JP2017095768A - Nickel element recovery method - Google Patents

Nickel element recovery method Download PDF

Info

Publication number
JP2017095768A
JP2017095768A JP2015229553A JP2015229553A JP2017095768A JP 2017095768 A JP2017095768 A JP 2017095768A JP 2015229553 A JP2015229553 A JP 2015229553A JP 2015229553 A JP2015229553 A JP 2015229553A JP 2017095768 A JP2017095768 A JP 2017095768A
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
solution
extraction
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015229553A
Other languages
Japanese (ja)
Other versions
JP6693646B2 (en
Inventor
晃司郎 下条
Koshiro Shimojo
晃司郎 下条
弘親 長縄
Hirochika Osanawa
弘親 長縄
浩之 岡村
Hiroyuki Okamura
浩之 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2015229553A priority Critical patent/JP6693646B2/en
Publication of JP2017095768A publication Critical patent/JP2017095768A/en
Application granted granted Critical
Publication of JP6693646B2 publication Critical patent/JP6693646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Physical Water Treatments (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel element recovery method allowing efficient recovery of the nickel element from a nickel-containing aqueous solution such as a used electroless nickel plating solution.SOLUTION: An efficient nickel element recovery method is realized by extraction in the presence of a compound represented by the general formula (1) in the figure or a salt thereof. (In the formula (1), R, R, Rand Rrepresent hydrocarbon groups identical to or different from each other, provided that the total number of carbon atoms in the R, R, Rand Rhydrocarbon groups is from 8 to 64.)SELECTED DRAWING: Figure 2

Description

本発明は、ニッケル元素の回収方法に関し、より詳しくは使用済み無電解ニッケルめっき液等のニッケル含有水溶液からニッケル元素を効率的に回収することができるニッケル元素の回収方法に関する。   The present invention relates to a nickel element recovery method, and more particularly to a nickel element recovery method capable of efficiently recovering nickel element from a nickel-containing aqueous solution such as a used electroless nickel plating solution.

無電解ニッケルめっき法は、複雑な形状の部品に均一な厚さのニッケルめっき皮膜を施すことができるため、電子部品や精密機械部品などの生産に欠かせない表面処理技術である。無電解ニッケルめっき液には、多くの場合、硫酸ニッケル(ニッケル供給源)、次亜リン酸ナトリウム(還元剤)、有機酸(錯化剤・緩衝剤)等が含まれており、めっきに使用するとニッケルが消費され、次亜リン酸ナトリウムは酸化されて亜リン酸ナトリウムとなり、還元力が低下することとなる。そのため、随時硫酸ニッケル、次亜リン酸ナトリウム及びpH調節剤として水酸化ナトリウムをめっき液に補充しながら使用する必要がある。しかしながら、繰り返して使用するうちに、硫酸イオン、ナトリウムイオン、亜リン酸イオン、被めっき物の表面から溶出した亜鉛や鉄などがめっき液中に蓄積し、めっき性能が悪くなるため、ある程度まで使用しためっき液は廃液として処分されている。そのため、環境保全および資源の安定確保の観点から、使用済み無電解ニッケルめっき液からニッケルを回収し、資源循環システムを構築する必要がある。   The electroless nickel plating method is a surface treatment technology that is indispensable for the production of electronic parts, precision machine parts, and the like because a nickel plating film having a uniform thickness can be applied to parts having complicated shapes. In many cases, electroless nickel plating solution contains nickel sulfate (nickel supply source), sodium hypophosphite (reducing agent), organic acid (complexing agent / buffering agent), etc. Then, nickel is consumed, sodium hypophosphite is oxidized to sodium phosphite, and the reducing power is reduced. Therefore, it is necessary to use nickel sulfate, sodium hypophosphite, and sodium hydroxide as a pH adjuster while supplementing the plating solution as needed. However, as it is repeatedly used, sulfate ions, sodium ions, phosphite ions, zinc and iron eluted from the surface of the object to be plated accumulate in the plating solution, and the plating performance deteriorates. The plating solution is disposed as a waste solution. For this reason, it is necessary to recover the nickel from the used electroless nickel plating solution and to build a resource circulation system from the viewpoint of environmental preservation and resource stability.

無電解ニッケルめっき液からニッケルを回収する方法としては、溶媒抽出法を用いて無電解めっき液からニッケルを抽出する方法が提案されている。例えば、2−ヒドロキシ−5−ノニルアセトフェノンオキシムを抽出剤として用いて、無電解ニッケルめっき廃液からニッケルを抽出する方法が開示されている(例えば、非特許文献1参照)。
しかしながら、上記の方法では無電解ニッケルめっき液のpH調整を行わないで抽出を行った場合、ニッケルの抽出率が35%程度と十分な値が得られていない。pHを中性から弱アルカリ性に調整すればニッケルの抽出率が向上するが、pH調整にコストと手間がかかり、また、ニッケルが水酸化物として沈殿し、抽出に悪影響を及ぼすことが予想される。さらには、ニッケルの抽出速度が低く、効率良く回収できないという問題もある。
As a method for recovering nickel from the electroless nickel plating solution, a method for extracting nickel from the electroless plating solution using a solvent extraction method has been proposed. For example, a method for extracting nickel from an electroless nickel plating waste liquid using 2-hydroxy-5-nonylacetophenone oxime as an extractant is disclosed (for example, see Non-Patent Document 1).
However, in the above method, when extraction is performed without adjusting the pH of the electroless nickel plating solution, a sufficient value of nickel extraction rate of about 35% is not obtained. Adjusting the pH from neutral to weakly alkaline improves the extraction rate of nickel, but it takes cost and labor to adjust the pH, and nickel is precipitated as a hydroxide and is expected to have a negative effect on extraction. . Furthermore, there is also a problem that nickel extraction rate is low and cannot be efficiently recovered.

他の例として、2−ヒドロキシ−5−ノニルアセトフェノンオキシムに加速剤として有機リン酸系抽出剤(例えば、ジ(2−エチルヘキシル)リン酸(D2EHPA)や2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC−88A))を添加して、無電解ニッケルめっき廃液からニッケルを抽出する方法が開示されている(例えば、非特許文献1参照)。
しかしながら、上記の方法では無電解ニッケルめっき液のpH調整を行わないで抽出を行った場合、ニッケルの抽出率が十分な値ではない。そのため、pHを中性領域に調整する必要があるが、pH調整にコストと手間がかかる。また、ニッケルの抽出平衡時間まで10分程度かかり、十分な抽出速度も得られていない。さらには、有機リン酸系抽出剤による2−ヒドロキシ−5−ノニルアセトフェノンオキシムの分解やナトリウムを同時に抽出するため、高純度のニッケルを得ることが困難であることが指摘されている。
Other examples include 2-hydroxy-5-nonyl acetophenone oxime and organic phosphoric acid-based extractants (eg, di (2-ethylhexyl) phosphoric acid (D2EHPA) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) as accelerators. (PC-88A)) is added to extract nickel from electroless nickel plating waste liquid (for example, see Non-Patent Document 1).
However, in the above method, when extraction is performed without adjusting the pH of the electroless nickel plating solution, the nickel extraction rate is not a sufficient value. Therefore, it is necessary to adjust the pH to a neutral region, but it takes cost and labor to adjust the pH. Moreover, it takes about 10 minutes until the nickel equilibration time, and a sufficient extraction rate is not obtained. Furthermore, it has been pointed out that it is difficult to obtain high-purity nickel because decomposition of 2-hydroxy-5-nonylacetophenone oxime with an organic phosphate-based extractant and extraction of sodium simultaneously.

他の例として、D2EHPAとニコチン酸ドデシルとの混合物、または、D2EHPAとイソニコチン酸ドデシルとの混合物を用いて、無電解ニッケルめっき廃液からニッケルを抽出する方法が開示されている(例えば、特許文献1参照)。
しかしながら、上記の方法では2種類の抽出剤を使用するため抽出操作が煩雑となる。また、D2EHPAによるニコチン酸ドデシル及びイソニコチン酸ドデシルの分解やナトリウムを同時に抽出するため、高純度のニッケルを得ることが困難であることが指摘され
ている。
As another example, a method for extracting nickel from an electroless nickel plating waste solution using a mixture of D2EHPA and dodecyl nicotinate or a mixture of D2EHPA and dodecyl isonicotiate is disclosed (for example, Patent Documents). 1).
However, in the above method, since two types of extractants are used, the extraction operation becomes complicated. Further, it has been pointed out that it is difficult to obtain high-purity nickel because decomposition of dodecyl nicotinate and dodecyl isonicotinate by D2EHPA and extraction of sodium at the same time are performed.

