55-3.43 (3H, m), 3.27-3.20 (1H, m), 2.20-2.11 (2H, m), 2.01-1.94 (2H, m), 1.46 (9H, s).
MS(ESI) : 234 (M-tBu +H)+.
Reference Example 19 Synthesis of (5aS, 10bS) -tert-butyl 4,5,5a, 10b-tetrahydro-1H-benzofuro [2,3-d] azepine-3 (2H) -carboxylate:
1 H NMR (400MHz, CDCl 3 ) δ: 7.13 (1H, td, J = 8.0, 0.7 Hz), 7.09 (1H, d, J = 7.3 Hz), 6.86 (1H, td, J = 7.4, 0.8 Hz) , 6.77 (1H, d, J = 8.0Hz), 5.04 (1H, td, J = 12.4, 4.8 Hz), 3.72-3.67 (1H, m), 3.55-3.43 (3H, m), 3.27-3.20 (1H , m), 2.20-2.11 (2H, m), 2.01-1.94 (2H, m), 1.46 (9H, s).
MS (ESI): 234 (M-tBu + H) + .
(比較例3)(5aS,10bS)−2,3,4,5,5a,10b−ヘキサヒドロ−1H−ベンゾフロ[2,3−d]アゼピン塩酸塩の合成:
1H NMR (400MHz, CDCl3) δ: 7.17 (1H, t, J = 7.8 Hz), 7.06 (1H, d, J = 7.6 Hz), 6.90 (1H, td, J = 7.4, 0.9 Hz), 6.80 (1H, d, J = 8.0 Hz), 5.11 (1H, dt, J = 9.8, 4.4 Hz), 3.86-3.81 (1H, m), 3.37-3.27 (2H, m), 3.22-3.16 (1H, m), 2.69 (1H, t, J = 11.1 Hz), 2.54-2.46 (3H, m), 2.20 (1H, ddd, J = 16.1, 7.1, 5.1 Hz).
MS(ESI) : 190 (M+H)+.
Comparative Example 3 Synthesis of (5aS, 10bS) -2,3,4,5,5a, 10b-Hexahydro-1H-benzofuro [2,3-d] azepine hydrochloride:
1 H NMR (400MHz, CDCl 3 ) δ: 7.17 (1H, t, J = 7.8 Hz), 7.06 (1H, d, J = 7.6 Hz), 6.90 (1H, td, J = 7.4, 0.9 Hz), 6.80 (1H, d, J = 8.0 Hz), 5.11 (1H, dt, J = 9.8, 4.4 Hz), 3.86-3.81 (1H, m), 3.37-3.27 (2H, m), 3.22-3.16 (1H, m ), 2.69 (1H, t, J = 11.1 Hz), 2.54-2.46 (3H, m), 2.20 (1H, ddd, J = 16.1, 7.1, 5.1 Hz).
MS (ESI): 190 (M + H) + .
(実施例9)ヒト5−HT2C受容体作動活性:
ヒト5−HT2C受容体を安定発現した細胞(以下、ヒト5−HT2C受容体発現細胞)を用いて、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩のヒト5−HT2C受容体作動活性を評価した。
Example 9 Human 5-HT2C receptor agonist activity:
Using a cell that stably expresses human 5-HT2C receptor (hereinafter, human 5-HT2C receptor-expressing cell), the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable one thereof The acid addition salts were evaluated for human 5-HT2C receptor agonist activity.
ヒト5−HT2C受容体遺伝子を発現ベクターpCI−neo(Promega)にクローン化することにより作製したpCI−neo−HTR2Cを、HEK―293細胞(American Type Culture Collection)に導入し、導入した細胞から限界希釈法にて単一クローンを取得し、ヒト5−HT2C受容体発現細胞を作製した。 PCI-neo-HTR2C prepared by cloning the human 5-HT2C receptor gene into the expression vector pCI-neo (Promega) was introduced into HEK-293 cells (American Type Culture Collection), and the limit from the introduced cells. A single clone was obtained by the dilution method to prepare human 5-HT2C receptor-expressing cells.
