JP2017091817A - Secondary battery system for vehicle - Google Patents

Secondary battery system for vehicle Download PDF

Info

Publication number
JP2017091817A
JP2017091817A JP2015220782A JP2015220782A JP2017091817A JP 2017091817 A JP2017091817 A JP 2017091817A JP 2015220782 A JP2015220782 A JP 2015220782A JP 2015220782 A JP2015220782 A JP 2015220782A JP 2017091817 A JP2017091817 A JP 2017091817A
Authority
JP
Japan
Prior art keywords
temperature
secondary batteries
charging
current value
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015220782A
Other languages
Japanese (ja)
Other versions
JP6540998B2 (en
Inventor
村上 淳
Atsushi Murakami
村上  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015220782A priority Critical patent/JP6540998B2/en
Publication of JP2017091817A publication Critical patent/JP2017091817A/en
Application granted granted Critical
Publication of JP6540998B2 publication Critical patent/JP6540998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery system for a vehicle that can increase the temperature of plural secondary batteries A and B at an early stage and improve the output while suppressing precipitation of lithium under an extremely low temperature environment below -30°C.SOLUTION: When the temperatures of plural secondary batteries A and B detected based on temperature information acquired by temperature sensors A1 and B1 are lower than a predetermined temperature of not more than -30°C, a control device D sets a charging current value when the other secondary batteries are charged by a charging/discharging device C. Then, charging and discharging are performed between the plural secondary batteries by a charging/discharging device. Here, the charging current value is set on the basis of a map M in which the relationship of the temperature, the voltage or the SOC, and the maximum current value at which lithium does not deposit under charging is predetermined.SELECTED DRAWING: Figure 1

Description

本発明は、車両用二次電池システムに関する。   The present invention relates to a vehicle secondary battery system.

特開2013−149471号公報には、複数の二次電池の間で相互に充電と放電を繰り返して二次電池を昇温させる手法が開示されている。この手法では、電力ロスが抑えられつつ、二次電池が昇温されるとされている。   Japanese Patent Application Laid-Open No. 2013-149471 discloses a method of heating a secondary battery by repeatedly charging and discharging each other between a plurality of secondary batteries. In this method, the secondary battery is heated while suppressing power loss.

特開2013−149471号公報JP 2013-149471 A

ところで、二次電池は、車両用途でも広く使われている。車両用途には、例えば、ハイブリッド自動車やプラグインハイブリッド自動車や電気自動車や燃料電池車などが挙げられる。このような車両用途において、二次電池は、エネルギを電気的に蓄え、駆動モータに出力し、車輪に駆動力を付与する電源として用いられる。このような用途では、主に室外で使用されるため、寒冷地などでは−30℃を下回るような極低温環境でも使用されうる。−30℃を下回るような極低温環境下では、二次電池の電解液の粘度が高くなり、二次電池の出力が温度の低下につれて急激に低下する傾向がある。さらに、−30℃を下回るような極低温環境下では、ハイレートでの充電や放電に対して二次電池は劣化し易い。また、当該車両用途では、駆動モータに出力する電源として用いられる二次電池には、発進時に特に大きな出力が求められる。   By the way, secondary batteries are also widely used in vehicles. Examples of the vehicle application include a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. In such vehicle applications, the secondary battery is used as a power source that electrically stores energy, outputs the energy to a drive motor, and applies driving force to the wheels. In such an application, since it is mainly used outdoors, it can be used in a cryogenic environment such as a temperature lower than −30 ° C. in a cold district. Under an extremely low temperature environment below −30 ° C., the viscosity of the electrolyte solution of the secondary battery tends to increase, and the output of the secondary battery tends to rapidly decrease as the temperature decreases. Furthermore, in an extremely low temperature environment below −30 ° C., the secondary battery is likely to deteriorate with respect to charging and discharging at a high rate. Moreover, in the said vehicle use, especially big output is calculated | required at the time of start for the secondary battery used as a power supply output to a drive motor.

本発明者は、このような車両用途での特有の課題を鑑み、−30℃を下回るような極低温環境で使用されうる場合に、電力ロスを抑えつつ早期に昇温させることができれば有益であると考えている。複数の二次電池の間で相互に充電と放電を繰り返して二次電池を昇温させる手法を採用する場合では、充電電流値や放電電流値を大きくすればするほど二次電池は素早く昇温する。このため、できるだけ大きな電流値で充電と放電を繰り返し行ないたい。他方で、−30℃を下回るような極低温環境では、充電電流値や放電電流値が大きいハイレートでの充電や放電が繰り返されると、二次電池は劣化し易い。このため、複数の二次電池の間で相互に充電と放電を繰り返して二次電池を昇温させる手法を採用する場合において、特に、−30℃のような極低温環境から素早く昇温させることと、二次電池の劣化を小さく抑えることとは、トレードオフの関係がある。   In view of such a specific problem in vehicle applications, the present inventor is beneficial if the temperature can be raised quickly while suppressing power loss when it can be used in a cryogenic environment below -30 ° C. I think there is. When using a method in which the temperature of the secondary battery is increased by repeatedly charging and discharging between multiple secondary batteries, the higher the charge current value and the discharge current value, the faster the secondary battery heats up. To do. For this reason, it is desirable to repeatedly charge and discharge with as large a current value as possible. On the other hand, in an extremely low temperature environment where the temperature is lower than −30 ° C., if charging and discharging at a high rate with a large charging current value and discharging current value are repeated, the secondary battery is likely to deteriorate. For this reason, when adopting a method of repeatedly charging and discharging between a plurality of secondary batteries to raise the temperature of the secondary battery, in particular, quickly raising the temperature from an extremely low temperature environment such as −30 ° C. There is a trade-off relationship between minimizing the deterioration of the secondary battery.

