JP2017096200A - Coolant pump - Google Patents

Coolant pump Download PDF

Info

Publication number
JP2017096200A
JP2017096200A JP2015230685A JP2015230685A JP2017096200A JP 2017096200 A JP2017096200 A JP 2017096200A JP 2015230685 A JP2015230685 A JP 2015230685A JP 2015230685 A JP2015230685 A JP 2015230685A JP 2017096200 A JP2017096200 A JP 2017096200A
Authority
JP
Japan
Prior art keywords
transmission member
rotor
contact transmission
contact
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015230685A
Other languages
Japanese (ja)
Inventor
古賀 陽二郎
Yojiro Koga
陽二郎 古賀
正宣 松坂
Masanori Matsuzaka
正宣 松坂
忠祐 佐藤
Tadasuke Sato
忠祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2015230685A priority Critical patent/JP2017096200A/en
Publication of JP2017096200A publication Critical patent/JP2017096200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coolant pump which can suppress an increase of a discharge amount even when the number of revolutions of an internal combustion engine is increased.SOLUTION: A coolant pump comprises a rotor R to which a drive force is transmitted via a clutch mechanism C for connecting and disconnecting the drive force of a rotating body 3 driven by an internal combustion engine E. The clutch mechanism C comprises a contact transmission member 13 which is displaceable in a direction separating from the rotating body 3 accompanied with the rotation of the rotor R by being supported by the rotor R, and an energization member 14 which applies an energization force to the contact transmission member 13 in a direction where the contact transmission member comes into contact with the rotating body 3.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の駆動力により駆動され、内燃機関の冷却液を送る冷却液ポンプに関する。   The present invention relates to a coolant pump that is driven by a driving force of an internal combustion engine and sends a coolant of the internal combustion engine.

特許文献1には、冷却液ポンプとしてハウジングに対して回転自在に駆動軸が支持され、この駆動軸の外端にポンプ側プーリを備え、この駆動軸の内端にロータを備え、ポンプ側プーリとエンジン側プーリとにベルトを掛け回すことで、エンジンの駆動力によってロータを駆動する技術が示されている。   In Patent Document 1, a drive shaft is supported as a coolant pump so as to be rotatable with respect to a housing, a pump-side pulley is provided at an outer end of the drive shaft, a rotor is provided at an inner end of the drive shaft, and a pump-side pulley is provided. And a technique of driving a rotor by a driving force of an engine by winding a belt around an engine pulley.

この技術では、ロータの回転により冷却水に流れを作り出すものであり、エンジンが稼働する状況ではロータが回転し、冷却水を吐出するように構成されている。   In this technique, a flow is generated in the cooling water by the rotation of the rotor, and the rotor rotates and discharges the cooling water when the engine is operating.

また、特許文献2には、ウォータポンプのインペラが連結するポンプ軸と、エンジンの駆動力により回転するウォータポンププーリとの間に流体継ぎ手を備え、この流体継ぎ手が、流体の粘性によりウォータポンププーリの回転力をポンプ軸に伝える技術が示されている。   Further, Patent Document 2 includes a fluid joint between a pump shaft to which an impeller of a water pump is connected and a water pump pulley that is rotated by the driving force of the engine. The fluid joint is a water pump pulley due to the viscosity of the fluid. A technique for transmitting the rotational force of the pump to the pump shaft is shown.

この技術では流体継ぎ手が、エンジンの低速運転時にはスリップ量が小さく、ウォータポンプの必要な回転数を確保すると共に、エンジンの高速運転時にはスリップ量が大きくなりウォータポンプの過剰な回転を防止できるように構成されている。   With this technology, the fluid joint has a small slip amount when the engine is operating at a low speed to ensure the necessary rotation speed of the water pump, and the slip amount is large when the engine is operating at a high speed to prevent excessive rotation of the water pump. It is configured.

特開2014‐227984号公報JP 2014-227984 A 特開2001‐342832号公報JP 2001-342832 A

乗用車に備えられるエンジン(内燃機関)は、ダウンサイジング化する傾向にあり、それに伴い出力を増大させるために過給器を備えるものが多く存在する。また、このようなエンジンでは、低速回転であっても発熱量が大きく、これに対応した放熱を可能にする水量の冷却水を必要とする。   Engines (internal combustion engines) provided in passenger cars tend to be downsized, and many of them are equipped with a supercharger to increase output. Further, such an engine generates a large amount of heat even at a low speed, and requires a water amount of cooling water that enables heat radiation corresponding to this.

ウォータポンプは、電動モータで駆動されるものと比較して、エンジンで駆動されるものは構造が単純で、故障も少なく低廉である。従って、特許文献1、2に示されるようにエンジンで駆動される構成のものが用いられている。   The water pump driven by the engine has a simple structure and is less expensive and less expensive than the one driven by the electric motor. Therefore, as shown in Patent Documents 1 and 2, a structure driven by an engine is used.

また、エンジンで駆動されるウォータポンプが、低速回転において比較的多量の冷却水を供給するように構成された場合には、暖機のように冷却水の流れを阻止した状態において、エンジンが高速回転した場合には冷却水の圧力が上昇し、ウォータホースが抜ける現象(ホース抜け)を招くこともあった。   In addition, when the water pump driven by the engine is configured to supply a relatively large amount of cooling water at a low speed, the engine is operated at a high speed in a state where the flow of the cooling water is blocked as in warm-up. When it rotates, the pressure of the cooling water rises, and the water hose may come off (hose disconnection).

このような不都合に対し、特許文献2に示されるウォータポンプでは、エンジンが高速回転するほど流体継ぎ手でのスリップを大きくしてインペラの回転の増速を抑制できるものであるが、流体を介して伝動を行うため発熱を招くだけでなく、構成も複雑化し易く改善の余地がある。   For such inconvenience, the water pump disclosed in Patent Document 2 can suppress the increase in the rotation speed of the impeller by increasing the slip at the fluid joint as the engine rotates at a higher speed. Not only does it cause heat generation because of transmission, but the configuration is also likely to be complicated and there is room for improvement.

このような理由から、内燃機関で駆動される構成を有し、内燃機関の回転数が増大しても、ポンプの吐出量の増大が抑制される冷却液ポンプが求められる。   For these reasons, there is a need for a coolant pump that has a configuration that is driven by an internal combustion engine and that suppresses an increase in the discharge amount of the pump even if the rotational speed of the internal combustion engine increases.