さらに本発明者は、以前、ジグリコールアミド酸の骨格を持つ2−(2−(ジオクチルアミノ)−2−オキソエトキシ)酢酸(以下、「DODGAA」と略す場合がある。)を抽出剤として開発した。しかし、この抽出剤はニッケルに対しては抽出能が十分ではないものと言える(例えば、非特許文献2参照。)。   Furthermore, the present inventor has previously developed 2- (2- (dioctylamino) -2-oxoethoxy) acetic acid (hereinafter sometimes abbreviated as “DODGAA”) having a diglycolamide acid skeleton as an extractant. did. However, it can be said that this extractant has insufficient extraction ability for nickel (see, for example, Non-Patent Document 2).

特開2011−052250号公報JP 2011-052250 A

環境資源工学52,71−75(2005)Environmental Resource Engineering 52, 71-75 (2005) K. Shimojo et al., Anal. Sci., 2014, 30, 513-517.K. Shimojo et al., Anal. Sci., 2014, 30, 513-517.

本発明は、使用済み無電解ニッケルめっき液等のニッケル含有水溶液からニッケル元素を効率的に回収することができるニッケル元素の回収方法を提供することを目的とする。   An object of the present invention is to provide a nickel element recovery method that can efficiently recover nickel element from a nickel-containing aqueous solution such as a used electroless nickel plating solution.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、特定のニトリロ酢酸ジアセトアミド化合物又はその塩の存在下で抽出を行うことにより、ニッケル元素を効率的に回収方法することができることを見出し、本発明を完成させた。
即ち、本発明は以下の通りである。
<1> ニッケル含有水溶液を準備する準備工程、並びに下記一般式(1)で表される化合物又はその塩の存在下、前記準備工程で準備したニッケル含有水溶液と有機溶媒を接触させて、ニッケル元素(Ni)を抽出する液液接触工程を含む、ニッケル元素の回収方法。

Figure 2017095768

(式(1)中、R、R、R、及びRは、それぞれ同一種又は異種の炭化水素基を表す。但し、R、R、R、及びRの炭化水素基の炭素数の合計が、8〜64である。)
<2> 前記準備工程で準備したニッケル含有水溶液のpHが、7.0以下である、<1>に記載のニッケル元素の回収方法。
<3> さらに前記液液接触工程で接触させたニッケル含有水溶液と有機溶媒を分液する分液工程、及び前記分液工程で分液した有機溶媒に、前記分液工程で分液したニッケル含有水溶液とは別の酸性水溶液を接触させる逆抽出工程を含む、<1>又は<2>に記載のニッケル元素の回収方法。
<4> 前記ニッケル含有水溶液が、電解ニッケルめっき液、使用済み電解ニッケルめっき液、無電解ニッケルめっき液、使用済み無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、又は含ニッケル鉱を浸出して得られる溶液である、<1>〜<3>の何れかに記載のニッケル元素の回収方法。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention can efficiently recover nickel element by performing extraction in the presence of a specific nitriloacetic acid diacetamide compound or a salt thereof. The present invention has been completed.
That is, the present invention is as follows.
<1> A preparation step of preparing a nickel-containing aqueous solution, and in the presence of a compound represented by the following general formula (1) or a salt thereof, the nickel-containing aqueous solution prepared in the preparation step and an organic solvent are brought into contact with each other to thereby form a nickel element A method for recovering nickel element, comprising a liquid-liquid contact step of extracting (Ni).
Figure 2017095768

(In the formula (1), R 1 , R 2 , R 3 , and R 4 each represent the same or different hydrocarbon group, provided that R 1 , R 2 , R 3 , and R 4 are hydrocarbons. The total number of carbon atoms in the group is 8 to 64.)
<2> The nickel element recovery method according to <1>, wherein the nickel-containing aqueous solution prepared in the preparation step has a pH of 7.0 or less.
<3> Furthermore, the nickel-containing aqueous solution separated in the liquid separation step is separated into the liquid separation step for separating the nickel-containing aqueous solution and the organic solvent brought into contact in the liquid-liquid contact step, and the organic solvent separated in the liquid separation step. The method for recovering nickel element according to <1> or <2>, comprising a back extraction step in which an acidic aqueous solution different from the aqueous solution is contacted.
<4> The nickel-containing aqueous solution is an electrolytic nickel plating solution, a used electrolytic nickel plating solution, an electroless nickel plating solution, a used electroless nickel plating solution, a solution obtained by leaching a waste Ni-Cd battery, or The method for recovering nickel element according to any one of <1> to <3>, which is a solution obtained by leaching nickel ore.

本発明によれば、使用済み無電解ニッケルめっき液等のニッケル含有水溶液からニッケル元素を効率的に回収することができるニッケル元素の回収方法を提供することができる。   According to the present invention, it is possible to provide a nickel element recovery method that can efficiently recover nickel element from a nickel-containing aqueous solution such as a used electroless nickel plating solution.

合成例1で合成されたテトラオクチルニトリロ酢酸ジアセトアミド(TONTADA)のH NMRスペクトルを示した図である。1 is a diagram showing a 1 H NMR spectrum of tetraoctylnitriloacetic acid diacetamide (TONTADA) synthesized in Synthesis Example 1. FIG. TONTADA、ジオクチルジグリコールアミド酸(DODGAA)、ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC−88A)を用いたNiの抽出率とpHとの関係を示した抽出曲線である。Extraction rate and pH of Ni using TONTADA, dioctyl diglycolamide acid (DODGAA), di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC-88A) It is the extraction curve which showed the relationship. TONTADAを用いた無電解ニッケルめっきモデルA液からのNiの抽出における抽出率とpHとの関係を示した抽出曲線である。It is an extraction curve which showed the relationship between the extraction rate and pH in the extraction of Ni from the electroless nickel plating model A liquid using TONTADA. TONTADAを用いた無電解ニッケルめっきモデルB液からのNiの抽出における抽出率とpHとの関係を示した抽出曲線である。It is the extraction curve which showed the relationship between the extraction rate and pH in the extraction of Ni from the electroless nickel plating model B liquid using TONTADA. TONTADAを用いた無電解ニッケルめっきモデルA液及びB液からのNiの抽出における抽出率と抽出時間との関係を示した抽出曲線である。It is the extraction curve which showed the relationship between the extraction rate and extraction time in the extraction of Ni from the electroless nickel plating model A liquid and B liquid using TONTADA.

本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。   In describing the present invention, specific examples will be described. However, the present invention is not limited to the following contents without departing from the gist of the present invention, and can be implemented with appropriate modifications.

<ニッケル元素の回収方法>
本発明の一態様であるニッケル元素の回収方法(以下、「本発明の回収方法」と略す場合がある。)は、ニッケル含有水溶液を準備する準備工程(以下、「準備工程」と略す場合がある。)、並びに下記一般式(1)で表される化合物又はその塩の存在下、前記準備工程で準備したニッケル含有水溶液と有機溶媒を接触させて、ニッケル元素(Ni)を抽出する液液接触工程(以下、「液液接触工程」と略す場合がある。)を含むことを特徴とする。

Figure 2017095768

(式(1)中、R、R、R、及びRは、それぞれ同一種又は異種の炭化水素基を表す。但し、R、R、R、及びRの炭化水素基の炭素数の合計が、8〜64である。)
本発明者らは、ニッケル元素の回収方法について鋭意検討を重ねた結果、一般式(1)で表される化合物又はその塩の存在下で抽出を行うことにより、ニッケル含有水溶液からニッケル元素を効率的に回収することができることを見出したのである。
一般式(1)で表される化合物は、ニトリロ三酢酸の2つのカルボキシル基がジアルキルアミンによってアミド化された構造となっているが、構造内に含まれる第三級アミノ基、アミド基、及びカルボキシル基が、ニッケル元素との結合に非常に適しているものと考えられる。そして、水素イオン濃度やアニオン濃度によって、それぞれの金属元素に対する親和性が変化するため、ニッケル元素を選択的に抽出することを可能とし、さらに炭化水素基の炭素数等によって有機溶媒との親和性を制御できるため、溶媒抽出法による回収に適しているのである。
なお、「その塩」とは、一般式(1)で表される化合物とイオン等によって形成される
塩を意味し、塩を形成するためのイオンの種類は特に限定されないものとする。
また、「一般式(1)で表される化合物又はその塩の存在下」とは、通常有機溶媒に一般式(1)で表される化合物又はその塩が存在していることを意味し、予め有機溶媒に含有させていても、或いはニッケル含有水溶液と有機溶媒を接触させるときに別途一般式(1)で表される化合物又はその塩を添加するものであってもよいものとする。
以下、「準備工程」、「液液接触工程」等について、詳細に説明する。 <Recovery method of nickel element>
The nickel element recovery method (hereinafter may be abbreviated as “recovery method of the present invention”), which is an embodiment of the present invention, may be abbreviated as “preparation step” (hereinafter referred to as “preparation step”). In addition, in the presence of the compound represented by the following general formula (1) or a salt thereof, the liquid solution for extracting nickel element (Ni) by bringing the nickel-containing aqueous solution prepared in the preparation step into contact with an organic solvent. It includes a contact step (hereinafter sometimes abbreviated as “liquid-liquid contact step”).
Figure 2017095768