ここで提案される車両用二次電池システムは、制御対象となる複数の二次電池と、温度センサと、電圧計又はSOC検知部と、充放電装置と、制御装置とを備えている。ここで、温度センサは、複数の二次電池に関する温度情報を取得するセンサである。電圧計は、複数の二次電池についてそれぞれ電圧を検知する装置である。SOC検知部は、複数の二次電池についてそれぞれSOCを検知する装置である。ここで、SOCは、State of Chargeの略であり、残容量を意味する。充放電装置は、複数の二次電池にそれぞれ電気的に接続され、複数の二次電池のうち一部の二次電池から放電された電力によって他の二次電池を充電する装置である。制御装置は、温度センサによって取得された温度情報に基づいて検知された複数の二次電池の温度が−30℃以下の予め定められた温度よりも低い場合に、充放電装置が、他の二次電池を充電する際の充電電流値を設定する処理S1と、充放電装置によって、複数の二次電池の間で充電と放電とを行なわせる処理S2とを行う。ここで、処理S1では、複数の二次電池について、温度と、電圧またはSOCと、充電に伴ってリチウムが析出しない最大電流値との関係が予め定められたマップに基づいて、温度センサによって得られた温度情報に基づいて検知された複数の二次電池の温度と、電圧計によって得られた電圧またはSOC検知部によって得られたSOCとに応じた最大電流値を取得し、当該最大電流値を充電電流値とする。   The proposed secondary battery system for a vehicle includes a plurality of secondary batteries to be controlled, a temperature sensor, a voltmeter or an SOC detector, a charge / discharge device, and a control device. Here, the temperature sensor is a sensor that acquires temperature information regarding a plurality of secondary batteries. The voltmeter is a device that detects a voltage for each of a plurality of secondary batteries. The SOC detection unit is a device that detects the SOC of each of the plurality of secondary batteries. Here, SOC is an abbreviation for State of Charge, and means remaining capacity. The charging / discharging device is a device that is electrically connected to a plurality of secondary batteries, and charges other secondary batteries with electric power discharged from some of the secondary batteries. When the temperature of the plurality of secondary batteries detected based on the temperature information acquired by the temperature sensor is lower than a predetermined temperature of −30 ° C. or lower, the control device is connected to the other two charging / discharging devices. A process S1 for setting a charging current value for charging the secondary battery and a process S2 for charging and discharging between the secondary batteries by the charge / discharge device are performed. Here, in the process S1, the temperature sensor obtains the relationship between the temperature, the voltage or the SOC, and the maximum current value at which lithium does not precipitate with charging, for a plurality of secondary batteries. Obtaining the maximum current value according to the temperature of the plurality of secondary batteries detected based on the obtained temperature information and the voltage obtained by the voltmeter or the SOC obtained by the SOC detector, and the maximum current value Is the charging current value.

かかる制御によって、充電時の充電電流値が適切に制御でき、二次電池の劣化を小さく抑えつつ、−30℃のような極低温環境から素早く昇温させて、制御対象となる複数の二次電池の出力を改善することができる。   By such control, the charging current value at the time of charging can be appropriately controlled, and while the deterioration of the secondary battery is suppressed to be small, the temperature is quickly raised from an extremely low temperature environment such as −30 ° C., and a plurality of secondary objects to be controlled The output of the battery can be improved.

図1は、ここで提案される車両用二次電池システムを模式的に示す模式図である。FIG. 1 is a schematic diagram schematically showing the vehicular secondary battery system proposed here. 図2は、マップMの構成例を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration example of the map M. 図3は、制御装置の制御フローの一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a control flow of the control device. 図4は、複数の二次電池A,Bの温度と電圧と充放電動作の推移を模式的に示すグラフである。FIG. 4 is a graph schematically showing changes in temperature, voltage, and charge / discharge operation of the secondary batteries A and B. 図5は、複数の二次電池A,Bの温度と電圧と充放電動作の推移を模式的に示すグラフである。FIG. 5 is a graph schematically showing the transition of the temperature, voltage, and charge / discharge operation of the secondary batteries A and B.

以下、ここで提案される車両用二次電池システムについて一実施形態を説明する。ここで説明される実施形態は、当然ながら本発明を限定することを意図したものではない。また、各図は模式的に描かれており、例えば、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Hereinafter, an embodiment of the secondary battery system for vehicles proposed here will be described. The embodiments described herein are, of course, not intended to limit the present invention. Each drawing is schematically drawn. For example, the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship.

図1は、ここで提案される車両用二次電池システムを模式的に示す模式図である。ここで提案される車両用二次電池システム100は、制御対象となる複数の二次電池A,Bと、温度センサA1,B1と、電圧計A2,B2と、充放電装置Cと、制御装置Dとを備えている。以下の説明中、車両用二次電池システム100の各部材については、図1が適宜に参照されるものとし、図1の符号を適宜に付して説明する。   FIG. 1 is a schematic diagram schematically showing the vehicular secondary battery system proposed here. The proposed vehicle secondary battery system 100 includes a plurality of secondary batteries A and B to be controlled, temperature sensors A1 and B1, voltmeters A2 and B2, a charge / discharge device C, and a control device. D. In the following description, FIG. 1 is appropriately referred to for each member of the vehicular secondary battery system 100, and the reference numerals in FIG.

制御対象となる複数の二次電池A,Bは、例えば、非水電解液二次電池であり、典型的には、リチウムイオン二次電池である。複数の二次電池A,Bは、それぞれ単電池でもよいし、複数のセルが一組に組み合わされた組電池でもよい。さらに、複数の二次電池A,Bは、複数の単電池からなる電池群(組電池に限らない)でもよいし、複数の組電池からなる組電池群でもよい。   The plurality of secondary batteries A and B to be controlled are, for example, non-aqueous electrolyte secondary batteries, and typically lithium ion secondary batteries. Each of the plurality of secondary batteries A and B may be a single battery or an assembled battery in which a plurality of cells are combined into one set. Further, the plurality of secondary batteries A and B may be a battery group (not limited to an assembled battery) composed of a plurality of single cells, or an assembled battery group composed of a plurality of assembled batteries.

