JP2017099186A - Power receiving device and power transmission system - Google Patents

Power receiving device and power transmission system Download PDF

Info

Publication number
JP2017099186A
JP2017099186A JP2015230467A JP2015230467A JP2017099186A JP 2017099186 A JP2017099186 A JP 2017099186A JP 2015230467 A JP2015230467 A JP 2015230467A JP 2015230467 A JP2015230467 A JP 2015230467A JP 2017099186 A JP2017099186 A JP 2017099186A
Authority
JP
Japan
Prior art keywords
power
coil
power receiving
power transmission
annular conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015230467A
Other languages
Japanese (ja)
Inventor
隆士 太矢
Takashi Taya
隆士 太矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2015230467A priority Critical patent/JP2017099186A/en
Publication of JP2017099186A publication Critical patent/JP2017099186A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To provide a power receiving device and a power transmission system, capable of suppressing an influence of a magnetic field on the inside or the periphery of the device while suppressing an increase in weight and an increase in cost.CONSTITUTION: The power receiving device includes: a power receiving coil disposed opposite a power transmission coil and receiving electric power transmitted from the power transmission coil in a noncontact manner; and an annular conductor having an annular shape surrounding a central axis of the power reception coil and an annular conductor disposed in a plane in a direction opposing the power transmission coil from the coil surface of the power reception coil.SELECTED DRAWING: Figure 4

Description

本発明は、非接触で電力を受電する受電装置及び非接触で電力を伝送する電力伝送システムに関する。   The present invention relates to a power receiving device that receives power in a contactless manner and a power transmission system that transmits power in a contactless manner.

近年、時計等のウェアラブル機器や電気自動車等への電力供給に際して、非接触で電力を伝送する電力伝送システムが用いられている。かかる電力伝送システムでは、送電装置側のコイル(送電コイル)と受電装置側のコイル(受電コイル)とを対向するように配置し、電力の伝送を行う。電力伝送の方法としては、電磁誘導を用いた電磁誘導方式と、磁界共鳴を用いた磁界共鳴方式とが知られている。電磁誘導方式では、送電コイルに電流を流して磁界を発生させ、誘導磁束を利用して受電コイルに電流を発生させる。磁界共鳴方式では、送電コイル及び受電コイルにキャパシタを接続して共振回路を構成し、送電コイルと受電コイルとを同じ周波数で共振させることにより、受電コイルに電流を生じさせる。   2. Description of the Related Art In recent years, power transmission systems that transmit power in a contactless manner when power is supplied to wearable devices such as watches and electric vehicles have been used. In such a power transmission system, a coil on the power transmission device side (power transmission coil) and a coil on the power reception device side (power reception coil) are arranged so as to face each other to transmit power. As a power transmission method, an electromagnetic induction method using electromagnetic induction and a magnetic field resonance method using magnetic field resonance are known. In the electromagnetic induction method, a magnetic field is generated by causing a current to flow through a power transmission coil, and a current is generated in the power receiving coil using an induced magnetic flux. In the magnetic field resonance method, a capacitor is connected to the power transmission coil and the power reception coil to form a resonance circuit, and the power transmission coil and the power reception coil resonate at the same frequency, thereby generating a current in the power reception coil.

かかる電力伝送システムでは、電力を伝送するために、強力な磁界を発生させる。そこで、発生した磁界が送電装置及び受電装置の周囲に及ぼす影響を低減するため、送電コイルを格納する送電装置のケースや受電コイルを格納する受電装置のケースの表面部に、金属や磁性体等からなる遮蔽シールドを設けて磁界を遮蔽することが考えられた(例えば、特許文献1)。   In such a power transmission system, a strong magnetic field is generated in order to transmit power. Therefore, in order to reduce the influence of the generated magnetic field on the surroundings of the power transmitting device and the power receiving device, a metal or magnetic material is placed on the surface of the case of the power transmitting device storing the power transmitting coil or the case of the power receiving device storing the power receiving coil. It has been considered to shield the magnetic field by providing a shielding shield made of (for example, Patent Document 1).

特許第5759761号公報Japanese Patent No. 5759761

上記のような遮蔽シールドは、送電コイルや受電コイルの開口部を塞ぐように設けられる。従って、例えば時計やウェアラブル端末等の電子機器が受電装置である場合、表示部の周辺に受電コイルを配置すると、遮蔽シールドにより表示部が塞がれてしまい、表示部を視認することができない。このため、受電コイルの開口部周辺には表示部を設けることができず、電子機器のデザインが制約されてしまうという問題があった。   The shielding shield as described above is provided so as to close the openings of the power transmission coil and the power reception coil. Therefore, for example, when an electronic device such as a watch or a wearable terminal is a power receiving device, if the power receiving coil is disposed around the display unit, the display unit is blocked by the shielding shield, and the display unit cannot be visually recognized. For this reason, a display part cannot be provided around the opening part of a receiving coil, and there existed a problem that the design of an electronic device will be restrict | limited.

また、遮蔽シールドは受電コイルの開口部を塞ぐように設けられるため、材料の使用量が多い。このため、受電装置の重量が増加し、コストが増大してしまうという問題があった。   Further, since the shielding shield is provided so as to close the opening of the power receiving coil, the amount of material used is large. For this reason, there existed a problem that the weight of a power receiving apparatus increased and cost increased.

上記課題を解決するため、本発明は、重量の増加やコストの増大を抑えつつ装置内部や周囲に対する磁界の影響を抑えることが可能な受電装置を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a power receiving device capable of suppressing the influence of a magnetic field on the inside and the surroundings of the device while suppressing an increase in weight and an increase in cost.

