JP2017096685A - Needle, and injection needle equipped with the same - Google Patents

Needle, and injection needle equipped with the same Download PDF

Info

Publication number
JP2017096685A
JP2017096685A JP2015226940A JP2015226940A JP2017096685A JP 2017096685 A JP2017096685 A JP 2017096685A JP 2015226940 A JP2015226940 A JP 2015226940A JP 2015226940 A JP2015226940 A JP 2015226940A JP 2017096685 A JP2017096685 A JP 2017096685A
Authority
JP
Japan
Prior art keywords
needle
oil
water
super
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015226940A
Other languages
Japanese (ja)
Inventor
三宅 通博
Michihiro Miyake
通博 三宅
亀島 欣一
Kinichi Kameshima
欣一 亀島
俊介 西本
Shunsuke Nishimoto
俊介 西本
雄介 澤井
Yusuke Sawai
雄介 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2015226940A priority Critical patent/JP2017096685A/en
Publication of JP2017096685A publication Critical patent/JP2017096685A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a needle that can be easily manipulated without suffering adhesion of oil droplets to its tip or side face when oil droplets are manipulated in water and can discharge oil droplets of an appropriately minute size, and an injection needle equipped with such a needle.SOLUTION: A needle is equipped with a base material and an in-water ultra oil-repellent layer having an oil-contact angle of 150 degrees or more in water, formed at least on the outside surface of a tip part of the base material. As it manifests an in-water ultra oil-repellent property, adhesion of oil droplets to the needle tip can be prevented.SELECTED DRAWING: Figure 6

Description

本発明は、水中において油滴を操作する際に用いられる針および該針を備えた注射針に関する。 The present invention relates to a needle used when manipulating oil droplets in water and an injection needle equipped with the needle.

固体表面を撥水性または親水性にすることで、防曇性や防汚性の機能を持たせることが知られており、固体表面の大気中における濡れ性の研究は古くから行われている。一方、最近では、これらの大気中での水および油の濡れ性に加えて、水中での油の濡れ性に対する関心が高まりを見せており、新たな研究対象として認識されつつある(例えば特許文献1)。測定試料としては、近年、水中で撥油的に振る舞う材料(特に、超撥油性表面)への関心が高まっている。 It has been known to impart antifogging and antifouling functions by making a solid surface water-repellent or hydrophilic, and studies on wettability of the solid surface in the atmosphere have been conducted for a long time. On the other hand, recently, in addition to the wettability of water and oil in the atmosphere, interest in the wettability of oil in water has been increasing, and is being recognized as a new research object (for example, Patent Documents) 1). As a measurement sample, in recent years, interest in materials that behave oil-repellently in water (particularly super-oil-repellent surfaces) has increased.

固体試料表面の水中における動的な油の濡れ性を評価する際、水中で微小油滴を針先から吐出させる技術が必要となる。大気中における水や油の濡れ性の評価技術に関する研究は多くなされているが、水中における油の濡れ性に関する測定・評価技術は完全には確立されていない。 When evaluating the wettability of dynamic oil in water on the surface of a solid sample, a technique for discharging fine oil droplets from the needle tip in water is required. Although much research has been conducted on the wettability evaluation technique for water and oil in the atmosphere, the measurement and evaluation techniques for wettability of oil in water have not been fully established.

図1は、固体試料表面の水中における油の接触角測定手順を示す。まず、針先を油滴が先端部から吐出した状態で試料表面に近づけ(図1A)、針先から吐出した油滴が試料表面に接触すると針先を試料表面から引き離す(図1B)。油滴は針先から引き離されて試料表面に着滴する(図1C)。そして、着滴した液滴と試料表面との接触角を測定することで、濡れの度合いを評価する。 FIG. 1 shows the procedure for measuring the contact angle of oil in water on the surface of a solid sample. First, the needle tip is brought close to the sample surface in a state where oil droplets are ejected from the tip (FIG. 1A), and when the oil droplet ejected from the needle tip contacts the sample surface, the needle tip is pulled away from the sample surface (FIG. 1B). The oil droplets are pulled away from the needle tip and land on the sample surface (FIG. 1C). Then, the degree of wetting is evaluated by measuring the contact angle between the deposited droplet and the sample surface.

特開2015−39685JP2015-39685A

このような水中における濡れ性の測定において、既存の針としては、水中での撥油性が不十分な素材からなる管(例えば、平滑なステンレス製針)が使用されている。しかし、従来のステンレス製針では、水中で針先に形成された油滴を操作する際に、針先および針の側面に油滴が付着してしまい、油滴の操作が困難になる。 In the measurement of wettability in water, a tube made of a material having insufficient oil repellency in water (for example, a smooth stainless needle) is used as an existing needle. However, with a conventional stainless steel needle, when an oil droplet formed on the needle tip is operated in water, the oil droplet adheres to the needle tip and the side surface of the needle, making it difficult to operate the oil droplet.

また、従来のステンレス製針から、油滴を試料表面へ付着させるためには、非常に大きなサイズの油滴を形成したうえで、強く試料表面へ油滴を押し付ける必要があった。しかしながら付着を試みる際には、図2に示すように針の外壁に油滴が付着してしまい、操作不能となることがあった。そのような場合には、一度針を水中から取出し、針側面及び先端を洗浄した後、改めて水中で油滴を形成する必要があり、操作に手間と時間を要していた。 Further, in order to attach oil droplets to a sample surface from a conventional stainless needle, it is necessary to form an extremely large oil droplet and then press the oil droplet strongly against the sample surface. However, when attempting attachment, an oil droplet may adhere to the outer wall of the needle as shown in FIG. In such a case, it is necessary to take out the needle from the water once, wash the side and tip of the needle, and then form an oil drop in the water again, which requires time and effort for the operation.