このような非水電解液二次電池では、−30℃を下回るような極低温環境下では、二次電池の電解液の粘度が高くなり、二次電池の出力が上がりにくい。さらに、ハイレートでの充電や放電によって二次電池は劣化し易い。例えば、リチウムイオン二次電池では、−30℃を下回るような極低温環境下では、ハイレートでの充電や放電において電解液中のリチウムが析出する事象が生じ易い。リチウムが析出し、その一部が固定化すると、電池反応に寄与するリチウムイオンが減り、電池容量が低下する。このため、リチウムが析出する事象は、電池容量が劣化する要因の1つである。ここで、本発明者の知見によれば、−30℃を下回るような極低温環境下では、特に、ハイレートで充電される場合に、負極表面にリチウムが析出し易い。   In such a non-aqueous electrolyte secondary battery, the viscosity of the electrolyte of the secondary battery becomes high and the output of the secondary battery is difficult to increase in an extremely low temperature environment below -30 ° C. Furthermore, the secondary battery is likely to be deteriorated by charging and discharging at a high rate. For example, in a lithium ion secondary battery, in an extremely low temperature environment below −30 ° C., an event in which lithium in the electrolyte solution is likely to deposit during high-rate charging or discharging. When lithium is deposited and a part thereof is immobilized, lithium ions contributing to the battery reaction are reduced, and the battery capacity is reduced. For this reason, the phenomenon in which lithium is deposited is one of the causes of battery capacity deterioration. Here, according to the knowledge of the present inventor, lithium is likely to be deposited on the surface of the negative electrode, particularly when charged at a high rate, in a cryogenic environment lower than −30 ° C.

車両用途において、かかる複数の二次電池A,Bは、車両で生じるエネルギを電気的に蓄え、かつ、車輪に駆動力を付与する駆動モータに出力する電源として用いられる。図1に示すように、車両用途では、複数の二次電池A,Bは、電源制御装置Eを介して、発電機や電気モータ(図示省略)に接続されている。また、図示は省略するが、発電機や電気モータは、さらに動力分配機構や減速機を通じて駆動輪に接続されている。   In the vehicle application, the plurality of secondary batteries A and B are used as a power source that electrically stores energy generated in the vehicle and outputs it to a drive motor that applies driving force to the wheels. As shown in FIG. 1, in a vehicle application, a plurality of secondary batteries A and B are connected to a generator and an electric motor (not shown) via a power supply control device E. Although not shown, the generator and the electric motor are further connected to the drive wheels through a power distribution mechanism and a speed reducer.

温度センサA1,B1は、複数の二次電池A,Bに関する温度情報を取得するセンサである。ここで温度センサA1,B1は、複数の二次電池A,Bの予め定められた位置(例えば、電池側面の予め定められた位置)に取付けられていても良いし、複数の二次電池A,Bが配置された位置に配置されていてもよい。温度センサA1,B1は、信号線A1a,B1aによってそれぞれ制御装置Dに接続されている。   The temperature sensors A1 and B1 are sensors that acquire temperature information regarding the plurality of secondary batteries A and B. Here, the temperature sensors A1 and B1 may be attached to predetermined positions of the plurality of secondary batteries A and B (for example, predetermined positions on the side surfaces of the batteries) or the plurality of secondary batteries A. , B may be arranged at the position where they are arranged. The temperature sensors A1 and B1 are connected to the control device D by signal lines A1a and B1a, respectively.

電圧計A2,B2は、複数の二次電池A,Bについてそれぞれ電圧を検知する装置である。例えば、複数の二次電池A,Bに電気的に並列接続された電圧計に基づいて電圧を検知するとよい。電圧計A2,B2は、信号線A2a,B2aによってそれぞれ制御装置Dに接続されている。ここで、二次電池A,Bは、電圧(開回路電圧:OCV)とSOC(残容量)との間に相関関係がある。   The voltmeters A2 and B2 are devices that detect voltages for the plurality of secondary batteries A and B, respectively. For example, the voltage may be detected based on a voltmeter electrically connected to the secondary batteries A and B in parallel. Voltmeters A2 and B2 are connected to the control device D by signal lines A2a and B2a, respectively. Here, the secondary batteries A and B have a correlation between the voltage (open circuit voltage: OCV) and the SOC (remaining capacity).

図1に示す例では、電圧計A2,B2が採用されているが、電圧計A2,B2および電圧計A2,B2に基づいて電圧を検知する処理部は、それぞれ制御装置Dにおける二次電池A,BのSOCを検知するSOC検知部A3,B3に置換されうる。ここで、SOC検知部A3,B3は、複数の二次電池A,BのSOCを推察しうる種々の手法が採用されうる。例えば、電圧計A2,B2に基づいて検知される電圧、温度、容量劣化率などに基づいて、予め用意されたマップからSOCを推察してもよい。また、二次電池を予め定められたSOCに調整しておき、当該SOCを基準にして、その後に入力された電流量と出力された電流量との差分に基づいて残容量を算出してもよい。なお、複数の二次電池A,Bの使用域において開回路電圧とSOCとの間に適当な相関関係が認められない場合(換言すれば、開回路電圧からSOCが推察することが困難な場合)には、SOC検知部A3,B3によって検知されるSOCを採用するとよい。   In the example shown in FIG. 1, voltmeters A2 and B2 are employed, but the processing units that detect voltages based on voltmeters A2 and B2 and voltmeters A2 and B2 are secondary batteries A in control device D, respectively. , B can be replaced with SOC detectors A3 and B3 that detect the SOC of B. Here, the SOC detection units A3 and B3 may employ various methods that can infer the SOC of the plurality of secondary batteries A and B. For example, the SOC may be inferred from a map prepared in advance based on the voltage, temperature, capacity deterioration rate, and the like detected based on the voltmeters A2 and B2. Alternatively, the secondary battery may be adjusted to a predetermined SOC, and the remaining capacity may be calculated based on the difference between the amount of current input and the amount of current output with reference to the SOC. Good. When an appropriate correlation is not recognized between the open circuit voltage and the SOC in the usage range of the plurality of secondary batteries A and B (in other words, when it is difficult to infer the SOC from the open circuit voltage) ) May be an SOC detected by the SOC detectors A3 and B3.