本発明に係る受電装置は、送電コイルに対向して配置され、前記送電コイルから送電された電力を非接触で受電する受電コイルと、前記受電コイルの中心軸を囲む環状形状を有し、前記受電コイルのコイル面から前記送電コイルに対向する方向の平面内に配された環状導体と、を有することを特徴とすることを特徴とする。   A power receiving device according to the present invention is disposed opposite to a power transmitting coil, has a power receiving coil that receives power transmitted from the power transmitting coil in a contactless manner, and an annular shape surrounding a central axis of the power receiving coil, And an annular conductor disposed in a plane in a direction facing the power transmission coil from the coil surface of the power reception coil.

また、本発明に係る電力伝送システムは、電力を送電する送電コイルと、前記送電コイルに対向して配置され、前記送電コイルから送電された電力を非接触で受電する受電コイルと、前記受電コイルの中心軸を囲む環状形状を有し、前記受電コイルのコイル面を含む平面から前記送電コイルのコイル面を含む平面までの間に位置するように配された環状導体と、を有することを特徴とする。   In addition, a power transmission system according to the present invention includes a power transmission coil that transmits power, a power reception coil that is disposed to face the power transmission coil, and that receives power transmitted from the power transmission coil in a contactless manner, and the power reception coil And an annular conductor disposed so as to be located between a plane including the coil surface of the power receiving coil and a plane including the coil surface of the power transmission coil. And

本発明によれば、重量の増加やコストの増大を抑えつつ装置内部や周囲に対する磁界の影響を抑えることが可能となる。   According to the present invention, it is possible to suppress the influence of a magnetic field on the inside and the surroundings of the apparatus while suppressing an increase in weight and an increase in cost.

本発明の受電装置の構成を模式的に示す図(図1(a))及び平面図(図1(b))である。It is the figure (FIG. 1 (a)) and top view (FIG.1 (b)) which show typically the structure of the power receiving apparatus of this invention. 本発明の送電装置の構成を模式的に示す図(図2(a))及び平面図(図2(b))である。It is a figure (Drawing 2 (a)) and a top view (Drawing 2 (b)) showing typically composition of a power transmission device of the present invention. 送電回路(図3(a))及び受電回路(図3(b))の構成を示す回路図である。It is a circuit diagram which shows the structure of a power transmission circuit (FIG.3 (a)) and a power receiving circuit (FIG.3 (b)). 受電コイル、環状導体及び送電コイルの位置関係を模式的に示す斜視図(図4(a))、上面図(図4(b))及び断面図(図4(c))である。They are a perspective view (Drawing 4 (a)), a top view (Drawing 4 (b)), and a sectional view (Drawing 4 (c)) showing typically a positional relation of a receiving coil, an annular conductor, and a transmitting coil. 実施例1の電力伝送システムにおいて生じる磁界の磁力線を、環状導体が存在しない場合の磁界の磁力線と比較して示す図である。It is a figure which compares and compares the magnetic force line of the magnetic field produced in the electric power transmission system of Example 1 with the magnetic force line of a magnetic field when an annular conductor does not exist. 実施例2の受電装置の構成を模式的に示す図(図6(a))及び平面図(図6(b))である。FIG. 6 is a diagram (FIG. 6A) and a plan view (FIG. 6B) schematically illustrating a configuration of a power receiving device according to a second embodiment. 実施例2の受電コイル、環状導体及び送電コイルの位置関係を模式的に示す上面図(図7(a))及び断面図(図7(b))である。It is the upper side figure (Drawing 7 (a)) and sectional view (Drawing 7 (b)) which show typically the positional relationship of the receiving coil of Example 2, a ring conductor, and a power transmission coil. 実施例2の電力伝送システムにおいて生じる磁界の磁力線を、環状導体が存在しない場合の磁界の磁力線と比較して示す図である。It is a figure which compares the magnetic force line of the magnetic field produced in the electric power transmission system of Example 2 with the magnetic force line of a magnetic field when an annular conductor does not exist. 環状導体が受電装置と同一平面内に形成されている場合の受電装置の構成を模式的に示す図である。It is a figure which shows typically the structure of a power receiving apparatus in case an annular conductor is formed in the same plane as a power receiving apparatus.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1(a)は、受電装置10の構成を模式的に示す図であり、図1(b)は図1(a)の1a−1b線に沿った水平方向の断面図(平面図)である。受電装置10は、例えば時計等の機器であり、本体部11、受電コイル12及び環状導体13を有する。なお、図1(b)では本体部11の図示を省略している。   FIG. 1A is a diagram schematically showing the configuration of the power receiving device 10, and FIG. 1B is a horizontal sectional view (plan view) taken along line 1a-1b in FIG. 1A. is there. The power receiving device 10 is a device such as a watch, for example, and includes a main body 11, a power receiving coil 12, and an annular conductor 13. In addition, illustration of the main-body part 11 is abbreviate | omitted in FIG.1 (b).

本体部11は、受電回路、液晶表示部(LCD)及び回路基板等の電子回路を含む。本体部11は、受電コイル12を挟んで環状導体13と対向する位置に配置されている。受電装置10における本体部11の配置領域付近を表側、環状導体13の配置領域付近を裏側とすると、液晶表示部は、表側の表面部(本体部11の受電コイル12と対向する面とは反対側の表面部)に形成されている。また、受電コイル12側の位置に磁気シールド等を有していてもよい。   The main body 11 includes electronic circuits such as a power receiving circuit, a liquid crystal display (LCD), and a circuit board. The main body 11 is disposed at a position facing the annular conductor 13 with the power receiving coil 12 interposed therebetween. When the vicinity of the arrangement region of the main body 11 in the power receiving device 10 is the front side and the vicinity of the arrangement region of the annular conductor 13 is the back side, the liquid crystal display unit is opposite to the front side surface portion (the surface opposite to the power receiving coil 12 of the main body 11). Side surface portion). Moreover, you may have a magnetic shield etc. in the position by the side of the receiving coil 12. FIG.