(In the formula (1), R 1 , R 2 , R 3 , and R 4 each represent the same or different hydrocarbon group, provided that R 1 , R 2 , R 3 , and R 4 are hydrocarbons. The total number of carbon atoms in the group is 8 to 64.)
As a result of intensive studies on a method for recovering nickel element, the present inventors have efficiently extracted nickel element from an aqueous solution containing nickel by performing extraction in the presence of the compound represented by the general formula (1) or a salt thereof. It was found that it can be recovered automatically.
The compound represented by the general formula (1) has a structure in which two carboxyl groups of nitrilotriacetic acid are amidated with dialkylamine, but a tertiary amino group, an amide group, and It is considered that the carboxyl group is very suitable for bonding with nickel element. And the affinity for each metal element changes depending on the hydrogen ion concentration and anion concentration, so it is possible to selectively extract nickel element, and the affinity with organic solvent by the number of carbons of the hydrocarbon group, etc. Therefore, it is suitable for recovery by a solvent extraction method.
The “salt thereof” means a salt formed by the compound represented by the general formula (1) and ions, and the kind of ions for forming the salt is not particularly limited.
Further, “in the presence of the compound represented by the general formula (1) or a salt thereof” means that the compound represented by the general formula (1) or a salt thereof is usually present in an organic solvent, The compound represented by the general formula (1) or a salt thereof may be added in advance when the nickel-containing aqueous solution and the organic solvent are brought into contact with each other.
Hereinafter, the “preparation step”, “liquid-liquid contact step”, and the like will be described in detail.

準備工程は、ニッケル含有水溶液を準備する工程であるが、準備するニッケル含有水溶液の具体的種類やニッケル元素の含有量は特に限定されない。ニッケル含有水溶液の具体的種類としては、電解ニッケルめっき液、使用済み電解ニッケルめっき液、無電解ニッケルめっき液、使用済み無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、含ニッケル鉱を浸出して得られる溶液等が挙げられる。また、例えば使用済み無電解ニッケルめっき液は、めっき条件などによって異なるが、ニッケル元素以外に、20〜100g/Lのナトリウム元素(Na)、5〜70g/Lの硫酸イオン、10〜20g/Lの次亜リン酸イオン(HPO )、15〜110g/Lの亜リン酸イオン(HPO 2−)、30〜50g/Lの有機酸(例えば、乳酸、プロピオン酸、リンゴ酸、コハク酸等)が含まれており、pHは、通常、4.0〜7.0の範囲にある。
pH3.0〜pH6.0であると、ニッケル元素をより効率的に回収することができるため、ニッケル含有水溶液をそのまま使用するほか、ニッケル含有水溶液に酸や塩基を添加して、pHを調整してもよい。但し、pHを調整しなくてもニッケル元素を効率的に回収することができる点が本発明の回収方法の利点の1つである。なお、使用する酸の具体的種類は、特に限定されないが、塩酸、硫酸、硝酸、リン酸、亜リン酸、次亜リン酸等の無機酸が挙げられる。塩酸を使用する場合、水溶液は塩化物イオン(Cl)を含み、硫酸を使用する場合、水溶液は硫酸イオン(SO 2−)を含み、硝酸を使用する場合、水溶液は硝酸イオン(NO )を含み、リン酸を使用する場合、水溶液はリン酸イオン(PO 3−、HPO 2−、HPO )を含み、亜リン酸を使用する場合、水溶液は亜リン酸イオン(HPO 2−、HPO )を含み、次亜リン酸を使用する場合、水溶液は次亜リン酸イオン(HPO )を含むと表現することができる。
Although a preparation process is a process of preparing nickel-containing aqueous solution, the specific kind of nickel-containing aqueous solution to prepare and content of nickel element are not specifically limited. Specific types of nickel-containing aqueous solutions include electrolytic nickel plating solutions, used electrolytic nickel plating solutions, electroless nickel plating solutions, used electroless nickel plating solutions, solutions obtained by leaching waste Ni-Cd batteries, Examples include a solution obtained by leaching nickel ore. In addition, for example, the used electroless nickel plating solution varies depending on plating conditions and the like, but in addition to nickel element, 20 to 100 g / L sodium element (Na), 5 to 70 g / L sulfate ion, 10 to 20 g / L. Hypophosphite ion (H 2 PO 2 ), 15 to 110 g / L phosphite ion (HPO 3 2− ), 30 to 50 g / L organic acid (eg, lactic acid, propionic acid, malic acid, PH is usually in the range of 4.0-7.0.
When the pH is 3.0 to 6.0, the nickel element can be recovered more efficiently, so the nickel-containing aqueous solution is used as it is, and the pH is adjusted by adding an acid or base to the nickel-containing aqueous solution. May be. However, one of the advantages of the recovery method of the present invention is that nickel element can be recovered efficiently without adjusting the pH. In addition, although the specific kind of acid to be used is not specifically limited, inorganic acids, such as hydrochloric acid, a sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, are mentioned. When hydrochloric acid is used, the aqueous solution contains chloride ions (Cl ), when sulfuric acid is used, the aqueous solution contains sulfate ions (SO 4 2− ), and when nitric acid is used, the aqueous solution is nitrate ions (NO 3 - ) And phosphoric acid is used, the aqueous solution contains phosphate ions (PO 4 3− , HPO 4 2− , H 2 PO 4 ), and when phosphorous acid is used, the aqueous solution is phosphorous acid. In the case of containing ions (HPO 3 2− , H 2 PO 3 ) and using hypophosphorous acid, the aqueous solution can be expressed as containing hypophosphite ions (H 2 PO 2 ).

液液接触工程は、一般式(1)で表される化合物又はその塩の存在下、前記準備工程で準備したニッケル含有水溶液と有機溶媒を接触させて、ニッケル元素(Ni)を抽出する工程であるが、一般式(1)で表される化合物又はその塩の具体的種類は、特に限定されず、目的に応じて適宜選択することができる。

Figure 2017095768

(式(1)中、R、R、R、及びRは、それぞれ同一種又は異種の炭化水素基を表す。但し、R、R、R、及びRの炭化水素基の炭素数の合計が、8〜64である。)
、R、R、及びRは、それぞれ同一種又は異種の炭化水素基を表しているが、「炭化水素基」とは、直鎖状の飽和炭化水素基に限られず、炭素−炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよいことを意味する。
、R、R、及びRの炭化水素基の炭素数の合計は、8〜64であるが、好ましくは16以上、より好ましくは24以上であり、好ましくは56以下、より好ましくは48以下である。
、R、R、及びRの炭化水素基のそれぞれの炭素数は、通常2以上、好まし
くは4以上、より好ましくは6以上であり、通常16以下、好ましくは14以下、より好ましくは12以下である。
、R、R、Rとしては、エチル基(−C)、n−プロピル基(−)、i−プロピル基(−)、n−ブチル基(−)、t−ブチル基(−)、n−ペンチル基(−11)、n−ヘキシル基(−13)、n−ヘプチル基(−15)、n−オクチル基(−17)、2−エチルヘキシル基(−CHCH(C)C)、n−ノニル基(−19)、n−デシル基(−1021)、n−ウンデシル基(−1123)、n−ドデシル基(−1225)、n−トリデシル基(−1327)、n−テトラデシル基(−1429)、n−ペンタデシル基(−1531)、n−ヘキサデシル基(−1633)、シクロヘキシル基(−11)、フェニル基(−C)、ナフチル基(−C10)等が挙げられる。この中でも、n−ヘキシル基(−13)、n−オクチル基(−17)、2−ジエチルヘキシル基(−CHCH(C)C)、n−デシル基(−1021)、n−ドデシル基(−1225)等が特に好ましい。 The liquid-liquid contact step is a step of extracting nickel element (Ni) by contacting the nickel-containing aqueous solution prepared in the preparation step with an organic solvent in the presence of the compound represented by the general formula (1) or a salt thereof. However, the specific type of the compound represented by the general formula (1) or a salt thereof is not particularly limited and can be appropriately selected depending on the purpose.
Figure 2017095768

