JP2017096779A - Uwb measuring system - Google Patents

Uwb measuring system Download PDF

Info

Publication number
JP2017096779A
JP2017096779A JP2015229312A JP2015229312A JP2017096779A JP 2017096779 A JP2017096779 A JP 2017096779A JP 2015229312 A JP2015229312 A JP 2015229312A JP 2015229312 A JP2015229312 A JP 2015229312A JP 2017096779 A JP2017096779 A JP 2017096779A
Authority
JP
Japan
Prior art keywords
waveform
detection
distance
correction value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015229312A
Other languages
Japanese (ja)
Other versions
JP6571502B2 (en
Inventor
久 西川
Hisashi Nishikawa
久 西川
勝 寺田
Masaru Terada
勝 寺田
山本 和弘
Kazuhiro Yamamoto
和弘 山本
敏子 篠原
Toshiko Shinohara
敏子 篠原
謙太郎 渡邊
Kentaro Watanabe
謙太郎 渡邊
拓也 原口
Takuya Haraguchi
拓也 原口
直幸 宝里
Naoyuki Hori
直幸 宝里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GIT KK
Daifuku Co Ltd
Original Assignee
NIPPON GIT KK
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GIT KK, Daifuku Co Ltd filed Critical NIPPON GIT KK
Priority to JP2015229312A priority Critical patent/JP6571502B2/en
Publication of JP2017096779A publication Critical patent/JP2017096779A/en
Application granted granted Critical
Publication of JP6571502B2 publication Critical patent/JP6571502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultra wide band (UWB) measuring system capable of accurately measuring distance by removing an impact of difference in waveform characteristics.SOLUTION: A UWB measuring system for receiving an impulse UWB signal T to calculate distance performs envelope detection of the received UWB signal T to detect the waveform characteristic of a detection waveform S obtained by the envelope detection, checks a correction value database Z including a correction value corresponding to the waveform characteristic with the detected waveform characteristic to extract a correction value, and takes the extracted correction value into consideration to calculate distance.SELECTED DRAWING: Figure 1

Description

本発明は、UWB計測システムに関する。   The present invention relates to a UWB measurement system.

従来、UWB(Ultra Wide Band)信号を送受信して距離を計算する計測システムが知られている(例えば、特許文献1及び特許文献2参照)。
このような計測システムは、UWB送受信間の電波伝搬時間を計測して距離を計算していた。具体的な回路動作としては、図5に示すように、受信したインパルスUWB信号Tを包絡線検波部91にて包絡線検波し、所定のスレッシュホールド値に設定した比較器92でパルス変換を行う。得られたパルスの到来時間をデジタル回路で計測し、その結果を基に距離を算出していた。
Conventionally, a measurement system that calculates a distance by transmitting and receiving a UWB (Ultra Wide Band) signal is known (see, for example, Patent Document 1 and Patent Document 2).
Such a measurement system calculates a distance by measuring a radio wave propagation time between UWB transmission and reception. As a specific circuit operation, as shown in FIG. 5, the received impulse UWB signal T is envelope-detected by an envelope detector 91, and pulse conversion is performed by a comparator 92 set to a predetermined threshold value. . The arrival time of the obtained pulse was measured with a digital circuit, and the distance was calculated based on the result.

特開2011−80946号公報JP 2011-80946 A 特開2014−65566号公報JP 2014-65566 A

先ず、従来技術の問題点を説明する。図6に於て、理想的なUWB信号Tを包絡線検波した検波波形(基準検波波形)Saと、障害物や電波伝搬距離等の影響を受けて基準検波波形Saよりも信号レベルが弱い(波高さHが小さくなった)検波波形Sbと、を重ねて図示している。
また、図7に於ては、反射波等の影響を受けて波形が変化して、スレッシュホールド値に到達するまでの立ち上がりの波形スロープ(傾き)が基準検波波形Saよりも緩やかになった検波波形Scと、基準検波波形Saと、を重ねて図示している。
First, problems of the prior art will be described. In FIG. 6, the detection level (reference detection waveform) Sa obtained by envelope detection of the ideal UWB signal T and the signal level is weaker than the reference detection waveform Sa due to the influence of obstacles, radio wave propagation distances, and the like ( A detection waveform Sb in which the wave height H is reduced is shown in an overlapping manner.
In FIG. 7, the waveform changes due to the influence of the reflected wave, etc., and the rising waveform slope (slope) until reaching the threshold value becomes gentler than the reference detection waveform Sa. The waveform Sc and the reference detection waveform Sa are shown in an overlapping manner.