受電コイル12は、例えば円環状のコイル面(開口部)を有する円形コイルである。受電コイル12は、受電時には後述する送電コイル21と対向して配置され、図1(a)に示すA方向から伝送された電力を非接触で受電する。受電コイル12は、後述するように整流回路や負荷等と接続され、受電回路が構成されている。   The power receiving coil 12 is, for example, a circular coil having an annular coil surface (opening). The power receiving coil 12 is disposed so as to face a power transmitting coil 21 described later at the time of power reception, and receives the power transmitted from the direction A shown in FIG. As will be described later, the power receiving coil 12 is connected to a rectifier circuit, a load, and the like to form a power receiving circuit.

環状導体13は、受電コイル12の中心軸を囲む円環状の形状を有し、例えば銅やステンレス等の導電性の材料から構成されている。環状導体13の直径は、受電コイル12の直径よりも大きい。環状導体13は、受電コイル12を介して本体部11と対向する位置に設けられている。環状導体13は、A方向から見た場合、電力伝送時に受電コイル12よりも送電側に近くなる位置に配置されている。   The annular conductor 13 has an annular shape surrounding the central axis of the power receiving coil 12 and is made of a conductive material such as copper or stainless steel. The diameter of the annular conductor 13 is larger than the diameter of the power receiving coil 12. The annular conductor 13 is provided at a position facing the main body 11 via the power receiving coil 12. When viewed from the A direction, the annular conductor 13 is arranged at a position closer to the power transmission side than the power receiving coil 12 during power transmission.

図2(a)は、送電装置20の構造を模式的に示す図であり、図2(b)は図2(a)の2a−2b線に沿った水平方向の断面図(平面図)である。   2A is a diagram schematically illustrating the structure of the power transmission device 20, and FIG. 2B is a horizontal sectional view (plan view) taken along line 2a-2b in FIG. 2A. is there.

送電コイル21は、円形のコイル面(開口部)を有する円形コイルである。送電コイル21は、図2(a)に示すB方向に電力の伝送を行う。送電コイル21には交流電流源、電力増幅器及び共振キャパシタが接続され、送電回路を構成している。   The power transmission coil 21 is a circular coil having a circular coil surface (opening). The power transmission coil 21 transmits power in the B direction shown in FIG. An AC current source, a power amplifier, and a resonant capacitor are connected to the power transmission coil 21 to constitute a power transmission circuit.

図3(a)は、かかる送電回路23の構成を示す回路図である。送電回路23は、交流電流源ACと、電力増幅器PAと、送電側共振回路22と、を含む。送電側共振回路22は、直列接続された送電コイル21及び共振キャパシタC1を含む。   FIG. 3A is a circuit diagram showing the configuration of the power transmission circuit 23. The power transmission circuit 23 includes an alternating current source AC, a power amplifier PA, and a power transmission side resonance circuit 22. The power transmission side resonance circuit 22 includes a power transmission coil 21 and a resonance capacitor C1 connected in series.

交流電流源ACは、例えばISM(Industry Science Medical)バンドの周波数帯として用いられる13.56MHzの周波数の交流電流(交流信号)を生成する。電力増幅器PAは、生成された交流電流を増幅して送電側共振回路22に供給する。送電側共振回路22は、13.56MHzの共振周波数で共振し、交流磁界を発生させる。   The AC current source AC generates an AC current (AC signal) having a frequency of 13.56 MHz, which is used as a frequency band of, for example, an ISM (Industry Science Medical) band. The power amplifier PA amplifies the generated alternating current and supplies it to the power transmission side resonance circuit 22. The power transmission side resonance circuit 22 resonates at a resonance frequency of 13.56 MHz and generates an AC magnetic field.

図3(b)は、受電コイル12を含む受電回路14の構成を示す回路図である。受電回路14は、受電側共振回路15と、整流回路16と、負荷RXと、を含む。受電側共振回路15は、並列接続された受電コイル12及び共振キャパシタC2を含む。整流回路16は、整流ダイオードD1〜D4を含む。   FIG. 3B is a circuit diagram illustrating a configuration of the power receiving circuit 14 including the power receiving coil 12. The power receiving circuit 14 includes a power receiving side resonance circuit 15, a rectifier circuit 16, and a load RX. The power reception side resonance circuit 15 includes a power reception coil 12 and a resonance capacitor C2 connected in parallel. The rectifier circuit 16 includes rectifier diodes D1 to D4.

受電側共振回路15は、送電側共振回路22の共振により発生した磁界の変動により、送電側共振回路22と同じ共振周波数、すなわち13.56MHzの共振周波数で共振する。これにより、受電側共振回路15には、周波数13.56MHzの交流電流が生成される。   The power reception side resonance circuit 15 resonates at the same resonance frequency as that of the power transmission side resonance circuit 22, that is, a resonance frequency of 13.56 MHz due to the fluctuation of the magnetic field generated by the resonance of the power transmission side resonance circuit 22. Thereby, an alternating current having a frequency of 13.56 MHz is generated in the power receiving side resonance circuit 15.

受電側共振回路15は、生成された交流電流を整流回路16に供給する。整流回路16は、交流電流を直流電流に変換し、負荷RXに供給する。   The power reception side resonance circuit 15 supplies the generated alternating current to the rectification circuit 16. The rectifier circuit 16 converts alternating current into direct current and supplies it to the load RX.

負荷RXは、例えば受電装置10に設けられたバッテリである。すなわち、上記各部の動作により送電回路23から受電回路14に電力が伝送され、受電装置10のバッテリが充電される。   The load RX is, for example, a battery provided in the power receiving device 10. That is, power is transmitted from the power transmission circuit 23 to the power reception circuit 14 by the operation of each of the above parts, and the battery of the power reception device 10 is charged.