(In the formula (1), R 1 , R 2 , R 3 , and R 4 each represent the same or different hydrocarbon group, provided that R 1 , R 2 , R 3 , and R 4 are hydrocarbons. The total number of carbon atoms in the group is 8 to 64.)
R 1 , R 2 , R 3 , and R 4 each represent the same or different hydrocarbon group, but the “hydrocarbon group” is not limited to a linear saturated hydrocarbon group, -It means that each may have a carbon unsaturated bond, a branched structure, and a cyclic structure.
The total number of carbon atoms of the hydrocarbon groups of R 1 , R 2 , R 3 and R 4 is 8 to 64, preferably 16 or more, more preferably 24 or more, preferably 56 or less, more preferably Is 48 or less.
The carbon number of each of the hydrocarbon groups of R 1 , R 2 , R 3 , and R 4 is usually 2 or more, preferably 4 or more, more preferably 6 or more, and usually 16 or less, preferably 14 or less, more Preferably it is 12 or less.
R 1 , R 2 , R 3 , and R 4 include an ethyl group (—C 2 H 5 ), an n-propyl group ( —n C 3 H 7 ), an i-propyl group ( —i C 3 H 7 ), n- butyl (- n C 4 H 9) , t- butyl (- t C 4 H 9) , n- pentyl (- n C 5 H 11) , n- hexyl group (- n C 6 H 13 ), n-heptyl (- n C 7 H 15) , n- octyl group (- n C 8 H 17) , 2- ethylhexyl group (-CH 2 CH (C 2 H 5) C 4 H 9), n - nonyl group (- n C 9 H 19) , n- decyl group (- n C 10 H 21) , n- undecyl group (- n C 11 H 23) , n- dodecyl group (- n C 12 H 25) , n- tridecyl group (- n C 13 H 27) , n- tetradecyl (- n C 14 H 29) , n- Ntadeshiru group (- n C 15 H 31) , n- hexadecyl group (- n C 16 H 33) , cyclohexyl (- c C 6 H 11) , phenyl group (-C 6 H 5), naphthyl group (-C 10 H 7 ) and the like. Among this, n- hexyl group (- n C 6 H 13) , n- octyl group (- n C 8 H 17) , 2- di-ethylhexyl group (-CH 2 CH (C 2 H 5) C 4 H 9) , n- decyl group (- n C 10 H 21) , n- dodecyl group (- n C 12 H 25) are particularly preferred.

一般式(1)で表される化合物としては、下記式で表されるものが挙げられる。

Figure 2017095768

また、一般式(1)で表される化合物から形成される塩の種類としては、アンモニウム塩、リチウム塩、ナトリウム塩、カリウム塩、塩酸塩、硝酸塩、硫酸塩、酢酸塩等が挙げられる。 Examples of the compound represented by the general formula (1) include those represented by the following formula.
Figure 2017095768

Examples of the salt formed from the compound represented by the general formula (1) include ammonium salt, lithium salt, sodium salt, potassium salt, hydrochloride, nitrate, sulfate, acetate, and the like.

一般式(1)で表される化合物又はその塩の製造方法は、特に限定されず、公知の有機合成法を適宜組み合わせて製造することができるが、下記(i)〜(iii)の工程を含む製造方法が挙げられる。
(i)2−ハロゲン化アセチルハライドに対するジアルキルアミンの求核置換反応によって、2−ハロゲノ−N,N−ジアルキルアセトアミドを得る工程。

Figure 2017095768

(ii)2−ハロゲノ−N,N−ジアルキルアセトアミドに対するイミノジ酢酸の求核置換反応によって、ニトリロ三酢酸誘導体を得る工程。
Figure 2017095768

(iii)ニトリロ三酢酸誘導体の1つのカルボキシル基をジアルキルアミンでアミド化することによって、一般式(1)で表される化合物又はその塩を得る工程。
Figure 2017095768

なお、下記式で表される化合物は、市販されており、適宜入手して一般式(1)に該当する幅広い化合物を製造することができる。
Figure 2017095768
The production method of the compound represented by the general formula (1) or a salt thereof is not particularly limited, and can be produced by appropriately combining known organic synthesis methods, but the following steps (i) to (iii) are performed. The manufacturing method containing is mentioned.
(I) A step of obtaining 2-halogeno-N, N-dialkylacetamide by nucleophilic substitution reaction of dialkylamine with 2-halogenated acetyl halide.
Figure 2017095768

(Ii) A step of obtaining a nitrilotriacetic acid derivative by nucleophilic substitution reaction of iminodiacetic acid with 2-halogeno-N, N-dialkylacetamide.
Figure 2017095768

(Iii) A step of obtaining a compound represented by the general formula (1) or a salt thereof by amidating one carboxyl group of a nitrilotriacetic acid derivative with a dialkylamine.
Figure 2017095768

In addition, the compound represented with a following formula is marketed, and it can acquire suitably and can manufacture the wide compound applicable to General formula (1).
Figure 2017095768

液液接触工程の操作手順は、特に限定されず、溶媒抽出法に利用される公知の操作手順を適宜選択することができる。例えば、任意の容器にニッケル含有水溶液と有機溶媒を投入し、振とう機等を用いてニッケル含有水溶液と有機溶媒を十分に混合した後、遠心分離によって相分離させて、分液を行うことが挙げられる。また、容器の代わりに向流抽出装置等の抽出装置や分液漏斗等の公知の抽出装置又は抽出器具を用いることもできる。
また、一般式(1)で表される化合物又はその塩の存在下でニッケル含有水溶液と有機溶媒を接触させる方法は、例えば下記(イ)〜(ハ)の方法が挙げられる。
(イ)一般式(1)で表される化合物又はその塩を含む有機溶媒溶液を、容器内等でニッケル含有水溶液と接触させる方法。
(ロ)一般式(1)で表される化合物又はその塩を含むニッケル含有水溶液を、容器内等で有機溶媒と接触させる方法。
(ハ)一般式(1)で表される化合物又はその塩とニッケル含有水溶液と有機溶媒をそれぞれ容器等に投入し、接触させる方法。
この中でも、(イ)の方法が特に好ましい。
The operation procedure of the liquid-liquid contact step is not particularly limited, and a known operation procedure used for the solvent extraction method can be appropriately selected. For example, a nickel-containing aqueous solution and an organic solvent are charged into an arbitrary container, and after sufficiently mixing the nickel-containing aqueous solution and the organic solvent using a shaker or the like, phase separation is performed by centrifugal separation. Can be mentioned. Moreover, well-known extraction apparatuses or extraction instruments, such as an extraction apparatus, such as a countercurrent extraction apparatus, a separatory funnel, can also be used instead of a container.
Examples of the method of bringing the nickel-containing aqueous solution into contact with the organic solvent in the presence of the compound represented by the general formula (1) or a salt thereof include the following methods (a) to (c).
(A) A method of bringing an organic solvent solution containing the compound represented by the general formula (1) or a salt thereof into contact with a nickel-containing aqueous solution in a container or the like.
(B) A method of bringing a nickel-containing aqueous solution containing the compound represented by the general formula (1) or a salt thereof into contact with an organic solvent in a container or the like.
(C) A method in which the compound represented by the general formula (1) or a salt thereof, a nickel-containing aqueous solution, and an organic solvent are put into a container or the like and brought into contact with each other.
Among these, the method (A) is particularly preferable.

一般式(1)で表される化合物又はその塩の使用量(存在量)は、特に限定されず、目的に応じて適宜選択することができるが、有機溶媒中の濃度として、通常0.01〜1.1mol/Lの範囲であり、好ましくは0.1〜0.5mol/Lの範囲である。   The amount (abundance) of the compound represented by the general formula (1) or a salt thereof is not particularly limited and can be appropriately selected according to the purpose. It is the range of -1.1 mol / L, Preferably it is the range of 0.1-0.5 mol / L.

有機溶媒としては、ケロシン等の石油系溶媒;ヘキサン、イソオクタン、ドデカン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;クロロホルム、ジクロロメタン等のハロゲン系溶媒;ドデシルアルコール、オクタノール等の高級アルコール系溶媒等を挙げることができる。なお、有機溶媒は、単独でも2種以上を混合して使用してもよい。   Organic solvents include petroleum solvents such as kerosene; aliphatic hydrocarbon solvents such as hexane, isooctane and dodecane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; halogen solvents such as chloroform and dichloromethane; dodecyl Examples thereof include higher alcohol solvents such as alcohol and octanol. In addition, an organic solvent may be used individually or in mixture of 2 or more types.

接触させるニッケル含有水溶液と有機溶媒の容積比(水溶液/有機溶媒)は、特に限定されず、目的に応じて適宜選択することができるが、通常1以上である。   The volume ratio of the nickel-containing aqueous solution to be brought into contact with the organic solvent (aqueous solution / organic solvent) is not particularly limited and can be appropriately selected depending on the purpose, but is usually 1 or more.