本来、電波伝搬時間は距離に比例し、受信信号の信号強度や立ち上がりの波形スロープといった波形特性には依存しないが、図6及び図7に示すように、信号レベルや立ち上がりの波形スロープといった波形特性によって所定のスレッシュホールド値まで到達する時間に差が生じるため、上記影響を受けていない検波波形Saの変換パルスの立ち上がりタイミング(本来あるべき立ち上がりタイミング)Eaと、上記影響を受けた検波波形Sb,Scの変換パルスの立ち上がりタイミングEb,Ecと、の間に時間的誤差εが発生する。このような時間的誤差εをもったパルス信号に基づいて計測されたパルス到来時間は誤差を含んでいる。
つまり、従来技術では、受信信号強度や波形スロープ等の波形特性の差による影響を受けて、実距離と測距値との間に誤差が生じるといった問題があった。
Originally, the radio wave propagation time is proportional to the distance and does not depend on the waveform characteristics such as the signal strength of the received signal and the rising waveform slope, but as shown in FIGS. 6 and 7, the waveform characteristics such as the signal level and the rising waveform slope are shown. Because of this, there is a difference in the time to reach the predetermined threshold value. Therefore, the rise timing (rise timing) Ea of the conversion pulse of the detection waveform Sa that is not affected by the detection waveform Sb, A time error ε occurs between the rising timings Eb and Ec of the conversion pulse of Sc. The pulse arrival time measured based on the pulse signal having such a time error ε includes an error.
That is, the prior art has a problem that an error occurs between the actual distance and the distance measurement value due to the influence of the difference in waveform characteristics such as the received signal strength and the waveform slope.

そこで、本発明は、受信信号強度や波形スロープ等の波形特性の差による影響を排除して高精度に距離を計測可能なUWB計測システムの提供を目的とする。   Therefore, an object of the present invention is to provide a UWB measurement system capable of measuring a distance with high accuracy by eliminating the influence of a difference in waveform characteristics such as received signal strength and waveform slope.

上記目的を達成するために、本発明は、インパルスUWB信号を受信して距離を算出するUWB計測システムに於て、受信した上記UWB信号を包絡線検波して、該包絡線検波にて得た検波波形の波形特性を検出し、波形特性に応じた補正値を有する補正値データベースと、上記検出した波形特性と、を照合して補正値を抽出し、該抽出した補正値を加味して距離を計算するシステムである。
また、上記波形特性は、上記検波波形の波高さである。
あるいは、上記波形特性は、上記検波波形の立ち上がりの波形スロープである。
In order to achieve the above object, the present invention provides an envelope detection of the received UWB signal in an UWB measurement system that receives an impulse UWB signal and calculates a distance, and obtained by the envelope detection. Detects the waveform characteristics of the detected waveform, compares the correction value database having a correction value according to the waveform characteristics and the detected waveform characteristics, extracts the correction value, and takes the extracted correction value into account for the distance It is a system that calculates
The waveform characteristic is the height of the detection waveform.
Alternatively, the waveform characteristic is a waveform slope of the rising edge of the detection waveform.

本発明によれば、受信信号の強度や波形スロープ等の波形特性の差の影響による測距誤差が含まれない、高精度な測距や測位を行うことができる。比較的簡素な構成をもって、高精度な測距・測位結果を得ることができる。   According to the present invention, it is possible to perform high-precision distance measurement and positioning that do not include distance measurement errors due to the influence of differences in waveform characteristics such as received signal strength and waveform slope. With a relatively simple configuration, highly accurate ranging / positioning results can be obtained.

本発明のUWB計測システムの実施の一形態を示すブロック図である。It is a block diagram which shows one Embodiment of the UWB measuring system of this invention. 波高さ検出回路部の一例を示す回路図である。It is a circuit diagram which shows an example of a wave height detection circuit part. 波形スロープ検出回路部の一例を示す回路図である。It is a circuit diagram which shows an example of a waveform slope detection circuit part. 作用説明図であって、(a)は波形スロープが緩やかな検波波形を説明するための作用説明図であり、(b)は波形スロープパルスの一例を説明するための作用説明図であり、(c)はコンデンサの充電量を説明するための作用説明図である。It is an action explanatory view, (a) is an action explanatory view for explaining a detection waveform with a gentle waveform slope, (b) is an action explanatory view for explaining an example of a waveform slope pulse. (c) is an operation explanatory diagram for explaining the charge amount of the capacitor. 従来技術の一例を示す回路図である。It is a circuit diagram which shows an example of a prior art. 従来技術の問題点を説明するための説明図であって、(a)は検波波形の一例を説明するための説明図であり、(b)は基準検波波形の変換パルスの一例を示す説明図であり、(c)は信号レベルが弱い検波波形の変換パルスの一例を示す説明図である。It is explanatory drawing for demonstrating the problem of a prior art, Comprising: (a) is explanatory drawing for demonstrating an example of a detection waveform, (b) is explanatory drawing which shows an example of the conversion pulse of a reference | standard detection waveform. (C) is an explanatory view showing an example of a converted pulse of a detection waveform having a weak signal level. 従来技術の問題点を説明するための説明図であって、(a)は検波波形の他例を説明するための説明図であり、(b)は基準検波波形の変換パルスの他例を示す説明図であり、(c)は波形スロープが緩やかな検波波形の変換パルスの他例を示す説明図である。It is explanatory drawing for demonstrating the problem of a prior art, (a) is explanatory drawing for demonstrating the other example of a detection waveform, (b) shows the other example of the conversion pulse of a reference | standard detection waveform. It is explanatory drawing, (c) is explanatory drawing which shows the other example of the conversion pulse of a detection waveform with a gentle waveform slope.

