JP2017096422A - High vacuum valve - Google Patents

High vacuum valve Download PDF

Info

Publication number
JP2017096422A
JP2017096422A JP2015229893A JP2015229893A JP2017096422A JP 2017096422 A JP2017096422 A JP 2017096422A JP 2015229893 A JP2015229893 A JP 2015229893A JP 2015229893 A JP2015229893 A JP 2015229893A JP 2017096422 A JP2017096422 A JP 2017096422A
Authority
JP
Japan
Prior art keywords
disc
high vacuum
vacuum valve
valve
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015229893A
Other languages
Japanese (ja)
Other versions
JP6649055B2 (en
Inventor
栄治 松村
Eiji Matsumura
栄治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz SCT Corp
Original Assignee
Kitz SCT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz SCT Corp filed Critical Kitz SCT Corp
Priority to JP2015229893A priority Critical patent/JP6649055B2/en
Publication of JP2017096422A publication Critical patent/JP2017096422A/en
Application granted granted Critical
Publication of JP6649055B2 publication Critical patent/JP6649055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high vacuum valve capable of positively realizing a high sealing characteristic at a prescribed number of durability test by enabling a seal surface of a disc to be adjusted in its core and seated against a valve seat in high accurate manner, in particular to provide a high vacuum valve preferable as all metal valve showing anti-elevated temperature characteristics.SOLUTION: This invention relates to a high vacuum valve in which a disc 10 is fixed to a lower end of a stem that can be ascended or descended in a body 1 having an inlet 8 and an outlet 9 so as to open or close a valve seat in the body with this disc. The stem has a structure in which both rotating operation and ascending or descending operation of an operating shaft member 14 are cooperated with an ascending or descending member 17 at the disc side, an outer peripheral surface of the stem is covered by bellows 7 and at the same time bearing balls are stored between the lower end of the operating shaft member and a bottom part of a cylinder part formed at the ascending or descending member and the bearing balls 16 cause ascending or descending under non-rotated state and a disc core adjustment to be carried out.SELECTED DRAWING: Figure 3

Description

本発明は、高真空弁に関し、例えば、半導体、液晶、有機ELディスプレイなどの製造工程における真空経路や、走査電子顕微鏡(SEM)の真空チャンバーの真空排気経路などの高真空領域内へ配管可能であって、特に耐高温性に優れた高真空弁に関する。   The present invention relates to a high vacuum valve, and can be piped into a high vacuum region such as a vacuum path in a manufacturing process of a semiconductor, a liquid crystal, an organic EL display, or a vacuum exhaust path of a vacuum chamber of a scanning electron microscope (SEM). In particular, the present invention relates to a high vacuum valve excellent in high temperature resistance.

高真空弁が使用される高真空環境の一例として、SEMの真空チャンバー(真空領域)がある。SEMは、例えば1.0−7Pa以下などの真空度の真空チャンバーを測定室として、測定室内の試料ステージ上に載置された試料に向けて、真空中で細く絞られた電子銃室からの電子ビームを試料表面を走査するように当て、その際に試料から反映される二次電子や反射電子などの情報(信号)を各種の検出器で検出し、所定の情報解析を経て、モニター上への試料表面の拡大像の表示などの出力を得るものである。このためSEMの測定室の内部は真空引きのため真空ポンプに連通しており、この測定室と真空ポンプの間には、高真空弁の配管が必要となる。 An example of a high vacuum environment in which a high vacuum valve is used is an SEM vacuum chamber (vacuum region). The SEM uses, for example, an electron gun chamber narrowed in vacuum toward a sample placed on a sample stage in the measurement chamber, with a vacuum chamber having a degree of vacuum of 1.0 −7 Pa or less as a measurement chamber. The electron beam is scanned so that the surface of the sample is scanned, and information (signals) such as secondary electrons and reflected electrons reflected from the sample at that time are detected by various detectors. Output such as display of an enlarged image of the sample surface on the top is obtained. For this reason, the inside of the SEM measurement chamber communicates with a vacuum pump for evacuation, and a high vacuum valve pipe is required between the measurement chamber and the vacuum pump.

SEMでは、測定室である真空チャンバー内をはじめとした真空領域内に水分や有機物が存在すると所望の真空度へ到達できなくなることから、真空チャンバー全体に対して、例えば350℃などの高温下で所定のベーキング工程(例えば、高真空弁を開に維持して真空排気しながら一回加熱処理するなど)を施すことにより、SEMを使用する前に予め水分や有機物などの付着物、つまり真空到達の妨げとなる物質を真空チャンバーから除去し、接ガス部位をクリーンにして真空度を維持可能にしておく必要がある。ベーキングでは高真空弁自体は直接加熱されないものの、加熱部分に近設しているため、真空チャンバーに配管される高真空弁も高温となる。したがって、上記のようなSEMに使用する高真空弁には、高温に耐え得るもの(具体的には高温に曝され、常温に戻った後でもバルブとしての機能が損なわれないこと)である必要もある。   In SEM, if moisture or organic substances are present in a vacuum region such as a vacuum chamber as a measurement chamber, a desired degree of vacuum cannot be reached. Therefore, the entire vacuum chamber is subjected to a high temperature such as 350 ° C. By applying a predetermined baking process (for example, heat treatment once while evacuating while keeping the high vacuum valve open), before using the SEM, deposits such as moisture and organic matter, that is, reaching the vacuum in advance. It is necessary to remove the substance that hinders this from the vacuum chamber, clean the gas contact part, and maintain the degree of vacuum. Although the high vacuum valve itself is not directly heated in baking, the high vacuum valve piped in the vacuum chamber is also hot because it is located close to the heated portion. Therefore, the high vacuum valve used in the SEM as described above must be capable of withstanding high temperatures (specifically, the function as a valve is not impaired even after being exposed to high temperature and returning to normal temperature). There is also.

耐高温性を備える高真空弁としては、シール部材などに樹脂製部材を使用しない全金属製バルブ(オールメタルバルブ)が特に有効である。このようなオールメタルの高真空弁として従来、例えば特許文献1、2が提案されている。特許文献1には、金属製の筒状弁座を曲面状に面取加工し、この面取加工した一端部に、金属製の弁体のテーパ部斜面を面接触状に着座させるようにした真空メタルシールバルブが示されている。   As a high vacuum valve having high temperature resistance, an all-metal valve (all-metal valve) that does not use a resin member as a seal member or the like is particularly effective. Conventionally, for example, Patent Documents 1 and 2 have been proposed as such all-metal high vacuum valves. In Patent Document 1, a metal cylindrical valve seat is chamfered into a curved surface, and a tapered slope of a metal valve body is seated in a surface contact manner on one end portion of the chamfer. A vacuum metal seal valve is shown.

特許文献2には、金属製弁体にステムと直交に交差する方向に平面部を設け、この平面部にシール面側を鏡面研磨仕上げした薄板メタルシール材を固着すると共に、ボデー内に設けた環状のメタルシール弁座に前記弁体のメタルシール材を平行に着座させて弁閉するようにした真空バルブが示されている。   In Patent Document 2, a flat portion is provided in a direction perpendicular to the stem of a metal valve body, and a thin plate metal sealing material having a mirror-polished finish on the sealing surface is fixed to the flat portion and provided in the body. A vacuum valve is shown in which a metal seal material of the valve body is seated in parallel on an annular metal seal valve seat to close the valve.

特開平3−20179号公報JP-A-3-20179 特開2009−162319号公報JP 2009-162319 A

しかしながら、メタルタッチシール構造は、硬度の異なる金属製弁体のシール面と金属製の弁座とを圧接して流体をシールする場合が有り、この場合は、初回ないし最初の複数回の着座の後は、弁体のシール面又は弁座の何れかの圧接面内に、凹状の摩耗や食い込み溝など、塑性変形による着座の跡が残存することになる。この着座の跡は、圧接後のシール面と弁座とが互いに馴染んだように形成されているから、その後の着座でも、なるべく既に形成されている着座の跡に適合するように、弁座とシール面との位置関係が着座の毎に同一となるように着座させることで、特に高真空環境下で要求される高いシール性のメタルタッチシールを実現できる。逆に、複数回着座する場合において、弁座とシール面との着座位置が前回の着座位置からズレる場合は、シール形態やズレの程度、或は使用回数などによっては、所望のシール性が得られなくなる問題が生じる。   However, the metal touch seal structure may seal the fluid by pressing the sealing surface of the metal valve body having a different hardness and the metal valve seat, and in this case, the first or first multiple seating may be performed. After that, seating marks due to plastic deformation, such as concave wear and biting grooves, remain in either the sealing surface of the valve body or the pressure contact surface of the valve seat. Since the seating marks are formed so that the seal surface after pressure contact and the valve seat are familiar with each other, the seating and the seating can be matched with the seating marks that have already been formed as much as possible. By seating so that the positional relationship with the seal surface is the same every time the seat is seated, a metal touch seal having a high sealing property required particularly in a high vacuum environment can be realized. Conversely, when seating multiple times, if the seating position of the valve seat and the seal surface deviates from the previous seating position, the desired sealability can be obtained depending on the seal configuration, degree of misalignment, or number of uses. The problem that becomes impossible arises.