本発明の回収方法は、前述の準備工程及び液液接触工程を含むものであれば、その他については特に限定されないが、さらに下記の分液工程及び逆抽出工程を含むことが特に好ましい。
・液液接触工程で接触させたニッケル含有水溶液と有機溶媒を分液する分液工程
・分液工程で分液した有機溶媒に、分液工程で分液したニッケル含有水溶液とは別の酸性水溶液を接触させて逆抽出する逆抽出工程
The recovery method of the present invention is not particularly limited as long as it includes the above-described preparation step and liquid-liquid contact step, but it is particularly preferable to further include the following liquid separation step and back extraction step.
-Separation process for separating the nickel-containing aqueous solution and the organic solvent brought into contact with each other in the liquid-liquid contact process-An acidic aqueous solution different from the nickel-containing aqueous solution separated in the liquid separation process into the organic solvent separated in the liquid separation process Back-extraction process for back-extraction by contacting

分液工程で分液したニッケル含有水溶液とは別の酸性水溶液は、逆抽出に利用できるものであれば特に限定されないが、そのpHは、準備工程で準備したニッケル含有水溶液のpHよりも低く調整されていることが好ましく、その水素イオン濃度は0.1mol/L以上、より好ましくは0.2mol/L以上である。なお、使用する酸としては、特に限定されないが、塩酸、硫酸、硝酸、リン酸、亜リン酸、次亜リン酸等の無機酸が挙げられる。   The acidic aqueous solution different from the nickel-containing aqueous solution separated in the liquid separation step is not particularly limited as long as it can be used for back extraction, but the pH is adjusted to be lower than the pH of the nickel-containing aqueous solution prepared in the preparation step. The hydrogen ion concentration is preferably 0.1 mol / L or more, more preferably 0.2 mol / L or more. In addition, although it does not specifically limit as an acid to be used, Inorganic acids, such as hydrochloric acid, a sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, are mentioned.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention can be modified as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.

<合成例1:テトラオクチルニトリロ酢酸ジアセトアミド(TONTADA)の合成>
下記反応式で表される反応によって、2−クロロ−N,N−ジオクチルアセトアミド(以下、「ClDOAA」と略す場合がある。)を合成した。

Figure 2017095768

ジオクチルアミン25g(101mmol)を100mLの脱水ジクロロメタンに溶解させ、さらにトリエチルアミン10.32g(101mmol)を加えて氷浴で撹拌した
。この溶液に脱水ジクロロメタン10mLに溶解させた塩化クロロアセチル14.1g(121mmol)を、氷浴中アルゴン置換の下、ゆっくり滴下した。滴下後、室温で3時間撹拌して反応を終了した。反応後、0.1mol/L塩酸100mLで3回、超純水100mLで4回分液を行い、回収した有機相を硫酸ナトリウムで脱水した。硫酸ナトリウムをろ過し、エバポレーターにより溶媒を減圧留去した。さらに、カラムクロマトグラフィー(シリカゲル、展開溶媒 ヘキサン:酢酸エチル=3:1)により精製を行った。溶媒を完全に減圧留去し、黄色粘性液体28.1g(収率:87.5%)を得た。得られた合成物を核磁気共鳴法(NMR)、元素分析、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF/MS)を用いて同定したところ、2−クロロ−N,N−ジオクチルアセトアミド(ClDOAA)であることを確認した。 <Synthesis Example 1: Synthesis of tetraoctylnitriloacetic acid diacetamide (TONTADA)>
2-Chloro-N, N-dioctylacetamide (hereinafter sometimes abbreviated as “ClDOAA”) was synthesized by a reaction represented by the following reaction formula.
Figure 2017095768

25 g (101 mmol) of dioctylamine was dissolved in 100 mL of dehydrated dichloromethane, and 10.32 g (101 mmol) of triethylamine was further added, followed by stirring in an ice bath. To this solution, 14.1 g (121 mmol) of chloroacetyl chloride dissolved in 10 mL of dehydrated dichloromethane was slowly added dropwise under argon substitution in an ice bath. After dropping, the reaction was terminated by stirring at room temperature for 3 hours. After the reaction, liquid separation was performed 3 times with 100 mL of 0.1 mol / L hydrochloric acid and 4 times with 100 mL of ultrapure water, and the collected organic phase was dehydrated with sodium sulfate. Sodium sulfate was filtered, and the solvent was distilled off under reduced pressure using an evaporator. Furthermore, purification was performed by column chromatography (silica gel, developing solvent hexane: ethyl acetate = 3: 1). The solvent was completely distilled off under reduced pressure to obtain 28.1 g (yield: 87.5%) of a yellow viscous liquid. The obtained compound was identified using nuclear magnetic resonance (NMR), elemental analysis, matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF / MS), and 2-chloro-N, N -Dioctylacetamide (ClDOAA) was confirmed.

下記反応式で表される反応によって、2,2’−(2−(ジオクチルアミノ)−2−オクソエチルアザンジイル)二酢酸(以下、「DONTAMA」と略す場合がある。)を合成した。

Figure 2017095768

水酸化ナトリウム3.3g(80mmol)を超純水250mLに溶解し、さらにイミノジ酢酸10.65g(80mmol)を溶解させた。溶解後、5mol/L水酸化ナトリウム水溶液を12mL、pH試験紙が青色になるまで加え、さらにエタノール230mLを加えて撹拌した。ClDOAA 12.7g(40mmol)をエタノール20mLに溶解させ、アルゴン置換後、室温で撹拌しながらゆっくり滴下した。滴下後、85℃で17.5時間還流した。還流中、pHが11程度になるように随時5mol/L水酸化ナトリウム水溶液を加え、さらに同体積のエタノールを加えた。反応溶液からエバポレーターによりエタノールのみ留去した。残った水溶液をジエチルエーテル100mLで3回分液を行った。得られた水溶液を撹拌しながら3mol/L塩酸30mLを加え、生じた白色沈殿物をろ過により回収した。得られた沈殿物を超純水100mLで2回洗浄し、真空乾燥後、アセトンとヘキサンを用いて再沈殿により精製を行い、白色粉末12.9g(収率:77.8%)を得た。得られた合成物を核磁気共鳴法(NMR)、元素分析、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF/MS)を用いて同定したところ、2,2’−(2−(ジオクチルアミノ)−2−オクソエチルアザンジイル)二酢酸(DONTAMA)であることを確認した。 2,2 ′-(2- (Dioctylamino) -2-oxoethylazanediyl) diacetic acid (hereinafter sometimes abbreviated as “DONTAMA”) was synthesized by a reaction represented by the following reaction formula.
Figure 2017095768

Sodium hydroxide 3.3 g (80 mmol) was dissolved in ultrapure water 250 mL, and further iminodiacetic acid 10.65 g (80 mmol) was dissolved. After dissolution, 12 mL of 5 mol / L sodium hydroxide aqueous solution was added until the pH test paper turned blue, and further 230 mL of ethanol was added and stirred. 12.7 g (40 mmol) of ClDOAA was dissolved in 20 mL of ethanol, purged with argon, and then slowly added dropwise with stirring at room temperature. After dropping, the mixture was refluxed at 85 ° C. for 17.5 hours. During the reflux, a 5 mol / L aqueous sodium hydroxide solution was added as needed so that the pH was about 11, and the same volume of ethanol was further added. Only ethanol was distilled off from the reaction solution with an evaporator. The remaining aqueous solution was subjected to liquid separation three times with 100 mL of diethyl ether. While stirring the obtained aqueous solution, 30 mL of 3 mol / L hydrochloric acid was added, and the resulting white precipitate was collected by filtration. The obtained precipitate was washed twice with 100 mL of ultrapure water, vacuum dried, and purified by reprecipitation using acetone and hexane to obtain 12.9 g of white powder (yield: 77.8%). . The obtained compound was identified using nuclear magnetic resonance (NMR), elemental analysis, matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF / MS), and 2,2 ′-(2 -(Dioctylamino) -2-oxoethylazanediyl) diacetic acid (DONTAMA).