ヒト5−HT2C受容体発現細胞は、10%ウシ胎児血清(透析処理済み)、1%MEM用非必須アミノ酸、100U/mLペニシリン、100μg/mLストレプトマイシン及び500μg/mL Geneticinを含むDulbecco’s Modified Eagle’s Mediumを培養液として用いて、37℃、5%CO2インキュベーター中で培養維持した。 Human 5-HT2C receptor expressing cells are 10% fetal bovine serum (dialyzed), 1% MEM non-essential amino acids, 100 U / mL penicillin, 100 μg / mL streptomycin and 500 μg / mL Geneticin Dulbecco's Modified Eagle The culture medium was maintained in a 5% CO 2 incubator at 37 ° C. using 's Medium as a culture solution.
ヒト5−HT2C受容体発現細胞を播種用培養液に懸濁し、96well black plate(Corning)の各ウェルに8×104個になるように播種し、37℃、5%CO2で一晩培養し、以下の評価に用いた。播種用培養液として、ヒト5−HT2C受容体発現細胞には、10%ウシ胎児血清(透析処理済み)、1%MEM用非必須アミノ酸、100U/mLペニシリン及び100μg/mLストレプトマイシンを含むDulbecco’s Modified Eagle’s Mediumを使用した。 Human 5-HT2C receptor-expressing cells are suspended in a culture medium for seeding, seeded at 8 × 10 4 cells in each well of 96-well black plate (Corning), and cultured overnight at 37 ° C. and 5% CO 2. And used for the following evaluation. As a culture medium for seeding, human 5-HT2C receptor-expressing cells include Dulbecco's containing 10% fetal bovine serum (dialyzed), 1% non-essential amino acid for MEM, 100 U / mL penicillin and 100 μg / mL streptomycin. Modified Eagle's Medium was used.
ヒト5−HT2C受容体作動活性の評価は、ヒト5−HT2C受容体の活性化による細胞内カルシウム濃度の上昇を測定することで行った。 Evaluation of human 5-HT2C receptor agonistic activity was performed by measuring an increase in intracellular calcium concentration due to activation of human 5-HT2C receptor.
細胞内カルシウム濃度の測定には、FLIPR(登録商標) Calcium5 Assay Kit(Molecular Devices)を用いた。アッセイバッファーとして、20mmol/L HEPES(pH7.3)を含むHank’s balanced salt solutionに2.5mmol/L プロベネシド(SIGMA)を加えたものを用いた。 For the measurement of intracellular calcium concentration, FLIPR (registered trademark) Calcium 5 Assay Kit (Molecular Devices) was used. As the assay buffer, Hank's balanced salt solution containing 20 mmol / L HEPES (pH 7.3) added with 2.5 mmol / L probenecid (SIGMA) was used.
ヒト5−HT2C受容体発現細胞を播種したプレートの培地を除去し、上記Kitに添付の説明書に従いアッセイバッファーで溶解したFLIPR(登録商標) Calcium5 Assay Reagent(上記Kitに含まれる)を150μL/ウェル加え、遮光下37℃、5%CO2で60分間培養し、さらに室温、遮光下で15分間静置した。FLIPR(登録商標) TETRA(Molecular Devices)を用いて、被験化合物50μL/ウェルを自動添加し、励起波長470−495nm、蛍光波長515−575nmで蛍光強度を5分間測定した。 The medium of the plate seeded with human 5-HT2C receptor-expressing cells was removed, and FLIPR (registered trademark) Calcium5 Assay Reagent (included in the Kit) 150 μL / well dissolved in the assay buffer according to the instructions attached to the Kit In addition, the cells were incubated at 37 ° C. and 5% CO 2 for 60 minutes under light shielding, and further allowed to stand at room temperature for 15 minutes under light shielding. Using FLIPR (registered trademark) TETRA (Molecular Devices), 50 μL / well of a test compound was automatically added, and the fluorescence intensity was measured at an excitation wavelength of 470-495 nm and a fluorescence wavelength of 515-575 nm for 5 minutes.