そして、弁座に垂直に弁体シール面がリフトするバルブにおいて、複数回の着座でシール面と弁座とを常に同じ位置関係で着座させようとする場合は、弁体シール面のリフトの軸心が弁座に対して高精度に調芯されていることが必要である。高精度に調芯されていることにより、着座の毎にシール面と弁座とが高い位置精度で前回の着座の跡に適合して着座するようになるためである。高精度な調芯は、線接触など、弁体シール面と弁座の接触面積が小さい場合に特に必要である。   In a valve in which the valve body seal surface lifts perpendicularly to the valve seat, if the seal surface and the valve seat are always to be seated in the same positional relationship by multiple seating, the lift shaft of the valve body seal surface It is necessary that the heart is accurately aligned with the valve seat. This is because the alignment is performed with high accuracy, so that the sealing surface and the valve seat are seated with high positional accuracy in conformity to the previous seating mark. High-precision alignment is particularly necessary when the contact area between the valve element seal surface and the valve seat is small, such as line contact.

また、弁座がボデーに弁口と別部材として設けられている場合、弁座部材とボデーの弁口との間のシールが不可欠となる問題が生じる。一般的にバルブの部材はできるだけ少ない部材で一体連続的に形成することで、流体の良好なシール性を確保できる。   Further, when the valve seat is provided on the body as a separate member from the valve opening, there arises a problem that a seal between the valve seat member and the valve opening of the body becomes indispensable. In general, by forming the valve members integrally and continuously with as few members as possible, it is possible to ensure good fluid sealing performance.

ところが、上記の問題点に関し、特許文献1、2には開示乃至示唆が認められない。すなわち、特許文献1では、ノーズがピストンロッドの下端部に押圧されて弁閉する一般的な構造が示されているに過ぎず、ノーズを高精度に調芯させてシールコアに着座させる点に関する言及などは全くないばかりか、むしろノーズの軸心と筒状のシールコアの軸心とが多少ズレてもシール性が悪くならないとの記載がある。これに対して、ノーズのテーパ部の斜面を着座させることから、所定の精度でテーパ部の斜面とシールコアの一端部との平行度をとる必要があり、同文献が示すバルブはシール性が不安定・不明瞭であって、高いシール性は到底確保することができない。さらに、弁座とボデーも一体形成されたものでなく、弁本体とシールコアが別部材となっている。   However, no disclosure or suggestion is found in Patent Documents 1 and 2 regarding the above problems. That is, Patent Document 1 only shows a general structure in which the nose is pressed against the lower end of the piston rod to close the valve, and refers to the point that the nose is aligned with high accuracy and is seated on the seal core. In addition, there is a description that the sealing performance does not deteriorate even if the axial center of the nose and the axial center of the cylindrical seal core are slightly shifted. On the other hand, since the slope of the taper portion of the nose is seated, it is necessary to take parallelism between the slope of the taper portion and one end of the seal core with a predetermined accuracy, and the valve described in this document has poor sealing performance. It is stable and unclear, and high sealing performance cannot be ensured. Further, the valve seat and the body are not integrally formed, and the valve body and the seal core are separate members.

特許文献2に示す真空バルブも高シール性を実現したものではあるものの、シール面を有するメタルシール材を高精度に調芯してメタル弁座に着座させる点に関しては言及が一切なく、ステムをスプリングのバネ性に抗して押し下げて弁体を着座させる通常の構造が示されているに過ぎない。また、メタル弁座は、ボデーと一体成型されておらず、ボデーの装着凹部に嵌合させる別部材となっている。   Although the vacuum valve shown in Patent Document 2 also realizes high sealing performance, there is no mention about the point that a metal sealing material having a sealing surface is accurately aligned and seated on the metal valve seat, and the stem is Only the usual structure in which the valve body is seated by being pushed down against the spring property of the spring is shown. Further, the metal valve seat is not integrally molded with the body, but is a separate member that fits into the mounting recess of the body.

したがって、特許文献1、2を参照しても、上記の問題を解決することはできない。また、上記の課題を開示乃至示唆した先行技術は未だ提案されていない。   Therefore, the above problem cannot be solved even if Patent Documents 1 and 2 are referred to. Moreover, the prior art which disclosed thru | or suggested said subject has not been proposed yet.

そこで、本発明は上記問題点を解決するために開発されたものであり、その目的とするところは、ジスクのシール面を弁座に対して高精度に調芯させて着座可能とすることで、所定の耐久回数において確実に高シール性を発揮できる高真空弁、特に耐高温性を備えたオールメタルバルブとして好適な高真空弁を提供することにある。   Accordingly, the present invention has been developed to solve the above-described problems, and the object of the present invention is to enable seating by aligning the sealing surface of the disc with the valve seat with high accuracy. An object of the present invention is to provide a high vacuum valve that can reliably exhibit high sealing performance for a predetermined number of times of endurance, particularly a high vacuum valve suitable as an all-metal valve having high temperature resistance.

上記目的を達成するため、請求項1に係る発明は、流入口と流出口を有するボデー内に昇降動可能なステムの下端にジスクを取り付け、このジスクでボデー内の弁座を開閉する高真空弁であって、ステムは、ジスク側の昇降動部材に操作軸部材の回動と昇降動操作を連動させる構造から成り、ステムの外周面をベローズで被覆すると共に、操作軸部材の下端と昇降動部材に形成した筒部の有底部との間にベアリング球体が内蔵され、このベアリング球体で昇降動部材による非回転状態の昇降動とジスクの調芯を行うようにした高真空弁である。   In order to achieve the above object, the invention according to claim 1 is a high vacuum in which a disc is attached to the lower end of a stem that can be moved up and down in a body having an inlet and an outlet, and a valve seat in the body is opened and closed with this disc. The stem has a structure in which the lifting and lowering operation of the operation shaft member is interlocked with the lifting and lowering movement member on the disk side, and the outer peripheral surface of the stem is covered with a bellows, and the lower end of the operation shaft member is raised and lowered. This is a high vacuum valve in which a bearing sphere is built in between the bottom portion of the cylindrical portion formed on the moving member, and the non-rotating state of the non-rotating state by the elevating member and the alignment of the disc are performed by this bearing sphere.

請求項2に係る発明は、操作軸部材の上端に固着したハンドルに垂下筒を形成し、この垂下筒をボデーの上部に設けた案内筒部に案内自在に挿入して操作軸部材の調芯を行うようにした高真空弁である。   According to the second aspect of the present invention, a drooping cylinder is formed on the handle fixed to the upper end of the operation shaft member, and the drooping cylinder is inserted into a guide tube portion provided on the upper part of the body so as to be guided so as to align the operation shaft member. It is a high vacuum valve designed to perform

請求項3に係る発明は、ジスクの下面に突設した環状突部をボデーの弁口に案内自在に設けてジスクの調芯を行うと共に、ジスクの下面外周には、シール面が設けられている高真空弁である。   According to a third aspect of the present invention, an annular protrusion projecting from the lower surface of the disc is provided to be guided to the valve port of the body to align the disc, and a seal surface is provided on the outer periphery of the lower surface of the disc. It is a high vacuum valve.

請求項4に係る発明は、ジスクは、昇降動部材の下部に螺着され、ジスクよりも硬度が高い材料から成るボデーと一体に形成した断面三角形状の環状の弁座とジスクのシール面とを圧接状態で閉止させるようにした高真空弁である。   According to a fourth aspect of the present invention, the disc is screwed to the lower portion of the elevating member, and is formed integrally with a body made of a material having a hardness higher than that of the disc. Is a high vacuum valve that is closed in a pressure contact state.

請求項5に係る発明は、昇降動部材は、操作軸部材に取り付けた止め輪を介して操作軸部材の操作に伴って上昇動可能で、かつ非回転状態に連動させた高真空弁である。   The invention according to claim 5 is a high vacuum valve in which the elevating member can be moved up with the operation of the operation shaft member via a retaining ring attached to the operation shaft member and is interlocked with the non-rotating state. .

請求項6に係る発明は、流出口に接続した短管と短管に接続した接合筒部とを裏波溶接手段で固着した高真空弁である。   The invention according to claim 6 is a high vacuum valve in which a short pipe connected to the outflow port and a joining tube part connected to the short pipe are fixed by back wave welding means.

請求項1に記載の発明によると、高温度でベーキングしても耐え得るオールメタルバルブであって、高真空圧状態の開閉に好適な高真空弁を提供することができ、ジスクと弁座とが高精度に調芯されるから繰り返し弁開閉可能であり、もって、使用価値の高い高真空弁を得ることができる。   According to the first aspect of the present invention, it is an all-metal valve that can withstand baking even at high temperatures, and can provide a high vacuum valve suitable for opening and closing in a high vacuum pressure state. Can be opened and closed repeatedly, so that a high vacuum valve with high utility value can be obtained.