以下、図示の実施形態に基づき本発明のUWB計測システムを詳説する。
本発明は、インパルスUWB信号を受信して距離を算出するUWB計測システムであって、図1に示すように、UWB信号Tを受信するためのアンテナ部11と、受信したUWB信号Tを増幅するための第1の増幅部12と、受信したUWB信号Tを包絡線検波して検波波形Sとして検出するための包絡線検波部13と、包絡線検波部13からの検波波形Sを増幅させる第2の増幅部14と、検波波形Sを所定のスレッシュホールド値(所定閾値)にてパルス信号に変換するためのパルス変換部15と、を備えている。
Hereinafter, the UWB measurement system of the present invention will be described in detail based on the illustrated embodiment.
The present invention is a UWB measurement system that receives an impulse UWB signal and calculates a distance. As shown in FIG. 1, the antenna unit 11 for receiving the UWB signal T and the received UWB signal T are amplified. A first amplifying unit 12 for detecting the envelope of the received UWB signal T and detecting it as a detected waveform S, and a first detecting unit for amplifying the detected waveform S from the envelope detecting unit 13 2 and a pulse converter 15 for converting the detected waveform S into a pulse signal at a predetermined threshold value (predetermined threshold value).

さらに、第2の増幅部14から入力された検波波形Sの波形特性を検出すると共に検出した波形特性(波形特性データI)を出力する波形特性検出回路部17と、波形特性に応じた補正値を有する補正値データベースZが予め記憶されている記憶部18と、を備えている。   Furthermore, a waveform characteristic detection circuit unit 17 that detects the waveform characteristic of the detected waveform S input from the second amplification unit 14 and outputs the detected waveform characteristic (waveform characteristic data I), and a correction value corresponding to the waveform characteristic And a storage unit 18 in which a correction value database Z is stored in advance.

補正値データベースZは、複数の波形特性データIと、各波形特性データIに夫々関連付けた補正値データQと、を有している。   The correction value database Z has a plurality of waveform characteristic data I and correction value data Q associated with each waveform characteristic data I.

そして、20は、距離演算処理部であり、この距離演算処理部20は、波形特性検出回路部17にて検出した波形特性と補正値データベースZとを照合して対応する補正値(補正値データQ)を抽出する補正値決定処理を行い、さらに、パルス変換部15からのパルスをデジタル回路で計測して得た到来時間に基づいて距離を計算する際に、上記補正値決定処理にて抽出した補正値を加味して(補正値で修正して)計算する距離計算処理を行う。   Reference numeral 20 denotes a distance calculation processing unit. The distance calculation processing unit 20 collates the waveform characteristic detected by the waveform characteristic detection circuit unit 17 with the correction value database Z, and corresponding correction values (correction value data). Q) is extracted in the correction value determination process when the distance is calculated based on the arrival time obtained by measuring the pulse from the pulse converter 15 with a digital circuit. A distance calculation process is performed in which the calculated correction value is taken into account (corrected with the correction value).

つまり、距離演算処理部20は、入力された波形特性データIと、補正値データベースZ内の波形特性データIとを照合し、一致した波形特性データIに関連付けられている補正値データQを抽出する。抽出した補正値データQとパルス到来時間(到来時間データ)と、に基づいて距離を計算して測距値データLとして出力する。   That is, the distance calculation processing unit 20 compares the input waveform characteristic data I with the waveform characteristic data I in the correction value database Z, and extracts the correction value data Q associated with the matched waveform characteristic data I. To do. The distance is calculated based on the extracted correction value data Q and the pulse arrival time (arrival time data) and is output as distance measurement value data L.

例えば、補正値データQを正負の距離値(補正用距離値)とし、距離演算処理部20にて、先ず補正値を加味せず(従来技術のように)パルス到来時間に基づいて距離(仮測距値)を計算し、その後、仮測距値に補正用距離値を加減算して距離(測距値)を求める。   For example, the correction value data Q is set to a positive / negative distance value (correction distance value), and the distance calculation processing unit 20 does not first add the correction value (as in the prior art) based on the pulse arrival time (temporary). Distance measurement value) is calculated, and then the distance (range measurement value) is obtained by adding or subtracting the correction distance value to the temporary distance measurement value.

または、補正値データQを正負の時間値(補正用時間値)とし、距離演算処理部20にて、パルス到来時間に補正用時間値を加減算した後、距離を求める。   Alternatively, the correction value data Q is set to a positive / negative time value (correction time value), and the distance calculation processing unit 20 adds / subtracts the correction time value to / from the pulse arrival time, and then obtains the distance.

