JP2017093274A - Wind power generation device with variable magnetic flux field type synchronous generator - Google Patents

Wind power generation device with variable magnetic flux field type synchronous generator Download PDF

Info

Publication number
JP2017093274A
JP2017093274A JP2015228135A JP2015228135A JP2017093274A JP 2017093274 A JP2017093274 A JP 2017093274A JP 2015228135 A JP2015228135 A JP 2015228135A JP 2015228135 A JP2015228135 A JP 2015228135A JP 2017093274 A JP2017093274 A JP 2017093274A
Authority
JP
Japan
Prior art keywords
pole
excitation
generator
field
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015228135A
Other languages
Japanese (ja)
Other versions
JP6244598B2 (en
Inventor
成田 憲治
Kenji Narita
憲治 成田
純一 小池
Junichi Koike
純一 小池
東満 山本
Harumitsu Yamamoto
東満 山本
阿部 俊夫
Toshio Abe
俊夫 阿部
雄二郎 笹原
Yujiro Sasahara
雄二郎 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socio Recur Ltd
Original Assignee
Socio Recur Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socio Recur Ltd filed Critical Socio Recur Ltd
Priority to JP2015228135A priority Critical patent/JP6244598B2/en
Publication of JP2017093274A publication Critical patent/JP2017093274A/en
Application granted granted Critical
Publication of JP6244598B2 publication Critical patent/JP6244598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a generator at a maximum output point of a wind turbine since a permanent magnet synchronous motor is frequently used in wind power generation utilizing a small-sized wind turbine and the generator can be operated only one maximum output point of the wind turbine if a wind speed is considerably varied, as a disadvantage, a capability for converting mechanical energy produced by the wind turbine into electrical energy is lacked.SOLUTION: A variable magnetic flux field type synchronous power generation device can be provided by integrating only a DC excitation electromagnet or a permanent magnet and the DC excitation electromagnet into a field and creating a field magnetic flux corresponding to a rotational angular velocity of a wind turbine, thereby operating a generator at a maximum output point over a wide range of angular velocities of the wind turbine while controlling an input torque of the wind turbine. Therefore, waste of mechanical energy produced by the wind turbine is saved, the quantity of power to be generated by the generator is increased and the need of a speed-increasing gear is eliminated by a multipolar structure that is suitable for low speed.SELECTED DRAWING: Figure 2

Description

この発明は可変磁束界磁型同期発電機を有する風力発電装置に関する。  The present invention relates to a wind turbine generator having a variable magnetic flux field type synchronous generator.

風車が作り出す機械的エネルギーは、回転角速度の3乗に比例し、その最大出力点の軌跡は、回転角速度とトルクの座標において、そのトルクは回転角速度の2乗に比例する。比較的発電容量の少ない小型以下の風力発電機においては、発電機として界磁に永久磁石を用いた永久磁石同期発電機を使用することが多い。また、発電機の回転速度を上げるため、増速機を使用することが多い。  The mechanical energy produced by the windmill is proportional to the cube of the rotational angular velocity, and the locus of the maximum output point is proportional to the square of the rotational angular velocity in the coordinates of the rotational angular velocity and torque. In a small-sized or smaller wind power generator having a relatively small power generation capacity, a permanent magnet synchronous generator using a permanent magnet as a field magnet is often used as a power generator. In order to increase the rotational speed of the generator, a speed increaser is often used.

牛山 泉 著 森北出版株式会社 風車工学入門 P110Ushiyama Izumi Morikita Publishing Co., Ltd. Introduction to Windmill Engineering P110

永久磁石同期発電機を駆動するための動力のトルクは回転速度に比例する。一方風車のつくり出す動力の最大出力のトルクは回転速度の二乗に比例する。そのため、直線と曲線は一点でしか交わらないので、発電機のトルクと風車のトルクは一点でしか交わらず、それ以外の点では最大出力点で動作させることが出来ない。これを広範囲において最大出力点で発電させることが本発明の課題である。  The torque of power for driving the permanent magnet synchronous generator is proportional to the rotational speed. On the other hand, the maximum output torque of the power generated by the windmill is proportional to the square of the rotational speed. Therefore, since the straight line and the curve intersect only at one point, the generator torque and the wind turbine torque intersect only at one point, and the other points cannot be operated at the maximum output point. It is an object of the present invention to generate power at a maximum output point in a wide range.

図1はトルクと回転角速度の座標を表わし、曲線14は風速一定で風車に負荷をかけて行った時のトルクと角速度の変化を表わし、曲線13は曲線14に角速度ωを掛けた風車の出力曲線を表わし、その最大出力を出すときのトルクの軌跡を結んだものが曲線12であり、そのトルクはωに比例する。FIG. 1 represents the coordinates of torque and rotational angular velocity, curve 14 represents changes in torque and angular velocity when the wind turbine is loaded with a constant wind speed, and curve 13 represents the output of the wind turbine obtained by multiplying the curve 14 by the angular velocity ω. represents a curve obtained by connecting the trajectory of the torque when issuing the maximum output is a curve 12, the torque is proportional to omega 2.

