JP2017095686A - Resin composition for infrared-blocking transparent member and molding - Google Patents

Resin composition for infrared-blocking transparent member and molding Download PDF

Info

Publication number
JP2017095686A
JP2017095686A JP2016209585A JP2016209585A JP2017095686A JP 2017095686 A JP2017095686 A JP 2017095686A JP 2016209585 A JP2016209585 A JP 2016209585A JP 2016209585 A JP2016209585 A JP 2016209585A JP 2017095686 A JP2017095686 A JP 2017095686A
Authority
JP
Japan
Prior art keywords
component
weight
resin composition
parts
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016209585A
Other languages
Japanese (ja)
Inventor
史博 富樫
Fumihiro Togashi
史博 富樫
智博 妹尾
Tomohiro Senoo
智博 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JP2017095686A publication Critical patent/JP2017095686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition with infrared-blocking performance having excellent moist heat resistance while maintaining high transparency.SOLUTION: A resin composition has, based on (A) 100 pts.wt. of a polycarbonate resin (A component), (B) 0.0001-0.2 pts.wt. of composite tungsten oxide fine particles (B component), the fine particles having an average particle diameter of 35-60 nm and represented by general formula MxWyOz (where, M is one or more element selected from H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; W is tungsten; O is oxygen; 0.1≤x≤0.5, 0.5≤y≤1.5, 2.0≤z≤3.5).SELECTED DRAWING: None

Description

本発明は赤外線吸収性能をもつ無機材料としての複合タングステン酸化物微粒子を含むポリカーボネート樹脂組成物ならびに該ポリカーボネート樹脂組成物から成る自動車用等の車両用窓部材、車両用灯具、建築材用窓部材に関する。   The present invention relates to a polycarbonate resin composition containing composite tungsten oxide fine particles as an inorganic material having infrared absorption performance, a vehicle window member for automobiles and the like, a vehicle lamp, and a window member for building material comprising the polycarbonate resin composition. .

赤外線遮蔽性能を有する透明材料は室内の温度上昇抑制や人の体感温度上昇を抑制する効果があり、自動車用途や建材用途等の窓部材に用いることに環境負荷低減への効果が期待される。特に透明樹脂に赤外性線遮蔽性能を付与することにより軽量化とサーマルマネージメントの観点からCO排出量抑制など環境負荷低減への効果は大きい。そこで赤外線遮蔽性能を発現する手法としてはいくつか技術がある。特許文献1のような金属蒸着膜を付与して赤外線遮蔽性能を発現する方法は作成コストが高い。特許文献2のような薄膜積層型のフィルムも作成コストが高いことに加え後加工するため熱を加えると性能が低下してしまう可能性がある。コストを抑える条件として特許文献3のように樹脂に練りこみ成形するものがあるが、赤外線遮蔽性能を発現するために透明性を損なうものが多い。さらに、特許文献4のように透明性を維持しながら性能を確保するものもあるが、径時的に赤外線遮蔽性能が劣化する可能性があり、赤外線遮蔽性能の耐湿熱性の向上が求められている。 A transparent material having an infrared shielding performance has an effect of suppressing an increase in indoor temperature and an increase in the temperature of human sensation, and is expected to have an effect on reducing environmental load when used for window members for automobiles and building materials. In particular, imparting infrared ray shielding performance to a transparent resin has a great effect on reducing environmental burdens such as CO 2 emission suppression from the viewpoint of weight reduction and thermal management. Therefore, there are several techniques for expressing infrared shielding performance. A method for providing an infrared shielding performance by providing a metal vapor deposition film as in Patent Document 1 has a high production cost. In addition to the high production cost of the thin film laminated film as in Patent Document 2, since the film is post-processed, the performance may be deteriorated when heat is applied. As a condition for reducing the cost, there is a material that is kneaded into a resin as in Patent Document 3, but there are many that impair transparency in order to exhibit infrared shielding performance. Furthermore, although there exists a thing which secures performance, maintaining transparency like patent document 4, an infrared shielding performance may deteriorate temporally, and the improvement of the moisture-and-heat-resistance of infrared shielding performance is calculated | required. Yes.

特開平7−187727号公報JP-A-7-187727 特表平9−506837号公報Japanese National Patent Publication No. 9-506837 特開2008−44609号公報JP 2008-44609 A 特開2011−168636号公報JP 2011-168636 A

本発明の目的は、高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有する樹脂組成物とその成形品を得ることである。   An object of the present invention is to obtain a resin composition having an infrared shielding performance with good wet heat resistance while maintaining high transparency, and a molded product thereof.

本発明者らは、前記課題を解決するため鋭意検討した結果、ポリカーボネート樹脂に特定粒径の複合タングステン酸化物微粒子を配合することで、耐湿熱性に優れかつ高い赤外線遮蔽性能と可視光領域の高い透過性を示すポリカーボネート樹脂組成物とそれから成る成形品が得られることを見出した。すなわち、上記課題は、(A)ポリカーボネート樹脂(A成分)100重量部に対し(B)平均粒子径が35〜60nmである一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦x≦0.5、0.5≦y≦1.5、2.0≦z≦3.5)で表記される複合タングステン酸化物微粒子(B成分)0.0001〜0.2重量部を含有する樹脂組成物により達成される。   As a result of intensive studies to solve the above problems, the present inventors have blended the composite tungsten oxide fine particles having a specific particle diameter with the polycarbonate resin, thereby being excellent in heat and moisture resistance and having high infrared shielding performance and a high visible light region. It has been found that a polycarbonate resin composition exhibiting permeability and a molded product comprising the same can be obtained. That is, the above-mentioned problem is that (B) the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth) with an average particle diameter of 35-60 nm with respect to 100 parts by weight of (A) polycarbonate resin (component A) Metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, 1 selected from Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I More than kinds of elements, W is tungsten, O is oxygen, 0.1 ≦ x ≦ 0.5, 0.5 ≦ y ≦ 1.5, 2.0 ≦ z ≦ 3.5) Resin containing 0.0001 to 0.2 parts by weight of fine particles (component B) It is achieved by Narubutsu.

以下、本発明の各構成成分の詳細について説明する。
(A成分:ポリカーボネート樹脂)
本発明でA成分として使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
Hereafter, the detail of each structural component of this invention is demonstrated.
(A component: polycarbonate resin)
The polycarbonate resin used as the component A in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン、ビス(3,5−ジブロモ−4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましい。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4,4 ′-(m-phenylenediisopropyl Pyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (3,5 -Dibromo-4-hydroxyphenyl) sulfone, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) ) Fluorene and the like. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance.

カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
上記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
In producing a polycarbonate resin by interfacial polymerization of the above dihydric phenol and carbonate precursor, a catalyst, a terminal terminator, an antioxidant for preventing the dihydric phenol from being oxidized, etc., as necessary. May be used. The polycarbonate resin of the present invention is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. A copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including an alicyclic group), and a polyester carbonate resin copolymerized with the bifunctional carboxylic acid and the bifunctional alcohol together. Moreover, the mixture which mixed 2 or more types of the obtained polycarbonate resin may be sufficient.