また、補正値データQを、係数(補正用係数)としても良い。そして、上記仮測距値に補正値用係数を乗除算して距離を求める。或いは、パルス到来時間に補正用係数を乗除算した後に距離を計算してもよい。   The correction value data Q may be a coefficient (correction coefficient). Then, the distance is obtained by multiplying the provisional distance value by a correction value coefficient. Alternatively, the distance may be calculated after the pulse arrival time is multiplied by a correction coefficient.

図2に示す第1の実施形態では、波形特性検出回路部17を、検波波形Sの波高さH(図6参照)を波形特性として検出する波高さ検出回路部17Aをもって構成している。
検波波形Sが入力される検出用増幅部(AMP)31と、検出用増幅部31からの検波波形Sを整流して波高さHを電圧値(又は電流値)のピーク値として検出するピーク値検出回路部32と、検出したピーク値をデジタルデータに変換して波高さデータIa(波形特性データI)として出力するAD変換部33と、を備えている。
つまり、実際に検波されている信号レベルの強弱の把握を行って、検波波形Sの波高さHの高低を、電圧値の大小に変換してデジタル出力するための回路である。
In the first embodiment shown in FIG. 2, the waveform characteristic detection circuit unit 17 is configured with a wave height detection circuit unit 17A that detects the wave height H (see FIG. 6) of the detected waveform S as the waveform characteristic.
A detection amplifying unit (AMP) 31 to which the detection waveform S is input, and a peak value for rectifying the detection waveform S from the detection amplifying unit 31 and detecting the wave height H as a peak value of a voltage value (or current value). A detection circuit unit 32 and an AD conversion unit 33 that converts the detected peak value into digital data and outputs the data as wave height data Ia (waveform characteristic data I) are provided.
That is, it is a circuit for grasping the intensity of the signal level actually detected, converting the height H of the detected waveform S into the magnitude of the voltage value, and digitally outputting it.

補正値データベースZは、複数の波高さデータIaと、各波高さデータIaに夫々関連付けた波高さ用距離補正値データQaと、を有している。
例えば、図6の基準検波波形Saよりも波高さが小さいことを意味する波高さデータIaには、負の補正用距離値、又は、正の補正用到来時間値を意味する波高さ用補正値データQaを対応させている。
The correction value database Z has a plurality of wave height data Ia and wave height distance correction value data Qa associated with each wave height data Ia.
For example, the wave height data Ia, which means that the wave height is smaller than the reference detection waveform Sa in FIG. 6, includes a negative correction distance value or a wave height correction value that means a positive correction arrival time value. Data Qa is associated.

次に、図3に示す第2の実施形態では、波形特性検出回路部17を、検波波形Sの波形スロープを波形特性として検出する波形スロープ検出回路部17Bをもって構成している。
検波波形Sが入力される検出用増幅部(AMP)51と、検出用増幅部51からの検波波形Sが入力される高低二値(高閾値と低閾値)をもった二値コンパレータ部52と、二値コンパレータ部52からの2つのパルス信号に基づいたパルスを出力するための波形スロープパルス作成部53と、波形スロープパルス作成部53が出力したパルス信号を電圧値として検出するための電圧値検出回路部54と、検出した電圧値を増幅させる検出電圧用増幅部(AMP)55と、検出して増幅させた電圧値をデジタルデータに変換して波形スロープデータIb(波形特性データI)として出力するAD変換部56と、を備えている。
検波波形Sの波形スロープの緩急を、電圧値の大小に変換してデジタル出力するための回路である。
Next, in the second embodiment shown in FIG. 3, the waveform characteristic detection circuit unit 17 includes a waveform slope detection circuit unit 17B that detects the waveform slope of the detection waveform S as the waveform characteristic.
A detection amplifying unit (AMP) 51 to which the detection waveform S is input, and a binary comparator unit 52 having high and low binary values (a high threshold and a low threshold) to which the detection waveform S from the detection amplifying unit 51 is input, , A waveform slope pulse generator 53 for outputting a pulse based on the two pulse signals from the binary comparator unit 52, and a voltage value for detecting the pulse signal output from the waveform slope pulse generator 53 as a voltage value A detection circuit unit 54, a detection voltage amplification unit (AMP) 55 for amplifying the detected voltage value, and converting the detected and amplified voltage value into digital data as waveform slope data Ib (waveform characteristic data I) And an AD converter 56 for outputting.
This is a circuit for converting the slope of the waveform slope of the detection waveform S into a voltage value and outputting it digitally.

二値コンパレータ部52は、検波波形Sを高閾値(高スレッシュホールド値)でパルス変換する高値用コンパレータ52aと、検波波形Sを低閾値(低スレッシュホールド値)でパスル変換する低値用コンパレータ52bと、を有している。   The binary comparator section 52 has a high value comparator 52a that performs pulse conversion on the detection waveform S with a high threshold (high threshold value), and a low value comparator 52b that performs pulse conversion on the detection waveform S with a low threshold (low threshold value). And have.