再び図1(a)及び(b)を参照すると、環状導体13は閉じた円環状の導体線からなり、キャパシタは接続されていない。従って、環状導体13は、一定の浮遊容量を有するものの、その共振周波数は、送電側共振回路22及び受電側共振回路15の共振周波数13.56MHzとは大きく異なる。   Referring again to FIGS. 1A and 1B, the annular conductor 13 is formed of a closed annular conductor line, and no capacitor is connected. Therefore, although the annular conductor 13 has a certain stray capacitance, the resonance frequency thereof is greatly different from the resonance frequency 13.56 MHz of the power transmission side resonance circuit 22 and the power reception side resonance circuit 15.

図4(a)は、電力伝送時における受電コイル12、環状導体13及び送電コイル21(以下、これらをまとめて電力伝送システムとも称する)の位置関係を模式的に示す斜視図である。図4(b)は、かかる電力伝送システムの上面図であり、図4(c)は、受電コイル12の中心軸Axを含む、上面図のV−V線に沿った断面図である。   FIG. 4A is a perspective view schematically showing a positional relationship among the power receiving coil 12, the annular conductor 13, and the power transmitting coil 21 (hereinafter collectively referred to as a power transmission system) during power transmission. FIG. 4B is a top view of such a power transmission system, and FIG. 4C is a cross-sectional view taken along line VV of the top view including the central axis Ax of the power receiving coil 12.

環状導体13は、受電コイル12のコイル面から送電コイル21に対向する方向の平面内に配置されている。すなわち、環状導体13は、送電コイル21のコイル面を含む平面と受電コイル12のコイル面を含む平面との間に、受電コイル12の中心軸を囲むように配置されている。また、環状導体13の直径は、受電コイル12及び送電コイル21の各々の直径よりも大きい。   The annular conductor 13 is disposed in a plane in a direction facing the power transmission coil 21 from the coil surface of the power reception coil 12. That is, the annular conductor 13 is disposed between the plane including the coil surface of the power transmission coil 21 and the plane including the coil surface of the power reception coil 12 so as to surround the central axis of the power reception coil 12. The diameter of the annular conductor 13 is larger than the diameter of each of the power receiving coil 12 and the power transmitting coil 21.

図5(a)及び(b)は、本実施例において送電コイル21、受電コイル12及び環状導体13の周囲に生成される磁界の磁力線の断面図(図5(b))と、仮に環状導体13が存在しないとした場合に送電コイル21及び受電コイル12の周囲に生成される磁界の磁力線の断面図(図5(a))とを比較して、模式的に示す図である。   5A and 5B are a cross-sectional view (FIG. 5B) of magnetic field lines of a magnetic field generated around the power transmission coil 21, the power reception coil 12, and the annular conductor 13 in this embodiment, and a provisional annular conductor. FIG. 6 is a diagram schematically showing a cross-sectional view (FIG. 5A) of magnetic field lines of a magnetic field generated around the power transmission coil 21 and the power reception coil 12 when 13 is not present.

環状導体13が存在しない場合、送電コイル21及び受電コイル12の周囲には、図5(a)に示す破線のように、広く交流磁界が発生する。本発明では、上記の通り送電側共振回路22及び受電側共振回路15を同じ周波数(13.56MHz)で共振させ、所謂磁界共鳴方式を用いて電力の伝送を行っているため、強力な磁界が発生する。従って、送電コイル21及び受電コイル12の周囲に形成される磁界の広がりが大きく、受電装置10の内部や外部等、各コイルの周辺領域に磁界が与える影響が大きい。   When the annular conductor 13 is not present, an AC magnetic field is widely generated around the power transmission coil 21 and the power reception coil 12 as indicated by a broken line in FIG. In the present invention, the power transmission side resonance circuit 22 and the power reception side resonance circuit 15 are resonated at the same frequency (13.56 MHz) as described above, and power is transmitted using a so-called magnetic field resonance method. Occur. Therefore, the spread of the magnetic field formed around the power transmission coil 21 and the power receiving coil 12 is large, and the influence of the magnetic field on the peripheral region of each coil, such as the inside or the outside of the power receiving device 10, is large.

これに対し、送電コイル21のコイル面を含む平面と受電コイル12のコイル面を含む平面との間に環状導体13が存在する場合、送電コイル21により生成される磁界によって、環状導体13に誘導電流が流れ、環状導体13の周囲には送電コイル21が生成する磁界を打ち消す方向に磁界が発生する。従って、送電コイル21及び受電コイル12の周囲に形成される磁界の広がりは小さくなり、受電装置10の内部や外部等、各コイルの周辺領域に磁界が与える影響は小さくなる。   On the other hand, when the annular conductor 13 exists between the plane including the coil surface of the power transmission coil 21 and the plane including the coil surface of the power receiving coil 12, the induction is induced in the annular conductor 13 by the magnetic field generated by the power transmission coil 21. A current flows, and a magnetic field is generated around the annular conductor 13 in a direction that cancels the magnetic field generated by the power transmission coil 21. Therefore, the spread of the magnetic field formed around the power transmission coil 21 and the power receiving coil 12 is reduced, and the influence of the magnetic field on the peripheral region of each coil, such as the inside or the outside of the power receiving device 10, is reduced.

なお、環状導体13の周囲に生じる磁界は、送電コイル21及び受電コイル12の周囲に生じる磁界の広がりを打ち消す働きを有するが、送電回路23から受電回路14に伝送される電力量には影響を及ぼさない。   The magnetic field generated around the annular conductor 13 has a function of canceling the spread of the magnetic field generated around the power transmission coil 21 and the power receiving coil 12, but has an effect on the amount of power transmitted from the power transmission circuit 23 to the power reception circuit 14. Does not reach.