充放電装置Cは、複数の二次電池A,Bにそれぞれ電気的に接続され、複数の二次電池A,Bのうち一部の二次電池から放電された電力によって他の二次電池を充電する。充放電装置Cは、例えば、複数の二次電池A,Bのうち二次電池Aから放電された場合、その電力によって二次電池Bを充電する。また、充放電装置Cは、二次電池Bから放電された場合、その電力によって二次電池Aを充電する。このような充放電装置Cの構造例については、例えば、特許文献1の段落0015、段落0016および図2において「充放電手段12」として開示されている。このため、充放電装置Cの構造については詳しく開示しない。なお、充放電装置Cとしては、上述のように、複数の二次電池A,Bにそれぞれ電気的に接続され、複数の二次電池A,Bのうち一部の二次電池から放電された電力によって他の二次電池を充電する機能を実現できればよく、必ずしも特許文献1によって開示された構造に限定されない。   The charging / discharging device C is electrically connected to the plurality of secondary batteries A and B, respectively, and other secondary batteries are used by the electric power discharged from some of the secondary batteries A and B. Charge. For example, when the secondary battery A is discharged from the secondary batteries A and B, the charging / discharging device C charges the secondary battery B with the electric power. In addition, when the secondary battery B is discharged, the charging / discharging device C charges the secondary battery A with its power. Such a structural example of the charging / discharging device C is disclosed, for example, as “charging / discharging means 12” in paragraphs 0015 and 0016 of FIG. For this reason, the structure of the charge / discharge device C is not disclosed in detail. As described above, the charging / discharging device C is electrically connected to the plurality of secondary batteries A and B, respectively, and discharged from some of the secondary batteries A and B. It is only necessary to realize a function of charging another secondary battery with electric power, and the structure disclosed in Patent Document 1 is not necessarily limited.

制御装置Dは、演算装置と記憶装置を備え、予め定められたプログラムに沿って電気的な処理を行なうコンピュータである。制御装置Dによって実行される各処理は、かかるコンピュータによって具現化されうる。ここでは、制御装置Dは電源制御装置Eとは別体で図示されているが、必ずしも電源制御装置Eと別体でなくてもよい。例えば、制御装置Dによって具現化される処理は、電源制御装置Eの一機能として具現化されるように、制御装置Dは電源制御装置Eに組み込まれていてもよい。また、制御装置Dは、電源制御装置E以外にも車両の搭載される他のコントロールユニットに組み込まれていてもよい。   The control device D is a computer that includes an arithmetic device and a storage device, and performs electrical processing according to a predetermined program. Each process executed by the control device D can be realized by such a computer. Here, the control device D is illustrated separately from the power supply control device E, but may not necessarily be separate from the power supply control device E. For example, the control device D may be incorporated in the power supply control device E so that the process embodied by the control device D is embodied as one function of the power supply control device E. In addition to the power supply control device E, the control device D may be incorporated in another control unit mounted on the vehicle.

ここで、制御装置Dは、温度センサA1,B1によって取得された温度情報に基づいて複数の二次電池A,Bの温度を検知する。そして、検知された複数の二次電池A,Bの温度T1は、温度情報が検知された時間とともに制御装置Dにおいて記憶される。また、電圧計A2,B2によって得られる電圧情報に基づいて複数の二次電池A,Bの電圧を検知する。そして、検知された複数の二次電池A,Bの電圧V1は、電圧情報が検知された時間とともに制御装置Dにおいて記憶される。   Here, the control device D detects the temperatures of the plurality of secondary batteries A and B based on the temperature information acquired by the temperature sensors A1 and B1. Then, the detected temperatures T1 of the plurality of secondary batteries A and B are stored in the control device D together with the time when the temperature information is detected. Further, the voltages of the plurality of secondary batteries A and B are detected based on voltage information obtained by the voltmeters A2 and B2. And the detected voltage V1 of the secondary batteries A and B is memorize | stored in the control apparatus D with the time when voltage information was detected.

制御装置Dは、検知された複数の二次電池A,Bの温度T1が、−30℃以下の予め定められた温度Xtよりも低いか否か(T1≧Xt)を判定する。そして、複数の二次電池A,Bの温度T1が−30℃以下の予め定められた温度Xtよりも低い場合に以下の処理S1,S2を行なう。   The control device D determines whether or not the detected temperatures T1 of the secondary batteries A and B are lower than a predetermined temperature Xt of −30 ° C. or less (T1 ≧ Xt). Then, when the temperatures T1 of the secondary batteries A and B are lower than a predetermined temperature Xt of −30 ° C. or less, the following processes S1 and S2 are performed.

ここで、処理S1は、充放電装置Cが、他の二次電池を充電する際の充電電流値を設定する処理である。処理S2は、充放電装置Cによって、複数の二次電池A,Bの間で充電と放電とを行なわせる処理である。ここで、処理S2は、適宜に「昇温処理」と称する。   Here, the process S1 is a process of setting a charging current value when the charging / discharging device C charges another secondary battery. The process S2 is a process in which charging and discharging are performed between the secondary batteries A and B by the charge / discharge device C. Here, the process S2 is appropriately referred to as “temperature increase process”.

制御装置Dは、複数の二次電池A,Bについて、温度と、電圧またはSOCと、充電に伴ってリチウムが析出しない最大電流値との関係が予め定められたマップMを備えている。そして、当該マップMに基づいて、温度センサA1,B1によって得られた温度情報に基づいて複数の二次電池A,Bの温度と、電圧計A2,B2によって得られた電圧とに応じた最大電流値を取得し、当該最大電流値を充電電流値とする。   The control device D includes a map M in which the relationship between the temperature, the voltage or the SOC, and the maximum current value at which lithium does not precipitate with charging is predetermined for the plurality of secondary batteries A and B. And based on the said map M, based on the temperature information obtained by temperature sensor A1, B1, the maximum according to the temperature of several secondary battery A, B and the voltage obtained by voltmeter A2, B2 The current value is acquired, and the maximum current value is set as the charging current value.

図2は、マップMの構成例を示す模式図である。図2で例示されるマップMでは、縦軸にSOCおよび電圧が設定されており、横軸に温度が設定されている。そして、電圧(またはSOC)と、温度とによって規定されるマップMの各マス目には、予め定められた最大電流値が記憶されている。ここで、最大電流値は、当該マス目で規定される温度と、電圧またはSOCとに基づいて、充電に伴ってリチウムが確実に析出しないとして、予め行なわれた試験によって見出された最大の電流値が記憶されているとよい。例えば、安全率(例えば、80%)を考慮して、予め行なわれた試験によってリチウムの析出が認められなかった最大の電流値よりも少し低い電流値を、マップMにおいて「最大電流値」として記憶させてもよい。このように「最大電流値」を設定することによって、充電に伴ってリチウムがより確実に析出しない電流値を設定することができる。なお、図2は、マップMの構成例を模式的に示すものであり、実際には、SOCや電圧や温度についてマス目がより細かく設定されているとよい。また、縦軸は、SOCと電圧の何れか一方で規定されていてもよい。   FIG. 2 is a schematic diagram illustrating a configuration example of the map M. In the map M illustrated in FIG. 2, SOC and voltage are set on the vertical axis, and temperature is set on the horizontal axis. A predetermined maximum current value is stored in each square of the map M defined by the voltage (or SOC) and the temperature. Here, the maximum current value is based on the temperature specified by the grid and the voltage or SOC. A current value may be stored. For example, in consideration of the safety factor (for example, 80%), a current value slightly lower than the maximum current value at which lithium deposition was not recognized in a test performed in advance is set as the “maximum current value” in the map M. It may be memorized. By setting the “maximum current value” in this way, it is possible to set a current value at which lithium does not deposit more reliably with charging. Note that FIG. 2 schematically shows a configuration example of the map M. In practice, it is preferable that the grids of the SOC, voltage, and temperature are set more finely. The vertical axis may be defined by either the SOC or the voltage.