各被験化合物の評価は、公比3の濃度で、各濃度につきtriplicateで実施した。また、対照として、医薬品として販売されている5−HT2C受容体作動薬であるロルカセリン(Selleck Chemicals)を用いた。アッセイバッファー添加時の蛍光強度を0%反応値とし、ヒト5−HT2受容体作動薬であるセロトニン(ナカライテスク)を被験化合物の代わりに添加したときの最大蛍光強度を100%反応値として、各被験化合物の各濃度における反応率(%)を求めた。各被験化合物の各濃度における反応率(%)を用いて線形回帰により各被験化合物のEC50値(セロトニンの100%反応値に対して50%の反応を示す濃度)を求めた。なお、各被験化合物及びセロトニンはDMSOに溶解した後、アッセイバッファーで希釈したものを用いた。 Evaluation of each test compound was carried out by triplicate at each concentration at a common ratio of 3. As a control, lorcaserin (Selleck Chemicals), which is a 5-HT2C receptor agonist sold as a pharmaceutical, was used. The fluorescence intensity at the time of assay buffer addition was defined as 0% response value, and the maximum fluorescence intensity when serotonin (Nacalai Tesque), which is a human 5-HT2 receptor agonist, was added instead of the test compound was defined as 100% response value. The reaction rate (%) at each concentration of the test compound was determined. The EC 50 value of each test compound (concentration showing 50% response to 100% response value of serotonin) was determined by linear regression using the reaction rate (%) at each concentration of each test compound. Each test compound and serotonin were dissolved in DMSO and then diluted with an assay buffer.
各被験化合物のEC50値を表2に示す。表2の結果のように、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩は、ロルカセリンと同等かそれに準ずる強力なヒト5−HT2C受容体作動活性を有することが示された。 The EC 50 values for each test compound are shown in Table 2. As shown in Table 2, the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof is a potent human 5-HT2C receptor equivalent to or equivalent to lorcaserine. It was shown to have agonist activity.
(実施例10)麻酔下ラット漏出時圧に対する作用:
麻酔下ラット漏出時圧測定法を用いて、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩の腹圧性尿失禁に対する効果を評価した。
(Example 10) Effect on pressure during leakage of rats under anesthesia:
Using an anesthetized rat leakage pressure measurement method, the effect of tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof on stress urinary incontinence was evaluated.
体重215〜365gのSD系雌性ラット(日本チャールス・リバー)をイソフルラン(マイラン製薬)で麻酔し、排尿反射を消失させる目的で、脊髄をT8−T9レベルで切断した。次に、下腹部を切開し、両側の尿管を結紮後、腎臓側を切断した。さらに、2本のカテーテル(PE−90及びPE−50;Becton&Dickinson)を膀胱内に留置した。麻酔から覚醒する直前にウレタン(SIGMA)を腹腔内に追加麻酔した後、腹筋及び皮膚の切開部をそれぞれ縫合した。PE−50型膀胱内カテーテルは圧トランスデューサーに接続し、PE−90型カテーテルには、生理食塩液を満たした60mLシリンジに接続した。トランスデューサーの信号をアンプ(血圧用増幅ユニットAP−641G;日本光電)及びデータ解析装置(PowerLab;AD Instrumants Inc.)を介してコンピュータへ送り、ハードディスク上に記録し解析した。生理食塩液を満たした60mLシリンジを垂直に上昇させることにより膀胱内に生理食塩液を注入し、尿道口から生理食塩液が漏れ出た際の最大膀胱内圧(漏出時圧)を測定した。尿道口から生理食塩液が漏れ出たことを確認した後、生理食塩液の膀胱注入を停止し、膀胱内に滞留した生理食塩液を排出した。 SD female rats (Nippon Charles River) weighing 215 to 365 g were anesthetized with isoflurane (Mylan Pharmaceutical), and the spinal cord was cut at the T8-T9 level for the purpose of eliminating the micturition reflex. Next, the lower abdomen was incised, the ureters on both sides were ligated, and the kidney side was cut. In addition, two catheters (PE-90 and PE-50; Becton & Dickinson) were placed in the bladder. Immediately before waking up from anesthesia, urethane (SIGMA) was additionally anesthetized in the abdominal cavity, and then the abdominal muscles and skin incisions were sutured. The PE-50 type intravesical catheter was connected to a pressure transducer, and the PE-90 type catheter was connected to a 60 mL syringe filled with physiological saline. The transducer signal was sent to a computer via an amplifier (blood pressure amplification unit AP-641G; Nihon Kohden) and a data analyzer (PowerLab; AD Instruments Inc.), recorded on a hard disk, and analyzed. The physiological saline was injected into the bladder by vertically raising a 60 mL syringe filled with physiological saline, and the maximum intravesical pressure (leakage pressure) when physiological saline leaked from the urethral orifice was measured. After confirming that the physiological saline solution leaked from the urethral orifice, the bladder infusion of the physiological saline solution was stopped, and the physiological saline solution retained in the bladder was discharged.