三官能以上の多官能性芳香族化合物としては、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンなどが使用できる。
分岐ポリカーボネートを生ずる多官能性化合物を含む場合、かかる量は、芳香族ポリカーボネート全量中、0.001〜1モル%、好ましくは0.005〜0.9モル%、特に好ましくは0.01〜0.8モル%である。また特に溶融エステル交換法の場合、副反応として分岐構造が生ずる場合があるが、かかる分岐構造量についても、芳香族ポリカーボネート全量中、0.001〜1モル%、好ましくは0.005〜0.9モル%、特に好ましくは0.01〜0.8モル%であるものが好ましい。尚、かかる割合についてはH−NMR測定により算出することが可能である。
Examples of trifunctional or higher polyfunctional aromatic compounds include 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane. Can be used.
When a polyfunctional compound that produces a branched polycarbonate is included, the amount is 0.001-1 mol%, preferably 0.005-0.9 mol%, particularly preferably 0.01-0, in the total amount of aromatic polycarbonate. 0.8 mol%. In particular, in the case of the melt transesterification method, a branched structure may occur as a side reaction. The amount of the branched structure is also 0.001 to 1 mol%, preferably 0.005 to 0.005% in the total amount of the aromatic polycarbonate. Those having 9 mol%, particularly preferably 0.01 to 0.8 mol% are preferred. Such a ratio can be calculated by 1 H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。   The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of the aliphatic difunctional carboxylic acid include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.

更にポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
界面重合法による反応は、通常二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物、ピリジンなどが用いられる。
有機溶媒としては例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。
Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used.
The reaction by the interfacial polymerization method is usually a reaction between a dihydric phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent. As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, pyridine and the like are used.
As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.

また、反応促進のために例えば第三級アミンや第四級アンモニウム塩などの触媒を用いることができ、分子量調節剤として例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールなどの単官能フェノール類を用いるのが好ましい。更に単官能フェノール類としては、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノールなどを挙げることができる。これらの比較的長鎖のアルキル基を有する単官能フェノール類は、流動性や耐加水分解性の向上が求められる場合に有効である。   In addition, catalysts such as tertiary amines and quaternary ammonium salts can be used for promoting the reaction, and monofunctional phenols such as phenol, p-tert-butylphenol, p-cumylphenol, etc. as molecular weight regulators. Are preferably used. Furthermore, examples of monofunctional phenols include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, and triacontylphenol. These monofunctional phenols having a relatively long chain alkyl group are effective when improvement in fluidity and hydrolysis resistance is required.

反応温度は通常0〜40℃、反応時間は数分〜5時間、反応中のpHは通常10以上に保つのが好ましい。
溶融法による反応は、通常二価フェノールと炭酸ジエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールと炭酸ジエステルを混合し、減圧下通常120〜350℃で反応させる。減圧度は段階的に変化させ、最終的には133Pa以下にして生成したフェノール類を系外に除去させる。反応時間は通常1〜4時間程度である。
炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネートおよびジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。
The reaction temperature is usually 0 to 40 ° C., the reaction time is several minutes to 5 hours, and the pH during the reaction is usually preferably maintained at 10 or higher.
The reaction by the melting method is usually a transesterification reaction between a dihydric phenol and a carbonic acid diester, and the dihydric phenol and the carbonic acid diester are mixed in the presence of an inert gas and reacted at 120 to 350 ° C. under reduced pressure. The degree of vacuum is changed stepwise, and finally the phenols produced at 133 Pa or less are removed from the system. The reaction time is usually about 1 to 4 hours.
Examples of the carbonic acid diester include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Among them, diphenyl carbonate is preferable.

重合速度を速めるために重合触媒を使用することができ、重合触媒としては、例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属やアルカリ土類金属の水酸化物、ホウ素やアルミニウムの水酸化物、アルカリ金属塩、アルカリ土類金属塩、第4級アンモニウム塩、アルカリ金属やアルカリ土類金属のアルコキシド、アルカリ金属やアルカリ土類金属の有機酸塩、亜鉛化合物、ホウ素化合物、ケイ素化合物、ゲルマニウム化合物、有機錫化合物、鉛化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物などの通常エステル化反応やエステル交換反応に使用される触媒があげられる。触媒は単独で使用しても良いし、二種類以上を併用して使用しても良い。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、好ましくは1×10−9〜1×10−5当量、より好ましくは1×10−8〜5×10−6当量の範囲で選ばれる。 A polymerization catalyst can be used to accelerate the polymerization rate. Examples of the polymerization catalyst include alkali metal and alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, boron and aluminum hydroxides, Alkali metal salt, alkaline earth metal salt, quaternary ammonium salt, alkoxide of alkali metal or alkaline earth metal, organic acid salt of alkali metal or alkaline earth metal, zinc compound, boron compound, silicon compound, germanium compound, Examples thereof include catalysts usually used for esterification and transesterification of organic tin compounds, lead compounds, antimony compounds, manganese compounds, titanium compounds, zirconium compounds and the like. A catalyst may be used independently and may be used in combination of 2 or more types. The amount of these polymerization catalysts used is preferably 1 × 10 −9 to 1 × 10 −5 equivalents, more preferably 1 × 10 −8 to 5 × 10 −6 equivalents, per 1 mol of the raw material dihydric phenol. Selected by range.

また、重合反応において、フェノール性の末端基を減少するために、重縮反応の後期あるいは終了後に、例えば2−クロロフェニルフェニルカーボネート、2−メトキシカルボニルフェニルフェニルカーボネートおよび2−エトキシカルボニルフェニルフェニルカーボネートなどの化合物を加えることができる。   In the polymerization reaction, in order to reduce phenolic end groups, for example, 2-chlorophenyl phenyl carbonate, 2-methoxycarbonylphenyl phenyl carbonate, 2-ethoxycarbonylphenyl phenyl carbonate, etc. Compounds can be added.

さらに溶融エステル交換法では触媒の活性を中和する失活剤を用いることが好ましい。かかる失活剤の量としては、残存する触媒1モルに対して0.5〜50モルの割合で用いるのが好ましい。また重合後の芳香族ポリカーボネートに対し、0.01〜500ppmの割合、より好ましくは0.01〜300ppm、特に好ましくは0.01〜100ppmの割合で使用する。失活剤としては、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩などのホスホニウム塩、テトラエチルアンモニウムドデシルベンジルサルフェートなどのアンモニウム塩などが好ましく挙げられる。
上記以外の反応形式の詳細についても、成書及び特許公報などで良く知られている。
Further, in the melt transesterification method, it is preferable to use a deactivator that neutralizes the activity of the catalyst. The amount of the deactivator is preferably 0.5 to 50 mol with respect to 1 mol of the remaining catalyst. Further, it is used in a proportion of 0.01 to 500 ppm, more preferably 0.01 to 300 ppm, and particularly preferably 0.01 to 100 ppm with respect to the aromatic polycarbonate after polymerization. Preferred examples of the deactivator include phosphonium salts such as tetrabutylphosphonium dodecylbenzenesulfonate and ammonium salts such as tetraethylammonium dodecylbenzyl sulfate.
The details of reaction formats other than those described above are also well known in books and patent publications.

