JP2017091738A - Lead acid battery regenerator - Google Patents

Lead acid battery regenerator Download PDF

Info

Publication number
JP2017091738A
JP2017091738A JP2015218770A JP2015218770A JP2017091738A JP 2017091738 A JP2017091738 A JP 2017091738A JP 2015218770 A JP2015218770 A JP 2015218770A JP 2015218770 A JP2015218770 A JP 2015218770A JP 2017091738 A JP2017091738 A JP 2017091738A
Authority
JP
Japan
Prior art keywords
electrode
pulse
discharge
lead
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015218770A
Other languages
Japanese (ja)
Other versions
JP6751879B2 (en
Inventor
南 繁行
Shigeyuki Minami
繁行 南
森 和彦
Kazuhiko Mori
和彦 森
洋一 西河
Yoichi Nishikawa
洋一 西河
歩 渡部
Ayumi Watabe
歩 渡部
友祐 坂部
Tomohiro Sakabe
友祐 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iida Group Holdings Co Ltd
Original Assignee
Iida Group Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iida Group Holdings Co Ltd filed Critical Iida Group Holdings Co Ltd
Priority to JP2015218770A priority Critical patent/JP6751879B2/en
Publication of JP2017091738A publication Critical patent/JP2017091738A/en
Application granted granted Critical
Publication of JP6751879B2 publication Critical patent/JP6751879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the life of a lead acid battery by removing sulfation adhering to the electrode surface of the lead acid battery.SOLUTION: A lead acid battery regenerator 100 for removing sulfation adhering to the electrode 12 of a lead acid battery 10 includes a discharge pulse current supply section 102 for supplying a discharge pulse current Ip to the electrode, and a control section 104 for controlling the discharge pulse current supply section so as to generate a pulse power of a predetermined magnitude or more only at charging, corresponding to the battery capacity of the lead acid battery, by detecting the charging time thereof, and to supply the pulse power to the electrode.SELECTED DRAWING: Figure 1

Description

本発明は、鉛蓄電池の電極に付着した硫酸鉛の不導体皮膜を除去して鉛蓄電池の長寿命化を図る鉛蓄電池再生装置に関する。   The present invention relates to a lead-acid battery regenerator that removes a lead sulfate non-conductive film attached to an electrode of a lead-acid battery and extends the life of the lead-acid battery.

充電及び放電を繰り返し行うことが可能な二次電池のうち、鉛蓄電池は、比較的安価で安定した性能を有するため、自動車、船舶、建設機械用や、産業用としての商用電源、住宅用電源が途絶えたときの非常用電源等として幅広く使用されている。しかしながら、鉛蓄電池は、鉛蓄電池の充電と放電を繰り返すことによって、電解液中の硫酸と電極板の鉛が化学反応により、負極表面において、結晶化した硫酸鉛(PbSO)の不導体皮膜となって電極板に付着するようになり劣化する(サルフェーション)。 Among secondary batteries that can be repeatedly charged and discharged, lead-acid batteries are relatively inexpensive and have stable performance. Therefore, they are used for automobiles, ships, construction machinery, industrial power supplies, and residential power supplies. It is widely used as an emergency power source when it stops. However, a lead-acid battery has a non-conductive film of lead sulfate (PbSO 4 ) crystallized on the negative electrode surface by repeating the charging and discharging of the lead-acid battery, and the sulfuric acid in the electrolyte and the lead on the electrode plate are chemically reacted on the negative electrode surface. It becomes attached to the electrode plate and deteriorates (sulfation).

サルフェーションにより形成された不導体皮膜は、電極表面で成長して白色硬化することにより、実効的な電極表面積を減少させる。不導体被膜は、鉛蓄電池の内部抵抗を増大させ、充電容量を大幅に減少させるので、バッテリ性能を著しく低下させる。このような硫酸鉛の不導体皮膜を除去するため、鉛蓄電池の電極にパルス電流を流して電極とその表面に成長した硫酸鉛皮膜との間に電撃ショックを与えることによって、サルフェーションを電極から物理的に剥離する方法が特許文献1及び特許文献2に開示されている。   The non-conductive film formed by sulfation grows on the electrode surface and is white-cured, thereby reducing the effective electrode surface area. The non-conductive coating increases the internal resistance of the lead-acid battery and greatly reduces the charge capacity, thus significantly reducing battery performance. In order to remove such a non-conductive film of lead sulfate, a pulsating current is applied to the electrode of the lead-acid battery, and an electric shock is applied between the electrode and the lead sulfate film grown on the surface, so that sulfation is physically removed from the electrode. Patent Document 1 and Patent Document 2 disclose a method for automatically peeling.