また、図3に示すように、固体試料表面の油の濡れ性を解析するためには、着滴している油滴が試料表面に傾斜をつけた際にどのように動くかを解析(動的接触角測定:前進接触角、後退接触角、転落角)することが重要である。しかしながら、試料表面への油滴の着滴が困難で過剰に油滴が試料表面へ押しつけられた場合には、本来の試料表面の濡れとは異なる状態となってしまい、目的とする情報を得ることが出来なくなると考えられる。従って、針に付着している油滴を試料表面に強く押し付けることなく針先から過度に大きくない適度な微小サイズの油滴を吐出させることが、試料表面に自然な状態で付着させるうえにおいて重要となる。 In addition, as shown in FIG. 3, in order to analyze the wettability of oil on the surface of a solid sample, it is analyzed how the oil droplets that have landed move when the sample surface is inclined. Contact angle measurement: advancing contact angle, receding contact angle, falling angle) is important. However, when it is difficult to deposit oil droplets on the sample surface and the oil droplets are excessively pressed onto the sample surface, the condition is different from the original wetting of the sample surface, and the desired information is obtained. It is thought that it will be impossible. Therefore, it is important to eject oil droplets of moderately small size that are not excessively large from the tip of the needle without strongly pressing the oil droplets adhering to the sample surface on the sample surface in order to adhere naturally to the sample surface. It becomes.

そこで、微小サイズの油滴の吐出には、針の内径を小さくすることでも可能になると考えられるが、内径の小さい針は機械的耐久性が低下し、また作製にもコストがかかる。 Thus, although it is considered that a small-sized oil droplet can be ejected by reducing the inner diameter of the needle, a needle having a smaller inner diameter has reduced mechanical durability and is expensive to manufacture.

さらに、接触角測定用の針は使い捨てではなく、使用後には洗浄して再び使用できることが望ましいが、内径が小さい針では洗浄操作が困難となり、油の付着・目詰まりが発生するおそれがある。 Further, it is desirable that the contact angle measuring needle is not disposable and can be washed and reused after use. However, with a needle having a small inner diameter, the washing operation becomes difficult, and there is a risk of oil adhesion and clogging.

本発明の針1は、水中において油滴を操作する際に用いられ、管状の基材2と、前記基材2の少なくとも先端部の外表面に形成された、水中における油接触角が150度以上である水中超撥油層3とを備えている。基材は、市販のステンレス製、チタン製の針を用いることができる。水中超撥油層3の材料としては、シリカ、酸化チタン等の金属酸化物を用いることができる。この基材の表面に水中超撥油層3が形成されることで、油滴を水中で操作する際に針先や針側面に油滴が付着することなく、簡便に操作できる。 The needle 1 of the present invention is used when manipulating oil droplets in water, and has an oil contact angle in water of 150 degrees formed on the outer surface of the tubular base material 2 and at least the tip of the base material 2. The underwater super oil-repellent layer 3 is provided. As the substrate, commercially available stainless steel or titanium needles can be used. As a material of the underwater super oil repellent layer 3, metal oxides such as silica and titanium oxide can be used. By forming the underwater super-oil-repellent layer 3 on the surface of this base material, when the oil droplet is operated in water, it can be easily operated without the oil droplet adhering to the needle tip or the side surface of the needle.

また、水中超撥油層3に算術平均粗さが100nm以上である凹凸が形成されていてもよい。さらに、前記針1を注射針の先端に装着して用いても良い。なお、本明細書では、当該技術分野における一般的な用語の概念と同様、「水中での超撥油性」は、水中での油との接触角が150度以上の物性を指すものとする。また、本発明において、「水中での超撥油性」に相当する比較的大きな接触角は接線法で算出される値として定義することとする。このような手法による接触角の測定は、市販されている一般的な接触角計(測定システム)を用いて行うことができる。 Further, irregularities having an arithmetic average roughness of 100 nm or more may be formed in the underwater super oil repellent layer 3. Furthermore, the needle 1 may be attached to the tip of the injection needle. In the present specification, as in the concept of general terms in the technical field, “super oil repellency in water” refers to a physical property having a contact angle with oil in water of 150 degrees or more. In the present invention, a relatively large contact angle corresponding to “super oil repellency in water” is defined as a value calculated by the tangent method. The measurement of the contact angle by such a method can be performed using a commercially available general contact angle meter (measurement system).

本発明の針1は基材2に水中超撥油層3が被覆されているため、油滴を水中で操作する際に針先や針側面に油滴が付着することなく、簡便に操作できる。 Since the needle 1 of the present invention is coated with the underwater super-oil-repellent layer 3 on the base material 2, when the oil droplet is operated in water, it can be easily operated without the oil droplet adhering to the needle tip or the side surface of the needle.

また、適度な内径を有する針1で、針1に付着している油滴を試料表面3へ強く押し付けることなく針先から目的とする適度な微小サイズの油滴を吐出させ、試料表面3へ自然な付着を可能にすることが出来る。 In addition, with the needle 1 having an appropriate inner diameter, an oil droplet of a desired moderate size is ejected from the tip of the needle without strongly pressing the oil droplet adhering to the needle 1 against the sample surface 3, and the sample surface 3 is ejected. Natural adhesion can be made possible.

さらに、前記針1を装着した注射針を適用することで、針1のサイズを極細にスケールダウンすることなく、微小サイズの油滴を吐出することができる。 Furthermore, by applying an injection needle equipped with the needle 1, it is possible to discharge fine oil droplets without scaling down the size of the needle 1.