請求項2に記載の発明によると、ステムの操作の際に、垂下筒と案内筒部とで確実に案内されるので、ステムの調芯機能を有効に発揮できる。   According to the second aspect of the invention, since the stem is reliably guided by the hanging cylinder and the guide cylinder when the stem is operated, the stem alignment function can be effectively exhibited.

請求項3に記載の発明によると、環状突部がボデーの弁口に確実に案内されながら、シール面と弁座との開閉が行われるので、高精度な弁開閉機能が発揮される。   According to the third aspect of the present invention, since the sealing surface and the valve seat are opened and closed while the annular protrusion is reliably guided to the valve opening of the body, a highly accurate valve opening / closing function is exhibited.

請求項4に記載の発明によると、ステムにジスクを容易に着脱できるので、ジスクの交換作業が容易に行われ、また、ジスクは硬度が大きい弁座に圧接された状態で確実にメタルシールが行われる。   According to the fourth aspect of the present invention, since the disc can be easily attached to and detached from the stem, the disc can be easily replaced, and the disc is securely pressed against the valve seat having high hardness. Done.

請求項5に記載の発明によると、昇降動部材は、操作軸部材の回動操作に影響を受けないので、ジスクの閉止が確実に行われると共に、ベローズに回動力が伝わることがなく、耐久性の向上を図ることができる。   According to the fifth aspect of the present invention, since the elevating member is not affected by the turning operation of the operation shaft member, the disc is reliably closed and the rotational force is not transmitted to the bellows, so that it is durable. It is possible to improve the performance.

請求項6に記載の発明によると、流出管部の内周面が滑らかに接合されるので、流路内に流体が付着したり、滞るおそれがなく、高真空弁の使用価値を向上させることが可能となる。   According to the invention described in claim 6, since the inner peripheral surface of the outflow pipe portion is smoothly joined, there is no possibility of fluid adhering to the flow path or stagnation, and the use value of the high vacuum valve is improved. Is possible.

本発明の高真空弁の斜視図である。It is a perspective view of the high vacuum valve of this invention. 本発明の高真空弁の全開状態を示した断面図である。It is sectional drawing which showed the full open state of the high vacuum valve of this invention. 本発明の高真空弁の閉止状態を示した断面図である。It is sectional drawing which showed the closed state of the high vacuum valve of this invention. 本発明の高真空弁においてベローズが自然長である状態を示した断面図である。It is sectional drawing which showed the state whose bellows is natural length in the high vacuum valve of this invention. (a)は本発明のジスクの斜視図、(b)は本発明のジスクの側面図である。(A) is a perspective view of the disc of this invention, (b) is a side view of the disc of this invention. 図4におけるA部の拡大断面図である。It is an expanded sectional view of the A section in FIG.

以下に、本発明の高真空弁の実施形態を図面に基づいて詳細に説明する。本発明の高真空弁は、流入口8と流出口9を有するボデー1内に昇降動可能なステムの下端にジスク10を取り付け、このジスク10でボデー1内の弁座12を開閉する高真空弁である。   Embodiments of a high vacuum valve according to the present invention will be described below in detail with reference to the drawings. The high vacuum valve of the present invention is a high vacuum in which a disc 10 is attached to the lower end of a stem that can be moved up and down in a body 1 having an inlet 8 and an outlet 9, and the valve seat 12 in the body 1 is opened and closed with this disc 10. It is a valve.

図1は、本実施形態の高真空弁の外観斜視図を示している。本実施形態はオールメタルのL型アングル手動弁であり、ボデー1はステンレス鋼製であり、大径円柱形状を呈し、その下端部に小径円柱形状の流入部25が、その側面部に小径円柱形状の流出部24が、それぞれ設けられている。ボンネット22は、案内筒部2とフランジ部28から成り、ボデー1の上端部にフランジ部28がボルト21により締付け固定されており、案内筒部2には、ハンドル3の垂下筒4が挿入されている。また、流入部25及び流出部24は、回転フランジ26を有している。回転フランジ26の内径は、流入部25及び流出部24の外径より僅かに大きいため、これらの外周面に遊嵌状態で回転可能となっている。   FIG. 1 shows an external perspective view of the high vacuum valve of the present embodiment. This embodiment is an all-metal L-type angle manual valve, and the body 1 is made of stainless steel, has a large-diameter columnar shape, a small-diameter columnar inflow portion 25 at the lower end, and a small-diameter columnar on the side surface. Shaped outflow portions 24 are respectively provided. The bonnet 22 is composed of a guide tube portion 2 and a flange portion 28, and the flange portion 28 is fastened and fixed to the upper end portion of the body 1 by a bolt 21, and the hanging tube 4 of the handle 3 is inserted into the guide tube portion 2. ing. Further, the inflow portion 25 and the outflow portion 24 have a rotating flange 26. Since the inner diameter of the rotating flange 26 is slightly larger than the outer diameters of the inflow portion 25 and the outflow portion 24, the rotation flange 26 can rotate in a loosely fitted state on these outer peripheral surfaces.

図2〜4は、本実施形態の高真空弁の断面図であり、図2は全開状態、図3は閉止状態、図4はベローズ7が自然長の状態を、それぞれ示している。   2 to 4 are sectional views of the high vacuum valve of the present embodiment, in which FIG. 2 shows a fully opened state, FIG. 3 shows a closed state, and FIG. 4 shows a state in which the bellows 7 is in a natural length.

本発明では、流出口9に接続した短管5と、短管5に接続した接合筒部6とを、それぞれ裏波溶接手段で固着している。短管5のボデー1側一端部は、大径部の側面に垂直方向へ開口した流出口9の端部に溶接で固着されており、この溶接は、短管5の内周側からなされている。また、短管5の他端部は、接合筒部6の端部に、裏波溶接手段で固着されており、この裏波溶接手段は、短管5の外周側からなされている。短管5と接合筒部6からなる流出部24を上記のように接合して構成することにより、流出部24の内周面に段差部などが形成されにくく滑らかに形成できるため、流体の滞留等が生じ難い。流入部25の下端部も、接合筒部6の端部に、溶接手段で適宜固着されている。なお、流入部25においても、流出部24同様に、短管5を用いて接合構成してもよい。   In this invention, the short pipe 5 connected to the outflow port 9 and the joining cylinder part 6 connected to the short pipe 5 are each fixed by the back wave welding means. One end portion of the short pipe 5 on the body 1 side is fixed to the end portion of the outlet 9 opened in the vertical direction on the side surface of the large diameter portion by welding, and this welding is performed from the inner peripheral side of the short pipe 5. Yes. The other end portion of the short pipe 5 is fixed to the end portion of the joining tube portion 6 by back wave welding means, and this back wave welding means is made from the outer peripheral side of the short pipe 5. Since the outflow portion 24 composed of the short tube 5 and the joining tube portion 6 is joined as described above, a step portion or the like is hardly formed on the inner peripheral surface of the outflow portion 24 and can be formed smoothly. Etc. are unlikely to occur. The lower end portion of the inflow portion 25 is also appropriately fixed to the end portion of the joining tube portion 6 by welding means. Note that the inflow portion 25 may be joined using the short pipe 5 as in the outflow portion 24.

本発明の案内筒部2は、ボデー1の上部に設けられている。本実施形態では、図2〜4に示すように、ボデー1の上端部に固定されたボンネット22に案内筒部2が設けられており、このボンネット2によりハンドル3がガイドされる構造となっている。ボンネット22は略筒状であり、その内周面は、上端開口部から所定ストローク長の案内部2aが形成され、案内部2aの下側にめねじ部29が形成されている。ハンドル3は、操作部3aを有し、また、垂下筒4が形成されており、さらに、内周面にめねじ部30が形成されている。垂下筒4の下端部には、内径へ向けて縮径するテーパ部31が形成され、側面には、止ねじ32用の横孔が設けられている。図3、4に示すように、案内部2aは、垂下筒4の外周面4aを昇降動案内するものであり、外周面4aの形状に適合するように形成されている。このように、ハンドル3の一部(垂下筒4)がボディ側に設けられたガイド部(ボンネット2の案内筒部2の案内部2a)に当ることにより、ハンドル3の回転動作がガイドされ、これによりハンドル3に取り付けられているステムの動作が安定するようにしている。   The guide tube portion 2 of the present invention is provided on the upper portion of the body 1. In the present embodiment, as shown in FIGS. 2 to 4, the guide cylinder portion 2 is provided on the bonnet 22 fixed to the upper end portion of the body 1, and the handle 3 is guided by the bonnet 2. Yes. The bonnet 22 has a substantially cylindrical shape, and an inner peripheral surface thereof is formed with a guide portion 2a having a predetermined stroke length from the upper end opening, and a female screw portion 29 is formed below the guide portion 2a. The handle 3 has an operation portion 3a, a drooping cylinder 4 is formed, and a female screw portion 30 is formed on the inner peripheral surface. A tapered portion 31 that decreases in diameter toward the inner diameter is formed at the lower end portion of the drooping cylinder 4, and a lateral hole for a set screw 32 is provided on the side surface. As shown in FIGS. 3 and 4, the guide portion 2 a guides the outer peripheral surface 4 a of the drooping cylinder 4 to move up and down, and is formed to match the shape of the outer peripheral surface 4 a. In this way, when a part of the handle 3 (the hanging cylinder 4) hits the guide part (the guide part 2a of the guide cylinder part 2 of the bonnet 2) provided on the body side, the rotation operation of the handle 3 is guided, As a result, the operation of the stem attached to the handle 3 is stabilized.