波形スロープパルス作成部53は、高値用コンパレータ52aの出力パルスと低値用コンパレータ52bの出力パルスを合成したパルスを出力するためのXOR回路部を有している。
図4(a)に示すように、二値コンパレータ部52に検波波形S(波形スロープが緩やかな検波波形Sc)が入力されると、検波波形Sの立ち上がりで低閾値に達した(低値用コンパレータ52bによる)検出結果がXOR回路部の一方の入力部に入力されると共に、検波波形Sの立ち上がりで高閾値に達した(高値用コンパレータ52aによる)検出結果がXOR回路の他方の入力部に入力される。
The waveform slope pulse creating unit 53 has an XOR circuit unit for outputting a pulse obtained by synthesizing the output pulse of the high value comparator 52a and the output pulse of the low value comparator 52b.
As shown in FIG. 4A, when the detection waveform S (detection waveform Sc having a gentle waveform slope) is input to the binary comparator unit 52, the threshold value is reached at the rising edge of the detection waveform S (for the low value). The detection result (by the comparator 52b) is input to one input section of the XOR circuit section, and the detection result that has reached the high threshold at the rising edge of the detection waveform S (by the high value comparator 52a) is input to the other input section of the XOR circuit. Entered.

したがって、図4(b)に示すように、低閾値到達時を立ち上がりとし高閾値到達時を立ち下りとしたパルス幅Wをもった、パルス信号が得られる。
このパルス信号を、波形スロープパルス作成部53は、検波波形Sの立ち上がりの波形スロープパルス信号(作成結果)として、出力するように構成している。
Therefore, as shown in FIG. 4B, a pulse signal having a pulse width W with the rising time when the low threshold value is reached and the falling time when the high threshold value is reached is obtained.
The waveform slope pulse creation unit 53 is configured to output this pulse signal as a waveform slope pulse signal (creation result) of the rising edge of the detection waveform S.

波形スロープが急勾配になるにつれ、検波波形Sの立ち上がりが低閾値から高閾値に達する時間が短くなり、パルス幅Wが短いものとなる。また、波形スロープが緩やかになるにつれ、検波波形Sの立ち上がりが低閾値から高閾値に達する時間が長くなり、パルス幅Wが長いものとなる。波形スロープの緩急を、パルス幅Wの長短に変換している。
高閾値及び低閾値は、検波波形Sが図1のパルス変換部15にて所定スレッシュホールド値に到達するまでの範囲において、所定スレッシュホールド値の立ち上がりスロープを検出するように設定するのが望ましい。
As the waveform slope becomes steep, the time for the rising edge of the detection waveform S to reach the high threshold from the low threshold becomes shorter, and the pulse width W becomes shorter. Further, as the waveform slope becomes gentle, the time for the rising edge of the detection waveform S to reach the high threshold from the low threshold becomes longer, and the pulse width W becomes longer. The slowness of the waveform slope is converted into the length of the pulse width W.
The high threshold and the low threshold are preferably set so that the rising slope of the predetermined threshold value is detected in a range until the detection waveform S reaches the predetermined threshold value in the pulse converter 15 of FIG.

図3と図4に示すように、電圧値検出回路部54は、波形スロープパルス作成部53から出力されたパルスのパルス幅Wの時間だけ充電するためのコンデンサCを有している。
パルス幅Wが短いほど、充電量が少なくコンデンサCの電圧値Vaが小さくなり、パルス幅Wが長いほど、充電量が大きくなってコンデンサCの電圧値Vaが大きくなる。
つまり、波形スロープが急勾配である場合は電圧値Vaが小さく、波形スロープが緩やかであると場合は電圧値Vaが大きくなる。波形スロープの緩急を、電圧値の大小に変換している。
As shown in FIGS. 3 and 4, the voltage value detection circuit unit 54 has a capacitor C for charging for a time corresponding to the pulse width W of the pulse output from the waveform slope pulse creation unit 53.
The shorter the pulse width W, the smaller the amount of charge, and the smaller the voltage value Va of the capacitor C. The longer the pulse width W, the larger the amount of charge and the larger the voltage value Va of the capacitor C.
That is, the voltage value Va is small when the waveform slope is steep, and the voltage value Va is large when the waveform slope is gentle. The slope of the waveform slope is converted to the magnitude of the voltage value.

電圧値検出回路部54で得た電圧値Vaを、検出電圧用増幅部55を介して、AD変換部56に入力してデジタルデータに変換する。変換された電圧値Vaは波形スロープデータIb)として出力される。   The voltage value Va obtained by the voltage value detection circuit unit 54 is input to the AD conversion unit 56 via the detection voltage amplification unit 55 and converted into digital data. The converted voltage value Va is output as waveform slope data Ib).