図1は、固体試料表面の水中における油接触角を測定する手順を示す図である。FIG. 1 is a diagram illustrating a procedure for measuring an oil contact angle in water on the surface of a solid sample. 図2は、従来のステンレス製針により油滴を試料表面に押し付けようとする様子を示す図である。FIG. 2 is a diagram showing a state in which an oil droplet is pressed against the sample surface with a conventional stainless needle. 図3は、固体試料表面の水中における動的油接触角を測定する手順を示す図である。FIG. 3 is a diagram showing a procedure for measuring a dynamic oil contact angle in water on the surface of a solid sample. 図4は、シリカ層が形成されたステンレス板のSEM観察写真である。FIG. 4 is a SEM observation photograph of the stainless steel plate on which the silica layer is formed. 図5は、本発明の超撥油針のSEM観察写真である。FIG. 5 is a SEM observation photograph of the super oil-repellent needle of the present invention. 図6は、第1の実施形態に係る超撥油針から油滴を吐出させた様子を示す図である。FIG. 6 is a diagram illustrating a state in which oil droplets are ejected from the super oil repellent needle according to the first embodiment. 図7は、第2の実施形態に係る超撥油針により油滴を試料表面に押し付けた様子を示す図である。FIG. 7 is a diagram illustrating a state in which oil droplets are pressed against the sample surface by the super oil repellent needle according to the second embodiment. 図8は、第2の実施形態に係る超撥油針から吐出した油滴を示す図である。FIG. 8 is a view showing oil droplets discharged from the super oil repellent needle according to the second embodiment.

第1の実施形態
本実施形態の超撥油針1は、油滴等の液体を吐出することができるように管状になっており、水中で油滴を操作する際に用いられる。ここで「操作」とは、例えば水中において油を吐出して油滴を形成したり、油滴を付着させた状態で任意の位置に移動させたり、固体試料表面に油滴を押し付けたり等、油滴を接触・付着・移動・吐出・形成等をすることを意味する。
First embodiment The super oil-repellent needle 1 of the present embodiment has a tubular shape so that liquid such as oil droplets can be discharged, and is used when manipulating oil droplets in water. . Here, `` operation '' means, for example, discharging oil in water to form oil droplets, moving to an arbitrary position with oil droplets attached, pressing oil droplets on the surface of a solid sample, etc. It means to contact, attach, move, discharge, and form oil droplets.

本実施形態では、固体試料表面4の水中における油の接触角を測定する際に使用される油滴形成針への適用を想定している。図1は、固体試料表面4の水中における油接触角を測定する手順を示す図である。図1に示すように、超撥油針1の先端部に油滴が付着した状態で試料表面4に近づけていき(図1A)、針先から吐出した油滴を試料表面4に接触させる(図1B)。そして、針先を試料表面4から引き離すことで、油滴を試料表面に着滴させる(図1C)。 In the present embodiment, application to an oil droplet forming needle used when measuring the contact angle of oil in water on the solid sample surface 4 is assumed. FIG. 1 is a diagram showing a procedure for measuring the oil contact angle of the solid sample surface 4 in water. As shown in FIG. 1, the oil droplets are brought close to the sample surface 4 with the oil droplets attached to the tip of the super oil repellent needle 1 (FIG. 1A), and the oil droplets discharged from the needle tip are brought into contact with the sample surface 4 ( FIG. 1B). Then, by pulling the needle tip away from the sample surface 4, oil droplets are deposited on the sample surface (FIG. 1C).

また、図3に示すように、着滴している油滴が試料表面4に傾斜をつけた際にどのように動くかを解析(動的接触角測定:前進接触角、後退接触角、転落角)する際にも用いても良い。すなわち、針1の先端部から油滴を吐出させて(図3A)、試料表面4に油滴を接触させる(図3B)。そして、油滴を付着させた状態で試料表面を傾斜させて油滴を移動させる(図3C)。ただし、水中で油滴を操作する用途であれば、種々の用途に用いることができ、例えばエマルジョンを形成する際に本超撥油針1を用いても良い。 In addition, as shown in FIG. 3, analysis is made of how the oil droplets that have landed move when the sample surface 4 is tilted (dynamic contact angle measurement: forward contact angle, backward contact angle, falling) It may also be used when cornering. That is, an oil droplet is discharged from the tip of the needle 1 (FIG. 3A), and the oil droplet is brought into contact with the sample surface 4 (FIG. 3B). Then, with the oil droplets attached, the sample surface is tilted and the oil droplets are moved (FIG. 3C). However, if it is a use which operates an oil drop in water, it can be used for various uses, for example, when forming an emulsion, you may use this super oil-repellent needle 1.

ここで、「水中における油の接触角」とは、水中において、操作の対象となる油滴と該油滴が置かれた水平面との間で形成される角度を油液/基材界面で測定したものであって、表面の濡れ性の尺度として使用される。すなわち、油の接触角の値が大きいことは、表面上での油液に対する濡れ性が低く、撥油性が高いことを表す。また、本明細書で用いる「水中超撥油性」とは、水中における基材に対する油の接触角が150度以上であって、水中における撥油性がきわめて高いことをいう。 Here, “the contact angle of oil in water” means the angle formed between the oil droplet to be operated and the horizontal plane on which the oil droplet is placed in water at the oil liquid / substrate interface. And is used as a measure of surface wettability. That is, a large value of the oil contact angle indicates that the wettability with respect to the oil liquid on the surface is low and the oil repellency is high. In addition, “underwater super oil repellency” used in the present specification means that the contact angle of oil with a substrate in water is 150 degrees or more, and the oil repellency in water is extremely high.