図1のグラフに、従来の永久磁石同期発電機のトルク曲線(直線)11を載せるとA点の一点でしか交わらない。すなわち従来の永久磁石同期発電機のトルク曲線は角速度が高くない時はほぼωに比例する直線であり、さらに角速度が高くなると誘起電圧の周波数が高くなることによるインピーダンスの増大や電機子鉄心の磁気飽和などにより発生する電力が目減りしトルクが低下してくるため、ωに比例する風車のトルク曲線とは一点でしか交わらない。
A点以外の点、例えばC点について考えると、本来B点で交差するトルクを有する発電機であれば風車の最大出力点で動作させることが出来るわけであるが、従来の永久磁石同期発電機ではC点で動作することになるので、角速度は増加するがトルクはΔT低くなり出力はΔP少なくなって無駄が発生することになる。
このことはA点より角速度が低い点例えば、D点においても出力の無駄が発生することが分かる。すなわち、トルクは大きくなるが角速度が低下するため出力が目減りして無駄が発生することになる。
When the torque curve (straight line) 11 of the conventional permanent magnet synchronous generator is placed on the graph of FIG. 1, it intersects only at one point. In other words, the torque curve of the conventional permanent magnet synchronous generator is a straight line that is almost proportional to ω when the angular velocity is not high, and when the angular velocity is further increased, the frequency of the induced voltage increases and impedance increases and the armature core magnetism increases. Since the electric power generated due to saturation or the like is reduced and the torque is lowered, the torque curve of the wind turbine proportional to ω 2 intersects only at one point.
Considering points other than point A, for example point C, a generator having a torque that essentially intersects at point B can be operated at the maximum output point of the wind turbine. Then, since it operates at point C, the angular velocity increases, but the torque decreases by ΔT and the output decreases by ΔP, resulting in waste.
This shows that output is wasted even at points where the angular velocity is lower than point A, for example, point D. That is, the torque increases, but the angular velocity decreases, so the output is reduced and waste occurs.

本発明においては、このような無駄、特に角速度の高い領域における無駄をなくするため、発電機の界磁に永久磁石の他に直流励磁電磁石を並列に設け、界磁磁束を増やして、発電機の誘起起電力を大きくして、発電機に必要なトルクを増やし、高速領域の最大出力点(B点など)を通るようにすることによって、風車の最大出力点において発電が出来るようになり、風車がつくり出す機械的エネルギーをすべて発電機に取り込むようにすることによって、風車の出力の無駄ΔPが発生しなくなるようにすることを目的とする。  In the present invention, in order to eliminate such waste, particularly in a high angular velocity region, a DC excitation electromagnet is provided in parallel to the generator field in addition to the permanent magnet, and the field magnetic flux is increased. By increasing the induced electromotive force, increasing the torque required for the generator, and passing through the maximum output point (such as point B) in the high speed region, it becomes possible to generate power at the maximum output point of the windmill, It is an object of the present invention to prevent generation of waste ΔP in the output of the windmill by taking in all the mechanical energy produced by the windmill into the generator.

図2に基づいて、本願の同期発電機1について説明する。
軸30には界磁支持部材29が取りつけられ、その外径部には2n個の界磁鉄心の歯231を放射状に設け、それらの間には板状の2n個の永久磁石24を挟み、2n個の界磁歯231は、一つ置きに二つのグループに分け、一方のグープの突き出た端部は一方の励磁鉄心25に接して取り付けられ、他方のグループは、励磁コイル27を内蔵し、かつブラケット20に固定された他方の励磁鉄心26に励磁ギャップを介して、その端面を対向させ、外径部にはエアギャップを介して電機子鉄心21が対向し、電機子巻線22を有する電機子鉄心21は非磁性ブラケット20に固定され、軸30の両端には軸受28が取り付けられブラケット20の軸受ハウジングに嵌合されている。
Based on FIG. 2, the synchronous generator 1 of this application is demonstrated.
A field support member 29 is attached to the shaft 30, and 2n field iron core teeth 231 are provided radially on the outer diameter portion thereof, and a plate-like 2n permanent magnet 24 is sandwiched between them, The 2n field teeth 231 are divided into two groups every other one, the protruding end of one group is attached in contact with one exciting iron core 25, and the other group contains an exciting coil 27. And the other exciting iron core 26 fixed to the bracket 20 is opposed to the end face thereof via an excitation gap, and the outer diameter portion is opposed to the armature iron core 21 via an air gap. The armature core 21 is fixed to the nonmagnetic bracket 20, and bearings 28 are attached to both ends of the shaft 30 and are fitted to the bearing housing of the bracket 20.

図2(b)、(c)に界磁の構造例を示す。界磁は薄い板状の永久磁石24を回転方向に配列させているので、極数を多くする多極化構造に適している。界磁を多極にすると、低速においても誘起電圧が高くなるので、増速機を省略することが出来、励磁コイル27への電流供給も非接触であることと相俟って、信頼性の高い同期発電機を形成することが出来る。
また、永久磁石24を使わない直流励磁同期発電機の場合は磁石を使わない分、半径方向のスペースに余裕が出来、極数をより多く増やすことができるので、低速の発電機に適しているということができる。
2B and 2C show field structure examples. The field magnet is suitable for a multipolar structure in which the number of poles is increased because thin plate-like permanent magnets 24 are arranged in the rotational direction. When the field is made of multiple poles, the induced voltage becomes high even at a low speed, so that the speed-up gear can be omitted, and the current supply to the exciting coil 27 is also non-contact, so that the reliability can be improved. A high synchronous generator can be formed.
In addition, in the case of a DC excitation synchronous generator that does not use a permanent magnet 24, since a magnet is not used, a space in the radial direction can be provided and the number of poles can be increased, which is suitable for a low-speed generator. It can be said.