補正値データベースZは、複数の波形スロープデータIbと、各波形スロープデータIbに夫々関連付けた波形スロープ用距離補正値データQbと、を有している。
例えば、図6の基準検波波形Saよりも波形スロープが緩やかなことを意味する波形スロープデータIbに、負の補正用距離値又は正の補正用時間値を意味する波形スロープ用補正値データQbを対応させている。
The correction value database Z has a plurality of waveform slope data Ib and waveform slope distance correction value data Qb associated with each waveform slope data Ib.
For example, waveform slope correction value data Qb meaning a negative correction distance value or positive correction time value is added to the waveform slope data Ib meaning that the waveform slope is gentler than the reference detection waveform Sa of FIG. It corresponds.

距離演算処理部20は、入力された波形スロープデータIbと、補正値データベースZ内の波形スロープデータIbとを照合し、一致した波形スロープデータIbに関連付けられている波形スロープ用距離補正値データQbを抽出する。   The distance calculation processing unit 20 collates the input waveform slope data Ib with the waveform slope data Ib in the correction value database Z, and the waveform slope distance correction value data Qb associated with the matched waveform slope data Ib. To extract.

また、波形スロープ検出回路部17Bは、波形スロープパルス作成部53から出力されたパルスがAD変換部56にて取り込み(読み取り)が終了するまで、波形スロープパルス作成部53から出力される後続のパルスによってコンデンサCが充電(チャージ)されないようにチャージマスキング信号を出力して、スイッチSWをOFFにするチャージマスキング処理を行うように構成している(チャージマスキング用制御回路部を有している)。
また、AD変換部56による取り込みが終了すると、リセット信号を出力して、コンデンサCのディスチャージ処理を行い、また、チャージマスキング信号の出力を停止してスイッチSWをONにして、コンデンサCへのチャージが可能となるように構成している。
In addition, the waveform slope detection circuit unit 17B has the subsequent pulses output from the waveform slope pulse generation unit 53 until the pulse output from the waveform slope pulse generation unit 53 is captured (read) by the AD conversion unit 56. The charge masking signal is output so as to prevent the capacitor C from being charged (charge), and the charge masking process for turning off the switch SW is performed (the control circuit unit for charge masking is provided).
When the AD conversion unit 56 finishes capturing, the reset signal is output to discharge the capacitor C, and the output of the charge masking signal is stopped and the switch SW is turned ON to charge the capacitor C. Is configured to be possible.

なお、図1に於て、アンテナ部11はアンテナ素子を有するアンテナ部材であり、第1の増幅部12は高周波増幅器(LNA:Low Noise Amplifier)であり、包絡線検波部13は検波器(包絡線検波回路)であり、第2の増幅部14はアンプ(AMP)であり、パルス変換部15は所定閾値(所定のスレッシュホールド値)に設定したコンパレータ(比較器)であり、距離演算処理部20はCPUや集積回路等の演算処理器或いは、ベースバンド回路部やデジタル処理回路であり、記憶部18は、集積回路の記憶部や、RAMやROM、HD(ハードディスク)或いはフラッシュメモリ等の記憶器である。   In FIG. 1, an antenna unit 11 is an antenna member having an antenna element, a first amplifier unit 12 is a high frequency amplifier (LNA), and an envelope detector unit 13 is a detector (envelope). The second amplifying unit 14 is an amplifier (AMP), the pulse converting unit 15 is a comparator (comparator) set to a predetermined threshold (predetermined threshold value), and a distance calculation processing unit Reference numeral 20 denotes an arithmetic processing unit such as a CPU or an integrated circuit, or a baseband circuit unit or a digital processing circuit. A storage unit 18 stores a storage unit such as an integrated circuit, RAM, ROM, HD (hard disk), flash memory, or the like. It is a vessel.

本発明は、インパルスUWB信号を送受信して送受信間の電波到来時間を計測して距離を算出するシステムに適用でき、例えば、固定送信器からUWB信号を移動受信器に送信し、UWB信号を受信した移動受信器と固定送信器の間を測距し、移動受信器の位置を検出システムに適用できる。例えば、倉庫内に固定送受信器を設け、フォークリフトや搬送物等の移動体に送受信器付き移動タグを設けて、フォークリフトや搬送物を測距・測位するシステムとして適用できる。また、送受信器からUWB信号を送信し、測定対象物からの応答信号を送受信器にて受信して、測定対象物までの距離を計測するシステムや、所定位置に固設した複数の送受信器にて測定対象物までの距離を計算し、各送受信器の測距値に基づいて、測定対象物の位置を3次元的に検出(測位)するシステムである。また、測定対象物にUWB信号を当てて、反射信号を受信して距離を計測する測距レーダシステム等に適用可能である。   The present invention can be applied to a system that calculates the distance by transmitting and receiving an impulse UWB signal and measuring a radio wave arrival time between transmission and reception. For example, a UWB signal is transmitted from a fixed transmitter to a mobile receiver and a UWB signal is received. The distance between the mobile receiver and the fixed transmitter can be measured, and the position of the mobile receiver can be applied to the detection system. For example, a fixed transmitter / receiver is provided in a warehouse, and a moving tag with a transmitter / receiver is provided on a moving body such as a forklift or a transported object, so that it can be applied as a system for ranging and positioning a forklift or transported object. In addition, the UWB signal is transmitted from the transceiver, the response signal from the measurement object is received by the transceiver, the distance to the measurement object is measured, and a plurality of transceivers fixed at predetermined positions In this system, the distance to the measurement object is calculated and the position of the measurement object is detected (positioned) three-dimensionally based on the distance measurement value of each transceiver. Further, the present invention can be applied to a ranging radar system that applies a UWB signal to a measurement object, receives a reflection signal, and measures a distance.