このような制御装置Dの制御によって、二次電池A,Bの出力が低下しうる−30℃を下回るような極低温環境下において、上記の処理S1とS2が行なわれる。この際、処理S1において、充電に伴ってリチウムが確実に析出しないように、温度と電圧に応じた電流値が設定される。そして、処理S2において、充放電装置Cによって複数の二次電池A,Bの間で相互に充電と放電が行なわれる際に、処理S1で設定された充電電流値によって充電が行なわれる。このように、二次電池A,Bは、リチウムが析出しない程度でかつ最大の電流値よって、複数の二次電池A,Bの間で相互に充電と放電とが繰り返される。この結果、リチウムの析出を抑えつつ、出力が低下しうる−30℃を下回るような極低温状態から複数の二次電池A,Bを早期に脱却させることができる。   The above-described processes S1 and S2 are performed in an extremely low temperature environment where the output of the secondary batteries A and B can fall below −30 ° C. by such control of the control device D. At this time, in the process S1, a current value corresponding to the temperature and the voltage is set so that lithium is not reliably deposited with the charging. And in process S2, when charge and discharge are performed between the secondary batteries A and B by the charging / discharging device C, charging is performed with the charging current value set in process S1. As described above, the secondary batteries A and B are repeatedly charged and discharged between the plurality of secondary batteries A and B with the maximum current value to the extent that lithium is not deposited. As a result, a plurality of secondary batteries A and B can be quickly removed from an extremely low temperature state where the output can fall below −30 ° C. while suppressing lithium deposition.

図3は、制御装置の制御フローの一例を示すフローチャートである。制御装置Dは、図3に示すように、複数の二次電池A,Bの温度と電圧を検知する(S101)。ここで温度は、温度センサA1,B1によって得られた温度情報に基づいて検知される。電圧は、電圧計A2,B2によって得られた電圧情報に基づいて検知される。   FIG. 3 is a flowchart illustrating an example of a control flow of the control device. As shown in FIG. 3, the control device D detects the temperatures and voltages of the plurality of secondary batteries A and B (S101). Here, the temperature is detected based on the temperature information obtained by the temperature sensors A1 and B1. The voltage is detected based on voltage information obtained by the voltmeters A2 and B2.

図3のフローチャートでは、検知された複数の二次電池A,Bの電圧V1(OCV)が、予め定められた電圧Xvよりも高いか否かを判定する(S102)。かかる判定処理において、複数の二次電池A,Bの開回路電圧が、予め定められた電圧Xvよりも高くない(低い)場合(No)には、複数の二次電池A,Bを互いに充放電することによる電力ロスによって、結局、昇温させても二次電池の出力が制限されることになる。なお、検知された電圧V1が、複数の二次電池A,Bにおいて異なる場合には、検知された電圧のうち最も高い電圧を、判定処理S102における「電圧V1」に採用するとよい。つまり、複数の二次電池A,Bのうち、一方の二次電池の容量には余裕がないが、他の二次電池に余裕があるような場合には、当該容量に余裕がある電池から放電し、余裕のない電池が充電されるように、複数の二次電池の間で相互に充電と放電とを繰り返す制御を始めるとよい。   In the flowchart of FIG. 3, it is determined whether or not the detected voltage V1 (OCV) of the plurality of secondary batteries A and B is higher than a predetermined voltage Xv (S102). In this determination process, when the open circuit voltages of the plurality of secondary batteries A and B are not higher (lower) than the predetermined voltage Xv (No), the plurality of secondary batteries A and B are charged together. Due to the power loss due to the discharge, the output of the secondary battery is eventually limited even if the temperature is raised. In addition, when the detected voltage V1 differs in the some secondary batteries A and B, it is good to employ | adopt the highest voltage among the detected voltages as "voltage V1" in determination process S102. That is, of the plurality of secondary batteries A and B, the capacity of one secondary battery has no margin, but when the other secondary battery has a margin, the battery having the capacity has a margin. It is good to start the control which repeats charge and discharge between several secondary batteries mutually so that it may discharge and a battery with a margin may be charged.

また、検知された電圧のうち最も高い電圧V1が、予め定められた電圧Xvよりも高くない場合(No)には、複数の二次電池A,Bの間で相互に充電と放電を繰り返して二次電池を昇温させても、二次電池A,Bの出力が制限されることになる。このため、図3において、実線の矢印で示されるように、本制御を終了させてもよい。また、図3において、破線の矢印で示されるように、再び、処理S101に戻してもよい。処理S101に戻す場合、複数の二次電池A,Bの電圧が検知され(S101)、検知された電圧V1が予め定められた電圧Xvよりも高いか否かが判定される(S102)。このように、二次電池A,Bが充電されて二次電池A,Bの容量が回復するのを待ってもよい。   When the highest voltage V1 among the detected voltages is not higher than the predetermined voltage Xv (No), charging and discharging are repeated between the secondary batteries A and B. Even if the temperature of the secondary battery is raised, the outputs of the secondary batteries A and B are limited. For this reason, this control may be terminated as shown by the solid arrow in FIG. In addition, in FIG. 3, the process may be returned to the process S101 again as indicated by the dashed arrow. When returning to the process S101, the voltages of the secondary batteries A and B are detected (S101), and it is determined whether or not the detected voltage V1 is higher than a predetermined voltage Xv (S102). As described above, the secondary batteries A and B may be charged to wait for the capacity of the secondary batteries A and B to recover.