本発明は、内燃機関の駆動力により回転軸芯を中心に回転する回転体と、前記回転軸芯を中心に回転することで前記内燃機関の冷却液を循環させるロータと、前記回転体から前記ロータに伝えられる回転駆動力を断続するクラッチ機構とを備えると共に、
前記クラッチ機構が、前記ロータとともに回転することで遠心力により前記回転体から離間する方向に変位自在な接触伝動部材と、前記接触伝動部材を前記回転体に接触させる方向に変位させる付勢力を作用させる付勢部材とを備えていることを特徴とする。
The present invention provides a rotating body that rotates about a rotating shaft center by a driving force of the internal combustion engine, a rotor that circulates coolant of the internal combustion engine by rotating about the rotating shaft core, A clutch mechanism for intermittently transmitting the rotational driving force transmitted to the rotor,
When the clutch mechanism rotates together with the rotor, a contact transmission member that is displaceable in a direction away from the rotating body by centrifugal force and a biasing force that displaces the contact transmission member in a direction to contact the rotating body act. And an urging member to be moved.

これによると、回転体が低速回転する場合には、接触伝動部材が回転体に対して付勢部材の付勢力により接触する状態を維持する(クラッチ機構が伝動状態に維持される)ため、接触伝動部材と回転体との間に作用する静摩擦によりロータに回転駆動力を伝える。次に、回転体の回転数が増大し、遠心力により接触伝動部材が回転体から離間する方向に変位を開始した後には、回転体と接触伝動部材とが離間する以前に滑りを発生させ(クラッチ機構が半クラッチ状態となり)、回転体と接触伝動部材との間に作用する動摩擦によりロータに回転駆動力を伝える。この伝動形態は、スリップを伴うためロータの回転数を低下すると共に、回転数を大きく変動させず滑らかにロータを駆動できる。
特に、この構成では、回転体が高速回転する場合には、接触伝動部材に作用する遠心力により接触伝動部材が回転体から短時間だけ離間し(クラッチ機構が遮断状態となり)、この後に、クラッチ機構が伝動状態に復帰し、この遮断状態と伝動状態を短時間のうちに繰り返すと捉えることも可能である。この伝動形態でも、ロータの回転数を低下させると共に、回転数を大きく変動させず滑らかにロータを駆動できる。
従って、内燃機関で駆動される構成を有し、内燃機関の回転数が増大した場合にはポンプの吐出量の増大が抑制される冷却液ポンプが構成された。
According to this, when the rotating body rotates at a low speed, the contact transmission member is kept in contact with the rotating body by the urging force of the urging member (the clutch mechanism is maintained in the transmission state). The rotational driving force is transmitted to the rotor by static friction acting between the transmission member and the rotating body. Next, after the rotational speed of the rotating body increases and the contact transmission member starts to move away from the rotating body due to centrifugal force, slip occurs before the rotating body and the contact transmission member separate ( The clutch mechanism is in a half-clutch state), and the rotational driving force is transmitted to the rotor by dynamic friction acting between the rotating body and the contact transmission member. Since this transmission mode involves slip, the rotational speed of the rotor is reduced and the rotor can be driven smoothly without greatly changing the rotational speed.
In particular, in this configuration, when the rotating body rotates at a high speed, the contact transmission member is separated from the rotating body for a short time by the centrifugal force acting on the contact transmission member (the clutch mechanism is cut off). It can also be understood that the mechanism returns to the transmission state, and that the blocking state and the transmission state are repeated in a short time. Even in this transmission mode, the rotor speed can be reduced and the rotor can be driven smoothly without greatly changing the speed.
Therefore, a coolant pump having a configuration that is driven by an internal combustion engine and that suppresses an increase in pump discharge when the rotational speed of the internal combustion engine increases is configured.

本発明は、前記回転体が軸状に形成され、前記ロータが前記回転体を取り囲む位置に配置される構成を有し、
前記接触伝動部材が、前記ロータの半径方向に沿う姿勢のガイド体に対してスライド移動自在に支持され、前記付勢部材が前記接触伝動部材を前記回転体の外周面に向けて突出付勢しても良い。
The present invention has a configuration in which the rotating body is formed in an axial shape, and the rotor is arranged at a position surrounding the rotating body,
The contact transmission member is slidably supported with respect to the guide body in a posture along the radial direction of the rotor, and the urging member urges the contact transmission member to project toward the outer peripheral surface of the rotating body. May be.

これによると、ガイド体に接触伝動部材をスライド移動自在に支持し、付勢部材により回転体に接触させる方向に付勢する簡単な構成の採用により、接触伝動部材に対して付勢部材の付勢力を作用させ、遠心力の作用により付勢力に抗して接触部材を回転体から離間方向に変位可能にクラッチ機構を構成できる。   According to this, the contact transmission member is slidably supported on the guide body, and the biasing member is attached to the contact transmission member by adopting a simple configuration in which the biasing member is urged in the direction of contact with the rotating body. The clutch mechanism can be configured such that a force is applied and the contact member can be displaced from the rotating body in the separation direction against the urging force by the action of centrifugal force.

本発明は、複数の前記接触伝動部材が、前記回転軸芯を中心にした周方向で等間隔に備えられても良い。   In the present invention, a plurality of the contact transmission members may be provided at equal intervals in the circumferential direction around the rotation axis.

これによると、複数の接触伝動部材を、回転体の外周面に等しく接触させることが可能となり、例えば、単一の接触伝動部材を備えた構成のように、回転体に対して曲げ方向の荷重を作用させることや、回転をアンバランスにすることもない。   According to this, a plurality of contact transmission members can be brought into contact with the outer peripheral surface of the rotating body equally. For example, a load in a bending direction is applied to the rotating body as in a configuration including a single contact transmission member. Does not act, nor does it unbalance the rotation.

本発明は、前記クラッチ機構が、前記冷却液の液中に配置されても良い。   In the present invention, the clutch mechanism may be disposed in the coolant.

これによると、接触伝動部材が回転体に接触した場合に発生するノイズの拡散を冷却液で抑制できるため、静粛性の向上が実現する。また、接触伝動部材が発熱することがあっても冷却液により冷却することが可能となる。   According to this, since noise diffusion generated when the contact transmission member comes into contact with the rotating body can be suppressed by the coolant, an improvement in quietness is realized. Further, even if the contact transmission member generates heat, it can be cooled by the coolant.

本発明は、前記回転体と前記接触伝動部材とのうち、互いに接触して回転駆動力を伝える2つの伝動面の何れか少なくとも一方に摩擦材を備えても良い。   In the present invention, a friction material may be provided on at least one of two transmission surfaces that contact each other and transmit a rotational driving force between the rotating body and the contact transmission member.