ポリカーボネート樹脂の粘度平均分子量は、14,000〜100,000であることが好ましく、20,000〜30,000がより好ましく、22,000〜28,000がさらに好ましく、23,000〜26,000が特に好ましい。上記範囲を超えて分子量が低すぎる場合にはハードコート剤に対する耐性が不十分となりやすく、上記範囲を超えて分子量が高すぎる場合には射出成形が困難となり成形品の割れや不均一な陰影が生じやすくなる。上記の好適な範囲においてはハードコート剤に対する耐性が十分な分子量において、本発明の樹脂組成物は樹脂流動の乱れにより生じる成形品の不均一な陰影が低減可能であり、ハードコート層を有する良好なポリカーボネート樹脂成形体の形成を可能とする。更により好ましい範囲においては、耐衝撃性と成形加工性との両立に優れる。尚、上記ポリカーボネート樹脂は、その粘度平均分子量が上記範囲外のものを混合して得られたものであってもよい。   The viscosity average molecular weight of the polycarbonate resin is preferably 14,000 to 100,000, more preferably 20,000 to 30,000, further preferably 22,000 to 28,000, and 23,000 to 26,000. Is particularly preferred. If the molecular weight is too low beyond the above range, the resistance to the hard coating agent tends to be insufficient, and if the molecular weight is too high beyond the above range, injection molding becomes difficult and cracks in the molded product and uneven shadows occur. It tends to occur. In the above preferred range, the resin composition of the present invention can reduce the uneven shadow of the molded product caused by the disturbance of the resin flow and has a hard coat layer in a molecular weight with sufficient resistance to the hard coat agent. This makes it possible to form a polycarbonate resin molded body. Furthermore, in a more preferable range, both the impact resistance and the moldability are excellent. The polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range.

ポリカーボネート樹脂の粘度平均分子量(M)は塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液から20℃で求めた比粘度(ηsp)を次式に挿入して求めたものである。
ηsp/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
The viscosity average molecular weight (M) of the polycarbonate resin is obtained by inserting the specific viscosity (η sp ) obtained at 20 ° C. from a solution of 0.7 g of the polycarbonate resin in 100 ml of methylene chloride into the following equation.
η sp /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7

本発明におけるポリカーボネート樹脂の態様として以下のものを挙げることができる。すなわち、粘度平均分子量70,000〜300,000の芳香族ポリカーボネート(PC−i)、および粘度平均分子量10,000〜30,000の芳香族ポリカーボネート(PC−ii)からなり、その粘度平均分子量が15,000〜40,000、好適には20,000〜30,000である芳香族ポリカーボネート(以下、“高分子量成分含有芳香族ポリカーボネート”と称することがある)も使用できる。   Examples of the polycarbonate resin according to the present invention include the following. That is, it consists of an aromatic polycarbonate (PC-i) having a viscosity average molecular weight of 70,000 to 300,000 and an aromatic polycarbonate (PC-ii) having a viscosity average molecular weight of 10,000 to 30,000. Aromatic polycarbonate having a molecular weight of 15,000 to 40,000, preferably 20,000 to 30,000 (hereinafter sometimes referred to as “high molecular weight component-containing aromatic polycarbonate”) can also be used.

かかる高分子量成分含有芳香族ポリカーボネートは、PC−iの存在によりポリマーのエントロピー弾性を大きくし本発明において好適な射出プレス成形時においてより有利となる。例えばヘジテーションマークなどの外観不良はより低減でき、その分射出プレス成形の条件幅を広げることが可能である。一方PC−ii成分の低い分子量成分は全体の溶融粘度を低下し、樹脂の緩和を促進して、より低歪の成形を可能とする。尚、同様の効果は分岐成分を含有するポリカーボネート樹脂においても認められる。   Such an aromatic polycarbonate containing a high molecular weight component increases the entropy elasticity of the polymer due to the presence of PC-i, and becomes more advantageous at the time of injection press molding suitable in the present invention. For example, appearance defects such as hesitation marks can be further reduced, and the condition range of injection press molding can be expanded accordingly. On the other hand, a low molecular weight component of the PC-ii component lowers the overall melt viscosity, promotes relaxation of the resin, and enables molding with lower strain. The same effect is also observed in a polycarbonate resin containing a branched component.

(B成分:複合タングステン酸化物微粒子)
複合タングステン酸化物微粒子は一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦x≦0.5、0.5≦y≦1.5、2.0≦z≦3.5)であらわされ、Mはアルカリ金属が好ましく、Csがさらに好ましい。平均粒子径は35〜60nmであり、38〜55nmが好ましく、42〜50nmがより好ましい。平均粒子径が35nmよりも小さいと赤外線遮蔽性能の耐湿熱性が低下し、60nmを超えると、曇り度が高くなるため透明用途としての使用が困難になる。ここで、平均粒子径は、X線回折測定の半価幅の測定結果からシェラーの方法で算出される平均粒子径である。
(B component: composite tungsten oxide fine particles)
The composite tungsten oxide fine particles have a general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.1 ≦ x ≦ 0.5, 0.5 ≦ y ≦ 1.5, 2.0 ≦ z ≦ 3.5), M is preferably an alkali metal, and more preferably Cs. An average particle diameter is 35-60 nm, 38-55 nm is preferable and 42-50 nm is more preferable. When the average particle diameter is smaller than 35 nm, the heat and moisture resistance of the infrared shielding performance is lowered, and when it exceeds 60 nm, the haze is increased, so that it is difficult to use as a transparent application. Here, the average particle diameter is an average particle diameter calculated by the Scherrer method from the measurement result of the half width of the X-ray diffraction measurement.

なお、酸化亜鉛微粒子を添加すると、樹脂組成物の成型耐熱性が低下するため好ましくない。
B成分の含有量はA成分100重量部に対し、0.0001〜0.2重量部であり、好ましくは0.001〜0.1重量部であり、より好ましくは0.004〜0.01重量部である。含有量が0.0001重量部未満では赤外線遮蔽性能の効果を十分発現せず、0.2重量部を超えると射出成形品やシート成形品を作成する際、全光透過率を維持することが困難になる。
In addition, it is not preferable to add zinc oxide fine particles because the molding heat resistance of the resin composition is lowered.
Content of B component is 0.0001-0.2 weight part with respect to 100 weight part of A component, Preferably it is 0.001-0.1 weight part, More preferably, it is 0.004-0.01 weight part. Parts by weight. When the content is less than 0.0001 part by weight, the effect of infrared shielding performance is not sufficiently exhibited. When the content exceeds 0.2 part by weight, the total light transmittance can be maintained when producing an injection molded product or a sheet molded product. It becomes difficult.