生理食塩液の膀胱注入及び排出を繰り返し、安定した漏出時圧が3回得られた直後に、被験化合物を尾静脈内に投与した。被験化合物投与5分後に生理食塩液を膀胱注入し、漏出時圧を測定した。被験化合物投与直前3回の漏出時圧の平均値に対する投与後の漏出時圧の変化率(%)を評価値とした。 The bladder was infused and excreted with physiological saline, and the test compound was administered into the tail vein immediately after a stable leak pressure was obtained three times. Saline solution was injected into the urinary bladder 5 minutes after administration of the test compound, and the leakage pressure was measured. The rate of change (%) in leakage pressure after administration with respect to the average value of leakage pressure three times immediately before test compound administration was used as the evaluation value.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩として、実施例7の化合物を用いた。実施例7の化合物を、生理食塩液に溶解して、1mg/kgの用量で1回投与した(以下、実施例7の化合物投与群)。また、対照として、医薬品として販売されている5−HT2C受容体作動薬であるロルカセリン(Selleck Chemicals)を用いた。ロルカセリンを生理食塩液に溶解して、1mg/kgの用量で1回投与した(以下、ロルカセリン投与群)。なお、コントロールとして、生理食塩液を同一用量を投与した群を設けた(以下、コントロール群)。 The compound of Example 7 was used as the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof. The compound of Example 7 was dissolved in physiological saline and administered once at a dose of 1 mg / kg (hereinafter, the compound administration group of Example 7). As a control, lorcaserin (Selleck Chemicals), which is a 5-HT2C receptor agonist sold as a pharmaceutical, was used. Lorcaserin was dissolved in physiological saline and administered once at a dose of 1 mg / kg (hereinafter referred to as lorcaserin administration group). As a control, a group to which the same dose of physiological saline was administered was provided (hereinafter, control group).
実施例7の化合物の評価結果を図1に示す。図1の縦軸は被験化合物投与後の漏出時圧の変化率(%)(平均値±標準誤差;N=4〜6)を示す。図1中の「生理食塩液」はコントロール群、「ロルカセリン」はロルカセリン投与群、「実施例7の化合物」は実施例7の化合物投与群を示す。図1中の「*」は、コントロール群(図中の「生理食塩液」)との比較で統計学的に有意(p<0.05、Dunnett検定)な差であることを示す。 The evaluation results of the compound of Example 7 are shown in FIG. The vertical axis | shaft of FIG. 1 shows the change rate (%) of the pressure at the time of leakage after test compound administration (average value +/- standard error; N = 4-6). In FIG. 1, “physiological saline” indicates a control group, “lorcaserine” indicates a lorcaserine administration group, and “compound of Example 7” indicates a compound administration group of Example 7. “*” In FIG. 1 indicates a statistically significant difference (p <0.05, Dunnett's test) in comparison with the control group (“saline solution” in the figure).
実施例7の化合物投与群及びロルカセリン投与群の漏出時圧の変化率は、コントロール群の漏出時圧の変化率と比較して統計学的に有意に上昇した。 The rate of change in leakage pressure in the compound administration group of Example 7 and the lorcaserine administration group was statistically significantly higher than the rate of change in leakage pressure in the control group.
この結果から、上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩は、腹圧性尿失禁の治療または予防効果を発揮することが示された。 From this result, it was shown that the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof exhibits a therapeutic or preventive effect on stress urinary incontinence.
上記一般式(I)で示されるテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩は、強力な5−HT2C受容体作動活性を有するため、医薬、特に腹圧性尿失禁の治療剤又は予防剤として利用できる。
Since the tetrahydrobenzoflozepine derivative represented by the above general formula (I) or a pharmacologically acceptable acid addition salt thereof has potent 5-HT2C receptor agonistic activity, it is particularly useful for the treatment of stress urinary incontinence. It can be used as an agent or a preventive agent.
Claims (6)
R2は、水素原子であり、
R3がメトキシ基を表す場合、R4は、水素原子又はメチル基である、
請求項1記載のテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩。 One of R 1 and R 3 is a methoxy group or a methylthio group, and the other is a hydrogen atom;
R 2 is a hydrogen atom,
When R 3 represents a methoxy group, R 4 is a hydrogen atom or a methyl group,
The tetrahydrobenzoflozepine derivative according to claim 1 or a pharmacologically acceptable acid addition salt thereof.