下記反応式で表される反応によって、テトラオクチルニトリロ酢酸ジアセトアミド(以下、「TONTADA」と略す場合がある。)を合成した。

Figure 2017095768

合成したDONTAMA 4.35g(10.5mmol)を120mLの脱水ジクロロメタンに懸濁させた。水溶性カルボジイミド(WSC)2.16g (11.04mm
ol)を脱水ジクロロメタン120mLに溶かし、室温で撹拌しながらアルゴン置換の下、ゆっくり滴下し、1時間撹拌を行った。撹拌後、ジオクチルアミン2.72g(11.04mmol)を脱水ジクロロメタン10mLに溶かし、室温で撹拌しながらアルゴン置換の下、ゆっくり滴下した。滴下後、40℃で24時間還流した。反応後、1mol/L塩酸200mLで3回、超純水200mLで4回分液を行い、回収した有機相を硫酸ナトリウムで脱水した。硫酸ナトリウムをろ過し、エバポレーターにより溶媒を減圧留去した。さらに、カラムクロマトグラフィー(シリカゲル、展開溶媒 酢酸エチル)により精製を行った。溶媒を完全に減圧留去し、無色透明液体4.31g(収率:64.3%)を得た。得られた合成物を核磁気共鳴法(NMR)、元素分析、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF/MS)を用いて同定したところ、テトラオクチルニトリロ酢酸ジアセトアミド(TONTADA)であることを確認した。なお、図1にH NMRの結果を示す。
H NMR(400MHz,CDCl,25℃): δ0.88(m,12H,CH),1.28(s,40H,CH(CH),1.52(m,8H,CHCHN),3.10(t,4H,CHN),3.30(t,4H,CHN),3.48(s,2H,NCHCOOH),3.67(s,4H,NCHC=O). Tetraoctylnitriloacetic acid diacetamide (hereinafter sometimes abbreviated as “TONTADA”) was synthesized by a reaction represented by the following reaction formula.
Figure 2017095768

The synthesized DONTAMA (4.35 g, 10.5 mmol) was suspended in 120 mL of dehydrated dichloromethane. Water-soluble carbodiimide (WSC) 2.16 g (11.04 mm
ol) was dissolved in 120 mL of dehydrated dichloromethane, and slowly added dropwise under argon substitution while stirring at room temperature, followed by stirring for 1 hour. After stirring, 2.72 g (11.04 mmol) of dioctylamine was dissolved in 10 mL of dehydrated dichloromethane and slowly added dropwise under argon substitution while stirring at room temperature. After the dropwise addition, the mixture was refluxed at 40 ° C. for 24 hours. After the reaction, liquid separation was performed 3 times with 200 mL of 1 mol / L hydrochloric acid and 4 times with 200 mL of ultrapure water, and the collected organic phase was dehydrated with sodium sulfate. Sodium sulfate was filtered, and the solvent was distilled off under reduced pressure using an evaporator. Further, purification was performed by column chromatography (silica gel, developing solvent ethyl acetate). The solvent was completely distilled off under reduced pressure to obtain 4.31 g of colorless transparent liquid (yield: 64.3%). The obtained compound was identified using nuclear magnetic resonance (NMR), elemental analysis, matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF / MS), and tetraoctylnitriloacetic acid diacetamide ( TONTADA). In addition, the result of 1 H NMR is shown in FIG.
1 H NMR (400 MHz, CDCl 3 , 25 ° C.): δ 0.88 (m, 12 H, CH 3 ), 1.28 (s, 40 H, CH 3 (CH 2 ) 5 ), 1.52 (m, 8 H, CH 2 CH 2 N), 3.10 (t, 4H, CH 2 N), 3.30 (t, 4H, CH 2 N), 3.48 (s, 2H, NCH 2 COOH), 3.67 ( s, 4H, NCH 2 C = O).

<合成例2:ジオクチルジグリコールアミド酸(DODGAA)の合成>
比較として、ジオクチルジグリコールアミド酸(以下、「DODGAA」と略す場合がある。)を準備した。DODGAAは、下記反応式で表される反応によって合成した。なお、DODGAAの合成方法については、本発明者らが既に報告しているH. Naganawa et
al., Solvent Extr. Res. Dev., Jpn, 2007, 14, 151-159.等を参照することができる。

Figure 2017095768

無水ジグリコール酸4.17g(0.036mol)を三角フラスコに入れ、40mLのジクロロメタンに懸濁させた。滴下漏斗にジクロロメタン10mLに溶解させたオクチルアミン7g(0.0284mol)を入れ、氷浴の下、撹拌しながらゆっくり滴下した。滴下後、室温で一晩撹拌し、溶液が透明になっていることを確認し、反応を終了した。超純水で中性になるまで4回分液を行い、水溶性不純物を除去した。分液後の溶液を硫酸ナトリウムで脱水し、硫酸ナトリウムを濾過により取り除いた。エバポレーターにより溶媒を減圧留去した後、真空ポンプで完全に溶媒を除去した。ヘキサンで溶液が透明になるまで3回再結晶を行い、凍結乾燥機で完全に乾燥させた。白色粉末。収量9.57g、収率94.2%。得られた合成物は元素分析及びH NMRにより、DODGAAであることを確認した。 <Synthesis Example 2: Synthesis of dioctyl diglycolamide acid (DODGAA)>
For comparison, dioctyl diglycol amide acid (hereinafter sometimes abbreviated as “DODGAA”) was prepared. DODGAA was synthesized by a reaction represented by the following reaction formula. Regarding the method for synthesizing DODGAA, H. Naganawa et al.
al., Solvent Extr. Res. Dev., Jpn, 2007, 14, 151-159.
Figure 2017095768

Diglycolic anhydride (4.17 g, 0.036 mol) was placed in an Erlenmeyer flask and suspended in 40 mL of dichloromethane. The dropping funnel was charged with 7 g (0.0284 mol) of octylamine dissolved in 10 mL of dichloromethane and slowly added dropwise with stirring in an ice bath. After the dropwise addition, the mixture was stirred overnight at room temperature, and it was confirmed that the solution was transparent, and the reaction was completed. Liquid separation was performed 4 times until neutrality with ultrapure water to remove water-soluble impurities. The separated solution was dehydrated with sodium sulfate, and sodium sulfate was removed by filtration. After the solvent was distilled off under reduced pressure with an evaporator, the solvent was completely removed with a vacuum pump. Recrystallization was performed 3 times until the solution became transparent with hexane, and the solution was completely dried with a freeze dryer. White powder. Yield 9.57 g, yield 94.2%. The obtained synthesized product was confirmed to be DODGAA by elemental analysis and 1 H NMR.

<実施例1:TONTADAを用いたNiの抽出挙動>
Niイオンを0.01mM含んだpH0.6〜5.8水溶液を調製した。このとき、pH1.0〜5.8の水溶液は2−モルホリノエタンスルホン酸(MES)緩衝液に硝酸又は水酸化ナトリウム水溶液を加えて調製した。pH1.0以下の水溶液については硝酸のみで調製した。
調製した水溶液と、それと同体積の10mM TONTADAを含むイソオクタン溶液を混合し、25℃で30分間以上激しく振盪した。振盪後、両相を分取し、分取した水相はpH測定を行い、硝酸水溶液で希釈後、誘導結合プラズマ質量分析装置(ICP−MS)を用いて、Niイオンの濃度を測定した。
一方、分取した有機相と、それと同体積の1M硝酸を混合し、25℃で30分間以上激
しく振盪することで逆抽出を行った。逆抽出相中のNiイオン濃度をICPを用いて測定した。得られたNiイオン濃度から抽出率を、有機相中の物質量/初期条件の物質量×100で定義し、算出した。抽出結果を図2に示す。黒丸がTONTADAを用いた抽出率の結果である。
<Example 1: Extraction behavior of Ni using TONTADA>
A pH 0.6-5.8 aqueous solution containing 0.01 mM of Ni ions was prepared. At this time, an aqueous solution having a pH of 1.0 to 5.8 was prepared by adding nitric acid or an aqueous sodium hydroxide solution to a 2-morpholinoethanesulfonic acid (MES) buffer solution. An aqueous solution having a pH of 1.0 or less was prepared using only nitric acid.
The prepared aqueous solution was mixed with an isooctane solution containing 10 mM TONTADA in the same volume, and shaken vigorously at 25 ° C. for 30 minutes or more. After shaking, both phases were separated, and the separated aqueous phase was subjected to pH measurement, diluted with an aqueous nitric acid solution, and then the Ni ion concentration was measured using an inductively coupled plasma mass spectrometer (ICP-MS).
On the other hand, the separated organic phase and the same volume of 1 M nitric acid were mixed, and back extraction was performed by shaking vigorously at 25 ° C. for 30 minutes or more. The Ni ion concentration in the back extraction phase was measured using ICP. The extraction rate was defined and calculated from the obtained Ni ion concentration by the amount of the substance in the organic phase / the amount of the substance in the initial condition × 100. The extraction result is shown in FIG. The black circle is the result of the extraction rate using TONTADA.

<比較例1:DODGAAを用いたNiの抽出挙動>
水相のpHを2.0〜5.8に調整し、抽出剤DODGAAをイソオクタン(5% 1−オクタノール)に溶解した有機相を用いたこと以外は、実施例1と同じ方法で抽出実験を行った。結果を図2に示す。白丸がDODGAAを用いた抽出率の結果である。
<Comparative Example 1: Extraction behavior of Ni using DODGAA>
The extraction experiment was carried out in the same manner as in Example 1 except that the pH of the aqueous phase was adjusted to 2.0 to 5.8 and an organic phase in which the extractant DODGAA was dissolved in isooctane (5% 1-octanol) was used. went. The results are shown in FIG. The white circle is the result of the extraction rate using DODGAA.