なお、本発明は、設計変更可能であって、波高さ検出回路部17Aは、検波波形Sの波高さHの違いをデジタルデータとしてできれば、図示の回路以外の構成であっても良い。また、波形スロープ検出回路部17Bは、検波波形Sの波形スロープの違いをデジタルデータとして出力できれば、図示の回路以外の構成であっても良い。また、補正値を加味して距離を計算するとは、上述した以外の四則演算の組合せで、測距値を求めても良い。   In the present invention, the design can be changed, and the wave height detection circuit unit 17A may have a configuration other than the illustrated circuit as long as the difference in the wave height H of the detection waveform S can be converted into digital data. Further, the waveform slope detection circuit unit 17B may have a configuration other than the illustrated circuit as long as the difference in the waveform slope of the detection waveform S can be output as digital data. Further, calculating the distance with the correction value taken into account may obtain the distance measurement value by a combination of four arithmetic operations other than those described above.

以上のように、本発明のUWB計測システムは、インパルスUWB信号Tを受信して距離を算出するUWB計測システムに於て、受信したUWB信号Tを包絡線検波して、包絡線検波にて得た検波波形Sの波形特性を検出し、波形特性に応じた補正値を有する補正値データベースZと、検出した波形特性と、を照合して補正値を抽出し、抽出した補正値を加味して距離を計算するので、受信信号の強度や波形スロープ等の波形特性の差による影響を排除でき、測距誤差が含まれない、高精度な測距や測位を行うことができる。   As described above, the UWB measurement system according to the present invention receives the impulse UWB signal T and calculates the distance, and detects the received UWB signal T by envelope detection and obtains it by envelope detection. The detected waveform characteristic of the detected waveform S is detected, the correction value database Z having a correction value corresponding to the waveform characteristic and the detected waveform characteristic are collated to extract a correction value, and the extracted correction value is taken into account Since the distance is calculated, it is possible to eliminate the influence of the difference in waveform characteristics such as the strength of the received signal and the waveform slope, and to perform highly accurate distance measurement and positioning that do not include the distance measurement error.

また、波形特性は、検波波形Sの波高さHであるので、信号強度によって生じる距離誤差が含まれない正確な距離を出力できる。   Further, since the waveform characteristic is the wave height H of the detection waveform S, an accurate distance that does not include a distance error caused by the signal intensity can be output.

あるいは、波形特性は、検波波形Sの立ち上がりの波形スロープであるので、検波波形Sの立ち上がりスロープ差の影響を排除した正確な距離を出力できる。   Alternatively, since the waveform characteristic is the waveform slope of the rising edge of the detection waveform S, an accurate distance that excludes the influence of the rising slope difference of the detection waveform S can be output.

H 波高さ
S 検波波形
T UWB信号
Z 補正値データベース
H Wave height S Detection waveform T UWB signal Z Correction value database

Claims (3)

インパルスUWB信号(T)を受信して距離を算出するUWB計測システムに於て、
受信した上記UWB信号(T)を包絡線検波して、該包絡線検波にて得た検波波形(S)の波形特性を検出し、波形特性に応じた補正値を有する補正値データベース(Z)と、上記検出した波形特性と、を照合して補正値を抽出し、該抽出した補正値を加味して距離を計算することを特徴とするUWB計測システム。
In a UWB measurement system that receives an impulse UWB signal (T) and calculates a distance,
Envelope detection of the received UWB signal (T) to detect the waveform characteristics of the detected waveform (S) obtained by the envelope detection, and a correction value database (Z) having correction values corresponding to the waveform characteristics A UWB measurement system that compares the detected waveform characteristics with each other and extracts a correction value, and calculates the distance in consideration of the extracted correction value.
上記波形特性は、上記検波波形(S)の波高さ(H)である請求項1記載のUWB計測システム。   The UWB measurement system according to claim 1, wherein the waveform characteristic is a wave height (H) of the detection waveform (S). 上記波形特性は、上記検波波形(S)の立ち上がりの波形スロープである請求項1記載のUWB計測システム。   The UWB measurement system according to claim 1, wherein the waveform characteristic is a waveform slope of a rising edge of the detection waveform (S).
JP2015229312A 2015-11-25 2015-11-25 UWB measurement system Active JP6571502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229312A JP6571502B2 (en) 2015-11-25 2015-11-25 UWB measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229312A JP6571502B2 (en) 2015-11-25 2015-11-25 UWB measurement system