これによると、摩擦材を備えることにより、回転体の伝動面と、接触伝動部材の伝動面との接触部位の摩耗を抑制することができ、摩擦材の摩擦係数の設定により高い効率で回転駆動力を伝動することが可能となる。   According to this, by providing the friction material, it is possible to suppress the wear of the contact portion between the transmission surface of the rotating body and the transmission surface of the contact transmission member, and to drive the rotation with high efficiency by setting the friction coefficient of the friction material. Power can be transmitted.

本発明は、前記回転体のうち前記接触伝動部材が接触する伝動面に対して前記接触伝動部材が嵌り込む凹部が形成されても良い。   In the present invention, a recess in which the contact transmission member is fitted to a transmission surface of the rotating body that contacts the contact transmission member may be formed.

これによると、接触伝動部材が凹部に嵌り込む状態においては、スリップを招くことなく確実な伝動が可能となる。また、回転体の回転数が増大した場合には接触伝動部材に作用する遠心力により接触伝動部材を凹部から離脱させることも可能となる。   According to this, in a state where the contact transmission member is fitted in the recess, reliable transmission is possible without causing slip. Further, when the rotational speed of the rotating body is increased, the contact transmission member can be detached from the recess by the centrifugal force acting on the contact transmission member.

クラッチ機構を備えたウォータポンプの断面図である。It is sectional drawing of the water pump provided with the clutch mechanism. クラッチ機構の断面図である。It is sectional drawing of a clutch mechanism. 駆動軸の回転数と吐出量との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of a drive shaft, and discharge amount. 別実施形態(a)のクラッチ機構の断面図である。It is sectional drawing of the clutch mechanism of another embodiment (a). 別実施形態(b)のクラッチ機構の断面図である。It is sectional drawing of the clutch mechanism of another embodiment (b). 別実施形態(c)のクラッチ機構の断面図である。It is sectional drawing of the clutch mechanism of another embodiment (c). 別実施形態(d)のクラッチ機構の断面図である。It is sectional drawing of the clutch mechanism of another embodiment (d).

以下、本発明の実施形態を図面に基づいて説明する。
〔全体構成〕
図1、図2に示すように、内燃機関としてのエンジンEの駆動力で駆動される駆動ベルト1が巻回する駆動プーリ2を備え、この駆動プーリ2に連結する駆動軸3(回転体の一例)と、駆動軸3から伝えられる回転駆動力を断続するクラッチ機構Cと、クラッチ機構Cから伝えられる回転駆動力により回転するロータRとを備えて冷却液ポンプとしてのウォータポンプWPが構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔overall structure〕
As shown in FIGS. 1 and 2, a drive pulley 2 around which a drive belt 1 driven by a driving force of an engine E as an internal combustion engine is wound is provided, and a drive shaft 3 (of a rotating body) connected to the drive pulley 2 is provided. An example), a clutch mechanism C that intermittently transmits and receives the rotational driving force transmitted from the drive shaft 3, and a rotor R that rotates by the rotational driving force transmitted from the clutch mechanism C are configured as a water pump WP as a coolant pump. ing.

このウォータポンプWPは、車両に備えられるエンジンEのウォータジャケット(図示せず)の冷却水(冷却液の一例)をラジエータ(図示せず)に供給するものである。駆動ベルト1はエンジンEのクランクシャフトの出力プーリに巻回している。   This water pump WP supplies cooling water (an example of cooling liquid) of a water jacket (not shown) of an engine E provided in a vehicle to a radiator (not shown). The drive belt 1 is wound around an output pulley of a crankshaft of the engine E.

ウォータポンプWPは、ハウジング4を有し、このハウジング4に形成された軸受部4Aに対して軸受5を介して回転軸芯Xを中心に回転自在に駆動軸3(回転体の一例)が支承されている。駆動軸3の外端部に駆動プーリ2を連結固定し、駆動軸3の内端部に回転軸芯Xを中心に相対回転自在にロータRを支承し、駆動軸3とロータRとの間にクラッチ機構Cを備えている。また、ハウジングと駆動軸との間には冷却水の漏出を防ぐシール6を備えている。   The water pump WP includes a housing 4, and a drive shaft 3 (an example of a rotating body) is supported by a bearing portion 4 </ b> A formed in the housing 4 via a bearing 5 so as to be rotatable around a rotation axis X. Has been. The drive pulley 2 is connected and fixed to the outer end portion of the drive shaft 3, and the rotor R is supported on the inner end portion of the drive shaft 3 so as to be relatively rotatable about the rotation axis X, and between the drive shaft 3 and the rotor R. Is provided with a clutch mechanism C. A seal 6 is provided between the housing and the drive shaft to prevent leakage of cooling water.

図1には、エンジンEのシリンダブロック等の外壁部に凹状に形成されたポンプ室Sを覆う位置にウォータポンプWPのハウジング4を連結固定した構成を示している。ロータRは、ポンプ室Sの内部に配置されるものであり、ロータ本体8に複数のインペラ9を備えた遠心型に構成されている。   FIG. 1 shows a configuration in which the housing 4 of the water pump WP is connected and fixed at a position covering the pump chamber S formed in a concave shape on the outer wall portion of the cylinder block or the like of the engine E. The rotor R is disposed inside the pump chamber S, and is configured as a centrifugal type in which the rotor body 8 includes a plurality of impellers 9.

ロータ本体8は、回転軸芯Xを中心とする筒状部8aを有すると共に、この筒状部8aの一端側に回転軸芯Xに直交する姿勢の鍔状部8bを一体形成し、この鍔状部8bに対して複数のインペラ9を備えている。また、筒状部8aの他端側にはスリーブ部8cを備えており、このスリーブ部8cを駆動軸3の小径部3aに対して相対回転自在に外嵌し、サークリップ10により抜け止めを行うことにより、ロータRが駆動軸3に対して回転軸芯Xを中心に相対回転自在に支持されている。   The rotor body 8 has a cylindrical portion 8a centered on the rotation axis X, and a flange-like portion 8b in a posture orthogonal to the rotation axis X is integrally formed on one end side of the cylindrical portion 8a. A plurality of impellers 9 are provided for the shaped portion 8b. Further, a sleeve portion 8c is provided on the other end side of the cylindrical portion 8a. The sleeve portion 8c is externally fitted to the small diameter portion 3a of the drive shaft 3 so as to be rotatable relative to the cylindrical portion 8a. By doing so, the rotor R is supported so as to be rotatable relative to the drive shaft 3 around the rotation axis X.