(超撥油針の構成)
第1の実施形態に係る超撥油針1について説明する。本実施形態の超撥油針1は、基材2と、前記基材2の少なくとも先端部の外表面に形成された水中超撥油層3とを備えている。基材2は、外径が0.6mm、肉厚が0.13mmの市販のステンレス製針である。前記基材2の表面には、水中超撥油層3としてシリカ層が皮膜されている。なお、本実施形態のように基材2の表面に水中超撥油層3が形成されていても良いし、基材2自体が水中超撥油性の材料でできていても良い。
(Structure of super oil-repellent needle)
The super oil repellent needle 1 according to the first embodiment will be described. The super oil repellent needle 1 of this embodiment includes a base material 2 and an underwater super oil repellent layer 3 formed on the outer surface of at least the tip of the base material 2. The base material 2 is a commercially available stainless steel needle having an outer diameter of 0.6 mm and a wall thickness of 0.13 mm. A silica layer is coated on the surface of the substrate 2 as an underwater super oil repellent layer 3. The underwater super oil-repellent layer 3 may be formed on the surface of the base material 2 as in the present embodiment, or the base material 2 itself may be made of an underwater super oil repellent material.

(シリカ層の形成)
シリカ層は、ゾル塗布法により形成する。具体的には、シリコンアルコキシドとシリカゲル微粒子とを含むコーティング液をステンレス製針表面へ塗布し、陶芸炉において約500度で約30分間熱処理することでシリカ層を形成している。ゾル塗布法によれば、基材の大きさ、形状によって、設備上の制約をうけることがないので、特別の設備を要せず、簡便に基材2表面に被膜形成することができる。ただし、シリカ層の形成方法は特に限定することはなく、蒸着、スパッタリング、CVD等種々の方法を用いることができる。
(Formation of silica layer)
The silica layer is formed by a sol coating method. Specifically, a silica layer is formed by applying a coating liquid containing silicon alkoxide and silica gel fine particles to the surface of a stainless needle and heat-treating it at about 500 degrees for about 30 minutes in a ceramic oven. According to the sol coating method, since there are no restrictions on the equipment depending on the size and shape of the base material, no special equipment is required, and a film can be easily formed on the surface of the base material 2. However, the method for forming the silica layer is not particularly limited, and various methods such as vapor deposition, sputtering, and CVD can be used.

このシリカ層により水中における油接触角が150度以上という水中超撥油性を発揮することが可能となる。これにより、油滴を水中で操作する際に針先や針側面に油滴が付着することなく、簡便に操作できる。なお、本実施形態のシリカ層の水中における油の接触角は171.5度であった。 This silica layer makes it possible to exhibit the super-oil repellency in water with an oil contact angle in water of 150 degrees or more. Thereby, when operating an oil drop in water, it can operate simply, without an oil drop adhering to a needle point or a needle side. In addition, the contact angle of the oil in the water of the silica layer of this embodiment was 171.5 degrees.

また、シリカ層の表面には、シリカ粒子に由来した凹凸が形成されている。図4は、SEM(走査電子顕微鏡)によって、シリカ層が形成されたステンレス板の表面を撮影したSEM観察写真である。シリカ粒子により表面に凹凸が形成されていることが分かる。凹凸の算術平均粗さは100nm以上、好ましくは500nm以上、さらに好ましくは1000nm以上である。この算術平均粗さは、コーティング液に含まれるシリカ粒子のサイズを選択することによって任意に決定することができる。 Further, irregularities derived from the silica particles are formed on the surface of the silica layer. FIG. 4 is a SEM observation photograph in which the surface of the stainless steel plate on which the silica layer is formed is photographed by SEM (scanning electron microscope). It can be seen that irregularities are formed on the surface by the silica particles. The arithmetic average roughness of the unevenness is 100 nm or more, preferably 500 nm or more, and more preferably 1000 nm or more. This arithmetic average roughness can be arbitrarily determined by selecting the size of the silica particles contained in the coating liquid.

図5は、SEM(走査電子顕微鏡)によって、本実施形態にかかる針1および従来のステンレス製針の表面を撮影したSEM観察写真である。図5Aは、従来のステンレス製針の表面SEM観察写真であり、図5Bは、シリカ層が形成された針1の表面SEM観察写真である。図5A、図5Bの写真倍率は同じである。針の外径は 約0.6 mm、肉厚は約0.13 mmである。本実施形態の超撥油針1も、針穴がシリカ粒子でつぶされてしまうことはなく、内径も従来のステンレス製針と同様に約0.34〜0.35 mmであった。 FIG. 5 is a SEM observation photograph obtained by photographing the surface of the needle 1 according to the present embodiment and the conventional stainless steel needle with an SEM (scanning electron microscope). FIG. 5A is a surface SEM observation photograph of a conventional stainless needle, and FIG. 5B is a surface SEM observation photograph of the needle 1 on which a silica layer is formed. The photographic magnifications in FIGS. 5A and 5B are the same. The outer diameter of the needle is about 0.6 mm and the wall thickness is about 0.13 mm. The super oil-repellent needle 1 of the present embodiment also had a needle hole that was not crushed by silica particles, and the inner diameter was about 0.34 to 0.35 mm, similar to a conventional stainless steel needle.

(シリカ層の水中超撥油性)
以下、シリカ層の水中超撥油性について説明する。固体表面が水中で撥油的に振る舞うかどうか、および、その撥油性の度合いは、固体表面の「化学的性質」および「表面凹凸などの微細構造」に依存する。ここでは、化学的性質としてシリカが好適であることを油として汎用的な脂肪酸の1種であるオレイン酸を用いた試験により示す。固体試料としては特別な凹凸のない比較的平滑なシリカ試料を用いた。試料作製にはステンレス板が基板として用いられ、シリコンアルコキシドを含むコーティング液がシリカ試料用に用いられた。
(Silica layer underwater super oil repellency)
Hereinafter, the underwater super oil repellency of the silica layer will be described. Whether a solid surface behaves oil-repellently in water and the degree of oil repellency depends on the “chemical properties” of the solid surface and the “microstructure such as surface irregularities”. Here, the fact that silica is suitable as a chemical property is shown by a test using oleic acid, which is one of general-purpose fatty acids as oil. As the solid sample, a relatively smooth silica sample without special irregularities was used. For sample preparation, a stainless steel plate was used as the substrate, and a coating solution containing silicon alkoxide was used for the silica sample.