Publications (2)

Publication Number Publication Date
JP2017096779A true JP2017096779A (en) 2017-06-01
JP6571502B2 JP6571502B2 (en) 2019-09-04

Family

ID=58816632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229312A Active JP6571502B2 (en) 2015-11-25 2015-11-25 UWB measurement system

Country Status (1)

Country Link
JP (1) JP6571502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD936688S1 (en) 2019-02-13 2021-11-23 Sonos, Inc. Display screen or portion thereof with graphical user interface for podcasts
CN115474273A (en) * 2022-10-31 2022-12-13 广东师大维智信息科技有限公司 Six-degree-of-freedom image generation method and device for controller based on UWB base station

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381289A (en) * 1986-09-25 1988-04-12 Fujitsu Ten Ltd Distance measuring equipment
JPH07128438A (en) * 1993-11-01 1995-05-19 Stanley Electric Co Ltd Method for correcting distance in radar range finder
JPH07198846A (en) * 1993-12-28 1995-08-01 Nikon Corp Distance measuring apparatus
JPH0886858A (en) * 1994-09-14 1996-04-02 Nissan Motor Co Ltd Pulse-type radar apparatus
JP2003167054A (en) * 2001-12-04 2003-06-13 Denso Corp Distance measuring method and distance measuring device
JP2006194716A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Radar apparatus
JP2007327956A (en) * 2006-06-06 2007-12-20 Sony Corp Method and apparatus for measuring distance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381289A (en) * 1986-09-25 1988-04-12 Fujitsu Ten Ltd Distance measuring equipment
JPH07128438A (en) * 1993-11-01 1995-05-19 Stanley Electric Co Ltd Method for correcting distance in radar range finder
JPH07198846A (en) * 1993-12-28 1995-08-01 Nikon Corp Distance measuring apparatus
JPH0886858A (en) * 1994-09-14 1996-04-02 Nissan Motor Co Ltd Pulse-type radar apparatus
JP2003167054A (en) * 2001-12-04 2003-06-13 Denso Corp Distance measuring method and distance measuring device
JP2006194716A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Radar apparatus
JP2007327956A (en) * 2006-06-06 2007-12-20 Sony Corp Method and apparatus for measuring distance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD936688S1 (en) 2019-02-13 2021-11-23 Sonos, Inc. Display screen or portion thereof with graphical user interface for podcasts
CN115474273A (en) * 2022-10-31 2022-12-13 广东师大维智信息科技有限公司 Six-degree-of-freedom image generation method and device for controller based on UWB base station
CN115474273B (en) * 2022-10-31 2023-02-17 广东师大维智信息科技有限公司 Six-degree-of-freedom image generation method and device for controller based on UWB base station

Also Published As

Publication number Publication date
JP6571502B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
US10185032B2 (en) Time measurement circuit and optoelectronic distance meter having such a time measurement circuit
US11125863B2 (en) Correction device, correction method, and distance measuring device
US7800737B2 (en) Laser range finding device and distance measurement method thereof
WO2011030389A1 (en) Ultrasonic detector
CN109581401B (en) Distance detection sensor and working method thereof
US20080136703A1 (en) Equivalent time sampling radar
CN114637021B (en) Sub-centimeter-level full-waveform laser radar ranging method and device
WO2020139381A1 (en) System and methods for ranging operations using multiple signals
JP6571502B2 (en) UWB measurement system
CN112444819A (en) Pulse width detection circuit, distance measurement circuit, detection method and distance measurement method
CN105549027A (en) Range finding method based on laser pulse shape leading edge detection and system thereof
CN211698204U (en) Pulse width detection circuit and laser radar ranging circuit
US8477291B2 (en) System and method for ranging of targets
US20170059718A1 (en) Signal processing device and radiation measurement device
JP2018066669A (en) Ultrasonic distance measuring device, ultrasonic distance measuring method and ultrasonic distance measuring program
JP2006329690A (en) Pulse radar system
CN210072076U (en) Azimuth detection device
KR101591163B1 (en) Method and Device for Suppressing Noise in UWB Radar
JP2007121044A (en) Object sensor
RU2009117075A (en) RADAR STATION ZONE OVERVIEW METHOD
JP2009288018A (en) Radiowave sensor
CN110967682B (en) Multi-pulse laser ranging circuit and method
CN110850427A (en) Amplifying circuit for laser radar, laser radar and control method
Kurtti et al. CMOS receiver for a pulsed TOF laser rangefinder utilizing the time domain walk compensation scheme
JP2013205046A (en) Radio altimeter and method of measuring altitude

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6571502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250