本発明のハンドル3は、操作軸部材14の上端に固着される。図2〜4に示すように、本実施形態では、略棒状の操作軸部材14の上端には雄ねじ部33が形成され、この雄ねじ部33は、めねじ部30と螺合する。雄ねじ部33の下部には、係止部34が設けられ、この係止部34は、垂下筒4の横孔にねじ込まれる止ねじ32の先端部が圧着して、ハンドル3と操作軸部材14とが互いに回動不能(供回り可能)となるように固着される。   The handle 3 of the present invention is fixed to the upper end of the operation shaft member 14. As shown in FIGS. 2 to 4, in the present embodiment, a male screw portion 33 is formed at the upper end of the substantially rod-shaped operation shaft member 14, and the male screw portion 33 is screwed with the female screw portion 30. A locking portion 34 is provided at the lower part of the male screw portion 33, and the locking portion 34 is crimped to the distal end portion of the set screw 32 screwed into the lateral hole of the hanging cylinder 4, so that the handle 3 and the operation shaft member 14 are pressed. Are fixed so that they cannot rotate (can be rotated).

本発明のステムは、ジスク10側の昇降動部材17に操作軸部材14の回動と昇降動操作を連動させる構造から成り、本実施形態のステムは、操作軸部材14と昇降動部材17とから成る。また、本発明では、ステムの外周面をベローズ7で被覆すると共に、操作軸部材14の下端と昇降動部材17に形成した筒部18の有底部との間にベアリング球体16が内蔵される。   The stem according to the present invention has a structure in which the lifting and lowering member 17 on the disk 10 side is interlocked with the rotation of the operation shaft member 14 and the lifting and lowering operation. The stem according to the present embodiment includes the operation shaft member 14 and the lifting and lowering member 17. Consists of. In the present invention, the outer peripheral surface of the stem is covered with the bellows 7, and the bearing sphere 16 is incorporated between the lower end of the operation shaft member 14 and the bottomed portion of the cylindrical portion 18 formed on the elevating member 17.

図2〜4に示すように、操作軸部材14の係止部34の下部には、下方に拡径するようにテーパ部35が形成されており、このテーパ部35は、垂下筒4のテーパ部31に適合する形状に形成されている。テーパ部35の下部には、雄ねじ部36が形成されており、この雄ねじ部36は、ボンネット22のめねじ部29と螺合する。雄ねじ部36の下部には、鍔部37が形成されており、この鍔部37の下部に延びる円柱部には、止め輪15を装着する装着溝が形成されている。止め輪15は、装着溝に嵌合される。また、操作軸部材14の下端には、奥側へ向けて縮径するようにテーパ部38が形成されている。   As shown in FIGS. 2 to 4, a tapered portion 35 is formed in the lower portion of the locking portion 34 of the operation shaft member 14 so as to expand the diameter downward. This tapered portion 35 is a taper of the drooping cylinder 4. It is formed in a shape that matches the part 31. A male screw portion 36 is formed at the lower portion of the taper portion 35, and the male screw portion 36 is screwed with the female screw portion 29 of the bonnet 22. A flange portion 37 is formed in the lower portion of the male screw portion 36, and a mounting groove for mounting the retaining ring 15 is formed in a cylindrical portion extending to the lower portion of the flange portion 37. The retaining ring 15 is fitted in the mounting groove. A tapered portion 38 is formed at the lower end of the operation shaft member 14 so as to reduce the diameter toward the back side.

図2〜4に示すように、本実施形態の昇降動部材17は、有底部を有する筒部18と、拡径したフランジ部39から成る。筒部18の上端部から奥側へ縮径するようにテーパ部40が形成されており、このテーパ部40の奥側には、上側の段部面と下側の段部面を側面とした係止溝部41が形成されている。係止溝部41には、止め輪15が当接することにより昇降動部材17の昇降動が係止される。係止溝部41は、適宜の深さ、幅であり、本実施形態では、止め輪15の幅より大きい幅に形成されている。係止溝部41の奥側には、筒部18の有底部であるテーパ部19が、奥側へ向けて縮径するように形成されている。筒部18の下部には、フランジ部39が形成され、フランジ部39の下端部には、めねじ部42が形成されている。   2-4, the raising / lowering member 17 of this embodiment consists of the cylinder part 18 which has a bottomed part, and the flange part 39 which expanded the diameter. A tapered portion 40 is formed so as to reduce the diameter from the upper end portion of the cylindrical portion 18 to the back side, and on the back side of the tapered portion 40, an upper step surface and a lower step surface are used as side surfaces. A locking groove 41 is formed. When the retaining ring 15 comes into contact with the locking groove 41, the vertical movement of the vertical movement member 17 is locked. The locking groove 41 has an appropriate depth and width, and is formed to have a width larger than the width of the retaining ring 15 in the present embodiment. A tapered portion 19 that is a bottomed portion of the cylindrical portion 18 is formed on the back side of the locking groove portion 41 so as to reduce the diameter toward the back side. A flange portion 39 is formed at the lower portion of the cylindrical portion 18, and a female screw portion 42 is formed at the lower end portion of the flange portion 39.

図2〜4に示すように、本実施形態では、操作軸部材14下端のテーパ部38を上側凹テーパ面、昇降動部材17有底部のテーパ部19を下側凹テーパ面として、これら上下凹テーパ面38、19の間に、ベアリング球体16が挟持されるように内蔵されている。   As shown in FIGS. 2 to 4, in this embodiment, the tapered portion 38 at the lower end of the operating shaft member 14 is an upper concave tapered surface, and the tapered portion 19 at the bottom of the elevating / lowering member 17 is a lower concave tapered surface. Between the tapered surfaces 38 and 19, the bearing sphere 16 is incorporated so as to be sandwiched.

ベローズ7は、ステムの外周面を被覆するものであり、本実施形態では、上部の一端側がベローズフランジ43に溶接され、また、下部の他端側がフランジ部39に溶接されている。これによりベローズ7は、ジスク10のリフトに伴って伸縮可能となっている。ベローズフランジ43は、操作軸部材14が挿通する貫通孔を有し、この貫通孔には、内側に突出したストッパー部が形成されている。ベローズフランジ43の外周側は、ガスケット44と当接する当接面が設けられている。ガスケット44は、ボデー1の大径部上端部内周側に切欠き面状に形成された載置面に載置され、当接面と載置面との間に挟持された状態で、ボンネット22がボルト21で固定される。これによりガスケット44は流路内を密封状態にボディシールする。   The bellows 7 covers the outer peripheral surface of the stem, and in this embodiment, one upper end side is welded to the bellows flange 43 and the other lower end side is welded to the flange portion 39. Thereby, the bellows 7 can be expanded and contracted with the lift of the disc 10. The bellows flange 43 has a through hole through which the operation shaft member 14 is inserted, and a stopper portion protruding inward is formed in the through hole. On the outer peripheral side of the bellows flange 43, a contact surface that contacts the gasket 44 is provided. The gasket 44 is mounted on a mounting surface formed in the shape of a notch on the inner peripheral side of the upper end portion of the large diameter portion of the body 1, and is sandwiched between the contact surface and the mounting surface, and the bonnet 22. Is fixed with a bolt 21. Thereby, the gasket 44 body seals the inside of the flow path in a sealed state.

本発明のジスク10は、ボデー1よりも硬度が低い材料から成り、本実施形態では銅又は銅合金材製である。また、ジスク10は昇降動部材17の下部に着脱自在に螺着され、下面には環状突部20が突設され、この環状突部20は、ボデー1の弁口に案内自在に設けられている。また、ジスク10の下面外周には、シール面11が設けられている。図5は、本実施形態のジスク10を示しており、(a)は外観斜視図、(b)は外観側面図である。   The disc 10 of the present invention is made of a material whose hardness is lower than that of the body 1, and is made of copper or a copper alloy material in the present embodiment. The disc 10 is detachably screwed to the lower part of the elevating member 17, and an annular protrusion 20 is provided on the lower surface thereof. The annular protrusion 20 is provided on the valve port of the body 1 so as to be guided. Yes. A seal surface 11 is provided on the outer periphery of the lower surface of the disc 10. FIG. 5 shows the disk 10 of the present embodiment, where (a) is an external perspective view, and (b) is an external side view.