そして、検知された電圧V1が予め定められた電圧Xvよりも高い場合(Yes)、検知された温度T1が予め定められた温度Xtよりも低いか否かが判定される(S103)。閾値Xtは、−30℃以下の温度で任意に設定されうる。温度Xt(閾値)は、例えば、制御対象となる複数の二次電池A,Bにおいて、温度が原因として出力の急激な低下が認められる温度に設定するとよい。なお、処理S101において検知される温度が複数の二次電池A,Bの間でばらつくような場合には、検知された温度のうち最も低い温度を判定処理で用いる温度T1とするとよい。これによって、複数の二次電池A,Bのうち最も温度が低い二次電池の温度に基づいて、昇温処理(S2)を行なうか否かが判定される。例えば、複数の二次電池A,Bの中に、−30℃程度の極低温で、出力が上がりにくい二次電池がある場合に、当該二次電池を昇温させる処理(S2)が実行されるように制御されうる。   When the detected voltage V1 is higher than the predetermined voltage Xv (Yes), it is determined whether or not the detected temperature T1 is lower than the predetermined temperature Xt (S103). The threshold value Xt can be arbitrarily set at a temperature of −30 ° C. or lower. For example, the temperature Xt (threshold) may be set to a temperature at which a rapid decrease in output is recognized due to the temperature in the plurality of secondary batteries A and B to be controlled. In addition, when the temperature detected in process S101 varies between the some secondary batteries A and B, it is good to use the lowest temperature among the detected temperatures as the temperature T1 used by a determination process. Thus, it is determined whether or not the temperature raising process (S2) is performed based on the temperature of the secondary battery having the lowest temperature among the plurality of secondary batteries A and B. For example, when there is a secondary battery at a very low temperature of about −30 ° C. and the output is difficult to increase among the plurality of secondary batteries A and B, a process (S2) for raising the temperature of the secondary battery is executed. Can be controlled.

検知された温度T1が予め定められた温度Xtよりも低いと、処理S103において判定された場合(Yes)、上述のように、充電電流値C1を設定する処理(S1)と、昇温処理(S2)とが順に行なわれる。検知された温度T1が予め定められた温度Xtよりも低くないと、処理S103において判定された場合(No)、本制御を終了させるか否かを判定する(S104)。そして、制御を終了させないと判定された場合(No)には、温度と電圧を検知する処理S101に戻すとよい。制御を終了させると判定された場合(Yes)には、本制御を終了させるとよい。ここで、本制御を終了させるか否かを判定する判定条件は、本制御を終了させるのに適当な条件を任意に設定するとよい。   When the detected temperature T1 is lower than the predetermined temperature Xt, if it is determined in the process S103 (Yes), as described above, the process for setting the charging current value C1 (S1) and the temperature increasing process ( S2) are performed in order. If it is determined in step S103 that the detected temperature T1 is not lower than the predetermined temperature Xt (No), it is determined whether or not to end this control (S104). And when it determines with not complete | finishing control (No), it is good to return to process S101 which detects temperature and a voltage. When it is determined that the control is to be ended (Yes), this control may be ended. Here, as a determination condition for determining whether or not to end the present control, it is preferable to arbitrarily set an appropriate condition for ending the present control.

図4は、複数の二次電池A,Bの温度と電圧と充放電動作の推移を模式的に示すグラフである。図4では、複数の二次電池A,Bが所要の残容量を有している状態で、−30℃を下回るような極低温環境下に放置されている。この場合、複数の二次電池A,Bの温度は、時間とともに徐々に低下する。そして、検知された温度T1が予め定められた温度Xtよりも低いと判定されたタイミングP1において、充電によってリチウムが析出しない範囲で最大の充電電流値C1が設定される(S1)。そして、充放電装置Cによって複数の二次電池A,Bの間で相互に充電と放電を繰り返して二次電池を昇温させる昇温処理(S2)が行なわれる。かかる昇温処理(S2)の充電では、処理S1で設定された充電電流値C1によって充電される。これによって、−30℃を下回るような極低温環境下に放置されている場合であっても、リチウムの析出を抑制しつつ、複数の二次電池A,Bが早期に昇温され、出力が改善されうる。   FIG. 4 is a graph schematically showing changes in temperature, voltage, and charge / discharge operation of the secondary batteries A and B. In FIG. 4, the secondary batteries A and B are left in an extremely low temperature environment below −30 ° C. with a required remaining capacity. In this case, the temperature of the secondary batteries A and B gradually decreases with time. Then, at the timing P1 when it is determined that the detected temperature T1 is lower than the predetermined temperature Xt, the maximum charging current value C1 is set in a range where lithium is not deposited by charging (S1). And the temperature increase process (S2) which repeats charge and discharge mutually between the secondary batteries A and B by the charging / discharging device C to raise the temperature of the secondary battery is performed. In the charging in the temperature raising process (S2), the battery is charged with the charging current value C1 set in the process S1. As a result, even when left in an extremely low temperature environment below −30 ° C., the secondary batteries A and B are heated up early and the output is reduced while suppressing lithium deposition. It can be improved.

また、図5は、複数の二次電池A,Bの温度と電圧と充放電動作の推移を模式的に示すグラフである。図5では、当初、複数の二次電池A,Bが所要の残容量を有していない状態で、−30℃を下回るような極低温環境下で放置されている。このため、複数の二次電池A,Bにおいて検知される温度T1は徐々に低下する。その後、Q1のタイミングで充電が開始される。ここでは、プラグインハイブリッド車のように、充電用電源に接続された状態が推定されている。この充電により、複数の二次電池A,Bは徐々に容量が回復する。そして、複数の二次電池A,Bの容量がある電圧Xv(閾値)を超えたタイミングQ2において、充電によってリチウムが析出しない範囲で最大の充電電流値C1が設定される(S1)。そして、充放電装置Cによって複数の二次電池A,Bの間で相互に充電と放電を繰り返して二次電池を昇温させる昇温処理(S2)が行なわれる。かかる昇温処理(S2)の充電では、処理S1で設定された充電電流値C1によって充電される。これによって、−30℃を下回るような極低温環境下に放置されている場合であっても、リチウムの析出を抑制しつつ、複数の二次電池A,Bが早期に昇温され、出力が改善されうる。   FIG. 5 is a graph schematically showing the transition of temperature and voltage and charge / discharge operations of the secondary batteries A and B. In FIG. 5, the plurality of secondary batteries A and B are initially left in a cryogenic environment below −30 ° C. without the required remaining capacity. For this reason, the temperature T1 detected in the secondary batteries A and B gradually decreases. Thereafter, charging is started at the timing of Q1. Here, the state connected to the power supply for charge like a plug-in hybrid vehicle is estimated. By this charging, the capacity of the secondary batteries A and B is gradually recovered. Then, at timing Q2 when the capacities of the plurality of secondary batteries A and B exceed a certain voltage Xv (threshold), the maximum charging current value C1 is set in a range where lithium is not deposited by charging (S1). And the temperature increase process (S2) which repeats charge and discharge mutually between the secondary batteries A and B by the charging / discharging device C to raise the temperature of the secondary battery is performed. In the charging in the temperature raising process (S2), the battery is charged with the charging current value C1 set in the process S1. As a result, even when left in an extremely low temperature environment below −30 ° C., the secondary batteries A and B are heated up early and the output is reduced while suppressing lithium deposition. It can be improved.