<比較例2及び3:D2EHPA又はPC−88Aを用いたNiの抽出挙動>
水相のpHを0.8〜7.0に調整し、抽出剤(ジ(2−エチルヘキシル)リン酸(D2EHPA)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステル(PC−88A))をイソオクタンに溶解した有機相を用いたこと以外は、実施例1と同じ方法で抽出実験を行った。結果を図2に示す。黒三角がD2EHPAを用いた抽出率の結果、白三角がPC−88Aによる抽出率の結果である。
<Comparative Examples 2 and 3: Extraction behavior of Ni using D2EHPA or PC-88A>
The pH of the aqueous phase was adjusted to 0.8 to 7.0, and the extractant (di (2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC-88A)) was added to isooctane. An extraction experiment was performed in the same manner as in Example 1 except that the organic phase dissolved in was used. The results are shown in FIG. The black triangle is the result of the extraction rate using D2EHPA, and the white triangle is the result of the extraction rate using PC-88A.

(結果)
図2に示すように、合成例1の抽出剤(TONTADA)を用いることで、NiをpH3.0以上で99%以上抽出することができることが確認された。一方、その他の抽出剤(DODGAA、D2EHPA、PC−88A)では、Niに対する抽出能が小さく、定量的な抽出が困難であった。特に無電解ニッケルめっき液に適用されるpH領域(pH4.7付近)では、TONTADAの抽出率が100%であるのに対し、DODGAAの抽出率が20%、D2EHPAの抽出率が5%、PC−88APの抽出率が0%であった。
(result)
As shown in FIG. 2, it was confirmed that 99% or more of Ni can be extracted at pH 3.0 or more by using the extractant (TONTADA) of Synthesis Example 1. On the other hand, other extractants (DODGAA, D2EHPA, PC-88A) have a small extraction ability with respect to Ni, making quantitative extraction difficult. In particular, in the pH range (around pH 4.7) applied to the electroless nickel plating solution, the extraction rate of TONTADA is 100%, whereas the extraction rate of DODGAA is 20%, the extraction rate of D2EHPA is 5%, PC The extraction rate of -88AP was 0%.

<実施例2:TONTADAを用いた無電解ニッケルめっきモデル液からのNiの抽出>

Figure 2017095768
<Example 2: Extraction of Ni from electroless nickel plating model solution using TONTADA>
Figure 2017095768

表1に示す組成の無電解ニッケルめっきモデルA液と無電解ニッケルめっきモデルB液を作製した。A液には有機酸として乳酸が、B液には有機酸として乳酸、プロピオン酸、リンゴ酸、コハク酸が含まれている。無電解ニッケルめっきモデル液:pH調整剤(硫酸又は水酸化ナトリウム水溶液)=4:1になるよう混合してpHを1.2〜6.0に調製し、10mM Ni(SOストック水溶液を添加することで、Niイオン濃度を0.1mMに調製した。調製した無電解ニッケルめっきモデル液と、それと同体積の10mM TONTADAを含むイソオクタン溶液を混合し、25℃で1時間激しく振盪した。
振盪後、両相を分取し、分取した水相はpH測定を行い、硝酸水溶液で希釈後、ICP−MSを用いて、Niイオンの濃度を測定した。
An electroless nickel plating model A liquid and an electroless nickel plating model B liquid having the compositions shown in Table 1 were prepared. Liquid A contains lactic acid as an organic acid, and liquid B contains lactic acid, propionic acid, malic acid, and succinic acid as organic acids. Electroless nickel plating model solution: pH adjuster (sulfuric acid or sodium hydroxide aqueous solution) = 4: 1 mixed to adjust pH to 1.2-6.0, 10 mM Ni (SO 4 ) 2 stock aqueous solution Was added to adjust the Ni ion concentration to 0.1 mM. The prepared electroless nickel plating model solution was mixed with an isooctane solution containing the same volume of 10 mM TONTADA and shaken vigorously at 25 ° C. for 1 hour.
After shaking, both phases were separated, and the separated aqueous phase was subjected to pH measurement, diluted with an aqueous nitric acid solution, and then the concentration of Ni ions was measured using ICP-MS.

一方、分取した有機相と、それと同体積の0.5M硫酸を混合し、25℃で1時間激しく振盪することで逆抽出を行った。逆抽出相中のNiイオン濃度をICP−MSを用いて測定した。得られたNiイオン濃度から抽出率を、有機相中の物質量/初期条件の物質量×100で定義し、算出した。無電解ニッケルめっきモデルA液の抽出結果を図3に、無電解ニッケルめっきモデルB液の抽出結果を図4に示す。   On the other hand, the extracted organic phase and the same volume of 0.5 M sulfuric acid were mixed, and back extraction was performed by shaking vigorously at 25 ° C. for 1 hour. The Ni ion concentration in the back extraction phase was measured using ICP-MS. The extraction rate was defined and calculated from the obtained Ni ion concentration by the amount of the substance in the organic phase / the amount of the substance in the initial condition × 100. The extraction result of the electroless nickel plating model A liquid is shown in FIG. 3, and the extraction result of the electroless nickel plating model B liquid is shown in FIG.

(結果)
無電解ニッケルめっき液には硫酸イオン、次亜リン酸イオン、亜リン酸イオン、有機酸等が高濃度に含まれており、これらがNiイオンと錯体を形成するために、抽出を阻害し、抽出率が低下することが問題とされていた。しかし、合成例1の抽出剤(TONTADA)を用いることで、ニッケル水溶液と無電解ニッケルめっきモデルA液との間でニッケルの抽出挙動が同じであり、抽出率が低下しないことが確認された(図3)。さらに、無電解ニッケルめっきモデルA液よりも複数の有機酸を含む無電解ニッケルめっきモデルB液を用いても同様な抽出挙動を示し、抽出率は低下しなかった(図4)
(result)
The electroless nickel plating solution contains sulfate ions, hypophosphite ions, phosphite ions, organic acids, etc. at high concentrations, and these form complexes with Ni ions, thus inhibiting the extraction, The problem is that the extraction rate is lowered. However, by using the extractant (TONTADA) of Synthesis Example 1, it was confirmed that the nickel extraction behavior was the same between the nickel aqueous solution and the electroless nickel plating model A solution, and the extraction rate did not decrease ( FIG. 3). Furthermore, even when the electroless nickel plating model B liquid containing a plurality of organic acids was used rather than the electroless nickel plating model A liquid, the same extraction behavior was exhibited, and the extraction rate did not decrease (FIG. 4).

<実施例3:TONTADAを用いた無電解ニッケルめっきモデル液からのNiの抽出における経時変化>
表1に示す組成の無電解ニッケルめっきモデルA液と無電解ニッケルめっきモデルB液を作製した。無電解ニッケルめっきモデル液:pH調整剤(硫酸又は水酸化ナトリウム水溶液)=4:1になるよう混合してpHを4.7に調製し、10mM Ni(SOストック水溶液を添加することで、Niイオン濃度を0.1mMに調製した。
調製した無電解ニッケルめっきモデル液と、それと同体積の10mM TONTADAを含むイソオクタン溶液とを容量5mLのポリプロピレンチューブに入れ、25℃、回転振幅約3mm、振盪速度1800rpmの条件で、振盪時間を変えてニッケルの抽出を行った。両相を分取後、分取した水相はpH測定を行い、硝酸水溶液で希釈後、ICP−MSを用いて、Niイオンの濃度を測定した。
一方、分取した有機相と、それと同体積の0.5M硫酸を混合し、25℃で1時間激しく振盪することで逆抽出を行った。逆抽出相中のNiイオン濃度をICP−MSを用いて測定した。得られたNiイオン濃度から抽出率を、有機相中の物質量/初期条件の物質量×100で定義し、算出した。抽出結果を図5に示す。黒丸が無電解ニッケルめっきモデルA液の抽出結果、黒三角が無電解ニッケルめっきモデルB液の抽出結果である。
<Example 3: Change with time in extraction of Ni from electroless nickel plating model solution using TONTADA>
An electroless nickel plating model A liquid and an electroless nickel plating model B liquid having the compositions shown in Table 1 were prepared. Electroless nickel plating model solution: pH adjuster (sulfuric acid or sodium hydroxide aqueous solution) = 4: 1 by mixing so that pH is adjusted to 4.7, and 10 mM Ni (SO 4 ) 2 stock aqueous solution is added. The Ni ion concentration was adjusted to 0.1 mM.
The prepared electroless nickel plating model solution and an isooctane solution containing 10 mM TONTADA in the same volume are put into a 5 mL polypropylene tube, and the shaking time is changed under the conditions of 25 ° C., rotational amplitude of about 3 mm, and shaking speed of 1800 rpm. Nickel extraction was performed. After separating both phases, the separated aqueous phase was subjected to pH measurement, diluted with an aqueous nitric acid solution, and then the concentration of Ni ions was measured using ICP-MS.
On the other hand, the extracted organic phase and the same volume of 0.5 M sulfuric acid were mixed, and back extraction was performed by shaking vigorously at 25 ° C. for 1 hour. The Ni ion concentration in the back extraction phase was measured using ICP-MS. The extraction rate was defined and calculated from the obtained Ni ion concentration by the amount of the substance in the organic phase / the amount of the substance in the initial condition × 100. The extraction result is shown in FIG. The black circle is the extraction result of the electroless nickel plating model A solution, and the black triangle is the extraction result of the electroless nickel plating model B solution.