(C成分:熱安定剤)
本発明の樹脂組成物はC成分として、熱安定剤を含有することが好ましい。熱安定剤としては、リン系安定剤(C−1成分)、ヒンダードフェノール系安定剤(C−2成分)およびイオウ系安定剤(C−3成分)からなる群より選ばれる少なくとも一種の熱安定剤が好ましい。C成分の含有量はA成分100重量部に対し、0.0002〜0.8重量部であることが好ましく、0.001〜0.7重量部であることがより好ましく、0.01〜0.1重量部であることがさらに好ましい。含有量が0.0002重量部未満では熱安定性の効果を発現することが難しく、0.8重量部を超えると複合タングステンと併用した際成形時の色相安定性を維持することが難しくなる。
(C component: heat stabilizer)
The resin composition of the present invention preferably contains a heat stabilizer as the C component. The heat stabilizer is at least one heat selected from the group consisting of phosphorus stabilizers (C-1 component), hindered phenol stabilizers (C-2 component), and sulfur stabilizers (C-3 component). Stabilizers are preferred. The content of component C is preferably 0.0002 to 0.8 parts by weight, more preferably 0.001 to 0.7 parts by weight, and 0.01 to 0 parts per 100 parts by weight of component A. More preferably, it is 1 part by weight. If the content is less than 0.0002 parts by weight, it is difficult to exhibit the effect of thermal stability, and if it exceeds 0.8 parts by weight, it becomes difficult to maintain the hue stability during molding when used in combination with composite tungsten.

(C−1成分:リン系安定剤)
リン系安定剤は、芳香族ポリカーボネートの熱安定剤として既に広く知られている。本発明においてはリン系安定剤は、樹脂組成物が極めて過酷な熱負荷に耐え得る程度まで、その熱安定性を高める。リン系安定剤としては主にホスファイト化合物とホスホナイトが上げられる。
(C-1 component: phosphorus stabilizer)
Phosphorus stabilizers are already widely known as thermal stabilizers for aromatic polycarbonates. In the present invention, the phosphorus stabilizer increases its thermal stability to the extent that the resin composition can withstand extremely severe heat loads. Examples of phosphorus stabilizers include phosphite compounds and phosphonites.

ここで、ホスファイト化合物としては例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが例示される。   Here, as the phosphite compound, for example, triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite , Diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, tris (diethylphenyl) ) Phosphite, Tris (di-iso-propylphenyl) phosphite, Tris (di-n-butylphenyl) phosphite, Tris (2,4-di-tert-butylphenyl) Sphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6 -Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Examples include bis (nonylphenyl) pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite, and the like.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどが例示される。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite 2,2′-ethylidenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and the like.

ホスホナイト化合物としては、例えばテトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトなどが挙げられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物はアルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenyl. Range phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenylene diphospho Knight, tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, Bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2, -Di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butyl) Phenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphospho Knight, bis (di-tert-butylphenyl) -phenyl-phenylphosphonite are preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butyl) More preferred is phenyl) -phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

(C−2成分:ヒンダードフェノール系安定剤)
ヒンダードフェノール系安定剤としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。ヒンダードフェノール系安定剤の含有量は、A成分100重量部に対し、0.0002〜0.8重量部が好ましく、0.0005〜0.45重量部がより好ましく、0.002〜0.25重量部が更に好ましく、0.005〜0.15重量部が特に好ましい。
(C-2 component: hindered phenol stabilizer)
Examples of the hindered phenol-based stabilizer include α-tocopherol, butylhydroxytoluene, sinapir alcohol, vitamin E, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel). Propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N , N-dimethylaminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′- Methylene bis (4-ethyl-6-tert-butylphenol), 4,4′-methylene bis (2,6- Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol) 2,2′- Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert- Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) -5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,- Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-thiobis (3-methyl) -6-tert-butylphenol), 2,2'-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4'- Di-thiobis (2,6-di-tert-butylphenol), 4,4′-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodiethyl Nbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3 ′, 5′-di- tert-butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Anurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris 2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate and tetrakis [methylene-3- (3 ′, 5′-di-tert -Butyl-4-hydroxyphenyl) propionate] methane and the like. All of these are readily available. The said hindered phenol type stabilizer can be used individually or in combination of 2 or more types. The content of the hindered phenol-based stabilizer is preferably 0.0002 to 0.8 part by weight, more preferably 0.0005 to 0.45 part by weight, with respect to 100 parts by weight of the component A, and 0.002 to 0.005. 25 parts by weight is more preferable, and 0.005 to 0.15 parts by weight is particularly preferable.

(C−3成分:イオウ系安定剤)
イオウ系化合物として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ステアリルチオプロピオネート)などが挙げられる。これらは単独で用いても良いし、2種以上混合して使用しても良い。
(C-3 component: sulfur stabilizer)
As sulfur compounds, dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate), pentaerythritol tetrakis ( 3-dodecylthiopropionate), pentaerythritol tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol tetrakis (3-stearylthiopropionate), etc. It is done. These may be used alone or in combination of two or more.

(D成分:紫外線吸収剤)
本発明の樹脂組成物は、塗装などを施すことなく使用される場合がある。かかる場合には良好な耐光性を要求される場合があるため紫外線吸収剤を配合することが好ましい。
紫外線吸収剤としては、ベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
(D component: UV absorber)
The resin composition of the present invention may be used without being coated. In such a case, it is preferable to add an ultraviolet absorber because good light resistance may be required.
As the ultraviolet absorber, in the benzophenone series, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2- Hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydride benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4 ′ -Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4- Hydroxy-2-methoxyphenyl) Examples include methane, 2-hydroxy-4-n-dodecyloxybenzophenone, and 2-hydroxy-4-methoxy-2′-carboxybenzophenone.

ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   In the benzotriazole series, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine-4 -One), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-hydroxy-5-methacryloxy) Copolymerization of ethylphenyl) -2H-benzotriazole with vinyl monomer copolymerizable with the monomer And 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a copolymer of vinyl monomer copolymerizable with the monomer, 2-hydroxyphenyl-2H-benzotriazole skeleton A polymer having

ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   In the hydroxyphenyl triazine series, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Illustrated. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−p,p’−ジフェニレンビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
シアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
In the cyclic imino ester system, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-m-phenylenebis (3,1-benzoxazin-4-one) And 2,2′-p, p′-diphenylenebis (3,1-benzoxazin-4-one) and the like.
In the case of cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy ] Methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
上記化合物の中でも、本発明において、下記式(1)、(2)および(3)のいずれかで表される化合物がより好適に用いられる。
Furthermore, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorbent monomer and / or the light stable monomer and a single amount of alkyl (meth) acrylate or the like can be obtained. It may be a polymer type ultraviolet absorber copolymerized with a body. Preferred examples of the ultraviolet absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylic acid ester. The
Among the above compounds, in the present invention, a compound represented by any one of the following formulas (1), (2) and (3) is more preferably used.