永久磁石24は回転方向に着磁磁化され、磁束の流れは、磁石のN極→近接する界磁歯→エアギャップ→電機子鉄心→エアギャップ→近接する隣の界磁歯→磁石のS極へと流れる。一方、直流励磁磁束は、軸のN極→励磁鉄心→N極の界磁の歯→エアギャップ→電機子鉄心→エアギャップ→S極の界磁の歯→励磁ギャップ→励磁鉄心→励磁ギャップ→軸のS極、と流れ、相互に独立かつ並列に流れる。
この界磁磁束は、永久磁石による固定磁束と直流励磁磁石による可変磁束の二つの磁束による複合磁束によって形成される特長を有する。
界磁が風力などの動力によって回転すると、これら二つの磁束が電機子鉄心に回転・移動磁界をつくり、それが電機子巻線に誘起電圧を発生させ、発電機としての機能を発揮する。
また、この同期発電機は、永久磁石の使用量を調整することによって、固定磁束の量を変えることができるとともに、永久磁石を使わず直流励磁磁石だけでも界磁を形成することができるという特長を有する。
The permanent magnet 24 is magnetized and magnetized in the rotational direction, and the flow of magnetic flux is as follows: the N pole of the magnet → the adjacent field tooth → the air gap → the armature core → the air gap → the adjacent field tooth → the S pole of the magnet. It flows to. On the other hand, the DC excitation magnetic flux is N pole of the shaft → excitation iron core → N pole field teeth → air gap → armature core → air gap → S pole field teeth → excitation gap → excitation iron core → excitation gap → It flows with the south pole of the shaft, and flows independently and in parallel.
This field magnetic flux has a feature formed by a composite magnetic flux formed by two magnetic fluxes, a fixed magnetic flux by a permanent magnet and a variable magnetic flux by a DC exciting magnet.
When the field is rotated by power such as wind power, these two magnetic fluxes create a rotating / moving magnetic field in the armature core, which generates an induced voltage in the armature winding, and functions as a generator.
In addition, this synchronous generator can change the amount of fixed magnetic flux by adjusting the amount of permanent magnet used, and can also form a field with only a DC magnet without using a permanent magnet. Have

次に発電機のトルクの制御方法について説明する。発電機の電機子巻線は多相でも単相でもよいが、ここでは単相を例に説明する。
先ず、永久磁石と直流励磁磁石を併用する場合について説明する。
発電機に発生する電圧は界磁の磁束×回転速度に比例する。負荷が抵抗Rだとすると、流れる電流Iはつぎのようになる。
[数式1] I=K・Φ・p・ω/〔(p・ω・L)+(R+R)1/2
ここで、I:電機子電流、Φ:界磁磁束、K:定数、ω:回転角速度、
p:極対数、L:巻線インダクタンス、R:巻線抵抗、R:負荷抵抗
数式1において、(p・ω・L)は(R+R)に比べて省略的小であるので、次のように近似できる。
[数式2] I≒K・Φ・p・ω/(R+R)
したがって、発電機のトルクTはつぎのようになる。
[数式3] Tg=〔I×(R+R)+W〕/ω
ここで、T:発電機トルク、W:損失(鉄損、機械損、など)
:損失は小さいので、(3)式は次のように近似できる。
[数式4] T≒〔I×(R+R)〕/ω
これに数式2を代入し、次式を得る。
[数式5] T≒(K・Φ・p)ω/(R+R)
この数式5から、界磁が永久磁石だけの場合、Φは一定であるので、発電機トルクTは角速度ωに比例することが分かる。
Next, a method for controlling the torque of the generator will be described. The armature winding of the generator may be multiphase or single phase, but here a single phase will be described as an example.
First, the case where a permanent magnet and a DC exciting magnet are used together will be described.
The voltage generated in the generator is proportional to the magnetic flux of the field × rotational speed. If the load is a resistor R, the flowing current I is as follows.
[Formula 1] I = K · Φ · p · ω / [(p · ω · L) 2 + (R m + R) 2 ] 1/2
Where I: armature current, Φ: field magnetic flux, K: constant, ω: rotational angular velocity,
p: number of pole pairs, L: winding inductance, R m : winding resistance, R: load resistance In equation 1, (p · ω · L) is abbreviated smaller than (R m + R), so It can be approximated as follows.
[Formula 2] I≈K · Φ · p · ω / (R m + R)
Therefore, as the torque T g Hatsugi generator.
[Formula 3] Tg = [I 2 × (R m + R) + W 1 ] / ω
Where T g : generator torque, W 1 : loss (iron loss, mechanical loss, etc.)
W 1 : Since the loss is small, equation (3) can be approximated as follows.
[Formula 4] T g ≈ [I 2 × (R m + R)] / ω
Substituting Formula 2 into this, the following formula is obtained.
[Formula 5] T g ≈ (K · Φ · p) 2 ω / (R m + R)
From this equation 5, if the field is only permanent magnets, [Phi so is constant, the generator torque The T g seen to be proportional to the angular velocity omega.