また、上記説明では、環状導体13の直径が受電コイル12の直径よりも大きいとしたが、本実施例において、環状導体13は、受電コイル12を包含する形状、大きさを有していれば良い。すなわち、受電コイル12及び環状導体13の導体面を同一平面内に置いたときに、環状導体13が受電コイル12を包含する形状を有していれば良い。   In the above description, the diameter of the annular conductor 13 is larger than the diameter of the power receiving coil 12. However, in this embodiment, the annular conductor 13 has a shape and size including the power receiving coil 12. good. That is, it is only necessary that the annular conductor 13 has a shape including the power receiving coil 12 when the power receiving coil 12 and the conductor surface of the annular conductor 13 are placed in the same plane.

以上のように、本実施例の受電装置10によれば、送電コイル21及び受電コイル12の間で電力伝送時に発生する磁界が、受電装置10の周辺領域に与える影響を低減することができる。   As described above, according to the power receiving device 10 of the present embodiment, the influence of the magnetic field generated during power transmission between the power transmission coil 21 and the power receiving coil 12 on the peripheral region of the power receiving device 10 can be reduced.

また、環状導体13は、受電コイル12を挟んで本体部11と対向する位置に配置されているため、受電装置10の表側の表面部(本体部11の受電コイル12と対向する面とは反対側の表面部)に形成された液晶表示部等を視認する際の妨げとならない。また、環状導体13は形状が環状であり、材料の使用量が少ないため、板状の遮蔽シールドを設けた場合と比べて、受電装置の重量の増加やコストの増大を抑えることができる。   Further, since the annular conductor 13 is disposed at a position facing the main body 11 with the power receiving coil 12 interposed therebetween, the front surface portion of the power receiving device 10 (opposite to the surface facing the power receiving coil 12 of the main body 11). This does not hinder the visual recognition of the liquid crystal display portion and the like formed on the side surface portion. Further, since the annular conductor 13 has an annular shape and uses a small amount of material, an increase in the weight and cost of the power receiving device can be suppressed as compared with the case where a plate-shaped shielding shield is provided.

本実施例の受電装置及び電力伝送システムについて、図6〜図8を参照して説明する。なお、実施例1と同様の構成については同じ符号を付し、説明を省略する。   A power receiving apparatus and a power transmission system according to the present embodiment will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the structure similar to Example 1, and description is abbreviate | omitted.

図6(a)は、本実施例の受電装置30の構成を模式的に示す図であり、図6(b)は図6(a)のW−W線に沿った水平方向の断面図(平面図)である。受電装置30は、例えば時計等の電子機器であり、本体部11、受電コイル32及び環状導体33を有する。なお、図6(b)では本体部11の図示を省略している。   FIG. 6A is a diagram schematically showing the configuration of the power receiving device 30 of the present embodiment, and FIG. 6B is a horizontal sectional view taken along line WW in FIG. 6A. Is a plan view). The power receiving device 30 is an electronic device such as a watch, for example, and includes a main body 11, a power receiving coil 32, and an annular conductor 33. In addition, illustration of the main-body part 11 is abbreviate | omitted in FIG.6 (b).

本実施例の受電装置30では、環状導体33の直径の大きさが、実施例1の受電装置10の環状導体13の直径の大きさと異なる。すなわち、環状導体33の直径は、実施例1の場合とは異なり、受電コイル32の直径よりも小さい。   In the power receiving device 30 of the present embodiment, the diameter of the annular conductor 33 is different from the diameter of the annular conductor 13 of the power receiving device 10 of the first embodiment. That is, unlike the first embodiment, the diameter of the annular conductor 33 is smaller than the diameter of the power receiving coil 32.

図7(a)は、電力伝送時における受電コイル32、環状導体33及び送電コイル21(電力伝送システム)の位置関係を模式的に示す上面図である。図7(b)は、図7(a)のX−X線に沿った断面図であり、受電コイル32の中心軸Axを含む。   Fig.7 (a) is a top view which shows typically the positional relationship of the receiving coil 32, the annular conductor 33, and the power transmission coil 21 (electric power transmission system) at the time of electric power transmission. FIG. 7B is a cross-sectional view taken along line XX in FIG. 7A and includes the central axis Ax of the power receiving coil 32.

送電コイル21のコイル面を含む平面と受電コイル32のコイル面を含む平面との間に、受電コイル32の中心軸を囲むように、環状導体33が配置されている。また、環状導体33の直径は、受電コイル32及び送電コイル21の各々の直径よりも小さい。   An annular conductor 33 is disposed between a plane including the coil surface of the power transmission coil 21 and a plane including the coil surface of the power reception coil 32 so as to surround the central axis of the power reception coil 32. Further, the diameter of the annular conductor 33 is smaller than the diameter of each of the power receiving coil 32 and the power transmitting coil 21.

図8(a)及び(b)は、本実施例において送電コイル21、受電コイル32及び環状導体33の周囲に生成される磁界の磁力線の断面図(図8(b))と、仮に環状導体33が存在しないとした場合に送電コイル21及び受電コイル32の周囲に生成される磁界の磁力線の断面図(図8(a))とを比較して、模式的に示す図である。   FIGS. 8A and 8B are a cross-sectional view (FIG. 8B) of magnetic field lines of a magnetic field generated around the power transmission coil 21, the power reception coil 32, and the annular conductor 33 in this embodiment, and a provisional annular conductor. FIG. 9 is a diagram schematically showing a cross-sectional view (FIG. 8A) of magnetic field lines of a magnetic field generated around the power transmission coil 21 and the power reception coil 32 when 33 is not present.