同図に示すように、本実施形態のジスク10は、雄ねじ部10a、ジスク部10b、環状突部20から成る。図2〜4に示すように、雄ねじ部10aは、昇降動部材17のめねじ部42と着脱自在に螺合する。図5(a)に示すように、円柱形状のジスク部10bの下面外周には、弁座12と圧接して流体をシールするシール面11を有している。図5(b)に示すように、円柱形状の環状突部20は、ジスク部10bの下面から、凹部20aを介して、下側に円盤状に突出して形成されており、その側面部20cは、ジスク部10bの側面部、ジスク10の軸心、或はステムの軸心と平行に形成されている。また、凹部20aは、環状突部20を刃物で切削加工する際にシール面11に刃物のR面が残らないように、奥側まで切削することで断面半円弧状に切り欠かれている。さらに、環状突部20には、中心部を通る径方向に直線状の溝部20bが一本形成されている。   As shown in the figure, the disc 10 of the present embodiment includes a male screw portion 10a, a disc portion 10b, and an annular protrusion 20. As shown in FIGS. 2 to 4, the male screw portion 10 a is detachably screwed with the female screw portion 42 of the elevating member 17. As shown in FIG. 5A, the outer periphery of the lower surface of the columnar disc 10b has a seal surface 11 that presses against the valve seat 12 to seal the fluid. As shown in FIG. 5 (b), the cylindrical annular protrusion 20 is formed so as to protrude downward from the lower surface of the disk portion 10b via the recess 20a into a disk shape, and the side surface portion 20c is The disk 10b is formed in parallel with the side surface of the disk 10b, the axis of the disk 10, or the axis of the stem. Further, the recess 20a is cut into a semicircular cross section by cutting to the far side so that the R surface of the cutter does not remain on the seal surface 11 when the annular protrusion 20 is cut with the cutter. Further, the annular protrusion 20 is formed with one linear groove 20b in the radial direction passing through the center.

図3に示すように、本実施形態の側面部20cの径は、流出口9内周面の径より僅かに小さく、このためジスク10を弁座12に着座した際は、環状突部20は、弁口内周面にスライドして遊嵌状に案内可能となる。   As shown in FIG. 3, the diameter of the side surface portion 20 c of the present embodiment is slightly smaller than the diameter of the inner peripheral surface of the outlet 9, so that when the disc 10 is seated on the valve seat 12, the annular protrusion 20 is Then, it can be slid to the inner peripheral surface of the valve port and guided in a loose fit.

図4において、A部は弁座12を示し、図6は、図4におけるA部を拡大した拡大断面図である。本発明の弁座12は、ステンレス製のボデー1と一体に形成した断面三角形状の環状に形成されており、本実施形態においては、図6に示すように、流入口8の弁口の開口端部に、エッジ状の角部12aがジスク10のシール面11に向いて当接可能に形成している。弁座12をこのように形成することで、線接触状のエッジシールが可能となると共に、ジスク10の圧着による荷重変形が生じ難くなり、シール性が向上する。なお弁座12は、ボデー1に短管5、接合筒部6を溶接固着した後、ボデー1内に刃物切削で形成される。   In FIG. 4, A part shows the valve seat 12, and FIG. 6 is an expanded sectional view which expanded the A part in FIG. The valve seat 12 of the present invention is formed in an annular shape having a triangular cross section formed integrally with the body 1 made of stainless steel. In this embodiment, as shown in FIG. At the end, an edge-shaped corner 12a is formed so as to be able to contact the seal surface 11 of the disc 10. By forming the valve seat 12 in this way, line-contact edge sealing becomes possible, and load deformation due to the pressure bonding of the disc 10 hardly occurs, and the sealing performance is improved. The valve seat 12 is formed by cutting the blade 1 in the body 1 after the short tube 5 and the joining tube portion 6 are fixed to the body 1 by welding.

次に、本発明の高真空弁の作用を説明する。図4は、ベローズ7が自然長の状態を示しており、ステムのストロークが、この自然長状態から図2に示す全開状態まで間は、ベローズ7は図において縦に延びる方向に弾発する。逆に、ステムのストロークが、図4に示す自然長状態から図3に示す閉止状態までの間は、ベローズ7は図において縦に縮む方向に弾発する。上記のように本発明のステムは、操作軸部材14と昇降動部材17の別部材からなることから、このベローズ7の弾発力がステムに有効に作用するものである。   Next, the operation of the high vacuum valve of the present invention will be described. FIG. 4 shows a state in which the bellows 7 is in a natural length, and the bellows 7 repels in a direction extending vertically in the figure while the stroke of the stem is from the natural length state to the fully open state shown in FIG. Conversely, when the stroke of the stem is from the natural length state shown in FIG. 4 to the closed state shown in FIG. 3, the bellows 7 repels in the direction of contracting vertically in the drawing. As described above, since the stem of the present invention is composed of the separate members of the operation shaft member 14 and the elevating member 17, the elastic force of the bellows 7 effectively acts on the stem.

図2は、ジスク10が全開した状態を示している。なお、図示していないが、全開状態のステムの上死点では、ベローズフランジ43のストッパー部に、昇降動部材17の上端部が係止部となって突き当り係止されるようにしてもよい。図2に示す全開状態から図4に示す自然長までの間にステムが降下する動作を説明すると、本発明の高真空弁は手動弁なので、先ず、操作部3aによりハンドル3を回動させる。止ねじ32の先端部が係止部34へ圧着することで、操作軸部材14は垂下筒4に固着しているので、ハンドル3の回動と共に操作軸部材14も供回りする。操作軸部材14は、回動により雄ねじ部36がボンネット22のめねじ部29を螺進して降下する。   FIG. 2 shows a state where the disc 10 is fully opened. Although not shown, at the top dead center of the fully opened stem, the upper end portion of the elevating member 17 may be abutted and locked to the stopper portion of the bellows flange 43. . The operation of the stem descending from the fully open state shown in FIG. 2 to the natural length shown in FIG. 4 will be described. Since the high vacuum valve of the present invention is a manual valve, first, the handle 3 is rotated by the operation portion 3a. Since the operation shaft member 14 is fixed to the drooping cylinder 4 by the front end portion of the set screw 32 being crimped to the locking portion 34, the operation shaft member 14 also rotates with the rotation of the handle 3. The operating shaft member 14 is lowered by the rotation of the male threaded portion 36 of the operating shaft member 14 through the female threaded portion 29 of the bonnet 22.

この間は、ベローズ7の伸び力により、自身の荷重と合わせて、昇降動部材17は常に下方へ押し下げられている。この押し下げにより、操作軸部材14の止め輪15が、筒部18の係止溝部41の上側段部面に常に引掛かっている。この間、操作軸部材14下端のテーパ部38は、ベアリング球体16との間に僅かな遊びを有するように構成されていることから、ベアリング球体16がテーパ部38に押し下げられることはない。   During this time, due to the extension force of the bellows 7, the elevating member 17 is always pushed downward together with its own load. By this depression, the retaining ring 15 of the operation shaft member 14 is always caught on the upper step surface of the locking groove portion 41 of the cylindrical portion 18. During this time, the tapered portion 38 at the lower end of the operation shaft member 14 is configured to have a slight play between the bearing sphere 16 and the bearing sphere 16 is not pushed down by the tapered portion 38.

またこの間、止め輪15は、係止溝部41(上側段部面)に回動係止されるように引っ掛かっているので、操作軸部材14の装着溝に対して回動しながら装着された滑り嵌め状態となっている。止め輪15は、この状態で下方へ下がろうとする昇降動部材17を係止している。このため、回動する操作軸部材14は、止め輪15で昇降動部材17を引掛けながら、非回転で昇降動部材17を自らと連動して降下させていくことができる。   During this time, the retaining ring 15 is hooked so as to be pivotally locked to the locking groove 41 (upper step surface), so that the slipping ring mounted while rotating with respect to the mounting groove of the operation shaft member 14 is attached. It is in a fitted state. The retaining ring 15 is engaged with an elevating member 17 that attempts to move downward in this state. For this reason, the rotating operation shaft member 14 can move the elevating member 17 in a non-rotating manner in conjunction with itself while hooking the elevating member 17 with the retaining ring 15.

一方で、弁開動作でステムが上昇する際には、本発明の昇降動部材17は、操作軸部材14に取り付けた止め輪15を介して操作軸部材14の操作に伴って上昇動可能で、かつ非回転状態に連動されるが、本実施形態におけるこの作用は、上記のように、止め輪15が係止溝部41の上側段部面に係止されていることによるものである。   On the other hand, when the stem is raised by the valve opening operation, the elevating member 17 of the present invention can be moved up with the operation of the operation shaft member 14 via the retaining ring 15 attached to the operation shaft member 14. Although interlocked with the non-rotating state, this action in the present embodiment is due to the retaining ring 15 being engaged with the upper step surface of the engaging groove 41 as described above.