Figure 2017095686
Figure 2017095686

Figure 2017095686
Figure 2017095686

Figure 2017095686
Figure 2017095686

上記紫外線吸収剤は、単独でまたは2種以上を組合せて使用することができる。
D成分の含有量は、A成分100重量部に対し、好ましくは0.1〜2重量部であり、より好ましくは0.12〜1.5重量部、さらに好ましくは0.15〜1重量部である。D成分の含有量が0.1重量部未満であると、十分な耐光性が発現しない場合があり、2重量部より多いとガス発生による外観不良や物性低下などの点から好ましくない。
The said ultraviolet absorber can be used individually or in combination of 2 or more types.
The content of component D is preferably 0.1 to 2 parts by weight, more preferably 0.12 to 1.5 parts by weight, and still more preferably 0.15 to 1 part by weight with respect to 100 parts by weight of component A. It is. If the content of component D is less than 0.1 part by weight, sufficient light resistance may not be exhibited, and if it is more than 2 parts by weight, it is not preferable from the viewpoint of poor appearance due to gas generation or deterioration of physical properties.

(E成分:離型剤)
本発明のポリカーボネート樹脂組成物には、その成形時の生産性向上や成形品の歪みの低減を目的として、更に離型剤を配合することが好ましい。かかる離型剤としては公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1−アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。中でも好ましい離型剤として脂肪酸エステルが挙げられる。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、3〜32の範囲、より好適には5〜30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール〜ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本発明の脂肪酸エステルにおいては多価アルコールがより好ましい。
(E component: mold release agent)
The polycarbonate resin composition of the present invention preferably further contains a release agent for the purpose of improving productivity during molding and reducing distortion of the molded product. Known release agents can be used. For example, saturated fatty acid ester, unsaturated fatty acid ester, polyolefin wax (polyethylene wax, 1-alkene polymer, etc., which may be modified with a functional group-containing compound such as acid modification), silicone compound, fluorine compound ( And fluorine oil represented by polyfluoroalkyl ether), paraffin wax, beeswax and the like. Among these, fatty acid esters are preferable as a release agent. Such fatty acid esters are esters of aliphatic alcohols and aliphatic carboxylic acids. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Moreover, as carbon number of this alcohol, it is the range of 3-32, More preferably, it is the range of 5-30. Examples of such monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, seryl alcohol, and triacontanol. Examples of such polyhydric alcohols include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, and mannitol. In the fatty acid ester of the present invention, a polyhydric alcohol is more preferable.

一方、脂肪族カルボン酸は炭素数3〜32であることが好ましく、特に炭素数10〜22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、ベヘン酸、イコサン酸、およびドコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14〜20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。特にステアリン酸およびパルミチン酸が好ましい。   On the other hand, the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms. Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, behenic acid, Mention may be made of saturated aliphatic carboxylic acids such as icosanoic acid and docosanoic acid, and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and cetreic acid . Among the above, aliphatic carboxylic acids having 14 to 20 carbon atoms are preferable. Of these, saturated aliphatic carboxylic acids are preferred. In particular, stearic acid and palmitic acid are preferred.

ステアリン酸やパルミチン酸など上記の脂肪族カルボン酸は通常、牛脂や豚脂などに代表される動物性油脂およびパーム油やサンフラワー油に代表される植物性油脂などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって本発明の脂肪酸エステルの製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる脂肪族カルボン酸、殊にステアリン酸やパルミチン酸が好ましく使用される。   The above aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from natural fats and oils such as animal fats such as beef tallow and lard and vegetable oils such as palm oil and sunflower oil. Therefore, these aliphatic carboxylic acids are usually a mixture containing other carboxylic acid components having different numbers of carbon atoms. Accordingly, in the production of the fatty acid ester of the present invention, aliphatic carboxylic acids produced from such natural fats and oils and in the form of a mixture containing other carboxylic acid components, particularly stearic acid and palmitic acid are preferably used.

本発明の脂肪酸エステルは、部分エステルおよび全エステル(フルエステル)のいずれであってもよい。しかしながら部分エステルでは通常水酸基価が高くなり高温時の樹脂の分解などを誘発しやすいことから、より好適にはフルエステルである。本発明の脂肪酸エステルにおける酸価は、熱安定性の点から好ましく20以下、より好ましくは4〜20の範囲、更に好ましくは4〜12の範囲である。尚、酸価は実質的に0を取り得る。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更にヨウ素価は、10以下が好ましい。尚、ヨウ素価は実質的に0を取り得る。これらの特性はJIS K 0070に規定された方法により求めることができる。   The fatty acid ester of the present invention may be either a partial ester or a total ester (full ester). However, partial esters are more preferably full esters because they usually have a high hydroxyl value and tend to induce decomposition of the resin at high temperatures. The acid value in the fatty acid ester of the present invention is preferably 20 or less, more preferably 4 to 20 and even more preferably 4 to 12 from the viewpoint of thermal stability. The acid value can be substantially zero. The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1-30. Further, the iodine value is preferably 10 or less. The iodine value can be substantially zero. These characteristics can be obtained by a method defined in JIS K 0070.

E成分の含有量は、A成分100重量部に対して、好ましくは0.005〜2重量部、より好ましくは0.01〜1重量部、更に好ましくは0.05〜0.5重量部である。かかる範囲においては、ポリカーボネート樹脂組成物は良好な離型性および離ロール性を有する。特にかかる量の脂肪酸エステルは良好な色相を損なうことなく良好な離型性および離ロール性を有するポリカーボネート樹脂組成物を提供する。   The content of component E is preferably 0.005 to 2 parts by weight, more preferably 0.01 to 1 part by weight, still more preferably 0.05 to 0.5 parts by weight with respect to 100 parts by weight of component A. is there. In such a range, the polycarbonate resin composition has good release properties and release properties. In particular, such an amount of fatty acid ester provides a polycarbonate resin composition having good release properties and roll release properties without impairing good hue.

(その他の成分)
(1)染顔料
本発明の樹脂組成物は各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、フタロシアニン系染料、カーボンブラック、酸化チタン、酸化亜鉛、硫化亜鉛、炭酸カルシウム、金属酸化物微粒子及び金属窒化物微粒子などを挙げることができる。更に本発明のポリカーボネート樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
(Other ingredients)
(1) Dye and Pigment The resin composition of the present invention can provide molded products containing various dyes and pigments and exhibiting various design properties. As dyes and pigments used in the present invention, perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, Examples thereof include dioxazine dyes, isoindolinone dyes, phthalocyanine dyes, carbon black, titanium oxide, zinc oxide, zinc sulfide, calcium carbonate, metal oxide fine particles, and metal nitride fine particles. Furthermore, the polycarbonate resin composition of the present invention can be blended with a metallic pigment to obtain a better metallic color. As the metallic pigment, aluminum powder is suitable. Further, by blending a fluorescent brightening agent or other fluorescent dye that emits light, a better design effect utilizing the luminescent color can be imparted. Examples of the fluorescent dye (including a fluorescent brightening agent) used in the present invention include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable because they have good heat resistance and little deterioration during molding of the polycarbonate resin.

本発明の樹脂組成物は、高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有するため、その奏する産業上の効果は格別である。   Since the resin composition of the present invention has an infrared shielding performance with good moisture and heat resistance while maintaining high transparency, the industrial effect exerted by the resin composition is exceptional.

本発明者の実施する形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   Although the form which this inventor implements collects the preferable range of each said requirement, the representative example is described in the following Example, for example. Of course, the present invention is not limited to these forms.