コーティングは、ディップコート法で行われ、その後、500度で熱処理されることで試料が調整された。UV−オゾンクリーナーで得られた試料表面の洗浄処理を行った直後に試料の水中におけるオレイン酸の接触角を測定した結果、シリカ試料では160度を超える超撥油性を示した。また、直鎖アルカンであるヘキサデカンを油滴に使用した際にも160度を超える超撥油性を示した。以上の結果、シリカは油の種類によっては、水中での撥油性に優れた性質を示すことが分かる。 The coating was performed by a dip coating method, and then the sample was prepared by heat treatment at 500 degrees. As a result of measuring the contact angle of oleic acid in the water of the sample immediately after cleaning the sample surface obtained with the UV-ozone cleaner, the silica sample showed super-oil repellency exceeding 160 degrees. In addition, even when hexadecane, which is a linear alkane, was used in the oil droplets, it exhibited super oil repellency exceeding 160 degrees. From the above results, it can be seen that silica exhibits excellent oil repellency in water depending on the type of oil.

(油滴の吐出に関する実験)
次に、本実施形態の超撥油針1と従来のステンレス製針を用いて、水中に油滴を吐出した際の油滴の様子について説明する。図6は、水中における油滴(ヘキサデカン)の吐出実験の結果を示す。写真倍率は図6A、図6B、図6Cともすべて同じである。
(Experiment related to oil droplet ejection)
Next, the state of the oil droplet when the oil droplet is discharged into water using the super oil-repellent needle 1 of the present embodiment and a conventional stainless steel needle will be described. FIG. 6 shows the results of a discharge experiment of oil droplets (hexadecane) in water. The photographic magnifications are the same in FIGS. 6A, 6B, and 6C.

図6Aは、ステンレス製針から吐出された油滴を示す。図6Aに示すように、従来のステンレス製針から吐出された油滴は、直径が約3.4mmと大きいのが分かる。このような大きいサイズの油滴を針から試料表面4に付着させるためには、針に付着している油滴を試料表面4に強く押し付けなければならず、本来の試料表面4の濡れとは異なる状態となってしまい、目的とする情報を得ることが出来なくなるおそれがある。そこで、微小サイズの油滴の吐出には、針の内径を小さくすることでも可能になると考えられるが、内径の小さい針は機械的耐久性が低下し、また作製にもコストがかかるという問題がある。 FIG. 6A shows oil droplets ejected from a stainless needle. As shown in FIG. 6A, it can be seen that the oil droplets discharged from the conventional stainless needle have a large diameter of about 3.4 mm. In order to attach such a large oil droplet to the sample surface 4 from the needle, the oil droplet adhering to the needle must be strongly pressed against the sample surface 4, and what is the original wetting of the sample surface 4? There is a possibility that the target information cannot be obtained because of different states. Therefore, it is considered that a small-sized oil droplet can be ejected by reducing the inner diameter of the needle. However, a needle having a smaller inner diameter has a problem that the mechanical durability is lowered and the production is expensive. is there.

図6Bは、本実施形態にかかるシリカ層が形成された超撥油針1から吐出された油滴を示す。図6Bに示すように、超撥油針1から吐出された油滴は、約0.5mmと非常に小さいことがわかる。これは、超撥油針1の油滴の濡れ性が小さくなる結果、油滴が超撥油針1からスムーズに吐出されるためである。このように、適度な微小サイズの油滴を吐出させることができれば、超撥油針1に付着している油滴を試料表面4に強く押し付けることなく、試料表面4に自然な状態で付着させることが可能となる。 FIG. 6B shows oil droplets ejected from the super oil-repellent needle 1 on which the silica layer according to the present embodiment is formed. As shown in FIG. 6B, it can be seen that the oil droplets ejected from the super oil repellent needle 1 are very small, about 0.5 mm. This is because oil droplets are smoothly ejected from the super oil repellent needle 1 as a result of the reduced wettability of the oil droplets of the super oil repellent needle 1. As described above, if oil droplets of an appropriate minute size can be ejected, the oil droplets adhering to the super oil-repellent needle 1 are adhered to the sample surface 4 in a natural state without strongly pressing the sample surface 4. It becomes possible.

図6Cは、シリカ層が形成されるとともに超撥油針1の表面にあえて汚染処理を施した針から吐出された油滴を示す。汚染処理の油性汚れとしてオレイン酸を用いている。図6Cに示すように、針のシリカ層の表面に汚染処理を施した針から吐出した油滴は、約2.0mmと従来のステンレス製針と比較して十分に小さく、オレイン酸(油性汚れ)を用いた汚染処理を施しても、小さい油滴を吐出できることが分かった。 FIG. 6C shows oil droplets ejected from a needle on which the silica layer is formed and the surface of the super oil-repellent needle 1 is subjected to contamination treatment. Oleic acid is used as an oily soil for contamination treatment. As shown in FIG. 6C, the oil droplets ejected from the needle whose surface of the silica layer of the needle had been subjected to contamination treatment were about 2.0 mm, which was sufficiently small compared to a conventional stainless steel needle, and oleic acid (oil-based stain) It was found that small oil droplets can be ejected even when a contamination treatment using) is performed.