続いて、図4に示す自然長状態から図3に示す閉止状態までの間にステムが降下する動作を説明すると、この間は、ベローズ7は縦方向に縮む収縮力を発揮するから、昇降動部材17のフランジ部39を上方向へ引っ張り上げ、これにより、テーパ部19(有底部)が上昇してベアリング球体16を押し上げ、ベアリング球体16が操作軸部材14下端のテーパ部38に当接し、この当接により昇降動部材17の持ち上がりが係止される。同時に、昇降動部材17の持ち上がりにより係止溝部41も上がるので、上側段部面に係止していた止め輪15はそこから離間する。本実施形態では、この状態においては、止め輪15は、上下の段部面から離間した状態(図3に示す隙間Gを生じる状態)となるように、係止溝部41の幅などが調整されている。   Next, the operation of the stem descending between the natural length state shown in FIG. 4 and the closed state shown in FIG. 3 will be described. During this time, the bellows 7 exhibits a contracting force that contracts in the vertical direction, The flange portion 39 of the 17 is pulled upward, whereby the taper portion 19 (bottomed portion) rises to push up the bearing sphere 16, and the bearing sphere 16 abuts against the taper portion 38 at the lower end of the operation shaft member 14. The lifting of the elevating member 17 is locked by the contact. At the same time, the locking groove 41 is also lifted by the lifting of the elevating member 17, so that the retaining ring 15 locked to the upper stepped surface is separated therefrom. In the present embodiment, in this state, the width or the like of the locking groove 41 is adjusted so that the retaining ring 15 is in a state of being separated from the upper and lower stepped surfaces (a state in which the gap G shown in FIG. 3 is generated). ing.

このように、本発明では、ベアリング球体16で昇降動部材17による非回転状態の昇降動とジスク10の調芯を行うようにしている。   As described above, in the present invention, the bearing sphere 16 performs the lifting and lowering movement in the non-rotating state by the lifting and lowering movement member 17 and the alignment of the disk 10.

この間は、上記のようにベアリング球体16が上側でテーパ部38に当接していると共に、下側でテーパ部19に載置された状態となっている。本実施形態では、このように、球体を上下からテーパで挟んだ簡易な構造により、ステムの軸心とジスク10の軸心との間に高精度な調芯作用を得ている。   During this time, as described above, the bearing sphere 16 is in contact with the tapered portion 38 on the upper side and is placed on the tapered portion 19 on the lower side. In the present embodiment, a highly accurate alignment operation is obtained between the stem center and the disc 10 by a simple structure in which the sphere is sandwiched from above and below by a taper.

すなわち、凹テーパ表面が球面に密着しようとすると、これらは円形線接触状に当接した状態で最も安定化する。この状態では、凹テーパには、その軸心が球心を通過する方向に一致するように、軸対称の抗力を球面から受ける。また、凹テーパ表面を球面に押し当てつつ軸心方向がずれて円形線接触が乱れると、もとの安定化した状態に戻ろうとする抗力を受ける。この抗力により、テーパ軸心には球心方向からずれないように調芯される。さらに、球面を上下から凹テーパ面で挟持し、この挟持した状態を保とうとすると、上下凹テーパは、2つの円形線接触を保って安定化しようとするので、互いにテーパ軸心が一致するような調芯作用を得られる。この調芯作用は、凹テーパのテーパ形状、球面の真球度が、それぞれ高精度であるほど高い。   That is, when the concave taper surface is in close contact with the spherical surface, they are most stabilized in a state where they are in contact with a circular line. In this state, the concave taper receives axially symmetric drag from the spherical surface so that its axial center coincides with the direction passing through the spherical center. Further, when the concave taper surface is pressed against the spherical surface and the axial direction is shifted and the circular line contact is disturbed, a drag force is applied to return to the original stabilized state. By this drag, the taper shaft is centered so as not to deviate from the spherical center direction. Furthermore, if the spherical surface is clamped from above and below by a concave taper surface and it is attempted to maintain this sandwiched state, the vertical concave taper tries to stabilize while maintaining contact with two circular lines, so that the taper axes coincide with each other. Can achieve a proper alignment effect. The aligning action is higher as the tapered shape of the concave taper and the sphericity of the spherical surface are more accurate.

また、本実施形態では、上側のテーパ部38は回転することから、ベアリング球体16は、両者の圧接力や摩擦などにより、それに連動して回動し得るが、昇降動部材17はある程度高い回動固定性を持ってベローズ7に固定されているので、ベアリング球体16がテーパ部38、19に対してどのように滑るか(又は静止するか)に拘わらず、下側のテーパ部19が上側のテーパ部38に連動して回動することはない。このため、凹テーパと球との調芯作用を享受しながら、昇降動部材17は非回転で下降する。なお、この非回転の維持には、凹テーパ表面と球面との間の摩擦が小さいほど好ましいことから、グリースなどの潤滑剤の塗布や研磨処理などを適宜施してもよい。   In this embodiment, since the upper tapered portion 38 rotates, the bearing sphere 16 can be rotated in conjunction with the pressure contact force or friction of the both, but the elevating member 17 is rotated to some extent. Since it is fixed to the bellows 7 with dynamic fixation, the lower taper portion 19 is on the upper side regardless of how the bearing sphere 16 slides (or stops) with respect to the taper portions 38 and 19. It does not rotate in conjunction with the taper portion 38. For this reason, the raising / lowering member 17 descend | falls by non-rotating, enjoying the centering effect | action of a concave taper and a ball | bowl. In order to maintain this non-rotation, it is preferable that the friction between the concave taper surface and the spherical surface is as small as possible. Therefore, a lubricant such as grease or a polishing treatment may be appropriately applied.

なお、ベアリング球体16を上下から挟み込むテーパ部38、19のテーパ角度に関しては、テーパ角度が小さくなるにつれて、ベアリング球体16と上下テーパ部38、19の接触する円周がそれぞれ大きくなるので、角度が小さいと球体16が上下テーパ部38、19に食い込みやすくなる。また、上下テーパ部38、19と球体16との間は必ず動摩擦が発生するから、この接触する円周が大きいほど摩擦領域が増大し、円周上において単位長さあたりに掛かるトルク抵抗が増大するので、ステムを回転するために必要なトルク負荷が増大する。したがって、テーパ部38、19のテーパ角度は、それぞれ少なくとも鈍角であることが好ましい。   Regarding the taper angles of the tapered portions 38 and 19 that sandwich the bearing sphere 16 from above and below, the circumferences of contact between the bearing sphere 16 and the upper and lower tapered portions 38 and 19 become larger as the taper angle becomes smaller. If it is small, the sphere 16 tends to bite into the upper and lower tapered portions 38 and 19. In addition, since dynamic friction always occurs between the upper and lower tapered portions 38 and 19 and the sphere 16, the friction area increases as the contacting circumference increases, and the torque resistance applied per unit length on the circumference increases. As a result, the torque load required to rotate the stem increases. Therefore, it is preferable that the taper angle of the taper portions 38 and 19 is at least an obtuse angle.

また、本発明は、垂下筒4を案内筒部2に案内自在に挿入して操作軸部材14の調芯を行うようにしている。図3、4に示すように、垂下筒4の外周面4aが、案内筒部2の案内部2aに嵌合して昇降動案内される構造により、ステムの軸心の昇降動が安定化され、ステム軸心とジスク10の軸心が弁座12の中心部に常時高精度に一致し、もって操作軸部材14の調芯作用が得られるためである。ここで、例えばハンドル4の昇降動が不安定化し易い場合として、操作軸部材の雄ねじ部36のネジ種をネジ強度を高めるために台形ネジとした場合が挙げられる。この場合、台形ネジは比較的大きなガタツキ(バックラッシュ)を有することから雄ねじ部36で昇降動するハンドル3(垂下筒4)の軸心も不安定化するが、上記の案内構造により垂下筒4の軸心がズレることなく案内筒部2で確実に昇降動案内されることにより、ハンドル4の軸心が高精度に調芯され、もって高精度に調芯されたステムの昇降動案内も可能となる。   Further, according to the present invention, the operating cylinder member 14 is aligned by inserting the drooping cylinder 4 into the guide cylinder portion 2 so as to be guided. As shown in FIGS. 3 and 4, the structure in which the outer peripheral surface 4a of the drooping cylinder 4 is fitted to the guide portion 2a of the guide cylinder portion 2 and is guided to move up and down stabilizes the up and down movement of the stem axis. This is because the stem axis and the axis of the disc 10 always coincide with the central portion of the valve seat 12 with high accuracy, so that the alignment operation of the operation shaft member 14 can be obtained. Here, for example, as a case where the up-and-down movement of the handle 4 is likely to be unstable, there is a case where the screw type of the male screw portion 36 of the operation shaft member is a trapezoidal screw in order to increase the screw strength. In this case, since the trapezoidal screw has a relatively large backlash (backlash), the axis of the handle 3 (hanging cylinder 4) that moves up and down by the male screw portion 36 also becomes unstable. The shaft center of the handle 4 is aligned with high accuracy by the guide cylinder portion 2 being reliably guided in the up-and-down motion without causing the shaft center of the shaft to be displaced. It becomes.