以下に実施例を挙げて本発明をさらに具体的に説明する。また、以下“部”は特に断りのない限り“重量部”を、%は“重量%”を示す。   The present invention will be described more specifically with reference to the following examples. In the following, “part” means “part by weight” and “%” means “% by weight” unless otherwise specified.

(1)樹脂組成物の作成
(1−1)使用原料
(A成分)
A−1:下記製法により得られた分子量24,200のポリカーボネート樹脂パウダー
バッフル付反応容器に、三段六枚羽根の攪拌機および還流冷却管を取り付けた。この反応容器に、ビスフェノールA45.6部、p−tert−ブチルフェノールをビスフェノールAに対して2.78モル%、ジクロロメタン265部及び水200部を入れ、反応容器内の酸素を除去する為に窒素パージを行った。尚、かかる段階で反応容器中の内容物は、容器容量の8割弱であった。次に、上記懸濁液にナトリウムハイドロサルファイト0.09部および水酸化ナトリウム21.8部を供給するための水溶液約80部を供給し、15℃でビスフェノールAを溶解した。撹拌下、この混合物にホスゲン23.35部を30分間で供給した。その後、トリエチルアミン0.016部(ビスフェノールAに対して0.08モル%)を添加して60分間攪拌し、反応を終結させた。その後、反応混合物を静置し、有機相を分液した。得られたポリカーボネート樹脂のジクロロメタン溶液に塩化メチレンを加えて14重量%の濃度の溶液とし、更に多孔板付遠心抽出機(川崎エンジニアリング(株)製KCC遠心抽出機)を用いて0.5%水酸化ナトリウム水溶液を流量1,000ml/min、有機相を流量1,000ml/minの速度で供給し、3,500rpmの条件で処理した後、有機相を塩酸酸性とし、その後水洗を繰り返し、水相の導電率がイオン交換水と殆ど同じになったところで塩化メチレンを蒸発してポリカーボネート樹脂パウダーを得た。
(1) Preparation of resin composition (1-1) Raw material used (component A)
A-1: A polycarbonate resin powder baffle with a molecular weight of 24,200 obtained by the following production method was equipped with a three-stage six-blade stirrer and a reflux condenser. In this reaction vessel, 45.6 parts of bisphenol A, 2.78 mol% of p-tert-butylphenol with respect to bisphenol A, 265 parts of dichloromethane, and 200 parts of water were added, and nitrogen purge was performed to remove oxygen in the reaction vessel. Went. At this stage, the content in the reaction vessel was less than 80% of the vessel capacity. Next, about 80 parts of an aqueous solution for supplying 0.09 part of sodium hydrosulfite and 21.8 parts of sodium hydroxide was supplied to the suspension, and bisphenol A was dissolved at 15 ° C. Under stirring, 23.35 parts of phosgene was fed into the mixture over 30 minutes. Thereafter, 0.016 part of triethylamine (0.08 mol% with respect to bisphenol A) was added and stirred for 60 minutes to complete the reaction. Thereafter, the reaction mixture was allowed to stand and the organic phase was separated. Methylene chloride is added to a dichloromethane solution of the obtained polycarbonate resin to obtain a solution having a concentration of 14% by weight, and 0.5% hydroxylation is performed using a centrifugal extractor with a porous plate (KCC centrifugal extractor manufactured by Kawasaki Engineering Co., Ltd.). A sodium aqueous solution was supplied at a flow rate of 1,000 ml / min and an organic phase was supplied at a flow rate of 1,000 ml / min. After treatment at a condition of 3,500 rpm, the organic phase was acidified with hydrochloric acid, and then washed with water repeatedly. When the conductivity was almost the same as that of ion-exchanged water, methylene chloride was evaporated to obtain a polycarbonate resin powder.

(B成分)
B−1:平均粒子径30nmのCs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤(住友金属鉱山(株)製YMDS−874)
B−2:平均粒子径35nmのCs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤
B−3:平均粒子径40nmのCs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤
B−4:平均粒子径44nmのCs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤
B−5:平均粒子径50nmのCs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤
B−6:平均粒子径80nmのCs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤
(B component)
B-1: Cs 0.33 WO 3 having an average particle diameter of 30 nm, about 23% by weight, and a heat ray absorbent comprising an organic dispersion resin (YMDS-874, manufactured by Sumitomo Metal Mining Co., Ltd.)
B-2: Cs 0.33 WO 3 having an average particle diameter of 35 nm, about 23% by weight, and a heat ray absorbent comprising an organic dispersion resin B-3: Cs 0.33 WO 3 having an average particle diameter of 40 nm, about 23% by weight, and organic dispersion Heat ray absorbent B-4 made of resin: Cs 0.33 WO 3 having an average particle diameter of 44 nm of about 23% by weight and heat ray absorbent B-5 made of organic dispersion resin: Cs 0.33 WO 3 having an average particle diameter of 50 nm Heat ray absorbent B-6 consisting of 23% by weight and an organic dispersion resin: Cs 0.33 WO 3 having an average particle diameter of 80 nm and about 23% by weight and heat ray absorbent consisting of an organic dispersion resin

(C成分)
C−1:リン系安定剤(クラリアントジャパン(株)製:P−EPQ)
C−2:ヒンダードフェノール系安定剤(BASFジャパン(株)製:IRGANOX1076)
C−3:イオウ系安定剤:(BASFジャパン(株)製:IRGANOX L115)
(D成分)
D−1:ベンゾトリアジン系紫外線吸収剤(BASFジャパン(株)製:Tinuvin1577ED)
D−2:ベンゾトリアゾール系紫外線吸収剤(ケミプロ化成(株)製:ケミソーブ79)
(E成分)
E−1:脂肪酸フルエステル(コグニスジャパン(株)製:VPG861)
E−2:脂肪酸部分エステル(理研ビタミン(株)製:リケマールS−100A)
(C component)
C-1: Phosphorus stabilizer (manufactured by Clariant Japan Co., Ltd .: P-EPQ)
C-2: A hindered phenol-based stabilizer (manufactured by BASF Japan Ltd .: IRGANOX 1076)
C-3: Sulfur-based stabilizer: (manufactured by BASF Japan Ltd .: IRGANOX L115)
(D component)
D-1: Benzotriazine-based ultraviolet absorber (manufactured by BASF Japan Ltd .: Tinuvin 1577ED)
D-2: Benzotriazole-based ultraviolet absorber (Kemipro Kasei Co., Ltd .: Chemisorb 79)
(E component)
E-1: Fatty acid full ester (manufactured by Cognis Japan Co., Ltd .: VPG861)
E-2: Fatty acid partial ester (Riken Vitamin Co., Ltd .: Riquemar S-100A)