〔クラッチ機構〕
クラッチ機構Cは、駆動軸3が低速回転する場合に駆動軸3の回転駆動力をロータRに伝える伝動状態を維持し、ロータRが所定の回転数(単位時間の回転数)を超えた場合に、駆動軸3の回転駆動力を断つ遮断状態に切り換わるように構成されている。
[Clutch mechanism]
The clutch mechanism C maintains a transmission state in which the rotational driving force of the drive shaft 3 is transmitted to the rotor R when the drive shaft 3 rotates at a low speed, and the rotor R exceeds a predetermined rotational speed (the rotational speed per unit time). In addition, the drive shaft 3 is configured to be switched to a cut-off state that cuts off the rotational driving force.

クラッチ機構Cは、ロータRの筒状部8aに対し回転軸芯Xを基準に半径方向に沿う姿勢で備えられた複数のガイド体12と、各々のガイド体12にスライド移動自在に支持された接触伝動部材13と、各々の接触伝動部材13を回転軸芯Xの方向に突出付勢するようにガイド体12と同軸芯上に配置されるコイル状の付勢部材14と、接触伝動部材13に支持され駆動軸3の外周に接触する受動摩擦材15とを備えて構成されている。   The clutch mechanism C is supported by a plurality of guide bodies 12 provided in a posture along the radial direction with respect to the cylindrical portion 8a of the rotor R with respect to the rotation axis X, and is slidably supported by the respective guide bodies 12. The contact transmission member 13, a coil-like biasing member 14 disposed on the coaxial core with the guide body 12 so as to project and bias each contact transmission member 13 in the direction of the rotation axis X, and the contact transmission member 13 And a passive friction material 15 that is supported by and is in contact with the outer periphery of the drive shaft 3.

複数(本実施形態では3つ)のガイド体12は、筒状部8aの周方向で等しい間隔となる位置に支持されている。接触伝動部材13は、駆動軸3の周方向に沿って延びる円弧状の伝動部13aが形成されると共に、ガイド体12が挿通する凹状の挿通部13bが形成され、伝動部13aには駆動軸3の外周に沿うように駆動軸3と等しい半径の凹状の伝動面13cが形成され、この伝動面13cに対して受動摩擦材15が支持されている。また、3つの接触伝動部材13の受動摩擦材15が駆動軸3の外周に接触した状態で、3つの伝動部13aが駆動軸の外周を取り囲むように周方向での寸法関係が設定されている。更に、このクラッチ機構Cは、全ての部分が冷却水に没する位置に配置されている。   A plurality (three in this embodiment) of guide bodies 12 are supported at positions that are equally spaced in the circumferential direction of the cylindrical portion 8a. The contact transmission member 13 is formed with an arcuate transmission portion 13a extending along the circumferential direction of the drive shaft 3, and a concave insertion portion 13b through which the guide body 12 is inserted. The transmission portion 13a has a drive shaft. A concave transmission surface 13c having the same radius as that of the drive shaft 3 is formed along the outer periphery of the drive shaft 3, and the passive friction material 15 is supported on the transmission surface 13c. In the state where the passive friction material 15 of the three contact transmission members 13 is in contact with the outer periphery of the drive shaft 3, the dimensional relationship in the circumferential direction is set so that the three transmission portions 13a surround the outer periphery of the drive shaft. . Further, the clutch mechanism C is disposed at a position where all parts are immersed in the cooling water.

このクラッチ機構Cでは、受動摩擦材15として、耐摩耗性に優れ所定の摩擦係数となる材料が用いられる。尚、この受動摩擦材15として樹脂繊維を板状に成形したものを想定しているが、樹脂材を用いても良い。   In this clutch mechanism C, the passive friction material 15 is made of a material having excellent wear resistance and a predetermined friction coefficient. In addition, although the thing which shape | molded the resin fiber in plate shape as this passive friction material 15 is assumed, you may use a resin material.

つまり、ロータRの筒状部8aが駆動軸3を取り囲む位置に配置され、この筒状部8aに対して回転軸芯Xを中心にした放射状となる姿勢で形成した複数のガイド体12に対して接触伝動部材13がスライド移動自在に支持されている。また、付勢部材14により接触伝動部材13が、駆動軸3の外周面に接触するように付勢されている。これにより、ロータRの回転に伴い、接触伝動部材13が遠心力の作用により駆動軸3の外周面から離間可能となる。   That is, the cylindrical portion 8a of the rotor R is disposed at a position surrounding the drive shaft 3, and with respect to the plurality of guide bodies 12 formed in a radial posture around the rotational axis X with respect to the cylindrical portion 8a. The contact transmission member 13 is slidably supported. Further, the contact transmission member 13 is urged by the urging member 14 so as to contact the outer peripheral surface of the drive shaft 3. Thereby, with the rotation of the rotor R, the contact transmission member 13 can be separated from the outer peripheral surface of the drive shaft 3 by the action of centrifugal force.

このような構成から、駆動軸3の回転数が予め設定された所定値N未満で回転する場合には、接触伝動部材13の受動摩擦材15が駆動軸3の外周面に対し付勢部材14の付勢力で接触し、これらの間の静摩擦により駆動軸3とロータRとが一体回転する。これがクラッチ機構Cの伝動状態であり、ロータRが駆動軸3と等速で駆動回転する。この伝動状態を図3において低速域吐出量Q1として示すように、ウォータポンプWPからの冷却水の吐出量は、駆動軸3の回転数に対して所定の比例定数により比例する。   With such a configuration, when the rotational speed of the drive shaft 3 rotates below a predetermined value N, the passive friction material 15 of the contact transmission member 13 biases the outer peripheral surface of the drive shaft 3. The drive shaft 3 and the rotor R rotate together by static friction between them. This is the transmission state of the clutch mechanism C, and the rotor R is driven to rotate at the same speed as the drive shaft 3. As shown in FIG. 3 as a low speed region discharge amount Q1 in FIG. 3, the discharge amount of the cooling water from the water pump WP is proportional to the rotational speed of the drive shaft 3 by a predetermined proportional constant.

これに対して、ロータRが予め設定された所定値Nを超えて回転する場合には、遠心力の作用により付勢部材14の付勢力に抗して接触伝動部材13の受動摩擦材15が駆動軸3の外周面から離間する方向に変位を開始する。この変位に伴い、接触伝動部材13の受動摩擦材15と駆動軸3の外周面との間で滑りを招き、これらの間での動摩擦により駆動軸3の回転駆動力を接触伝動部材13に伝えロータRに伝える。この伝動状態が半クラッチ状態であり、駆動軸3と接触伝動部材13との間にスリップを伴うため、結果として、駆動軸3の回転数より小さい回転数の回転駆動力を伝える。   On the other hand, when the rotor R rotates beyond a predetermined value N set in advance, the passive friction material 15 of the contact transmission member 13 resists the biasing force of the biasing member 14 by the action of centrifugal force. The displacement starts in a direction away from the outer peripheral surface of the drive shaft 3. Along with this displacement, slip is caused between the passive friction material 15 of the contact transmission member 13 and the outer peripheral surface of the drive shaft 3, and the rotational driving force of the drive shaft 3 is transmitted to the contact transmission member 13 by dynamic friction between them. Tell the rotor R. Since this transmission state is a half-clutch state and slip occurs between the drive shaft 3 and the contact transmission member 13, as a result, a rotational driving force having a rotational speed smaller than the rotational speed of the drive shaft 3 is transmitted.