続いて、着座の際は、図6に示すようにエッジ状の弁座12が、図5に示す平面状のシール面11に円形線接触状に当接する。これにより、弁座12とシール面11とを圧接状態で閉止させるようにしている。この際、ジスク10の硬度は弁座12の硬度より小さいから、この当接により弁座12のエッジがシール面11に食い込み、図示していないが、シール面11には塑性変形による円形状の着座の跡が残る。   Subsequently, at the time of seating, as shown in FIG. 6, the edge-shaped valve seat 12 comes into contact with the planar seal surface 11 shown in FIG. Thereby, the valve seat 12 and the seal surface 11 are closed in a pressure contact state. At this time, since the hardness of the disc 10 is smaller than the hardness of the valve seat 12, the edge of the valve seat 12 bites into the seal surface 11 by this contact, and although not shown, the seal surface 11 has a circular shape due to plastic deformation. The trace of sitting remains.

本発明はジスク10の下面に突設した環状突部20をボデー1の弁口に案内自在に設けてジスク10の調芯を行う。これは、図3に示すように、ジスク10が弁座12に着座した閉止時には、環状突部20が弁口に挿入された状態となり、側面部20cが流入口8内周面(弁口)に案内されることによるものである。   In the present invention, the annular protrusion 20 projecting from the lower surface of the disk 10 is provided in the valve opening of the body 1 so as to be guided so as to align the disk 10. As shown in FIG. 3, when the disc 10 is seated on the valve seat 12, when the disc 10 is closed, the annular protrusion 20 is inserted into the valve port, and the side surface 20c is the inner peripheral surface (valve port) of the inlet 8. It is by being guided to.

したがって、本発明では、上記したベアリング球体16を上下のテーパ部38、19で挟み込む構造と、ハンドル3の垂下筒4をボンネット22の案内筒部2に案内可能に挿入した構造に加え、ジスク10の環状突部20を弁口に案内させる構造による多重調芯機構により、ステムの上死点からの降下時からジスク10の着座時まで、常時ジスク10の軸心が高精度に弁座12の軸心に調芯されるようになっている。これらの高精度な調芯作用の発揮により、着座の毎に、シール面11に残存した着座の跡に弁座12が高精度に一致し、もって高温、高真空の過酷な環境下で所定回数の開閉にも耐え得る高シール性を発揮するものである。   Therefore, in the present invention, in addition to the structure in which the bearing sphere 16 is sandwiched between the upper and lower taper portions 38 and 19 and the structure in which the hanging cylinder 4 of the handle 3 is inserted in the guide cylinder portion 2 of the bonnet 22 so as to be guided, the disc 10 The axial center of the disc 10 is always highly accurate from the time when the stem is lowered from the top dead center to the time when the disc 10 is seated. It is designed to be aligned with the axis. By exhibiting these highly accurate alignment operations, the valve seat 12 coincides with the seating trace remaining on the seal surface 11 with high accuracy every time the seating is performed, and thus the predetermined number of times in a severe environment of high temperature and high vacuum. It exhibits a high sealing property that can withstand opening and closing.

このような高温、高真空環境として、例えば前述したように、SEM用の真空排気弁が挙げられる。SEM用真空排気弁には、真空チャンバが超高真空度に到達するために、350℃の昇温(ベーキング)と冷却を経た後、1000回程度の着座に耐え得る高耐久性が必要となるが、上記のような高精度な調芯作用(多重調芯機構)を備えた本発明の高真空弁は、このような使用に耐える高耐久性を発揮することができる。   Examples of such a high temperature and high vacuum environment include a vacuum exhaust valve for SEM as described above. The vacuum exhaust valve for SEM needs high durability that can withstand about 1000 seating after heating (baking) and cooling at 350 ° C. in order for the vacuum chamber to reach an ultra-high vacuum. However, the high vacuum valve of the present invention having the high-precision alignment function (multi-alignment mechanism) as described above can exhibit high durability to withstand such use.

本発明における各調芯構造、特に、本発明のステム分割調芯構造、すなわち、上記実施形態においては、ステムを上下の操作軸部材14と昇降動部材17に分割すると共に、操作軸部材14下端のテーパ部38を上側凹テーパ面、昇降動部材17有底部のテーパ部19を下側凹テーパ面として、これら上下凹テーパ面でベアリング球体16を挟持してステムの調芯効果を得るようにした構造は、本発明の高真空弁に限られず、例えば真空弁以外の各種ベローズ弁、特にメタルタッチシールの弁などへも広く適用可能な構造である。   Each alignment structure according to the present invention, in particular, the stem divided alignment structure according to the present invention, that is, in the above embodiment, the stem is divided into the upper and lower operation shaft members 14 and the elevating member 17 and the lower end of the operation shaft member 14. In order to obtain the stem alignment effect by sandwiching the bearing sphere 16 with the upper and lower concave tapered surfaces, the upper tapered portion 38 is the upper concave tapered surface, and the tapered portion 19 of the bottom portion of the lifting member 17 is the lower concave tapered surface. Such a structure is not limited to the high vacuum valve of the present invention, and can be widely applied to, for example, various bellows valves other than the vacuum valve, particularly a metal touch seal valve.

更に、本発明は、前記実施の形態の記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の要旨を逸脱しない範囲で種々の変更ができるものである。   Furthermore, the present invention is not limited to the description of the above embodiment, and various modifications can be made without departing from the spirit of the invention described in the claims of the present invention.

以下、本発明の高真空弁の実施の一例を説明する。本例における各部材の材質は、ボデー1、ボンネット22、ボルト21、ハンドル3、回転フランジ26、短管5、接合筒部6は、すべてステンレス製(SUS304)である。また、ベローズ7は、ステンレス(SUS316L)である。また、本実施形態のガスケット44は、銅合金製(C1020)である。また、ベアリング球体16は、ステンレス(SUS440C)により所定の真球度や表面粗さで形成された鋼球である。ジスク10は、銅合金製(C1020)であり、軟性を出すため所定の焼きなまし加工が施されている。   Hereinafter, an example of implementation of the high vacuum valve of the present invention will be described. The material of each member in this example is the body 1, the bonnet 22, the bolt 21, the handle 3, the rotating flange 26, the short pipe 5, and the joining cylinder part 6 all made of stainless steel (SUS304). The bellows 7 is stainless steel (SUS316L). Further, the gasket 44 of the present embodiment is made of a copper alloy (C1020). The bearing sphere 16 is a steel ball made of stainless steel (SUS440C) with a predetermined sphericity and surface roughness. The disc 10 is made of a copper alloy (C1020), and is subjected to a predetermined annealing process in order to provide flexibility.

本例におけるテーパ部の各テーパ角度は、テーパ部31が約90度、テーパ部38が約142度、テーパ部40が約30度、テーパ部19が約120度であり、弁座12の角部12aのエッジ角度は約50度である。   Each taper angle in the present example is about 90 degrees for the taper section 31, about 142 degrees for the taper section 38, about 30 degrees for the taper section 40, and about 120 degrees for the taper section 19; The edge angle of the portion 12a is about 50 degrees.

また、図1に示すように、ボルト21は、六角穴部を有し、高いシール性を得るため、ボンネット22の円周上に8本等配分されている。ハンドル3の操作部3aには、隅部逃げ形状の四角穴部を有し、側面部には円周上等配分に面取部が形成されている。操作部3aは、所定のトルクレンチなどの回動部材を接合可能に形成されている。回転フランジ26は、6個の穴部が円周上に等配分に設けられており、端面にはリーク溝部が形成されている。なお、本実施形態の流入口8内周面の径、および流出口9内周面の径は、共にΦ16mmとしている。   As shown in FIG. 1, the bolts 21 have hexagonal holes, and eight bolts 21 are distributed on the circumference of the bonnet 22 in order to obtain high sealing performance. The operation portion 3a of the handle 3 has a square hole portion with a corner relief shape, and a chamfered portion is formed on the side surface portion so as to be equally distributed on the circumference. The operation unit 3a is formed so that a rotating member such as a predetermined torque wrench can be joined. The rotation flange 26 is provided with six holes equally distributed on the circumference, and a leak groove is formed on the end surface. In this embodiment, the diameter of the inner peripheral surface of the inlet 8 and the diameter of the inner peripheral surface of the outlet 9 are both Φ16 mm.