環状導体33が存在しない場合、送電コイル21及び受電コイル32の周囲には、図8(a)に示す破線のように、広く交流磁界が発生する。従って、送電コイル21及び受電コイル32の周囲に形成される磁界の広がりが大きく、受電装置30の内部や外部等、各コイルの周辺領域に磁界が与える影響が大きい。   When the annular conductor 33 is not present, an alternating magnetic field is widely generated around the power transmission coil 21 and the power reception coil 32 as indicated by a broken line shown in FIG. Therefore, the spread of the magnetic field formed around the power transmission coil 21 and the power reception coil 32 is large, and the influence of the magnetic field on the peripheral region of each coil, such as inside or outside the power reception device 30, is large.

これに対し、送電コイル21のコイル面を含む平面と受電コイル32のコイル面を含む平面との間に環状導体33が存在する場合、送電コイル21により生成される磁界によって、環状導体33に誘導電流が流れ、環状導体33の周囲には送電コイル21が生成する磁界を打ち消す方向に磁界が発生する。   On the other hand, when the annular conductor 33 exists between the plane including the coil surface of the power transmission coil 21 and the plane including the coil surface of the power receiving coil 32, the annular conductor 33 is guided by the magnetic field generated by the power transmission coil 21. A current flows, and a magnetic field is generated around the annular conductor 33 in a direction to cancel the magnetic field generated by the power transmission coil 21.

本実施例では、環状導体33の環の直径が受電コイル32及び送電コイル21の各々の直径よりも小さいため、受電コイル32及び送電コイル21の内側領域(中心軸に近い領域)において、受電コイル32及び送電コイル21の周辺に生成される磁界の広がりが抑えられる。従って、磁界が送電コイル21及び受電コイル12の周囲、特にコイルの内側領域に与える影響が小さくなる。   In this embodiment, since the diameter of the ring of the annular conductor 33 is smaller than the diameter of each of the power reception coil 32 and the power transmission coil 21, the power reception coil in the inner region (region close to the central axis) of the power reception coil 32 and the power transmission coil 21. 32 and the spread of the magnetic field generated around the power transmission coil 21 are suppressed. Accordingly, the influence of the magnetic field on the periphery of the power transmission coil 21 and the power reception coil 12, particularly on the inner region of the coil is reduced.

なお、上記説明では、環状導体33の直径が受電コイル32の直径よりも小さいとしたが、本実施例において、環状導体33は、受電コイル32に包含される形状、大きさを有していれば良い。すなわち、受電コイル32及び環状導体33の導体面を同一平面内に置いたときに、環状導体33が受電コイル32に包含される形状を有していれば良い。   In the above description, it is assumed that the diameter of the annular conductor 33 is smaller than the diameter of the power receiving coil 32. However, in this embodiment, the annular conductor 33 may have the shape and size included in the power receiving coil 32. It ’s fine. That is, it is only necessary that the annular conductor 33 has a shape included in the power receiving coil 32 when the conductor surfaces of the power receiving coil 32 and the annular conductor 33 are placed in the same plane.

以上のように、本実施例の受電装置30によれば、送電コイル21及び受電コイル32の間で電力伝送時に発生する磁界が、受電装置30の周辺領域、特に受電装置30の内部に与える影響を低減することができる。これにより、例えば受電装置30が時計や携帯端末等の精密機器である場合には、磁界が装置内部の精密部品に及ぼす影響を大きく低減することが可能となる。   As described above, according to the power receiving device 30 of the present embodiment, the magnetic field generated during power transmission between the power transmission coil 21 and the power receiving coil 32 affects the peripheral region of the power receiving device 30, particularly the inside of the power receiving device 30. Can be reduced. Thus, for example, when the power receiving device 30 is a precision device such as a watch or a portable terminal, it is possible to greatly reduce the influence of the magnetic field on the precision components inside the device.

なお、本発明は上記実施形態に限定されない。例えば、上記実施例1及び実施例2では、環状導体13(33)が受電コイル12(32)のコイル面よりも送電側に近い位置に配置される例について説明した。しかし、例えば図9に示すように、環状導体13(33)は受電コイル12(32)と同一平面内(例えば、同じレイヤ)に形成されていても良い。   In addition, this invention is not limited to the said embodiment. For example, in Example 1 and Example 2 described above, the example in which the annular conductor 13 (33) is disposed at a position closer to the power transmission side than the coil surface of the power receiving coil 12 (32) has been described. However, for example, as shown in FIG. 9, the annular conductor 13 (33) may be formed in the same plane (for example, the same layer) as the power receiving coil 12 (32).

また、上記実施例では、送電コイル及び受電コイルが共通の共振周波数で共振することにより電力を伝送する、磁界共鳴方式を用いた例について説明した。しかし、電磁誘導によって送電コイルから受電コイルに送電を行う電磁誘導方式により電力を伝送するものであっても良い。   Further, in the above-described embodiment, the example using the magnetic field resonance method in which the power transmission coil and the power reception coil transmit power by resonating at a common resonance frequency has been described. However, electric power may be transmitted by an electromagnetic induction method in which power is transmitted from the power transmission coil to the power reception coil by electromagnetic induction.

また、上記実施例では、送電コイル及び受電コイルが13.56MHzの共振周波数で共振する例について説明したが、周波数帯はこれに限られない。例えば、6.78MHz等の短波の周波数帯でも良いし、100kHz程度の長波の周波帯でも良い。要するに、送電コイル及び受電コイルが同じ共振周波数で共振するように構成されていれば良い。   Moreover, although the said Example demonstrated the example in which a power transmission coil and a receiving coil resonate at the resonance frequency of 13.56 MHz, a frequency band is not restricted to this. For example, a short wave frequency band such as 6.78 MHz or a long wave frequency band of about 100 kHz may be used. In short, it is sufficient if the power transmission coil and the power reception coil are configured to resonate at the same resonance frequency.