尚、クラッチ機構Cでは、短時間のうちにクラッチ機構Cが伝動状態と遮断状態とを繰り返すことにより伝動を行う伝動形態と捉えることも可能である。この伝動形態であっても、駆動軸3と接触伝動部材13との間にスリップを伴うため、結果として、駆動軸3の回転数より小さい回転数の回転駆動力を伝える。   The clutch mechanism C can be regarded as a transmission form in which transmission is performed by repeating the transmission state and the cutoff state in a short time. Even in this transmission mode, since slip occurs between the drive shaft 3 and the contact transmission member 13, as a result, a rotational driving force having a rotational speed smaller than the rotational speed of the drive shaft 3 is transmitted.

このようにスリップを伴う伝動によりウォータポンプWPが駆動される状態を、図3において高速域吐出量Q2として示しており、この高速域吐出量Q2ではウォータポンプWPの冷却水の吐出量は、駆動軸3の回転数に対し、低速域吐出量Q1の比例定数より小さい比例定数により比例する。   The state in which the water pump WP is driven by the transmission accompanied by the slip is shown as a high speed region discharge amount Q2 in FIG. 3, and at this high speed region discharge amount Q2, the discharge amount of the cooling water of the water pump WP is driven. It is proportional to the rotational speed of the shaft 3 by a proportional constant smaller than the proportional constant of the low speed region discharge amount Q1.

尚、図3のグラフは、駆動軸3の回転数を横軸に取り、ウォータポンプWPでの冷却水の吐出量を縦軸に取っている。駆動軸3の回転数が所定値Nに達するまでは、クラッチ機構Cが伝動状態を維持するためウォータポンプWPの吐出量は低速域吐出量Q1に示す比例関係で冷却水を吐出する。回転数が所定値Nを超えた場合にクラッチ機構Cが半クラッチ状態に切り換わるため、ウォータポンプWPの吐出量は高速域吐出量Q2に示す比例関係で冷却水を吐出する。   In the graph of FIG. 3, the horizontal axis represents the rotational speed of the drive shaft 3, and the vertical axis represents the discharge amount of the cooling water from the water pump WP. Until the rotational speed of the drive shaft 3 reaches a predetermined value N, the clutch mechanism C maintains the transmission state, so that the discharge amount of the water pump WP discharges the cooling water in a proportional relationship indicated by the low-speed range discharge amount Q1. When the rotational speed exceeds a predetermined value N, the clutch mechanism C switches to the half-clutch state. Therefore, the discharge amount of the water pump WP discharges the cooling water in a proportional relationship indicated by the high-speed range discharge amount Q2.

同図のグラフを考えると、クラッチ機構Cが伝動状態と遮断状態とを繰り返すものでは、伝動状態において駆動軸3の回転を直接受けるため、高速域吐出量Q2では回転数の増大に伴い、比例関係で吐出量が増大すると考えられる。これに対して、動摩擦により駆動軸3の回転駆動力を接触伝動部材13に伝えロータRに伝える場合には、高速域吐出量Q2の姿勢は、横軸と平行になる(水平姿勢となる)と考えられるものであるが、駆動軸3の回転に伴い回転軸芯Xを中心とする渦状の水流の影響も考慮すると、回転数に比例する関係で吐出量が増大する。この理由から高速域吐出量Q2を傾斜姿勢で描いている。   Considering the graph of the figure, when the clutch mechanism C repeats the transmission state and the shut-off state, the rotation of the drive shaft 3 is directly received in the transmission state. Therefore, it is considered that the discharge amount increases. On the other hand, when the rotational driving force of the drive shaft 3 is transmitted to the contact transmission member 13 by dynamic friction and transmitted to the rotor R, the posture of the high speed region discharge amount Q2 is parallel to the horizontal axis (becomes a horizontal posture). However, when the influence of the spiral water flow around the rotation axis X is taken into account as the drive shaft 3 rotates, the discharge amount increases in a relationship proportional to the rotation speed. For this reason, the high-speed area discharge amount Q2 is drawn in an inclined posture.

〔実施形態の作用・効果〕
例えば、過給器を備えることにより比較的小型であっても低速回転において高出力を得るように構成されたエンジンE(例えば、小型の直列エンジンやV型エンジン)を想定すると、この構成のエンジンEでは低速回転時でも充分な量の冷却水を必要とする。これに対応した量の冷却水を供給するようにウォータポンプWPの吐出量を設定すると、エンジンEが高速回転した場合には冷却水を過剰に供給することになる。これに対して、実施形態に示したウォータポンプWPでは高速回転時に冷却水を過剰に供給する不都合を抑制でき、回転数を大きく変動させずロータRを滑らかに駆動できる。
[Operation / Effect of Embodiment]
For example, assuming an engine E (for example, a small in-line engine or a V-type engine) configured to obtain a high output at low speed rotation even if it is relatively small by providing a supercharger, an engine of this configuration E requires a sufficient amount of cooling water even at low speeds. When the discharge amount of the water pump WP is set so as to supply the cooling water corresponding to this, the cooling water is excessively supplied when the engine E rotates at a high speed. On the other hand, in the water pump WP shown in the embodiment, it is possible to suppress the inconvenience of excessive supply of cooling water during high-speed rotation, and the rotor R can be smoothly driven without greatly changing the rotation speed.

更に、このように構成されたエンジンEでは、暖機時にラジエータに対する冷却水の流れが遮断された状況でエンジンEの回転数が増大した場合には、ウォータポンプWPの吐出圧が冷却水を送るホース類に作用し、冷却水の漏れを招くだけでなく、ホースの抜けを招くこともあった。これに対して実施形態に示したウォータポンプWPでは暖機時にエンジンE高速回転しても冷却水の吐出量が抑制されるため、冷却水の漏れやホースの抜けを招くことがない。   Further, in the engine E configured as described above, when the rotational speed of the engine E increases in a state where the flow of the cooling water to the radiator is interrupted during warm-up, the discharge pressure of the water pump WP sends the cooling water. It acts on the hoses and causes not only the leakage of cooling water but also the disconnection of the hoses. On the other hand, in the water pump WP shown in the embodiment, since the discharge amount of the cooling water is suppressed even when the engine E rotates at a high speed during warm-up, the leakage of the cooling water and the disconnection of the hose are not caused.