(2)試験片作成
(2−1)樹脂組成物の製造
表1に記載の各成分を表1記載の割合で計量して混合しブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練し、ポリカーボネート樹脂組成物のペレットを得た。なお、B成分の含有量は括弧内に示したB−1〜B−5に含まれる無機系紫外線吸収材料であるCs0.33WOの量である。(括弧外の数字はB−1〜B−5の樹脂組成物中の重量部を表す。)ポリカーボネート樹脂に添加する添加剤はそれぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物として作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。混練ゾーンはベント口手前に1箇所のタイプとした。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで280℃とした。尚、上記の樹脂組成物の製造はHEPAフィルターを通した清浄な空気が循環する雰囲気において実施し、また作業時に異物の混入がないよう十分に注意して行った。
(2) Preparation of test piece (2-1) Production of resin composition Each component shown in Table 1 is weighed and mixed in the proportions shown in Table 1 and mixed in a blender, and then a vent type twin screw extruder is used. And kneaded to obtain pellets of the polycarbonate resin composition. The content of the B component is the amount of Cs 0.33 WO 3, which is an inorganic ultraviolet absorbing material contained in the B-1 to B-5 shown in parentheses. (The numbers outside the parentheses represent parts by weight in the resin composition of B-1 to B-5.) Additives added to the polycarbonate resin are pre- After preparing as a preliminary mixture, the whole was mixed with a blender. The vent type twin screw extruder used was TEX30α (completely meshing, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works. The kneading zone was of one type before the vent opening. The extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 280 ° C. from the first supply port to the die part. The above resin composition was produced in an atmosphere in which clean air passed through a HEPA filter was circulated, and with great care so that no foreign matter was mixed during the operation.

(2−2)試験片作成方法
得られたペレットを110〜120℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機[住友重機械工業(株)製SG260M−HP]により、シリンダー温度300℃、金型温度80℃の条件で評価用の試験片である幅150mm×長さ150mm×厚さ2mm、5mm、および幅50mm×長さ50mm×厚さ18mmの板を成形した。
(2-2) Test piece preparation method After the obtained pellets were dried at 110 to 120 ° C. for 6 hours in a hot air circulation dryer, the injection molding machine [SG260M-HP manufactured by Sumitomo Heavy Industries, Ltd.] A plate having a width of 150 mm, a length of 150 mm, a thickness of 2 mm, and a thickness of 5 mm, and a width of 50 mm × length of 50 mm × thickness of 18 mm, which is a test piece for evaluation, was formed under conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C.

(3)評価項目
(3−1)耐湿熱性試験後の赤外線遮蔽性能の変化量
各厚みの試験片から50mm角の試験片を切り出した。その分光光線を(株)日立ハイテクノロジーズ製分光光線測定器U−4100を用いて初期のTotal transmission of solar energy(Tts)をISO13837に準拠して算出した。結果を表1に示す。次に、かかる試験片をプレッシャークッカー試験機TPC−412(ESPEC株式会社製)で120℃、95%Rhの条件にて40時間の湿熱処理を行い、上記方法と同様の方法でTtsを算出した。プレッシャークッカー後のTtsと初期のTtsの差を算出し耐湿熱性試験後の赤外線遮蔽性能の変化量(ΔTts)とした。結果を表1に示す。
(3) Evaluation item (3-1) Change in infrared shielding performance after wet heat resistance test A 50 mm square test piece was cut out from a test piece of each thickness. The initial total transmission of solar energy (Tts) was calculated based on ISO13837 using a spectroscopic light measuring device U-4100 manufactured by Hitachi High-Technologies Corporation. The results are shown in Table 1. Next, the test piece was subjected to a wet heat treatment for 40 hours at 120 ° C. and 95% Rh using a pressure cooker tester TPC-412 (manufactured by ESPEC Co., Ltd.), and Tts was calculated in the same manner as described above. . The difference between Tts after the pressure cooker and the initial Tts was calculated and used as the amount of change (ΔTts) in the infrared shielding performance after the wet heat resistance test. The results are shown in Table 1.

(3−2)全光線透過率およびヘーズ
試験片から50mm角の試験片を切り出し、(株)村上色彩技術研究所製ヘーズメーターHR−100を用いISO13468に準拠して全光線透過率およびヘーズを測定した。結果を表1に示す。
(3-2) Total light transmittance and haze A 50 mm square test piece was cut out from the test piece, and the total light transmittance and haze were measured according to ISO 13468 using a Haze Meter HR-100 manufactured by Murakami Color Research Laboratory. It was measured. The results are shown in Table 1.

Figure 2017095686
Figure 2017095686

上記から明らかなように、本発明によればポリカーボネートに特定の平均粒子径の複合酸化タングステン物微粒子を添加することによって、高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有する樹脂組成物およびそれからなる成形品が得られることが分かる。   As is apparent from the above, according to the present invention, by adding composite tungsten oxide fine particles having a specific average particle diameter to polycarbonate, a resin composition having an infrared shielding performance with good moisture and heat resistance while maintaining high transparency. And it turns out that the molded article consisting thereof is obtained.

本発明は、車輌用グレージング材、特にバックドアウインドウ、サンルーフ、およびルーフパネルに好適なポリカーボネート樹脂成形体を提供するが、本発明の成形体は、その特有の特徴から車輌用グレージング材以外にも、建設機械の窓ガラス、ビル、家屋、および温室などの窓ガラス、ガレージおよびアーケードなどの屋根、照灯用レンズ、信号機レンズ、光学機器のレンズ、ミラー、眼鏡、ゴーグル、消音壁、バイクの風防、銘板、太陽電池カバーまたは太陽電池基材、ディスプレー装置用カバー、タッチパネル、並びに遊技機(パチンコ機など)用部品(回路カバー、シャーシ、パチンコ玉搬送ガイドなど)などの幅広い用途に使用可能である。したがって本発明のポリカーボネート樹脂成形体は、各種電子・電気機器、OA機器、車両部品、機械部品、その他農業資材、漁業資材、搬送容器、包装容器、遊戯具および雑貨などの各種用途に有用であり、その奏する産業上の効果は格別である。   The present invention provides a polycarbonate resin molded article suitable for a vehicle glazing material, particularly a back door window, a sunroof, and a roof panel. However, the molded product of the present invention is not limited to a vehicle glazing material because of its unique characteristics. Window glass for construction machinery, windows for buildings, houses, and greenhouses, roofs for garages and arcades, lighting lenses, traffic light lenses, optical equipment lenses, mirrors, glasses, goggles, noise barriers, motorcycle windshields Can be used for a wide range of applications such as nameplates, solar cell covers or solar cell substrates, display device covers, touch panels, and parts for game machines (such as pachinko machines) (circuit covers, chassis, pachinko ball conveyance guides, etc.) . Therefore, the polycarbonate resin molded body of the present invention is useful for various applications such as various electronic / electrical equipment, OA equipment, vehicle parts, machine parts, other agricultural materials, fishery materials, transport containers, packaging containers, playground equipment and miscellaneous goods. The industrial effects that it plays are exceptional.