(結果)
無電解ニッケルめっき液には硫酸イオン、次亜リン酸イオン、亜リン酸イオン、有機酸などが高濃度に含まれており、これらがNiイオンと錯体を形成するために、抽出を阻害し、抽出速度が低下することが問題とされていた。しかし、図5に示すように、合成例1の抽出剤(TONTADA)を用いることで、無電解ニッケルめっきモデルA液の場合、振盪開始後3分で99%以上のニッケルを抽出することができ、抽出速度が速いことが確認された。一方、複数の有機酸を含む無電解ニッケルめっきモデルB液の場合は、振盪開始後20分で約94%、30分で約99%のニッケルを抽出することができた。
(result)
The electroless nickel plating solution contains sulfate ions, hypophosphite ions, phosphite ions, organic acids, etc. at high concentrations, and these form complexes with Ni ions, thus inhibiting the extraction, The problem is that the extraction speed is reduced. However, as shown in FIG. 5, in the case of the electroless nickel plating model A solution, 99% or more of nickel can be extracted 3 minutes after the start of shaking by using the extractant (TONTADA) of Synthesis Example 1. The extraction speed was confirmed to be fast. On the other hand, in the case of the electroless nickel plating model B solution containing a plurality of organic acids, about 94% of nickel was extracted 20 minutes after the start of shaking and about 99% of nickel was extracted 30 minutes.

本発明の回収方法は、電解ニッケルめっき液、使用済み電解ニッケルめっき液、無電解ニッケルめっき液、使用済み無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、含ニッケル鉱を浸出して得られる溶液等からニッケル元素を回収するために利用することができる。   The recovery method of the present invention includes an electrolytic nickel plating solution, a used electrolytic nickel plating solution, an electroless nickel plating solution, a used electroless nickel plating solution, a solution obtained by leaching waste Ni-Cd batteries, and a nickel-containing ore. It can be used to recover nickel element from a solution obtained by leaching.

Claims (4)

ニッケル含有水溶液を準備する準備工程、並びに下記一般式(1)で表される化合物又はその塩の存在下、前記準備工程で準備したニッケル含有水溶液と有機溶媒を接触させて、ニッケル元素(Ni)を抽出する液液接触工程を含む、ニッケル元素の回収方法。
Figure 2017095768

(式(1)中、R、R、R、及びRは、それぞれ同一種又は異種の炭化水素基を表す。但し、R、R、R、及びRの炭化水素基の炭素数の合計が、8〜64である。)
In the presence of a preparation step for preparing a nickel-containing aqueous solution, and a compound represented by the following general formula (1) or a salt thereof, the nickel-containing aqueous solution prepared in the preparation step and an organic solvent are brought into contact with each other to obtain nickel element (Ni) A method for recovering nickel element, which includes a liquid-liquid contact step of extracting.
Figure 2017095768

(In the formula (1), R 1 , R 2 , R 3 , and R 4 each represent the same or different hydrocarbon group, provided that R 1 , R 2 , R 3 , and R 4 are hydrocarbons. The total number of carbon atoms in the group is 8 to 64.)
前記準備工程で準備したニッケル含有水溶液のpHが、7.0以下である、請求項1に記載のニッケル元素の回収方法。   The nickel element recovery method according to claim 1, wherein the pH of the nickel-containing aqueous solution prepared in the preparation step is 7.0 or less. さらに前記液液接触工程で接触させたニッケル含有水溶液と有機溶媒を分液する分液工程、及び前記分液工程で分液した有機溶媒に、前記分液工程で分液したニッケル含有水溶液とは別の酸性水溶液を接触させる逆抽出工程を含む、請求項1又は2に記載のニッケル元素の回収方法。   Furthermore, the nickel-containing aqueous solution separated in the liquid separation step is separated into the liquid separation step for separating the nickel-containing aqueous solution and the organic solvent brought into contact in the liquid-liquid contact step, and the organic solvent separated in the liquid separation step. The recovery method of the nickel element of Claim 1 or 2 including the back extraction process which makes another acidic aqueous solution contact. 前記ニッケル含有水溶液が、電解ニッケルめっき液、使用済み電解ニッケルめっき液、無電解ニッケルめっき液、使用済み無電解ニッケルめっき液、廃Ni−Cd電池を浸出して得られる溶液、又は含ニッケル鉱を浸出して得られる溶液である、請求項1〜3の何れか1項に記載のニッケル元素の回収方法。   The nickel-containing aqueous solution is an electrolytic nickel plating solution, a used electrolytic nickel plating solution, an electroless nickel plating solution, a used electroless nickel plating solution, a solution obtained by leaching waste Ni-Cd batteries, or a nickel-containing ore. The method for recovering nickel element according to any one of claims 1 to 3, which is a solution obtained by leaching.
JP2015229553A 2015-11-25 2015-11-25 Recovery method of nickel element Active JP6693646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229553A JP6693646B2 (en) 2015-11-25 2015-11-25 Recovery method of nickel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229553A JP6693646B2 (en) 2015-11-25 2015-11-25 Recovery method of nickel element

Publications (2)

Publication Number Publication Date
JP2017095768A true JP2017095768A (en) 2017-06-01
JP6693646B2 JP6693646B2 (en) 2020-05-13

Family

ID=58817794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229553A Active JP6693646B2 (en) 2015-11-25 2015-11-25 Recovery method of nickel element

Country Status (1)

Country Link
JP (1) JP6693646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535026A (en) * 2017-09-22 2019-03-29 国立研究开发法人日本原子力研究开发机构 The method for synthesizing tetraalkyl nitriloacetic acids diacetayl amide compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535026A (en) * 2017-09-22 2019-03-29 国立研究开发法人日本原子力研究开发机构 The method for synthesizing tetraalkyl nitriloacetic acids diacetayl amide compound
US10494329B2 (en) 2017-09-22 2019-12-03 Japan Atomic Energy Agency Method for synthesizing tetraalkylnitriloacetic acid diacetamide compound
CN109535026B (en) * 2017-09-22 2021-10-29 国立研究开发法人日本原子力研究开发机构 Method for synthesizing tetraalkyl nitrilo acetic acid diacetyl amide compound

Also Published As

Publication number Publication date
JP6693646B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
Deferm et al. Purification of indium by solvent extraction with undiluted ionic liquids
JP5035788B2 (en) Rare earth metal extractant and extraction method
JP5367862B2 (en) Scandium extractant and method for extracting scandium using the extractant
JP6693647B2 (en) Metal element separation method
JP5679158B2 (en) Process for producing organic phase for solvent extraction of rare earth metals
JP5487506B2 (en) Method for synthesizing rare earth metal extractant
JP5679159B2 (en) Method for synthesizing rare earth metal extractant and organic phase for solvent extraction of rare earth metal
JP6573115B2 (en) Amidated phosphate ester compound, extractant, and extraction method
Sasaki et al. Mutual separation of indium (III), gallium (III) and zinc (II) with alkylated aminophosphonic acids with different basicities of amine moiety
JP5398885B1 (en) Gallium extraction method
JP5619238B1 (en) Scandium recovery method
JP6693646B2 (en) Recovery method of nickel element
JP6614654B2 (en) Nitriloacetic acid diacetamide compound, extractant, and extraction method
JP5420033B1 (en) Indium extractant and method for extracting indium using the extractant
JP5442080B2 (en) Valuable metal separation method
EP2942409B1 (en) Valuable-metal extraction method
JP6623803B2 (en) Scandium recovery method
CN115261647A (en) Morpholine carboxylic acid ionic liquid and method for extracting and separating samarium by using same
JP2007126716A (en) Extracting agent highly selective for zinc against cadmium, and recovery of zinc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200407

R150 Certificate of patent or registration of utility model

Ref document number: 6693646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250