特に、ウォータポンプWPでは複数の接触伝動部材13を、駆動軸3の外周の周方向において等間隔で接触させるため、バランスの取れた回転を行わせると共に、偏った荷重を駆動軸3に作用させることもない。複数の接触伝動部材13を備えることにより、例えば、1つの接触伝動部材13が作動不良の状態に陥った場合にも、他の接触伝動部材13を介して駆動軸3の駆動力をロータRに伝えることも可能となる。   In particular, in the water pump WP, a plurality of contact transmission members 13 are contacted at equal intervals in the circumferential direction of the outer periphery of the drive shaft 3, so that balanced rotation is performed and a biased load is applied to the drive shaft 3. There is nothing. By providing the plurality of contact transmission members 13, for example, even when one contact transmission member 13 falls into a malfunctioning state, the driving force of the drive shaft 3 is applied to the rotor R via the other contact transmission members 13. It is also possible to communicate.

また、この構成のウォータポンプWPではクラッチ機構Cの接触伝動部材13が冷却水中に配置されているため、接触伝動部材13が駆動軸3の外周に対して間歇的に接触する状況に陥った場合でも接触音を抑制することが可能となる。   Further, in the water pump WP having this configuration, since the contact transmission member 13 of the clutch mechanism C is disposed in the cooling water, the contact transmission member 13 falls into a state of intermittent contact with the outer periphery of the drive shaft 3. However, it is possible to suppress the contact sound.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another embodiment]
In addition to the above-described embodiments, the present invention may be configured as follows (the components having the same functions as those of the embodiments are given the same numbers and symbols as those of the embodiments).

(a)図4に示すように、駆動軸3の外周に駆動摩擦材20を備え、この駆動摩擦材20に対して接触伝動部材13の伝動面13cを直接的に接触させることによりクラッチ機構Cの伝動状態を作り出すように構成しても良い。 (A) As shown in FIG. 4, the drive friction material 20 is provided on the outer periphery of the drive shaft 3, and the clutch mechanism C is brought into direct contact with the drive friction material 20 with the transmission surface 13 c of the contact transmission member 13. You may comprise so that the transmission state of may be produced.

この別実施形態でも、駆動摩擦材20は実施形態で説明した受動摩擦材15と同様に耐摩耗性に優れ、所定の摩擦係数となる材料が用いられる。これによりクラッチ機構Cが伝動状態にある場合には、駆動摩擦材20を介して駆動軸3の駆動力を接触伝動部材13に伝えてロータRの駆動回転が実現する。   Also in this alternative embodiment, the driving friction material 20 is made of a material having excellent wear resistance and a predetermined friction coefficient, like the passive friction material 15 described in the embodiment. As a result, when the clutch mechanism C is in the transmission state, the driving force of the driving shaft 3 is transmitted to the contact transmission member 13 via the driving friction material 20 to realize the driving rotation of the rotor R.

特に、この別実施形態(a)の変形例として、駆動軸3の外周に駆動摩擦材20を備えると共に、接触伝動部材13の伝動面13cに受動摩擦材15を備えるようにクラッチ機構Cを構成することも可能である。   In particular, as a modification of this another embodiment (a), the clutch mechanism C is configured so that the drive friction material 20 is provided on the outer periphery of the drive shaft 3 and the passive friction material 15 is provided on the transmission surface 13 c of the contact transmission member 13. It is also possible to do.

(b)図5に示すように、駆動軸3の外周に係合凹部3gを形成し、この係合凹部3gに係脱可能に接触伝動部材13を構成する。この構成では接触伝動部材13が棒状に形成されると共に、接触伝動部材13をスライド移動自在に内装するようにガイド体12が筒状に形成されている。また、接触伝動部材13が貫通ピン13fを備え、この貫通ピン13fが挿通するスリット12aを、ガイド体12の長手方向に沿って形成し、この貫通ピン13fを介して接触伝動部材13を突出付勢するように付勢部材14を備えている。 (B) As shown in FIG. 5, an engagement recess 3g is formed on the outer periphery of the drive shaft 3, and the contact transmission member 13 is configured to be engageable with and disengageable from the engagement recess 3g. In this configuration, the contact transmission member 13 is formed in a rod shape, and the guide body 12 is formed in a cylindrical shape so that the contact transmission member 13 is slidably mounted. The contact transmission member 13 includes a through pin 13f. A slit 12a through which the through pin 13f is inserted is formed along the longitudinal direction of the guide body 12, and the contact transmission member 13 is protruded through the through pin 13f. A biasing member 14 is provided so as to bias.

この構成では、接触伝動部材13が係合凹部3gに係合する状態を維持できるので、クラッチ機構Cが伝動状態に維持され、確実な伝動を実現する。また、駆動軸3の回転数が増大し、遠心力の作用により接触伝動部材13が係合凹部3gから離間した後に、付勢部材14の付勢力によってクラッチ機構Cが伝動状態に移行する場合には、係合凹部3gに接触伝動部材13が係合するため、短時間だけであるが確実な伝動を行える。   In this configuration, the state where the contact transmission member 13 is engaged with the engagement recess 3g can be maintained, so that the clutch mechanism C is maintained in the transmission state, thereby realizing reliable transmission. In addition, when the rotational speed of the drive shaft 3 increases and the contact transmission member 13 is separated from the engagement recess 3g by the action of centrifugal force, and then the clutch mechanism C shifts to the transmission state by the urging force of the urging member 14. Since the contact transmission member 13 is engaged with the engaging recess 3g, reliable transmission can be performed in a short time.

つまり、接触伝動部材13が係合凹部3gに係合する状態ではスリップすることなく駆動力を確実に伝える状態と、遠心力の作用によって接触伝動部材13が係合凹部3gから離間することで駆動力が遮断される状態とを繰り返すことになり、確実な伝動を行いつつ、ロータRの回転数の低減を実現する。尚、係合凹部3gの形状は、接触伝動部材13の突出端が回転軸芯Xに接近する方向に変位することによって嵌り込むように、接触伝動部材13の突出端の断面より少し大きい断面形状と窪み状に形成されるものでも良い。   In other words, when the contact transmission member 13 is engaged with the engagement recess 3g, the drive transmission is reliably transmitted without slipping, and the contact transmission member 13 is driven away from the engagement recess 3g by the action of centrifugal force. The state where the force is interrupted is repeated, and the rotational speed of the rotor R is reduced while performing reliable transmission. Incidentally, the shape of the engaging recess 3g is a cross-sectional shape slightly larger than the cross section of the protruding end of the contact transmission member 13 so that the protruding end of the contact transmission member 13 is fitted in the direction approaching the rotation axis X. It may be formed in a hollow shape.