風車のトルクT及び出力Pは次のように表わされる。
[数式6] T=Aω
[数式7] P=Aω
ここで、A:定数
また風車の最大出力時のトルクT
[数式8] T=Bω
ここで、B:定数
風車の最大出力点で発電機を常に運転できれば、風車のつくり出す機械的エネルギーを発電機が電気的エネルギーにより多く変換できる。しかしながら、最大出力点のトルクの軌跡を表わす数式8と発電機のトルクを表わす数式5の曲線は一点でしか交わらないので、その交点以外では風力を有効に使っていないことになる。
風力を最大限発電機に取り込み電気エネルギーに換えるためには、できるだけ広い角速度において、発電機のトルクと風車のトルクを一致させることが必要である。
そこで、角速度が、発電機のトルクと風車の最大出力点のトルクとの交点を超えたら、それまで永久磁石の磁束だけだった界磁に、直流励磁電磁石の磁束を加え、複合磁束を形成し、発電機の発電能力を高め、そのトルクを増やすことによって風車のトルクと常に一致させるよう直流励磁磁束を増やせばよいことが分かる。
The wind turbine torque T f and the output P f are expressed as follows.
[Formula 6] T f = Aω 2
[Formula 7] P f = Aω 3
Here, A: constant Further, the torque T F at the maximum output of the windmill is [Formula 8] T F = Bω 2
Here, B: constant If the generator can always be operated at the maximum output point of the windmill, the generator can convert more mechanical energy generated by the windmill into electrical energy. However, since the curve of Formula 8 representing the torque locus of the maximum output point and Formula 5 representing the torque of the generator intersect only at one point, wind power is not effectively used at other points.
In order to take wind power into the generator as much as possible and convert it into electrical energy, it is necessary to match the torque of the generator and the torque of the windmill at the widest possible angular velocity.
Therefore, when the angular velocity exceeds the intersection of the generator torque and the maximum output point torque of the wind turbine, the magnetic flux of the DC excitation electromagnet is added to the field that was only the magnetic flux of the permanent magnet so far to form a composite magnetic flux. It can be seen that it is sufficient to increase the DC excitation magnetic flux so as to always match the torque of the wind turbine by increasing the power generation capacity of the generator and increasing its torque.

先ず、永久磁石と直流励磁磁石を併用する場合について説明する。
[数式9] T≒K・(αi+Φ・p・ω/(R+R)
数式9と数式8から
・(αi)・p・ω/(R+R)=Bω
この式から、
[数式10] i≒〔((R+R)・B)1/2/(α・K・p)〕・ω1/2−Φ/α
すなわち、風車の最大出力点のトルクは角速度の二乗に比例するので、発電機の角速度と同じになる角速度ωまでは永久磁石のみで運転し、その角速度ωを超えたら数式10のように、角速度ωの平方根に比例する励磁電流iを流して、直流励磁電流に比例した直流励磁磁束34を永久磁石磁束に重畳し複合励磁磁束33を形成し、界磁磁束を増やし発電能力を強化して、発電機のトルクを風車のトルクに近づけるようにすることで、風力を有効に使うことができる。
First, the case where a permanent magnet and a DC exciting magnet are used together will be described.
[Formula 9] T g ≈K 2 · (αi + Φ 0 ) 2 · p 2 · ω / (R m + R)
From Formula 9 and Formula 8, K 2 · (αi) 2 · p 2 · ω / (R m + R) = Bω 2
From this formula:
[Formula 10] i≈ [(((R m + R) · B) 1/2 / (α · K · p)] · ω 1/2 −Φ 0 / α
That is, since the torque at the maximum output point of the windmill is proportional to the square of the angular velocity, it is operated only with a permanent magnet up to an angular velocity ω 0 that is the same as the angular velocity of the generator, and when that angular velocity ω 0 is exceeded, The excitation current i proportional to the square root of the angular velocity ω is passed, and the DC excitation magnetic flux 34 proportional to the DC excitation current is superimposed on the permanent magnet magnetic flux to form the composite excitation magnetic flux 33, thereby increasing the field magnetic flux and enhancing the power generation capacity. By making the generator torque close to the wind turbine torque, wind power can be used effectively.

次に、永久磁石を用いず、直流励磁磁石のみを使用する場合について説明する。
直流励磁磁石のみ界磁を有する発電機のトルクは数式11のようになる。
[数式11] T≒K・(βi)・p・ω/(R+R)
数式11と数式8から
・(βi)・p・ω/(R+R)=Bω
したがって直流励磁電流と角速度の関係は次式のようになる。
[数式12] i≒〔((R+R)・B)1/2/(β・K・p)〕・ω1/2
このような直流励磁電流36を流すと、これに比例した直流励磁磁束34が発生し、それによるトルクが風車の最大出力時のトルク12に近づき、角速度が0から常に、風車のつくりだす機械的エネルギーを有効に発電機に取り込むことができることになる。
Next, a case where only a DC excitation magnet is used without using a permanent magnet will be described.
The torque of a generator having a field only for the DC exciting magnet is as shown in Equation 11.
[Formula 11] T g ≈K 2 · (βi) 2 · p 2 · ω / (R m + R)
From Formula 11 and Formula 8, K 2 · (βi) 2 · p 2 · ω / (R m + R) = Bω 2
Therefore, the relationship between the DC excitation current and the angular velocity is as follows.
[Formula 12] i≈ [(((R m + R) · B) 1/2 / (β · K · p 2 )] · ω 1/2
When such a DC excitation current 36 is passed, a DC excitation magnetic flux 34 proportional to this is generated, and the resulting torque approaches the torque 12 at the maximum output of the windmill, so that the mechanical energy generated by the windmill is always from 0 at the angular velocity. Can be effectively incorporated into the generator.