また、環状導体13は電気的にフローティングの状態であっても良く、接地されていても良く、何らかの回路に接続されていても良い。   The annular conductor 13 may be in an electrically floating state, may be grounded, or may be connected to some circuit.

また、上記実施例では、受電コイル12(32)、送電コイル21及び環状導体13(33)が円環状の形状を有する場合を例として説明した。しかし、楕円形状、長方形等の矩形形状、多角形環状等の環形状を有していても良い。   Moreover, in the said Example, the receiving coil 12 (32), the power transmission coil 21, and the cyclic | annular conductor 13 (33) demonstrated as an example the case where it had an annular | circular shape. However, it may have an elliptical shape, a rectangular shape such as a rectangle, or a ring shape such as a polygonal ring.

受電コイル12(32)及び送電コイル21は、円筒状に巻かれた複数巻のコイルであっても良い。また、環状導体13(33)は、複数巻のコイル形状やばね状に形成されていても良い。環状導体13(33)は、受電コイル12(32)のコイル面から送電コイル21に対向する方向の平面内に配されていればよいが、例えば受電コイル12(32)がn巻(n:2以上の整数)のコイルからなるとき、第1巻目のコイル面乃至第n巻目のコイル面のいずれかの面を受電コイル12(32)のコイル面として適用することができる。   The power receiving coil 12 (32) and the power transmitting coil 21 may be a plurality of coils wound in a cylindrical shape. Further, the annular conductor 13 (33) may be formed in a plurality of coil shapes or spring shapes. The annular conductor 13 (33) may be arranged in a plane in a direction facing the power transmission coil 21 from the coil surface of the power reception coil 12 (32). For example, the power reception coil 12 (32) has n turns (n: Any one of the first to nth coil surfaces can be used as the coil surface of the power receiving coil 12 (32).

また、上記実施例では、伝送された電力の供給を受ける負荷RXが受電装置10のバッテリであり、伝送された電力に基づいて充電を行う例について説明した。しかし、電力伝送の目的は、充電に限られない。例えば、交流信号(交流電流)に変調をかけることにより、伝送される電力を用いて、双方向又は片方向の通信を行うものであっても良い。   Further, in the above-described embodiment, an example in which the load RX that receives the supplied power is the battery of the power receiving device 10 and charging is performed based on the transmitted power has been described. However, the purpose of power transmission is not limited to charging. For example, bi-directional or unidirectional communication may be performed using the transmitted power by modulating an AC signal (AC current).

また、上記実施例では、環状導体が受電装置に形成される例について説明した。しかし、環状導体は、送電装置に形成されていても良い。要するに、環状導体は、受電コイルのコイル面を含む平面と送電コイルのコイル面を含む平面との間に配置されていれば良い。   Moreover, the said Example demonstrated the example in which an annular conductor is formed in a power receiving apparatus. However, the annular conductor may be formed in the power transmission device. In short, the annular conductor may be disposed between a plane including the coil surface of the power receiving coil and a plane including the coil surface of the power transmission coil.

また、スイッチ切り替え等により受電コイル及び送電コイルの役割を逆転させ、逆方向の電力伝送が可能なように構成されていても良い。   Moreover, the role of a receiving coil and a power transmission coil may be reversed by switch switching etc., and you may be comprised so that the electric power transmission of a reverse direction is possible.

また、周辺への磁界の影響をより抑えるため、従来用いられている磁性体シートや導体板等を、本発明の環状導体と併用しても良い。   In order to further suppress the influence of the magnetic field on the periphery, a conventionally used magnetic sheet or conductor plate may be used in combination with the annular conductor of the present invention.

10,30 受電装置
11 本体部
12,32 受電コイル
13,33 環状導体
14 受電回路
15 受電側共振回路
16 整流回路
20 送電装置
21 送電コイル
22 送電側共振回路
23 送電回路
DESCRIPTION OF SYMBOLS 10,30 Power receiving apparatus 11 Main-body part 12, 32 Power receiving coil 13, 33 Annular conductor 14 Power receiving circuit 15 Power receiving side resonance circuit 16 Rectifier circuit 20 Power transmission apparatus 21 Power transmission coil 22 Power transmission side resonance circuit 23 Power transmission circuit

Claims (14)