本発明者が行なった試験によれば、ここで提案される車両用二次電池システムを採用することによって以下のような結果が確認された。
試験:環境温度−33℃において、電池温度が−32℃の状態から、充電電流値を設定する処理S1で設定された適切な充電電流値C1によって、複数の二次電池の間で相互に充電と放電を繰り返して二次電池を昇温させる昇温処理S2を行なった。
結果:環境温度−33℃において、電池温度が−27℃になった。ここでは、大凡1000秒程度の比較的短時間において、電池温度が大凡5℃上昇した。このとき、電池温度が−32℃の時の二次電池の出力は大凡96Wであったが、電池温度が−27℃になると二次電池の出力は大凡116Wに改善した。このように適切な充電電流値C1によって昇温処理S2が行なわれることによって、出力向上が確認できた。また、本制御では、昇温処理(S2)において、リチウムの析出が抑制されるように充電電流値C1が適切に管理される。このため、昇温処理(S2)の前後において二次電池A,Bの容量維持率はほとんど劣化しない。
According to the tests conducted by the present inventors, the following results were confirmed by employing the proposed vehicle secondary battery system.
Test: A plurality of secondary batteries are mutually charged with an appropriate charging current value C1 set in the process S1 for setting a charging current value from a state where the battery temperature is -32 ° C at an environmental temperature of -33 ° C. The discharge was repeated, and the temperature raising process S2 for raising the temperature of the secondary battery was performed.
Result: At an ambient temperature of -33 ° C, the battery temperature was -27 ° C. Here, the battery temperature increased by about 5 ° C. in a relatively short time of about 1000 seconds. At this time, the output of the secondary battery when the battery temperature was −32 ° C. was about 96 W, but the output of the secondary battery was improved to about 116 W when the battery temperature was −27 ° C. Thus, the output improvement was confirmed by performing temperature rising process S2 by appropriate charging current value C1. In this control, the charging current value C1 is appropriately managed so that the deposition of lithium is suppressed in the temperature raising process (S2). For this reason, the capacity maintenance rates of the secondary batteries A and B hardly deteriorate before and after the temperature raising process (S2).

以上、ここで提案される車両用二次電池システムについて一実施形態を説明したが、ここで提案される車両用二次電池システムは、特に言及されない限りにおいて上述した実施形態に限定されない。   As mentioned above, although one embodiment was described about the secondary battery system for vehicles proposed here, the secondary battery system for vehicles proposed here is not limited to the embodiment mentioned above unless it mentions especially.

100 車両用二次電池システム
A,B 二次電池
A1,B1 温度センサ
A2,B2 電圧計
A3,B3 検知部
C 充放電装置
D 制御装置
E 電源制御装置
100 Secondary Battery System A, B Secondary Battery A1, B1 Temperature Sensor A2, B2 Voltmeter A3, B3 Detector C Charging / Discharging Device D Control Device E Power Supply Control Device

Claims (1)

制御対象となる複数の二次電池と、
前記複数の二次電池に関する温度情報を取得する温度センサと、
前記複数の二次電池についてそれぞれ電圧を検知する電圧計、又は、前記複数の二次電池についてそれぞれSOCを検知するSOC検知部と、
前記複数の二次電池にそれぞれ電気的に接続され、前記複数の二次電池のうち一部の二次電池から放電された電力によって他の二次電池を充電する充放電装置と、
制御装置と
を備え、
前記制御装置は、
前記温度センサによって取得された温度情報に基づいて前記複数の二次電池の温度を検知し、当該検知された温度が−30℃以下の予め定められた温度よりも低い場合に、
前記充放電装置が、前記他の二次電池を充電する際の充電電流値を設定する処理S1と、
前記充放電装置によって、前記複数の二次電池の間で充電と放電を行なわせる処理S2とを行なう、
ここで、前記処理S1では、
前記複数の二次電池について、温度と、電圧またはSOCと、充電に伴ってリチウムが析出しない最大電流値との関係が予め定められたマップに基づいて、
前記温度センサによって得られた温度情報に基づいて検知された前記複数の二次電池の温度と、前記電圧計によって得られた電圧またはSOC検知部によって得られたSOCとに応じた最大電流値を取得し、
当該最大電流値を前記充電電流値とする、
車両用二次電池システム。
A plurality of secondary batteries to be controlled;
A temperature sensor for acquiring temperature information regarding the plurality of secondary batteries;
A voltmeter for detecting a voltage for each of the plurality of secondary batteries, or an SOC detection unit for detecting an SOC for each of the plurality of secondary batteries;
A charge / discharge device that is electrically connected to each of the plurality of secondary batteries and charges another secondary battery with electric power discharged from some of the plurality of secondary batteries;
A control device,
The controller is
When the temperature of the plurality of secondary batteries is detected based on the temperature information acquired by the temperature sensor, and the detected temperature is lower than a predetermined temperature of −30 ° C. or less,
A process S1 for setting a charging current value when the charge / discharge device charges the other secondary battery;
The charging / discharging device performs processing S2 for charging and discharging between the plurality of secondary batteries.
Here, in the process S1,
For the plurality of secondary batteries, based on a map in which the relationship between temperature, voltage or SOC, and the maximum current value at which lithium does not precipitate with charging is predetermined,
The maximum current value according to the temperature of the plurality of secondary batteries detected based on the temperature information obtained by the temperature sensor and the voltage obtained by the voltmeter or the SOC obtained by the SOC detector. Acquired,
The maximum current value is the charging current value.
Secondary battery system for vehicles.
JP2015220782A 2015-11-10 2015-11-10 Vehicle secondary battery system Active JP6540998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220782A JP6540998B2 (en) 2015-11-10 2015-11-10 Vehicle secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220782A JP6540998B2 (en) 2015-11-10 2015-11-10 Vehicle secondary battery system