上記数式10と数式12を基本にした磁束すなわち励磁電流の制御方法について、説明する。
図4に本発明を適用した発電システムの制御回路の構成例を示す。可変磁束界磁型同期発電機41の回転速度は回転速度検出器42で検出し、その信号を励磁電流制御回路44に送り、直流励磁コイル26に角速度に応じた電流を流すことによって界磁磁束を制御し、発電機のトルクを風車の最大出力点近傍に接近させ、その時の風速における風車の出し得る最大出力を発電機の機械的入力として取り込むようにする。
直流励磁コイル26に流す直流励磁電流iは、永久磁石と直流励磁磁石を併用する場合については、ある角速度ωまでは電流を流さず、それを超える角速度においては、数式10のような√ωの関数に基づく直流励磁電流を流し、永久磁石を用いず直流励磁磁石のみを使用する場合については、角速度の全領域において数式12に示すような√ωに比例する直流励磁電流を流すことによって、発電機のトルクを風車のトルク曲線に近づけることができる。
発電された交流電力は整流回路45、及び充電制御回路46を通して蓄電池(バッテリー)47に充電され、必要に応じて負荷48に供給する。制御用電源43は蓄電池47の出力を励磁電流制御回路44に適した電圧に変換して供給するための回路である。
A method of controlling the magnetic flux, that is, the excitation current based on the above formulas 10 and 12, will be described.
FIG. 4 shows a configuration example of a control circuit of a power generation system to which the present invention is applied. The rotational speed of the variable magnetic flux field type synchronous generator 41 is detected by a rotational speed detector 42, the signal is sent to the excitation current control circuit 44, and a current corresponding to the angular speed is supplied to the DC excitation coil 26 to cause the field magnetic flux. And the torque of the generator is brought close to the vicinity of the maximum output point of the wind turbine, and the maximum output that can be output by the wind turbine at the wind speed at that time is taken in as the mechanical input of the generator.
In the case of using a permanent magnet and a DC excitation magnet together, the DC excitation current i flowing through the DC excitation coil 26 does not flow until a certain angular velocity ω 0 , and at an angular velocity exceeding that, √ω In the case where only a DC excitation magnet is used without using a permanent magnet, a DC excitation current proportional to √ω as shown in Equation 12 is applied in the entire range of angular velocity. The generator torque can be brought close to the wind turbine torque curve.
The generated AC power is charged to a storage battery (battery) 47 through a rectifier circuit 45 and a charge control circuit 46, and supplied to a load 48 as necessary. The control power supply 43 is a circuit for converting and supplying the output of the storage battery 47 to a voltage suitable for the excitation current control circuit 44.

発明の効果Effect of the invention

本発明を実施することにより、従来の永久磁石同期発電機に比べ、界磁磁束が回転角速度に応じて制御できるので、常に風車の最大出力点で発電機を動作させることが出来るので、風速の変動の多い小型風車発電機に適した発電装置であり、発電電力の増加が期待できる。また、界磁の多極化に適した構造であるので、増速機を省略でき、かつ励磁コイルへの給電が非接触型であるので、信頼性が高く保守費用の少ない同期発電装置を得ることが出来る。  By implementing the present invention, the field magnetic flux can be controlled in accordance with the rotational angular velocity as compared with the conventional permanent magnet synchronous generator, so that the generator can always be operated at the maximum output point of the windmill. It is a power generator suitable for small wind turbine generators with a lot of fluctuations, and an increase in generated power can be expected. Moreover, since the structure is suitable for multi-pole field use, the speed-up gear can be omitted, and the power supply to the exciting coil is a non-contact type, so that a synchronous generator with high reliability and low maintenance costs can be obtained. I can do it.

本発明を適用することにより、変動の多い風速のもとで低速で運転される小型風力発電機にあっては短時間に吹く高速の風に特に有効に働き、総合効率が上昇することが期待できる。また、多極化に適しているので増速機が不要となり、メンテナンス費用がかからないという利点もあり、小型発電機として商用電源のない場所などでの用途に適用できる。
風力の無駄を省くことは、風車の小型化およびコスト低減という経済的効果も期待できる。
また、この発電機は水流の変化が激しい小型水力発電装置としても総合効率や保全性の向上が期待できる。
By applying the present invention, it is expected that a small wind power generator that operates at a low speed under a fluctuating wind speed will particularly effectively work on a high-speed wind blowing in a short time and increase the overall efficiency. it can. Moreover, since it is suitable for multipolarization, there is an advantage that a speed-up gear is not required and maintenance costs are not required, and it can be applied as a small power generator to a place where there is no commercial power source.
Eliminating the waste of wind power can also be expected to have an economic effect of downsizing the windmill and reducing costs.
In addition, this generator can be expected to improve overall efficiency and maintainability as a small hydroelectric generator with drastic changes in water flow.