Claims (10)

(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)平均粒子径が35〜60nmである一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦x≦0.5、0.5≦y≦1.5、2.0≦z≦3.5)で表記される複合タングステン酸化物微粒子(B成分)0.0001〜0.2重量部を含有する樹脂組成物。   (A) General formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element) with (B) an average particle size of 35-60 nm with respect to 100 parts by weight of polycarbonate resin (component A) Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb One or more elements selected from Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, W is tungsten, O is oxygen, composite tungsten oxide fine particles (component B) represented by 0.1 ≦ x ≦ 0.5, 0.5 ≦ y ≦ 1.5, 2.0 ≦ z ≦ 3.5) ) A resin composition containing 0.0001 to 0.2 parts by weight. A成分100重量部に対し、(C)熱安定剤(C成分)0.0002〜0.8重量部を含有することを特徴とする請求項1記載の樹脂組成物。   2. The resin composition according to claim 1, comprising 0.0002 to 0.8 parts by weight of (C) a heat stabilizer (C component) with respect to 100 parts by weight of component A. 3. C成分が、リン系安定剤(C−1成分)、ヒンダードフェノール系安定剤(C−2成分)およびイオウ系安定剤(C−3成分)からなる群より選ばれる少なくとも一種の熱安定剤であることを特徴とする請求項2に記載の樹脂組成物。   The C component is at least one heat stabilizer selected from the group consisting of a phosphorus stabilizer (C-1 component), a hindered phenol stabilizer (C-2 component), and a sulfur stabilizer (C-3 component). The resin composition according to claim 2, wherein: A成分100重量部に対し、(D)紫外線吸収剤(D成分)0.1〜2重量部を含有することを特徴とする請求項1〜3のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, further comprising 0.1 to 2 parts by weight of (D) an ultraviolet absorber (component D) with respect to 100 parts by weight of the component A. A成分100重量部に対し、(E)離型剤(E成分)0.005〜2重量部を含有することを特徴とする請求項1〜4のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 4, comprising 0.005 to 2 parts by weight of (E) a release agent (E component) with respect to 100 parts by weight of the A component. 請求項1〜5のいずれかに記載の樹脂組成物よりなるフィルム及び成形品。   The film and molded article which consist of a resin composition in any one of Claims 1-5. ISO9050で規定される可視光透過率が40%以上であり、ISO9050で規定されるヘイズが3以下である請求項6に記載の成形品。   The molded article according to claim 6, wherein the visible light transmittance defined by ISO 9050 is 40% or more and the haze defined by ISO 9050 is 3 or less. 厚みが2〜20mmである請求項6または7に記載の成形品。   The molded article according to claim 6 or 7, wherein the thickness is 2 to 20 mm. 請求項6〜8のいずれかに記載の成形品の表面にハードコート処理を施された成形品。   A molded product obtained by subjecting the surface of the molded product according to any one of claims 6 to 8 to a hard coat treatment. 成形品が車両用窓部材、車両用灯具もしくは建築材用窓部材である請求項6〜9のいずれかに記載の成形品。   The molded article according to any one of claims 6 to 9, wherein the molded article is a vehicle window member, a vehicle lamp, or a building material window member.
JP2016209585A 2015-11-17 2016-10-26 Resin composition for infrared-blocking transparent member and molding Pending JP2017095686A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224826 2015-11-17
JP2015224826 2015-11-17

Publications (1)

Publication Number Publication Date
JP2017095686A true JP2017095686A (en) 2017-06-01

Family

ID=58816863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209585A Pending JP2017095686A (en) 2015-11-17 2016-10-26 Resin composition for infrared-blocking transparent member and molding

Country Status (1)

Country Link
JP (1) JP2017095686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2569676A (en) * 2018-09-21 2019-06-26 Inovink Ltd Improvements in relation to security printing
GB2574075A (en) * 2018-09-21 2019-11-27 Keeling & Walker Ltd Compositions and methods and uses relating thereto
WO2020184222A1 (en) * 2019-03-13 2020-09-17 帝人株式会社 Resin composition for infrared ray-blocking transparent member, and molded article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059316B2 (en) 2018-09-21 2021-07-13 Inovink Limited Relation to security printing
GB2574075A (en) * 2018-09-21 2019-11-27 Keeling & Walker Ltd Compositions and methods and uses relating thereto
GB2569676B (en) * 2018-09-21 2020-02-19 Inovink Ltd Article and security ink comprising near infra-red absorbing material
WO2020058700A1 (en) * 2018-09-21 2020-03-26 Inovink Limited Improvements in relation to security printing
GB2574075B (en) * 2018-09-21 2020-07-08 Keeling & Walker Ltd Near infra-red absorbing material and uses
GB2569676A (en) * 2018-09-21 2019-06-26 Inovink Ltd Improvements in relation to security printing
US11292914B2 (en) 2018-09-21 2022-04-05 Keeling & Walker, Limited Compositions and methods and uses relating thereto
WO2020184222A1 (en) * 2019-03-13 2020-09-17 帝人株式会社 Resin composition for infrared ray-blocking transparent member, and molded article
JPWO2020184222A1 (en) * 2019-03-13 2021-10-28 帝人株式会社 Resin composition and molded product for infrared shielding transparent member
CN113574114A (en) * 2019-03-13 2021-10-29 帝人株式会社 Resin composition for infrared-shielding transparent member and molded article
EP3940029A4 (en) * 2019-03-13 2022-03-02 Teijin Limited Resin composition for infrared ray-blocking transparent member, and molded article
JP7204881B2 (en) 2019-03-13 2023-01-16 帝人株式会社 Resin composition for infrared shielding transparent member and molded article
CN113574114B (en) * 2019-03-13 2024-05-28 帝人株式会社 Resin composition for infrared shielding transparent member and molded article

Similar Documents

Publication Publication Date Title
JP5714826B2 (en) Polycarbonate resin composition and molded article comprising the same
JP5542810B2 (en) Polycarbonate resin composition and molded article thereof
JP6580699B2 (en) Polyamine resin with amine resistance
JPWO2010143732A1 (en) Polycarbonate resin composition and molded article comprising the same
JP6698400B2 (en) Infrared shielding transparent member resin composition and molded article
JP6503203B2 (en) Method for preventing damage to living tissue by near infrared light
JP2017095686A (en) Resin composition for infrared-blocking transparent member and molding
JP2018178019A (en) Aromatic polycarbonate resin composition, and molded article thereof
JP2004137472A (en) Thermoplastic resin composition and its molded product
CN111683991B (en) Polycarbonate resin and method for producing same
JP5584001B2 (en) Polycarbonate resin composition and molded article thereof
EP3940029B1 (en) Resin composition for infrared ray-blocking transparent member, and molded article
JP4046160B2 (en) Polycarbonate resin composition and molded product thereof
JP4046159B2 (en) Polycarbonate resin composition and molded product thereof
WO2018139136A1 (en) Polycarbonate copolymer
JP2005272678A (en) Antistatic polycarbonate resin composition
JP7495288B2 (en) Polycarbonate resin composition and molded article
JP2021169543A (en) Resin composition for infrared shielding transparent member and molding
JP2005344077A (en) Polycarbonate resin composition and its molded product
JP2006137801A (en) Antistatic polycarbonate resin composition
JP2024132216A (en) Polycarbonate resin composition and molded article thereof
JP2005325319A (en) Polycarbonate resin composition