Publications (2)

Publication Number Publication Date
JP2017091817A true JP2017091817A (en) 2017-05-25
JP6540998B2 JP6540998B2 (en) 2019-07-10

Family

ID=58770874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220782A Active JP6540998B2 (en) 2015-11-10 2015-11-10 Vehicle secondary battery system

Country Status (1)

Country Link
JP (1) JP6540998B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108501746A (en) * 2018-03-29 2018-09-07 吉利汽车研究院(宁波)有限公司 Battery pack heating means, apparatus and system
JP2019125558A (en) * 2018-01-19 2019-07-25 トヨタ自動車株式会社 Secondary battery system and vehicle including the same, and method of controlling battery
CN110611133A (en) * 2019-09-20 2019-12-24 河南锂动电源有限公司 Charging method of lithium ion battery management system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990661A (en) * 1998-04-30 1999-11-23 Daimlerchrysler Corporation Circulating current battery heater
JP2001314046A (en) * 2000-05-01 2001-11-09 Toyota Motor Corp Charging apparatus and method of battery pack and electric vehicle
JP2008060047A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power supply system and vehicle equipped with it, and temperature elevation control method of power storage device, as well as recording medium readable by computer recording program in order to carry out temperature elevation control of power storage device
JP2010044895A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Temperature control device of power supply device
JP2010097923A (en) * 2008-09-16 2010-04-30 Toyota Motor Corp Power storage device and vehicle
JP2011018533A (en) * 2009-07-08 2011-01-27 Toyota Motor Corp Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
US20130076313A1 (en) * 2011-09-26 2013-03-28 Kia Motors Corporation Battery charging control technique for vehicle
JP2013081316A (en) * 2011-10-04 2013-05-02 Toyota Motor Corp Charging control device of series-parallel cell system
JP2015204149A (en) * 2014-04-11 2015-11-16 ソニー株式会社 Power storage device, control method, control device, power storage system, maintenance system, electric vehicle and electronic apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990661A (en) * 1998-04-30 1999-11-23 Daimlerchrysler Corporation Circulating current battery heater
JP2001314046A (en) * 2000-05-01 2001-11-09 Toyota Motor Corp Charging apparatus and method of battery pack and electric vehicle
JP2008060047A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power supply system and vehicle equipped with it, and temperature elevation control method of power storage device, as well as recording medium readable by computer recording program in order to carry out temperature elevation control of power storage device
JP2010044895A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Temperature control device of power supply device
JP2010097923A (en) * 2008-09-16 2010-04-30 Toyota Motor Corp Power storage device and vehicle
JP2011018533A (en) * 2009-07-08 2011-01-27 Toyota Motor Corp Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
US20120112695A1 (en) * 2009-07-08 2012-05-10 Toyota Jidosha Kabushiki Kaisha Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
US20130076313A1 (en) * 2011-09-26 2013-03-28 Kia Motors Corporation Battery charging control technique for vehicle
JP2013074785A (en) * 2011-09-26 2013-04-22 Hyundai Motor Co Ltd Method and device for battery charging control for vehicle
JP2013081316A (en) * 2011-10-04 2013-05-02 Toyota Motor Corp Charging control device of series-parallel cell system
JP2015204149A (en) * 2014-04-11 2015-11-16 ソニー株式会社 Power storage device, control method, control device, power storage system, maintenance system, electric vehicle and electronic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125558A (en) * 2018-01-19 2019-07-25 トヨタ自動車株式会社 Secondary battery system and vehicle including the same, and method of controlling battery
CN110061554A (en) * 2018-01-19 2019-07-26 丰田自动车株式会社 Secondary battery system and have the vehicle of the system and the control method of battery
US10854935B2 (en) 2018-01-19 2020-12-01 Toyota Jidosha Kabushiki Kaisha Secondary battery system, vehicle including the same, and method for controlling battery
CN108501746A (en) * 2018-03-29 2018-09-07 吉利汽车研究院(宁波)有限公司 Battery pack heating means, apparatus and system
CN108501746B (en) * 2018-03-29 2020-07-07 吉利汽车研究院(宁波)有限公司 Battery pack heating method, device and system
CN110611133A (en) * 2019-09-20 2019-12-24 河南锂动电源有限公司 Charging method of lithium ion battery management system

Also Published As

Publication number Publication date
JP6540998B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP5321757B2 (en) Storage device control device and control method
JP5379672B2 (en) Secondary battery polarization voltage calculation device and charging state estimation device
US10254346B2 (en) SOC estimation device for secondary battery
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
TW201727990A (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
US10551468B2 (en) Failure detection apparatus for voltage sensor
US8674659B2 (en) Charge control device and vehicle equipped with the same
JP5568583B2 (en) Lithium ion secondary battery system, inspection method for lithium ion secondary battery, control method for lithium ion secondary battery
JP2011054413A (en) System and method for determining deterioration state of secondary battery
JPWO2013046263A1 (en) Non-aqueous secondary battery control device and control method
JP2010066229A (en) Device and method for detecting failure of battery
JP2013214371A (en) Battery system and estimation method
JP2017091817A (en) Secondary battery system for vehicle
JP4138204B2 (en) Charge / discharge control apparatus and method
KR101583946B1 (en) Battery charging method
JP6377959B2 (en) Secondary battery control device
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
JP2015061505A (en) Power storage system
JP5704063B2 (en) Equalized discharge device for battery pack
JP5842607B2 (en) Non-aqueous secondary battery control device and control method
JP2015106482A (en) Charging system
US10283980B2 (en) Electrical storage system
JP2010212019A (en) Control device for lithium ion battery, and automobile equipped with control device for lithium ion battery
Singh et al. A new method to perform lithium-ion battery pack fault diagnostics–Part 3: Adaptation for fast charging
JP2019046768A (en) Lithium ion secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190529

R151 Written notification of patent or utility model registration

Ref document number: 6540998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151