図1に風車のトルク、本発明を使用した発電機のトルクならびに従来の永久磁石同期発電機のトルクと風車の回転角速度の関係を示す。  FIG. 1 shows the relationship between the torque of a windmill, the torque of a generator using the present invention, the torque of a conventional permanent magnet synchronous generator, and the rotational angular velocity of the windmill. 図2に本発明を適用した発電機の構造図例を示す。  FIG. 2 shows an example of a structural diagram of a generator to which the present invention is applied. 図3−1,2に本発明の回転角速度と直流励磁電流、界磁磁束ならびに発電機のトルクとの関係を示す。図3−1に界磁に直流励磁磁石と永久磁石の複合磁石を用いた場合を示す。  FIGS. 3A and 3B show the relationship between the rotational angular velocity of the present invention, the DC excitation current, the field magnetic flux, and the generator torque. Fig. 3-1 shows a case where a composite magnet of a direct current excitation magnet and a permanent magnet is used for the field. 図3−2に界磁に直流励磁磁石のみを用いた場合を示す。  Fig. 3-2 shows the case where only a DC exciting magnet is used for the field. 図4に発電機の制御回路構成図例を示す。  FIG. 4 shows an example of a control circuit configuration diagram of the generator.

[図1]
11 永久磁石同期発電機のトルク直線
12 本発明における可変磁束界磁型同期発電機のトルク曲線ならびに風車のトルク曲 線{二つの曲線はほぼ重なっている}
13 風車のB点を通るトルクと角速度の特性曲線の角速度と出力の関係を表わす曲線 (B点が最大出力点)
14 無負荷の角速度5を通る風車のトルクと角速度の関係を表わす曲線の例
A 永久磁石同期発電機のトルクと風車のトルクが交わる点(最大出力点)
B 可変磁束界磁型同期発電機の場合の風車の最大出力点の例
C 角速度がA点を超えた場合の永久磁石同期発電機の出力点の例
D 角速度がA点を下回った場合の永久磁石同期発電機の出力点の例
ΔT 永久磁石同期発電機の場合のトルクの無駄分を示す例
ΔP 永久磁石同期発電機の場合の出力の無駄分を示す(高速時の例)
dP 永久磁石同期発電機の場合の出力の無駄分を示す(低速時の例)
[図2]
1 発電機
20 ブラケット(非磁性体、アルミニウムなど)
21 電気子鉄心
22 電気子巻線
23 界磁鉄心
231 界磁鉄心の歯
24 永久磁石
25 S極励磁鉄心
26 N極励磁鉄心
27 直流励磁コイル
28 軸受
29 界磁支持部材
30 軸(強磁性体)
[図3]
[図3−1,図3−2]
(a)図
31 風車最大出力時のトルク並びに可変磁束界磁型同期発電機のトルク
32 永久磁石同期発電機のトルク
(b)図
33 複合励磁磁束
34 直流励磁磁束
35 永久磁石磁束
(c)図
36 直流励磁電流
[図4]
1 可変磁束界磁型励磁同期発電機
26 励磁コイル
41 発電機
42 回転速度検出器
43 制御用電源
44 励磁電流制御回路
45 整流回路
46 充電制御回路
47 蓄電池
48 負荷
[Figure 1]
11 Torque Line 12 of Permanent Magnet Synchronous Generator 12 Torque curve of variable magnetic flux field type synchronous generator and torque curve of wind turbine {the two curves are almost overlapped} in the present invention
13 Curve representing the relationship between the angular velocity and output of the characteristic curve of torque and angular velocity passing through point B of the windmill (point B is the maximum output point)
14 Example of a curve representing the relationship between the wind turbine torque passing through the unloaded angular velocity 5 and the angular velocity A Point at which the permanent magnet synchronous generator torque and the wind turbine torque intersect (maximum output point)
B Example of maximum output point of wind turbine in case of variable magnetic flux field type synchronous generator C Example of output point of permanent magnet synchronous generator when angular velocity exceeds point A D Permanent when angular velocity falls below point A Example of output point of magnet synchronous generator ΔT Example of showing waste of torque in case of permanent magnet synchronous generator ΔP Showing waste of output in case of permanent magnet synchronous generator (example at high speed)
dP Indicates the waste of output in the case of a permanent magnet synchronous generator (example at low speed)
[Figure 2]
1 Generator 20 Bracket (Non-magnetic material, aluminum, etc.)
21 Electron Core 22 Electron Winding 23 Field Core 231 Field Iron Core Teeth 24 Permanent Magnet 25 S-Pole Exciting Core 26 N-Pole Exciting Core 27 DC Exciting Coil 28 Bearing 29 Field Support Member 30 Axis (Ferromagnetic)
[Fig. 3]
[FIGS. 3-1 and 3-2]
(A) FIG. 31 Torque at wind turbine maximum output and torque of variable magnetic flux field synchronous generator 32 Torque of permanent magnet synchronous generator (b) FIG. 33 Composite excitation magnetic flux 34 DC excitation magnetic flux 35 Permanent magnet magnetic flux (c) 36 DC excitation current [Fig. 4]
DESCRIPTION OF SYMBOLS 1 Variable magnetic flux field type excitation synchronous generator 26 Excitation coil 41 Generator 42 Rotational speed detector 43 Control power supply 44 Excitation current control circuit 45 Rectifier circuit 46 Charge control circuit 47 Storage battery 48 Load

Claims (5)