この結果は、シリカ処理直後の比較的清浄な状態だけでなく、針を大気中で所定期間保存した後でも、シリカ粒子による表面の凹凸効果により微小油滴を吐出できることを示している。すなわち、大気中で保存することにより、空気中に浮遊する油性の汚れ成分がごく微量ではあるものの針表面に付着し、表面の濡れ性が親水性から親油性へと変化し、水中での撥油性が損なわれてしまうと考えられる。しかしながら、微細な凹凸表面では、水中で油と針表面との間に水が効果的に噛みこまれるため、撥油性を示し、微小油滴の形成が達成されると考えられる。 This result shows that not only a relatively clean state immediately after the silica treatment but also fine oil droplets can be ejected by the surface unevenness effect of the silica particles even after the needle is stored in the atmosphere for a predetermined period. In other words, when stored in the air, oily soil components floating in the air are attached to the needle surface even though a very small amount, and the wettability of the surface changes from hydrophilic to oleophilic, repelling in water. It is thought that oiliness will be impaired. However, on a fine uneven surface, water is effectively bited between the oil and the needle surface in water, so that it exhibits oil repellency and the formation of fine oil droplets can be achieved.

第2の実施形態
(超撥油針の構成)
次に、第2の実施形態にかかる超撥油針1について説明する。第1の実施形態と異なる点を中心に説明し、重複する点については説明を省略する。本実施形態の超撥油針1も、第1の実施形態と同様に、基材2と水中超撥油層3とを備えている。基材2は市販のチタン製針が用いられており、その表面には水中超撥油層3として酸化チタン層が皮膜されている。
Second Embodiment (Configuration of Super Oil-Repellent Needle)
Next, the super oil repellent needle 1 according to the second embodiment will be described. The description will focus on the differences from the first embodiment, and the description of the overlapping points will be omitted. The super oil repellent needle 1 of the present embodiment also includes a base material 2 and an underwater super oil repellent layer 3 as in the first embodiment. A commercially available titanium needle is used for the base material 2, and a titanium oxide layer is coated on the surface as an underwater super oil repellent layer 3.

(酸化チタン層の形成)
酸化チタン層は、400から1000度で焼成することで基材表面に形成されている。酸化チタンを用いているのは、親水性が高く、比較的長波長の紫外光照射によって反応するためであるが、酸化チタン以外にも例えば酸化亜鉛、酸化ニオブ、酸化タングステン等種々の金属酸化物を用いることができる。
(Formation of titanium oxide layer)
The titanium oxide layer is formed on the substrate surface by firing at 400 to 1000 degrees. Titanium oxide is used because it has high hydrophilicity and reacts by irradiation with ultraviolet light having a relatively long wavelength. In addition to titanium oxide, various metal oxides such as zinc oxide, niobium oxide, and tungsten oxide are used. Can be used.

針1が使用される前に、酸化チタン層に紫外光が照射される。光触媒機能を有する酸化チタン層に、紫外光を照射することで、水中において油接触角が150度以上である超撥油性を示す。これにより、油滴を水中で操作する際に針先及び針の側面に油滴が付着することなく、簡便に操作することができる。 Before the needle 1 is used, the titanium oxide layer is irradiated with ultraviolet light. By irradiating the titanium oxide layer having a photocatalytic function with ultraviolet light, it exhibits super oil repellency with an oil contact angle of 150 degrees or more in water. Thereby, when operating an oil droplet in water, it can operate simply, without an oil droplet adhering to the needle tip and the side surface of a needle.

なお、本実施形態はチタン製針を焼成することにより表面に酸化チタン層を形成しているが、酸化チタン層の形成方法については特に限定はしない。たとえば、市販のステンレス製針に酸化チタン層をゾル塗布法により被覆しても良い。具体的には、チタンアルコキシドとチタニア微粒子とを含むコーティング液をステンレス製針の表面に塗布し、陶芸炉において約500度で約30分間熱処理することで酸化チタン層を形成することができる。 In this embodiment, the titanium oxide layer is formed on the surface by firing a titanium needle, but the method for forming the titanium oxide layer is not particularly limited. For example, a titanium oxide layer may be coated on a commercially available stainless steel needle by a sol coating method. Specifically, a titanium oxide layer can be formed by applying a coating liquid containing titanium alkoxide and titania fine particles to the surface of a stainless needle and heat-treating it at about 500 degrees for about 30 minutes in a ceramic oven.

(油滴の操作性に関する実験)
次に、本実施形態の超撥油針1と従来のステンレス製針を用いて、試料表面4に油滴を押し付けて着滴させる実験の結果について説明する。図7は、水中で油滴(ヘキサデカン)を試料表面4に押し付けた様子を示した図である。図7Aは、従来のステンレス製針の針先で油滴を試料表面4に押し付けた様子を示し、図7Bは、本実施形態の超撥油針1で油滴を試料表面4に押し付けた様子を示している。試料表面4は超撥油性を有している。
(Experiment on oil droplet operability)
Next, a description will be given of the results of an experiment in which oil droplets are pressed against the sample surface 4 and deposited using the super oil-repellent needle 1 of the present embodiment and a conventional stainless needle. FIG. 7 is a diagram showing a state in which oil droplets (hexadecane) are pressed against the sample surface 4 in water. FIG. 7A shows a state in which an oil droplet is pressed against the sample surface 4 with a needle tip of a conventional stainless needle, and FIG. 7B shows a state in which the oil droplet is pressed against the sample surface 4 with the super oil repellent needle 1 of the present embodiment. Is shown. The sample surface 4 has super oil repellency.