(c)図6に示すように、ロータRに対し、回転軸芯Xと並行姿勢となる一対の揺動軸22を備え、夫々の揺動軸22を中心に揺動自在となる接触伝動部材13を備え、これらの接触伝動部材13の揺動端に受動摩擦材15を備え一対の接触伝動部材13の揺動端同士が引き合うように引張り型のスプリングで成る付勢部材14を備える。 (C) As shown in FIG. 6, a contact transmission member that includes a pair of swing shafts 22 that are parallel to the rotation axis X with respect to the rotor R, and that can swing about the respective swing shafts 22. 13, a passive friction material 15 is provided at the oscillating ends of the contact transmission members 13, and an urging member 14 formed of a tension spring is provided so that the oscillating ends of the pair of contact transmission members 13 are attracted to each other.

この構成では、一対の接触伝動部材13の揺動端を駆動軸3の外周に対して同時に引き寄せるように付勢部材14の付勢力が作用する構成であるため、受動摩擦材15を同時に駆動軸3に接触させて確実な伝動を行わせることが可能となる。また、接触伝動部材13が揺動する構成であるため、接触伝動部材13の揺動端が駆動軸3に対して接近または離間する方向に変位する場合の作動が円滑になる。   In this configuration, since the urging force of the urging member 14 acts so that the swinging ends of the pair of contact transmission members 13 are simultaneously pulled toward the outer periphery of the drive shaft 3, the passive friction material 15 is simultaneously moved to the drive shaft. 3 can be brought into contact with each other to ensure reliable transmission. Further, since the contact transmission member 13 is configured to swing, the operation when the swing end of the contact transmission member 13 is displaced in a direction approaching or separating from the drive shaft 3 becomes smooth.

(d)図7に示すように、駆動軸3と一体回転する駆動ディスク25(回転体の一例)と、回転軸芯Xに沿って移動自在なディスク状の接触伝動部材13と、接触伝動部材13を付勢する付勢部材14と、ロータRの回転に伴い遠心力により接触伝動部材13を駆動ディスク25から離間させる力を作用させる遠心力作用機構27とを備えてクラッチ機構Cを構成する。 (D) As shown in FIG. 7, a drive disk 25 (an example of a rotating body) that rotates integrally with the drive shaft 3, a disk-shaped contact transmission member 13 that is movable along the rotation axis X, and a contact transmission member The clutch mechanism C is configured to include a biasing member 14 that biases 13 and a centrifugal force acting mechanism 27 that applies a force that causes the contact transmission member 13 to be separated from the drive disk 25 by centrifugal force as the rotor R rotates. .

この構成では、接触伝動部材13が、駆動軸3に対して相対回転自在、かつ、回転軸芯Xに沿う方向への移動自在に支持されている。これにより、接触伝動部材13が駆動ディスク25に対して接触する位置と離間する位置とに切換自在となる。また、遠心力作用機構27は、基端がロータRのロータ本体8に対して揺動自在に支持される揺動アーム27aと、揺動アーム27aの揺動端に備えたウェイト27bと、揺動アーム27aの揺動に伴い接触伝動部材13に回転軸芯Xに沿う力を作用させる作動部27cとを備えている。尚、この構成では、駆動ディスク25と接触伝動部材13との接触面に摩擦材を備えても良い。   In this configuration, the contact transmission member 13 is supported so as to be rotatable relative to the drive shaft 3 and movable in a direction along the rotation axis X. As a result, the contact transmission member 13 can be switched between a position in contact with the drive disk 25 and a position in which the contact transmission member 13 is separated. The centrifugal force acting mechanism 27 includes a swing arm 27a whose base end is swingably supported with respect to the rotor body 8 of the rotor R, a weight 27b provided at the swing end of the swing arm 27a, and a swing arm. An operating portion 27c is provided that applies a force along the rotation axis X to the contact transmission member 13 as the moving arm 27a swings. In this configuration, a friction material may be provided on the contact surface between the drive disk 25 and the contact transmission member 13.

このような構成から、駆動軸3の回転数が設定値未満である場合には、接触伝動部材13が付勢部材14の付勢力により駆動ディスク25に接触する状態を維持する(クラッチ機構Cが伝動状態に維持される)ため、駆動ディスク25の回転駆動力が遠心力作用機構27を介してロータRに伝えられる。また、駆動軸3の回転数が設定値以上に達した場合には、遠心力作用機構27のウェイト27bに作用する遠心力の増大に伴い揺動アーム27aが揺動し、この揺動力により作動部27cが接触伝動部材13を駆動ディスク25から離間する方向に変位しクラッチ機構Cが半クラッチ状態となる。   With such a configuration, when the rotational speed of the drive shaft 3 is less than the set value, the contact transmission member 13 maintains a state of contacting the drive disk 25 by the urging force of the urging member 14 (the clutch mechanism C is Therefore, the rotational driving force of the drive disk 25 is transmitted to the rotor R via the centrifugal force acting mechanism 27. When the rotational speed of the drive shaft 3 reaches a set value or more, the swing arm 27a swings as the centrifugal force acting on the weight 27b of the centrifugal force acting mechanism 27 increases, and the swing force is actuated. The part 27c displaces the contact transmission member 13 in the direction away from the drive disk 25, and the clutch mechanism C enters the half-clutch state.

これにより、駆動軸3からスリップを伴う回転駆動力をロータRへ伝えることになり、ウォータポンプWPの吐出量の低減が可能となる。この別実施形態では、駆動ディスク25と接触伝動部材13と間の広い接触面を介して伝動が行われるため安定した駆動が可能となる。   Thereby, the rotational driving force accompanied by slip is transmitted from the drive shaft 3 to the rotor R, and the discharge amount of the water pump WP can be reduced. In this other embodiment, since transmission is performed via a wide contact surface between the drive disk 25 and the contact transmission member 13, stable driving is possible.

(e)前述した実施形態と、各別実施形態とでは、駆動軸3と接触伝動部材13との直接的な接触により伝動状態と遮断状態とを作り出すようにクラッチ機構Cを構成していたが、駆動軸3と一体回転する部品類に接触して伝動状態となるように接触伝動部材13を配置して、クラッチ機構Cを構成しても良い。 (E) In the above-described embodiment and each of the separate embodiments, the clutch mechanism C is configured to create a transmission state and a cutoff state by direct contact between the drive shaft 3 and the contact transmission member 13. The clutch mechanism C may be configured by arranging the contact transmission member 13 so as to contact the parts rotating integrally with the drive shaft 3 to be in a transmission state.