送電コイルに対向して配置され、前記送電コイルから送電された電力を非接触で受電する受電コイルと、
前記受電コイルの中心軸を囲む環状形状を有し、前記受電コイルのコイル面から前記送電コイルに対向する方向の平面内に配された環状導体と、
を有することを特徴とする受電装置。
A power receiving coil that is arranged to face the power transmitting coil and receives the power transmitted from the power transmitting coil in a contactless manner;
An annular conductor having a ring shape surrounding a central axis of the power receiving coil, and an annular conductor disposed in a plane facing the power transmission coil from a coil surface of the power receiving coil;
A power receiving device comprising:
前記受電コイルに接続されたキャパシタを有し、
前記受電コイル及び前記キャパシタは、所定の共振周波数で共振する共振回路を構成していることを特徴とする請求項1に記載の受電装置。
A capacitor connected to the power receiving coil;
The power reception device according to claim 1, wherein the power reception coil and the capacitor constitute a resonance circuit that resonates at a predetermined resonance frequency.
前記環状導体は、前記受電コイルを包含する大きさ及び形状を有することを特徴とする請求項1又は2に記載の受電装置。   The power receiving device according to claim 1, wherein the annular conductor has a size and a shape including the power receiving coil. 前記環状導体は、前記受電コイルに包含される大きさ及び形状を有することを特徴とする請求項1又は2に記載の受電装置。   The power receiving device according to claim 1, wherein the annular conductor has a size and a shape included in the power receiving coil. 前記環状導体は円環状の形状を有し、前記受電コイルの直径よりも大きいことを特徴とする請求項1又は2に記載の受電装置。   The power receiving device according to claim 1, wherein the annular conductor has an annular shape and is larger than a diameter of the power receiving coil. 前記環状導体は円環状の形状を有し、前記受電コイルの直径よりも小さいことを特徴とする請求項1又は2に記載の受電装置。   The power receiving device according to claim 1, wherein the annular conductor has an annular shape and is smaller than a diameter of the power receiving coil. 前記環状導体は、前記受電コイルと同一平面内に形成されていることを特徴とする請求項1乃至6のいずれか1に記載の受電装置。   The power receiving device according to any one of claims 1 to 6, wherein the annular conductor is formed in the same plane as the power receiving coil. 電力を送電する送電コイルと、
前記送電コイルに対向して配置され、前記送電コイルから送電された電力を非接触で受電する受電コイルと、
前記受電コイルの中心軸を囲む環状形状を有し、前記受電コイルのコイル面を含む平面から前記送電コイルのコイル面を含む平面までの間に位置するように配された環状導体と、
を有することを特徴とする電力伝送システム。
A power transmission coil for transmitting power;
A power receiving coil that is disposed to face the power transmitting coil and that receives power transmitted from the power transmitting coil in a contactless manner;
An annular conductor having an annular shape surrounding the central axis of the power receiving coil, and being disposed so as to be located between a plane including the coil surface of the power receiving coil and a plane including the coil surface of the power transmitting coil;
A power transmission system comprising:
前記送電コイルに接続された送電側キャパシタと、前記受電コイルに接続された受電側キャパシタと、を有し、
前記送電コイル及び前記送電側キャパシタは、所定の共振周波数で共振する送電側共振回路を構成し、
前記受電コイル及び前記受電側キャパシタは、前記所定の共振周波数で共振する受電側共振回路を構成することを特徴とする請求項8に記載の電力伝送システム。
A power transmission side capacitor connected to the power transmission coil, and a power reception side capacitor connected to the power reception coil,
The power transmission coil and the power transmission side capacitor constitute a power transmission side resonance circuit that resonates at a predetermined resonance frequency,
The power transmission system according to claim 8, wherein the power receiving coil and the power receiving side capacitor constitute a power receiving side resonance circuit that resonates at the predetermined resonance frequency.
前記環状導体は、前記受電コイルを包含する大きさ及び形状を有することを特徴とする請求項8又は9に記載の電力伝送システム。   The power transmission system according to claim 8 or 9, wherein the annular conductor has a size and a shape including the power receiving coil. 前記環状導体は、前記受電コイルに包含される大きさ及び形状を有することを特徴とする請求項8又は9に記載の電力伝送システム。   The power transmission system according to claim 8 or 9, wherein the annular conductor has a size and a shape included in the power receiving coil. 前記環状導体は円環状の形状を有し、前記送電コイルの直径及び前記受電コイルの直径よりも大きいことを特徴とする請求項8又は9に記載の電力伝送システム。   The power transmission system according to claim 8 or 9, wherein the annular conductor has an annular shape and is larger than a diameter of the power transmission coil and a diameter of the power reception coil. 前記環状導体は円環状の形状を有し、前記送電コイルの直径及び前記受電コイルの直径よりも小さいことを特徴とする請求項8又は9に記載の電力伝送システム。   The power transmission system according to claim 8 or 9, wherein the annular conductor has an annular shape and is smaller than a diameter of the power transmission coil and a diameter of the power reception coil. 前記環状導体は、前記受電コイルと同一平面内に形成されていることを特徴とする請求項8乃至13のいずれか1に記載の電力伝送システム。   14. The power transmission system according to claim 8, wherein the annular conductor is formed in the same plane as the power receiving coil.
JP2015230467A 2015-11-26 2015-11-26 Power receiving device and power transmission system Pending JP2017099186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015230467A JP2017099186A (en) 2015-11-26 2015-11-26 Power receiving device and power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230467A JP2017099186A (en) 2015-11-26 2015-11-26 Power receiving device and power transmission system

Publications (1)

Publication Number Publication Date
JP2017099186A true JP2017099186A (en) 2017-06-01

Family

ID=58817585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230467A Pending JP2017099186A (en) 2015-11-26 2015-11-26 Power receiving device and power transmission system

Country Status (1)

Country Link
JP (1) JP2017099186A (en)

Similar Documents

Publication Publication Date Title
JP6233780B2 (en) Wireless power transmission system
US10651676B2 (en) Wireless power reception device
US9461500B2 (en) Wireless charging receiving device and wireless charging system using the same
US11056918B2 (en) System for inductive wireless power transfer for portable devices
JP6610752B2 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
CN110679060A (en) Transmission assembly for universal wireless charging device and method thereof
US9515513B2 (en) Mobile device and combo coil module
US9960638B2 (en) Wireless power transmission system
CN115336136A (en) Accessory with magnetic relay structure for wireless power transfer
JP2015019022A (en) Power transmission device and coil device
KR20160090420A (en) Wireless power transmitting/receiving apparatus
JP2016187260A (en) Wireless power feeding apparatus
JP2016051961A (en) Communication electronic device
TWI645613B (en) Antenna device and electronic device
EP3029691B1 (en) Inductor device
JP2016136698A (en) Antenna structure, non-contact power transmission mechanism, and electronic device
JP2015130566A (en) Antenna device and apparatus
EP3394957B1 (en) Uniform wireless charging device
JP6394534B2 (en) Power receiving device and power transmitting device
KR102355538B1 (en) Device for communication by magnetic coupling
JP6378006B2 (en) Power transmission device and power transmission device
JP2017099186A (en) Power receiving device and power transmission system
US20200006852A1 (en) Booster antenna structure, communication apparatus, and case
US20170271072A1 (en) Cover and electronic device including the same
JP2017028482A (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001