R3は、メトキシ基であり、
R4は、メチル基である、
請求項1記載のテトラヒドロベンゾフロアゼピン誘導体又はその薬理学的に許容される酸付加塩。 R 1 and R 2 are hydrogen atoms;
R 3 is a methoxy group,
R 4 is a methyl group,
The tetrahydrobenzoflozepine derivative according to claim 1 or a pharmacologically acceptable acid addition salt thereof.
The therapeutic agent or preventive agent of stress urinary incontinence which contains the tetrahydro benzo floor zepine derivative as described in any one of Claims 1-3, or its pharmacologically acceptable acid addition salt as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015232678A JP2017100953A (en) | 2015-11-30 | 2015-11-30 | Tetrahydro benzo-furo azepine derivatives and pharmaceutical application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015232678A JP2017100953A (en) | 2015-11-30 | 2015-11-30 | Tetrahydro benzo-furo azepine derivatives and pharmaceutical application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017100953A true JP2017100953A (en) | 2017-06-08 |
Family
ID=59016137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015232678A Pending JP2017100953A (en) | 2015-11-30 | 2015-11-30 | Tetrahydro benzo-furo azepine derivatives and pharmaceutical application thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017100953A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131902A1 (en) * | 2017-12-27 | 2019-07-04 | 武田薬品工業株式会社 | Therapeutic agent for stress urinary incontinence and fecal incontinence |
WO2023114858A1 (en) * | 2021-12-15 | 2023-06-22 | Delix Therapeutics, Inc. | Benzofuran and benzothiophene psychoplastogens and uses thereof |
-
2015
- 2015-11-30 JP JP2015232678A patent/JP2017100953A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131902A1 (en) * | 2017-12-27 | 2019-07-04 | 武田薬品工業株式会社 | Therapeutic agent for stress urinary incontinence and fecal incontinence |
WO2023114858A1 (en) * | 2021-12-15 | 2023-06-22 | Delix Therapeutics, Inc. | Benzofuran and benzothiophene psychoplastogens and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2596355C (en) | Tumor necrosis factor inhibitors | |
JP4599347B2 (en) | Substituted 3-cyanothiophenacetamides as glucagon receptor antagonists | |
EP3798220B1 (en) | P-phenylenediamine derivative as potassium channel regulator and preparation method and medical application thereof | |
CN110946854A (en) | Ultrapure tetrahydrocannabinol-11-carboxylic acids | |
WO2024008129A1 (en) | Compound as kat6 inhibitor | |
CN102089302A (en) | Nitrogenated bicyclic heterocyclic compound | |
US20220177485A1 (en) | Camptothecin derivative, preparation method therefor and application thereof | |
US9598434B2 (en) | Benzazepine compound | |
KR100915287B1 (en) | Thiadiazoline derivative | |
JP2017100953A (en) | Tetrahydro benzo-furo azepine derivatives and pharmaceutical application thereof | |
JP2017031088A (en) | Indole derivative and a pharmaceutical use thereof | |
CN108191860B (en) | HIF-2 alpha small molecule inhibitor and application thereof | |
CN110446495B (en) | Delta opioid receptor modulating compounds containing 7-membered aza heterocycles and methods of use and preparation thereof | |
EP4273150A1 (en) | Tricyclic compound, and preparation method therefor and medical use thereof | |
CN115611877A (en) | Sulfonamide compound, preparation method and medical application thereof | |
JP2016222570A (en) | Azepane derivative and pharmaceutical use thereof | |
JP3471778B2 (en) | Tricyclic fused heterocyclic compound, production method and use thereof | |
WO2016152759A1 (en) | 6-AZA-TETRAHYDRO-γ-CARBOLINE DERIVATIVE AND MEDICINAL USE OF SAME | |
DK2810936T3 (en) | Hitherto-unknown acetic acid ester compound or salt thereof | |
CZ53998A3 (en) | Sulfonamide substituted annellated compounds with seven-membered ring, their use and pharmaceutical compositions containing thereof | |
KR102629506B1 (en) | The preparation method of Piperazine-quinoline derivative, 2-ethyl-5-(4-methyl-piperazine-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dehydro-1H-quinoline-4-on | |
CA2442468A1 (en) | Therapeutic agent for bladder hypersensitivity | |
JP2017014121A (en) | Hexahydro-1,4-diazepine derivative and pharmaceutical use thereof | |
AU2014261899A1 (en) | Pharmaceutical use of hexahydro-dibenzo[a,g]quinolizine compounds | |
WO2020019994A1 (en) | Compound having neuroprotective effect, preparation method therefor and use thereof |