(f)クラッチ機構Cを、例えば、ロータRの中央位置で冷却水(冷却液)に接触しない構成とすることで、接触伝動部材13の応答性を高めるように構成しても良い。 (F) The clutch mechanism C may be configured not to contact cooling water (cooling liquid) at the center position of the rotor R, for example, so that the responsiveness of the contact transmission member 13 is improved.

本発明は、内燃機関の駆動力で駆動される冷却液ポンプに利用することができる。   The present invention can be used for a coolant pump driven by a driving force of an internal combustion engine.

3 回転体(駆動軸)
3g 凹部(係合凹部)
12 ガイド体
13 接触伝動部材
14 付勢部材
15 摩擦材(受動摩擦材)
20 摩擦材(駆動摩擦材)
25 回転体(駆動ディスク)
C クラッチ機構
E 内燃機関(エンジン)
R ロータ
X 回転軸芯
3 Rotating body (drive shaft)
3g recess (engagement recess)
12 Guide body 13 Contact transmission member 14 Biasing member 15 Friction material (passive friction material)
20 Friction material (drive friction material)
25 Rotating body (drive disk)
C Clutch mechanism E Internal combustion engine
R Rotor X Rotating shaft core

Claims (6)

内燃機関の駆動力により回転軸芯を中心に回転する回転体と、前記回転軸芯を中心に回転することで前記内燃機関の冷却液を循環させるロータと、前記回転体から前記ロータに伝えられる回転駆動力を断続するクラッチ機構とを備えると共に、
前記クラッチ機構が、前記ロータとともに回転することで遠心力により前記回転体から離間する方向に変位自在な接触伝動部材と、前記接触伝動部材を前記回転体に接触させる方向に変位させる付勢力を作用させる付勢部材とを備えている冷却液ポンプ。
A rotating body that rotates about the rotation axis by the driving force of the internal combustion engine, a rotor that circulates the coolant of the internal combustion engine by rotating about the rotation axis, and the rotor is transmitted to the rotor A clutch mechanism for intermittently rotating driving force,
When the clutch mechanism rotates together with the rotor, a contact transmission member that is displaceable in a direction away from the rotating body by centrifugal force and a biasing force that displaces the contact transmission member in a direction to contact the rotating body act. And a biasing member to be cooled.
前記回転体が軸状に形成され、前記ロータが前記回転体を取り囲む位置に配置される構成を有し、
前記接触伝動部材が、前記ロータの半径方向に沿う姿勢のガイド体に対してスライド移動自在に支持され、前記付勢部材が前記接触伝動部材を前記回転体の外周面に向けて突出付勢する請求項1に記載の冷却液ポンプ。
The rotating body is formed in a shaft shape, and the rotor is arranged at a position surrounding the rotating body,
The contact transmission member is slidably supported with respect to the guide body in a posture along the radial direction of the rotor, and the urging member urges the contact transmission member to project toward the outer peripheral surface of the rotating body. The coolant pump according to claim 1.
複数の前記接触伝動部材が、前記回転軸芯を中心にした周方向で等間隔に備えられている請求項2に記載の冷却液ポンプ。   The coolant pump according to claim 2, wherein the plurality of contact transmission members are provided at equal intervals in a circumferential direction centering on the rotation axis. 前記クラッチ機構が、前記冷却液の液中に配置されている請求項1〜3のいずれか一項に記載の冷却液ポンプ。   The coolant pump according to any one of claims 1 to 3, wherein the clutch mechanism is disposed in the coolant. 前記回転体と前記接触伝動部材とのうち、互いに接触して回転駆動力を伝える2つの伝動面の何れか少なくとも一方に摩擦材を備えている請求項1〜4のいずれか一項に記載の冷却液ポンプ。   5. The friction material according to claim 1, wherein a friction material is provided on at least one of two transmission surfaces that contact each other and transmit a rotational driving force among the rotating body and the contact transmission member. Coolant pump. 前記回転体のうち前記接触伝動部材が接触する伝動面に対して前記接触伝動部材が嵌り込む凹部が形成されている請求項1〜5のいずれか一項に記載の冷却液ポンプ。

The coolant pump as described in any one of Claims 1-5 in which the recessed part which the said contact transmission member fits is formed with respect to the transmission surface which the said contact transmission member contacts among the said rotary bodies.

JP2015230685A 2015-11-26 2015-11-26 Coolant pump Pending JP2017096200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015230685A JP2017096200A (en) 2015-11-26 2015-11-26 Coolant pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230685A JP2017096200A (en) 2015-11-26 2015-11-26 Coolant pump

Publications (1)

Publication Number Publication Date
JP2017096200A true JP2017096200A (en) 2017-06-01

Family

ID=58817068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230685A Pending JP2017096200A (en) 2015-11-26 2015-11-26 Coolant pump

Country Status (1)

Country Link
JP (1) JP2017096200A (en)

Similar Documents

Publication Publication Date Title
CN1900531B (en) Dual armature device for transmitting the movement to fans for cooling the engine of motor vehicles
JP4429307B2 (en) water pump
KR20170129890A (en) Isolation decoupler
JP2001342832A (en) Water pump driving structure of engine
EP1988263A2 (en) Apparatus with free-wheel device and double-armature clutch for transmitting the movement to fans for cooling vehicles
EP1653061A1 (en) Device for transmitting the rotating movement to a driven shaft, in particular for fluid recirculating pumps
US20180363761A1 (en) Hybrid oil pump
KR20180037993A (en) Axial flow fan
JP2017096200A (en) Coolant pump
US3084852A (en) Fan blade hub connector
JP2008057681A (en) Belt transmission device
JP2007232164A (en) Torque transmitting apparatus
JP2004239385A (en) Fluid coupling
RU2667540C1 (en) Auxiliary drive device for vehicle
EP3638895A1 (en) Mixed hybrid-operation group for recirculating and cooling the cooling fluid of a vehicle
KR101519269B1 (en) Start clutch device
US8888467B2 (en) Fluid pump
JP2008202739A (en) Pulley structure
JP4788617B2 (en) Pulley unit
CN108884931B (en) Mixed oil pump
JP2010265837A (en) Water pump
JP6424960B2 (en) Accessory drive system for vehicles
JP2005337398A (en) Power transmission device
EP3714140B1 (en) Device for driving at three speeds fans for cooling the coolant in motor vehicles
JP2005351406A (en) Crank pulley