界磁に少なくとも直流励磁磁石を有し、風力を動力とする風力発電機において、風速によって回転速度が変化しても、常にその最大出力点において発電できるよう界磁磁束を可変制御できる同期発電機を有する風力発電装置  Synchronous generator that can variably control the field flux so that it can always generate power at its maximum output point even if the rotational speed changes due to the wind speed in a wind power generator that has at least a DC exciting magnet in the field and is powered by wind power Wind power generator with 請求項1において、界磁鉄心の歯をN極とS極の二つのグループに分け、N極のグループは一方のアキシャル部において磁気的に連結し、S極のグループは他方のアキシャル部において磁気的に連結し、全体の歯は内径側で非磁性体の支持部材で軸に固定し、S極の連結部と軸との間は励磁鉄心で連結し、N極の連結部と軸との間にはそれぞれ励磁ギャップを介して非磁性体のブラケットに固定されたコの字形またはL字形の励磁鉄心で結び、その内側には直流励磁コイルを設け、界磁の磁束は、N極励磁鉄心→励磁ギャップ→S極のグループの歯→エアギャップ→電機子鉄心→エアギャップ→N極のグループの歯→省略可能な励磁ギャップ→S極励磁鉄心→軸→励磁ギャップ→N極励磁鉄心へと流れ、界磁が回転することによって電機子鉄心に回転磁界が発生し、電機子巻線に交流電圧が誘起され、電機子の外殻はアルミなどの非磁性体で形成されたインナーロータ形の可変磁束界磁型同期発電機を有する風力発電装置  In claim 1, the teeth of the field core are divided into two groups of N pole and S pole. The N pole group is magnetically connected in one axial part, and the S pole group is magnetic in the other axial part. The whole teeth are fixed to the shaft by a non-magnetic support member on the inner diameter side, the S pole connecting portion and the shaft are connected by an exciting iron core, and the N pole connecting portion and the shaft are connected. Between them, each is connected with a U-shaped or L-shaped exciting core fixed to a non-magnetic bracket via an exciting gap, and a DC exciting coil is provided inside it, and the magnetic flux of the field is N-pole exciting core → excitation gap → S pole group teeth → air gap → armature core → air gap → N pole group teeth → optional excitation gap → S pole excitation core → axis → excitation gap → N pole excitation core Armature iron by flowing and rotating field A rotating magnetic field is generated, an AC voltage is induced in the armature winding, and the outer shell of the armature has an inner rotor type variable magnetic flux field type synchronous generator formed of a nonmagnetic material such as aluminum. apparatus 請求項1において、界磁鉄心の歯をN極とS極の二つのグループに分け、N極のグループは一方のアキシャル部において磁気的に連結し、S極のグループは他方のアキシャル部において磁気的に連結し、全体の歯は内径側で非磁性体の支持部材で軸に固定し、S極の連結部と軸との間は励磁鉄心で連結し、N極の連結部と軸との間にはそれぞれ励磁ギャップを介して非磁性体のブラケットに固定されたコの字形またはL字形の励磁鉄心で結び、その内側には直流励磁コイルを設け、さらにすべてのN極の歯とS極の歯の間には板状の永久磁石を磁束が増える方向に極性をあわせて挿入し、直流励磁磁束の流れは、N極励磁鉄心→励磁ギャップ→S極のグループの歯→エアギャップ→電機子鉄心→エアギャップ→N極のグループの歯→省略可能な励磁ギャップ→S極励磁鉄心→軸→励磁ギャップ→N極励磁鉄心へと流れ、永久磁石の磁束の流れは、永久磁石のN極→S極のグループの歯→エアギャップ→電機子鉄心→エアギャップ→N極のグープの歯→永久磁石のS極へと流れて、界磁が回転することによって電機子鉄心に回転磁界が発生し、電機子巻線に交流電圧が誘起され、電機子の外殻はアルミなどの非磁性体で形成されたインナーロータ形の可変磁束界磁型同期発電機を有する風力発電装置  In claim 1, the teeth of the field core are divided into two groups of N pole and S pole. The N pole group is magnetically connected in one axial part, and the S pole group is magnetic in the other axial part. The whole teeth are fixed to the shaft by a non-magnetic support member on the inner diameter side, the S pole connecting portion and the shaft are connected by an exciting iron core, and the N pole connecting portion and the shaft are connected. Between them, each is connected with a U-shaped or L-shaped exciting core fixed to a non-magnetic bracket via an exciting gap, and a DC exciting coil is provided inside it, and all N-pole teeth and S-poles are provided. A plate-like permanent magnet is inserted between the teeth of the magnet so that the polarity increases in the direction in which the magnetic flux increases, and the flow of DC excitation magnetic flux is as follows: N pole excitation core → excitation gap → S pole group teeth → air gap → electric machine Core → Air gap → N pole group teeth → Omissible Excitation gap → S pole excitation core → Shaft → Excitation gap → N pole excitation iron core, magnetic flux of permanent magnet is N pole → S pole group teeth of permanent magnet → Air gap → Armature core → Air Gap → N pole group teeth → Permanent magnet S pole flows to rotate the field, generating a rotating magnetic field in the armature core, inducing an AC voltage in the armature winding, Wind power generator having an inner rotor type variable magnetic flux field synchronous generator whose outer shell is made of a non-magnetic material such as aluminum 請求項1において、角速度の全領域または一部の領域において、直流励磁電流を回転角速度の平方根の関数として制御できるようにした可変磁束界磁型同期発電機を有する風力発電装置  2. The wind turbine generator having a variable magnetic flux field type synchronous generator according to claim 1, wherein the direct current excitation current can be controlled as a function of the square root of the rotational angular velocity in all or a part of the angular velocity. 請求項1、2、3及び4に記載する同期発電機を有する水力発電装置  A hydroelectric generator having a synchronous generator according to claim 1, 2, 3, and 4.
JP2015228135A 2015-11-05 2015-11-05 Wind turbine generator having variable magnetic flux field type synchronous generator Active JP6244598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015228135A JP6244598B2 (en) 2015-11-05 2015-11-05 Wind turbine generator having variable magnetic flux field type synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228135A JP6244598B2 (en) 2015-11-05 2015-11-05 Wind turbine generator having variable magnetic flux field type synchronous generator