図7Aに示すように、従来のステンレス製針の水中油接触角は144.3度である。このステンレス製針の針先で油滴を試料表面4に押し付けた後、針先を試料表面4から遠ざけた場合、針先から油滴が離れず側面に付着した状態であることが分かる。試料表面に付着させるためには、過剰に油滴を試料表面に押しつけなければならず、本来の試料表面の濡れとは異なる状態となってしまい、目的とする情報を得ることが出来なくなるおそれがある。 As shown in FIG. 7A, the oil-in-water contact angle of the conventional stainless steel needle is 144.3 degrees. When the oil droplet is pressed against the sample surface 4 with the needle tip of this stainless steel needle and the needle tip is moved away from the sample surface 4, it can be seen that the oil droplet does not leave the needle tip and is attached to the side surface. In order to adhere to the sample surface, the oil droplets must be excessively pressed against the sample surface, resulting in a state different from the original wetting of the sample surface, and the target information may not be obtained. is there.

これに対して、図7Bに示すように、超撥油針1の水中油接触角は165.5度である。針先で油滴を超撥油表面に押し付けても、針先から油滴がスムーズに離れて針側面に付着することはない。したがって、過剰に油滴を試料表面4に押し付けることなく、試料表面4の任意の位置に容易に油滴を付着させることができる。 On the other hand, as shown in FIG. 7B, the oil-in-water contact angle of the super oil-repellent needle 1 is 165.5 degrees. Even if the oil droplet is pressed against the super-oil-repellent surface with the needle tip, the oil droplet does not leave the needle tip smoothly and adhere to the side surface of the needle. Therefore, the oil droplet can be easily attached to an arbitrary position on the sample surface 4 without excessively pressing the oil droplet against the sample surface 4.

(注射針の実験)
次に、本実施形態の超撥油針1を装着した注射針から吐出した油滴の様子を観察した。図8は、水中でステンレス製針および超撥油針の針先からの油滴(ヘキサデカン)が吐出される様子を示した図である。なお、図8には注射針が装着された針1の先端部のみを図示しており、超撥油針1を装着した注射針本体は図示していない。針先の外径は1.0 mm、肉厚は0.1 mmとなっている。
(Injection needle experiment)
Next, the state of the oil droplets discharged from the injection needle equipped with the super oil repellent needle 1 of this embodiment was observed. FIG. 8 is a diagram illustrating a state in which oil droplets (hexadecane) are ejected from the tip of a stainless needle and a super-oil-repellent needle in water. In FIG. 8, only the tip of the needle 1 to which the injection needle is attached is shown, and the injection needle body to which the super oil-repellent needle 1 is attached is not shown. The outer diameter of the needle tip is 1.0 mm, and the wall thickness is 0.1 mm.

図8Aは、従来のステンレス製針を装着した注射針から油滴を吐出させた様子を示している。従来のステンレス製針の水中におけるヘキサデカンの油滴接触角は144.3度である。図8Aに示すように、従来のステンレス製針から吐出した油滴は針先から離れにくく、サイズがある程度大きくなって吐出される。針先から離れた際の油滴の体積は28μLと大きかった。 FIG. 8A shows a state in which oil droplets are ejected from an injection needle equipped with a conventional stainless needle. The oil droplet contact angle of hexadecane in water of a conventional stainless steel needle is 144.3 degrees. As shown in FIG. 8A, oil droplets discharged from a conventional stainless steel needle are unlikely to be separated from the needle tip, and are discharged to a certain size. The volume of the oil droplet when separated from the needle tip was as large as 28 μL.

図8Bは、本実施形態の超撥油針1を装着した注射針から油滴を吐出させた様子を示している。本実施形態の超撥油針の水中におけるヘキサデカンの油滴接触角は165.5度である。図8Bに示すように、本実施形態の超撥油針1は水中で超撥油性を示すことから、微小な油滴を吐出させることができる。油滴の体積は2μLであった。このように、本実施形態の超撥油針1を装着した注射針によれば、注射針自体をスケールダウンすることなく水中での微小サイズの油滴を吐出することができる。 FIG. 8B shows a state in which oil droplets are ejected from the injection needle equipped with the super oil repellent needle 1 of the present embodiment. The oil contact angle of hexadecane in water of the super oil repellent needle of this embodiment is 165.5 degrees. As shown in FIG. 8B, the super oil-repellent needle 1 of the present embodiment exhibits super oil repellency in water, so that fine oil droplets can be ejected. The oil droplet volume was 2 μL. As described above, according to the injection needle equipped with the super oil-repellent needle 1 of the present embodiment, it is possible to discharge a small oil droplet in water without down-scaling the injection needle itself.

以上より、本実施形態の超撥油針によれば、水中超撥油層が形成されているため、油滴を水中で操作する際に針先や針側面に油滴が付着することなく、簡便に操作できる。また、針先から目的とする適度な微小サイズの油滴を吐出させ、試料表面へ自然な付着を可能にすることが出来る。さらに、超撥油針を装着した注射針を適用することで、針のサイズを極細にスケールダウンすることなく、微小サイズの油滴を吐出することができる。 As described above, according to the super oil-repellent needle of the present embodiment, the underwater super oil-repellent layer is formed, so that when the oil droplet is operated in water, the oil droplet does not adhere to the needle tip or the side surface of the needle. Can be operated. Moreover, it is possible to discharge a desired moderately sized oil droplet from the tip of the needle and allow natural adhesion to the sample surface. Furthermore, by applying an injection needle equipped with a super-oil-repellent needle, it is possible to discharge a micro-sized oil droplet without scaling down the needle size.