1 ボデー
2 案内筒部
3 ハンドル
4 垂下筒
5 短管
6 接合筒部
7 ベローズ
8 流入口
9 流出口
10 ジスク
11 シール面
12 弁座
14 操作軸部材
15 止め輪
16 ベアリング球体
17 昇降動部材
18 筒部
19 テーパ部(有底部)
20 環状突部
DESCRIPTION OF SYMBOLS 1 Body 2 Guide cylinder part 3 Handle 4 Drooping cylinder 5 Short pipe 6 Joining cylinder part 7 Bellows 8 Inlet 9 Outlet 10 Disc 11 Seal surface 12 Valve seat 14 Operation shaft member 15 Retaining ring 16 Bearing ball 17 Elevating member 18 Cylinder Part 19 Tapered part (bottomed part)
20 Annular protrusion

Claims (6)

流入口と流出口を有するボデー内に昇降動可能なステムの下端にジスクを取り付け、このジスクでボデー内の弁座を開閉する高真空弁であって、前記ステムは、ジスク側の昇降動部材に操作軸部材の回動と昇降動操作を連動させる構造から成り、前記ステムの外周面をベローズで被覆すると共に、前記操作軸部材の下端と前記昇降動部材に形成した筒部の有底部との間にベアリング球体が内蔵され、このベアリング球体で前記昇降動部材による非回転状態の昇降動と前記ジスクの調芯を行うようにしたことを特徴とする高真空弁。   A high vacuum valve that attaches a disc to the lower end of a stem that can be moved up and down in a body having an inlet and an outlet, and opens and closes a valve seat in the body with the disc. The stem is a lifting member on the side of the disc. And a structure in which the rotation of the operation shaft member and the raising / lowering operation are interlocked with each other, the outer peripheral surface of the stem is covered with a bellows, and the bottom end of the cylindrical portion formed on the lower end of the operation shaft member and the raising / lowering member; A high-vacuum valve characterized in that a bearing sphere is built in between and a non-rotating state of the non-rotating state by the elevating member and the alignment of the disc are performed by the bearing sphere. 前記操作軸部材の上端に固着したハンドルに垂下筒を形成し、この垂下筒を前記ボデーの上部に設けた案内筒部に案内自在に挿入して前記操作軸部材の調芯を行うようにした請求項1に記載の高真空弁。   A hanging cylinder is formed on the handle fixed to the upper end of the operation shaft member, and the hanging cylinder is inserted into a guide tube portion provided on the upper part of the body so as to be guided so as to align the operation shaft member. The high vacuum valve according to claim 1. 前記ジスクの下面に突設した環状突部を前記ボデーの弁口に案内自在に設けて前記ジスクの調芯を行うと共に、前記ジスクの下面外周には、シール面が設けられている請求項1又は2に記載の高真空弁。   2. An annular protrusion projecting from the lower surface of the disc is provided at the valve port of the body so as to be guided so as to align the disc, and a seal surface is provided on the outer periphery of the lower surface of the disc. Or the high vacuum valve of 2. 前記ジスクは、前記昇降動部材の下部に螺着され、前記ジスクよりも硬度が高い材料から成るボデーと一体に形成した断面三角形状の環状の弁座と前記ジスクのシール面とを圧接状態で閉止させるようにした請求項1乃至3の何れか1項に記載の高真空弁。   The disc is screwed to a lower portion of the elevating member, and a triangular valve seat formed integrally with a body made of a material having higher hardness than the disc and a sealing surface of the disc in a pressure contact state. The high vacuum valve according to any one of claims 1 to 3, wherein the high vacuum valve is closed. 前記昇降動部材は、前記操作軸部材に取り付けた止め輪を介して当該操作軸部材の操作に伴って上昇動可能で、かつ非回転状態に連動させた請求項1乃至4の何れか1項に記載の高真空弁。   5. The lift member according to claim 1, wherein the lift member can be lifted in accordance with an operation of the operation shaft member via a retaining ring attached to the operation shaft member, and is interlocked with a non-rotating state. High vacuum valve as described in. 前記流出口に接続した短管と短管に接続した接合筒部とを裏波溶接手段で固着した請求項1に記載の高真空弁。   The high vacuum valve according to claim 1, wherein the short pipe connected to the outlet and the joining cylinder part connected to the short pipe are fixed by back wave welding means.
JP2015229893A 2015-11-25 2015-11-25 High vacuum valve Active JP6649055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229893A JP6649055B2 (en) 2015-11-25 2015-11-25 High vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229893A JP6649055B2 (en) 2015-11-25 2015-11-25 High vacuum valve

Publications (2)

Publication Number Publication Date
JP2017096422A true JP2017096422A (en) 2017-06-01
JP6649055B2 JP6649055B2 (en) 2020-02-19

Family

ID=58803465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229893A Active JP6649055B2 (en) 2015-11-25 2015-11-25 High vacuum valve

Country Status (1)

Country Link
JP (1) JP6649055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012484A (en) * 2018-07-13 2020-01-23 株式会社キッツ Globe valve or bellows valve
CN111734833A (en) * 2020-05-15 2020-10-02 扬州润盈机械有限公司 Novel structure for solving small hole sealing
RU2742630C1 (en) * 2020-05-12 2021-02-09 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Valve for chemically aggressive media

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472314Y1 (en) * 1970-08-08 1972-01-26
JPS475746Y1 (en) * 1968-10-03 1972-02-28
JPS4715916Y1 (en) * 1968-12-28 1972-06-05
JPS481125U (en) * 1971-05-31 1973-01-09
JPS4843616Y1 (en) * 1969-03-22 1973-12-17
JPS492215B1 (en) * 1969-04-14 1974-01-19
JPS6047962U (en) * 1983-09-09 1985-04-04 株式会社 フジキン valve
JPH0320179A (en) * 1989-06-17 1991-01-29 Ulvac Corp Vacuum metal seal valve
JPH08114625A (en) * 1994-10-17 1996-05-07 Nippon Denshi Zairyo Kk Probe card for measuring high temperature
JPH11173448A (en) * 1997-12-15 1999-06-29 Fujikoki Corp Motor-operated valve
JP2003083467A (en) * 2001-09-11 2003-03-19 Ckd Corp Pneumatic open/close valve
JP2007292295A (en) * 2006-03-31 2007-11-08 Smc Corp Vacuum valve
JP3196493U (en) * 2014-12-29 2015-03-12 イハラサイエンス株式会社 Bellows valve

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS475746Y1 (en) * 1968-10-03 1972-02-28
JPS4715916Y1 (en) * 1968-12-28 1972-06-05
JPS4843616Y1 (en) * 1969-03-22 1973-12-17
JPS492215B1 (en) * 1969-04-14 1974-01-19
JPS472314Y1 (en) * 1970-08-08 1972-01-26
JPS481125U (en) * 1971-05-31 1973-01-09
JPS6047962U (en) * 1983-09-09 1985-04-04 株式会社 フジキン valve
JPH0320179A (en) * 1989-06-17 1991-01-29 Ulvac Corp Vacuum metal seal valve
JPH08114625A (en) * 1994-10-17 1996-05-07 Nippon Denshi Zairyo Kk Probe card for measuring high temperature
JPH11173448A (en) * 1997-12-15 1999-06-29 Fujikoki Corp Motor-operated valve
JP2003083467A (en) * 2001-09-11 2003-03-19 Ckd Corp Pneumatic open/close valve
JP2007292295A (en) * 2006-03-31 2007-11-08 Smc Corp Vacuum valve
JP3196493U (en) * 2014-12-29 2015-03-12 イハラサイエンス株式会社 Bellows valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012484A (en) * 2018-07-13 2020-01-23 株式会社キッツ Globe valve or bellows valve
JP7281879B2 (en) 2018-07-13 2023-05-26 株式会社キッツ globe valve or bellows valve
RU2742630C1 (en) * 2020-05-12 2021-02-09 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Valve for chemically aggressive media
CN111734833A (en) * 2020-05-15 2020-10-02 扬州润盈机械有限公司 Novel structure for solving small hole sealing

Also Published As

Publication number Publication date
JP6649055B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
EP0727603B1 (en) Diaphragm valve
KR101441731B1 (en) Metal gasket
JP6491878B2 (en) Fluid controller
TWI795473B (en) Fluid control valve
JP2017096422A (en) High vacuum valve
US20170002952A1 (en) Actuator apparatus with internal tubing and anti-rotation mechanism
JP6158110B2 (en) Triple eccentric butterfly valve
JP6527684B2 (en) Valve, fluid control device, semiconductor control device, and semiconductor manufacturing method
TWI712757B (en) valve
KR20160099696A (en) Valve body and high temperature valve
JP6041298B2 (en) Ball valve
JP2005106258A (en) Medical fluid valve
US20160053899A1 (en) Valve with welded diaphragm to assist opening force
JP2016161022A (en) Fluid controller
JPH07509301A (en) Valve seat for high temperature valve
KR20120104323A (en) Improved high vaccum ball valve
US20170234439A1 (en) Fluid controller
KR101531967B1 (en) Ball valve
JP2005321061A (en) Valve for high temperature
JP7191035B2 (en) valve
US9777854B2 (en) Safety valve
JP2021067363A (en) Method for manufacturing diaphragm, diaphragm for valve, and diaphragm comprising the same
JP2022053524A (en) Metal sealing system for triple eccentricity butterfly valve
JP7025915B2 (en) Diaphragm valve
JP7281175B2 (en) valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6649055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250