Publications (2)

Publication Number Publication Date
JP2017093274A true JP2017093274A (en) 2017-05-25
JP6244598B2 JP6244598B2 (en) 2017-12-13

Family

ID=58771020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228135A Active JP6244598B2 (en) 2015-11-05 2015-11-05 Wind turbine generator having variable magnetic flux field type synchronous generator

Country Status (1)

Country Link
JP (1) JP6244598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855198A (en) * 2019-11-05 2020-02-28 哈尔滨工程大学 Power generation device simultaneously using solar energy and wind energy
CN113472246A (en) * 2021-08-05 2021-10-01 威海西立电子有限公司 Self-generating control method, control device and system for traveling crane
CN115492676A (en) * 2022-10-10 2022-12-20 北京工业大学 Light-weight mute generator set device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015572B1 (en) 2013-10-02 2019-10-22 삼성전자주식회사 Mounting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974395A (en) * 1975-06-02 1976-08-10 Clark Bright Power generating apparatus
JP2002345297A (en) * 2001-05-14 2002-11-29 Ebara Corp Synchronous generator system for wind-turbine power generation and its operating method
JP2003284303A (en) * 2002-03-20 2003-10-03 Denso Corp Rotating electric machine
US20040189132A1 (en) * 2003-03-27 2004-09-30 Emerson Electric Company Modular flux controllable permanent magnet dynamoelectric machine
JP2014023393A (en) * 2012-07-23 2014-02-03 Jtekt Corp Rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974395A (en) * 1975-06-02 1976-08-10 Clark Bright Power generating apparatus
JP2002345297A (en) * 2001-05-14 2002-11-29 Ebara Corp Synchronous generator system for wind-turbine power generation and its operating method
JP2003284303A (en) * 2002-03-20 2003-10-03 Denso Corp Rotating electric machine
US20040189132A1 (en) * 2003-03-27 2004-09-30 Emerson Electric Company Modular flux controllable permanent magnet dynamoelectric machine
JP2014023393A (en) * 2012-07-23 2014-02-03 Jtekt Corp Rotary electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855198A (en) * 2019-11-05 2020-02-28 哈尔滨工程大学 Power generation device simultaneously using solar energy and wind energy
CN110855198B (en) * 2019-11-05 2022-11-15 哈尔滨工程大学 Power generation device simultaneously using solar energy and wind energy
CN113472246A (en) * 2021-08-05 2021-10-01 威海西立电子有限公司 Self-generating control method, control device and system for traveling crane
CN115492676A (en) * 2022-10-10 2022-12-20 北京工业大学 Light-weight mute generator set device and method

Also Published As

Publication number Publication date
JP6244598B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US8085003B2 (en) Voltage regulated permanent magnet generator
JP5216686B2 (en) Permanent magnet generator
JP6244598B2 (en) Wind turbine generator having variable magnetic flux field type synchronous generator
CN103051133A (en) Parallel-magnetic-circuit hybrid-excitation permanent magnet motor
JP2021145544A (en) Pairs of complementary unidirectionally magnetic rotor/stator assemblies
CN105896833A (en) Hybrid excitation three-phase brushless synchronous generator based on full wave induction excitation
CN106849566B (en) A kind of taper magnetic suspension switched reluctance motor and control method
CN103904856B (en) A kind of brushless Harmonic Wave Excited Generator with initial self-excitation ability
Firdaus et al. Improvement of power density spoke type permanent magnet generator
JP6443848B1 (en) Wind power generation system having variable magnetic flux field type synchronous generator
CN205693538U (en) Mixed magnetic circuit low harmony wave multiple stators weak magnetism speed expansion permagnetic synchronous motor
Yusuf et al. A design of coreless permanent magnet axial flux generator for low speed wind turbine
JP2009261204A (en) Roll-type generator
JP2019092330A (en) Brushless synchronous generator
CN101882901A (en) Double-magnetic ring induction type magnetic energy electric generator
CN101882900A (en) Induction type magnetic energy generator
CN101931348A (en) Compositely excited magnetic ring-based double-magnetic ring type inductive magnetic energy generator
RU115130U1 (en) ELECTRIC MACHINE
Holenstein et al. A bearingless synchronous reluctance slice motor with rotor flux barriers
RU53828U1 (en) MULTIPLE MAGNETIC ELECTRIC MACHINE
CN102005983A (en) Double-section cross coupled inductive magnetic energy generator
JP2008278716A (en) Wind power generator
RU131919U1 (en) LOW-TURNING ELECTRIC CURRENT GENERATOR
RU2414794C1 (en) Non-contact modular synchronous magnetoelectric machine
CN101951102A (en) Induction type magnetic energy generator based on mixed-exertion type magnet ring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171026

R150 Certificate of patent or registration of utility model

Ref document number: 6244598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250