1 超撥油針
2 基材
3 超撥油層
4 試料表面
1 Super oil repellent needle 2 Base material 3 Super oil repellent layer 4 Sample surface

Claims (6)

水中において油滴を操作する際に用いられる針であって、
管状の基材と、
前記基材の少なくとも先端部の外表面に形成された、水中における油接触角が150度以上である水中超撥油層と、
を備えた針。
A needle used when manipulating oil droplets in water,
A tubular substrate;
An underwater super oil repellent layer having an oil contact angle in water of 150 degrees or more, formed on the outer surface of at least the tip of the substrate;
With a needle.
前記水中超撥油層が、算術平均粗さが100nm以上である凹凸を有する請求項1記載の針。 The needle according to claim 1, wherein the underwater super oil repellent layer has irregularities having an arithmetic average roughness of 100 nm or more. 前記水中超撥油層が、金属酸化物の1種以上を含む請求項1又は2に記載の針。 The needle according to claim 1 or 2, wherein the underwater super oil-repellent layer contains one or more metal oxides. 前記金属酸化物が、シリカを含む請求項1から3のいずれかに記載の針。 The needle according to any one of claims 1 to 3, wherein the metal oxide contains silica. 前記金属酸化物が、酸化チタン、酸化亜鉛、酸化ニオブ、酸化タングステンからなる群により選ばれた光触媒を含む請求項1から3のいずれかに記載の針。 The needle according to any one of claims 1 to 3, wherein the metal oxide includes a photocatalyst selected from the group consisting of titanium oxide, zinc oxide, niobium oxide, and tungsten oxide. 請求項1から5のいずれかに記載の針を備えた注射針。 An injection needle provided with the needle according to claim 1.
JP2015226940A 2015-11-19 2015-11-19 Needle, and injection needle equipped with the same Pending JP2017096685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015226940A JP2017096685A (en) 2015-11-19 2015-11-19 Needle, and injection needle equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226940A JP2017096685A (en) 2015-11-19 2015-11-19 Needle, and injection needle equipped with the same

Publications (1)

Publication Number Publication Date
JP2017096685A true JP2017096685A (en) 2017-06-01

Family

ID=58818161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226940A Pending JP2017096685A (en) 2015-11-19 2015-11-19 Needle, and injection needle equipped with the same

Country Status (1)

Country Link
JP (1) JP2017096685A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253077A (en) * 2002-02-27 2003-09-10 Daikin Ind Ltd Polymer blend and surface treatment agent
JP2005270644A (en) * 2004-02-24 2005-10-06 National Institute Of Advanced Industrial & Technology Puncturing needle
JP2006257336A (en) * 2005-03-18 2006-09-28 Kanagawa Acad Of Sci & Technol Method of forming super oil repellent surface and structure with super oil repellent surface using the method
JP2007040730A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Liquid repellent characteristic evaluation device
JP2009222430A (en) * 2008-03-13 2009-10-01 Fujitsu Ltd Evaluation method of surface state
JP2010089373A (en) * 2008-10-08 2010-04-22 Snt Co Water repellent-oil repellent coating article and production of the same
CN104132871A (en) * 2014-05-30 2014-11-05 中国石油化工股份有限公司 Method for measuring surface contact angle between opaque liquid and solid
JP2015039685A (en) * 2013-08-23 2015-03-02 国立大学法人 岡山大学 Oil-water separation material, and oil-water separation device and oil-water separation method used for oil-water separation material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253077A (en) * 2002-02-27 2003-09-10 Daikin Ind Ltd Polymer blend and surface treatment agent
JP2005270644A (en) * 2004-02-24 2005-10-06 National Institute Of Advanced Industrial & Technology Puncturing needle
JP2006257336A (en) * 2005-03-18 2006-09-28 Kanagawa Acad Of Sci & Technol Method of forming super oil repellent surface and structure with super oil repellent surface using the method
JP2007040730A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Liquid repellent characteristic evaluation device
JP2009222430A (en) * 2008-03-13 2009-10-01 Fujitsu Ltd Evaluation method of surface state
JP2010089373A (en) * 2008-10-08 2010-04-22 Snt Co Water repellent-oil repellent coating article and production of the same
JP2015039685A (en) * 2013-08-23 2015-03-02 国立大学法人 岡山大学 Oil-water separation material, and oil-water separation device and oil-water separation method used for oil-water separation material
CN104132871A (en) * 2014-05-30 2014-11-05 中国石油化工股份有限公司 Method for measuring surface contact angle between opaque liquid and solid

Similar Documents

Publication Publication Date Title
Yan et al. Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces
Sharma et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures
Boinovich et al. Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties
KR101966263B1 (en) Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
Hauschwitz et al. Hydrophilic to ultrahydrophobic transition of Al 7075 by affordable ns fiber laser and vacuum processing
Lian et al. A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance
Yong et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication
Yong et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces
Boinovich et al. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment
Kondrashov et al. Microcones and nanograss: toward mechanically robust superhydrophobic surfaces
Zorba et al. Tailoring the wetting response of silicon surfaces via fs laser structuring
Yong et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser
Ramiasa-MacGregor et al. Tuning and predicting the wetting of nanoengineered material surface
Kietzig et al. Patterned superhydrophobic metallic surfaces
Shim et al. Condensation heat-transfer performance of thermally stable superhydrophobic cerium-oxide surfaces
Samanta et al. Design of chemical surface treatment for laser-textured metal alloys to achieve extreme wetting behavior
Latthe et al. Self-cleaning and superhydrophobic CuO coating by jet-nebulizer spray pyrolysis technique
Mats et al. Magnetic droplet actuation on natural (Colocasia leaf) and fluorinated silica nanoparticle superhydrophobic surfaces
Zhang et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser
Gateman et al. Corrosion of one-step superhydrophobic stainless-steel thermal spray coatings
Li et al. Comparison of structures and hydrophobicity of femtosecond and nanosecond laser-etched surfaces on silicon
Cho et al. Superhydrophobic Si surfaces having microscale rod structures prepared in a plasma etching system
WO2015115399A1 (en) Structure provided with carbon film and method for forming carbon film
US20130022756A1 (en) Adhesion of metal thin films to polymeric substratres
JP6174182B1 (en) Dispensing nozzle and manufacturing method of dispensing nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630