特許3902212号公報Japanese Patent No. 3902212 特開2011−71001号公報JP 2011-71001 A

サルフェーションは、鉛蓄電池の放電によって生成する硫酸鉛が負極板上に析出し、次第に成長して白色硬化した不導体皮膜を形成する現象であり、放電条件や当該鉛蓄電池が放置されるときの周囲温度、振動等の諸条件によって影響される。このため、当該諸条件によっては、パルス電流を印加しても、鉛蓄電池を再生できない場合があった。特許文献1及び特許文献2に開示された再生方法は、パルス電流の印加による電極の発熱による悪影響等を考慮して、何れも0.01〜0.10A程度の微弱なパルス電流を電極に印加している。このため、サルフェーションの程度の軽い場合では、鉛蓄電池の再生が可能であるが、サルフェーションの程度によっては、鉛蓄電池を再生できない場合があった。   Sulfation is a phenomenon in which lead sulfate produced by the discharge of a lead storage battery is deposited on the negative electrode plate and gradually grows to form a white-cured non-conductive film. The discharge conditions and surroundings when the lead storage battery is left unattended It is affected by various conditions such as temperature and vibration. For this reason, depending on the conditions, the lead-acid battery may not be regenerated even when a pulse current is applied. The reproduction methods disclosed in Patent Document 1 and Patent Document 2 apply a weak pulse current of about 0.01 to 0.10 A to the electrode in consideration of the adverse effect of the heat generation of the electrode due to the application of the pulse current. doing. For this reason, when the degree of sulfation is light, the lead storage battery can be regenerated, but depending on the degree of sulfation, the lead storage battery may not be regenerated.

本発明は、上記課題に鑑みてなされたものであり、パルス電流の印加による電極の発熱による悪影響を軽減しながら、鉛蓄電池の電極に付着したサルフェーションをより確実に除去して、鉛蓄電池の長寿命化を図ることの可能な、新規かつ改良された鉛蓄電池再生装置を提供することを目的とする。   The present invention has been made in view of the above problems, and more reliably removes sulfation adhering to the electrode of the lead storage battery while reducing the adverse effects due to the heat generation of the electrode due to the application of the pulse current. It is an object of the present invention to provide a new and improved lead-acid battery regeneration device capable of extending the life.

本発明の一態様は、鉛蓄電池の電極に付着したサルフェーションを除去する鉛蓄電池再生装置であって、前記電極に放電パルス電流を供給する放電パルス電流供給部と、前記鉛蓄電池の充電時を検知して、前記充電時のみに該鉛蓄電池の電池容量に対応する所定の大きさ以上のパルスパワーを発生させて、該パルスパワーを前記電極に供給するように前記放電パルス電流供給部を制御する制御部を備えることを特徴とする。   One aspect of the present invention is a lead-acid battery regeneration device that removes sulfation adhering to an electrode of a lead-acid battery, the discharge-pulse current supply unit supplying a discharge pulse current to the electrode, and detecting the charge of the lead-acid battery Then, the discharge pulse current supply unit is controlled so as to generate a pulse power of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery only at the time of charging and supply the pulse power to the electrode. A control unit is provided.

本発明の一態様によれば、鉛蓄電池の充電時に放電パルス電流供給部から所定の大きさ以上のパルスパワーを発生させる放電パルス電流を電極に印加することによって、電極表面に形成されたサルフェーションを電極の内側からの鉛イオン電流衝撃により確実に破壊できる。   According to one aspect of the present invention, the sulfation formed on the electrode surface is applied by applying a discharge pulse current that generates a pulse power of a predetermined magnitude or more from the discharge pulse current supply unit to the electrode when the lead storage battery is charged. It can be reliably destroyed by the lead ion current impact from the inside of the electrode.

このとき、本発明の一態様では、前記制御部は、前記放電パルス電流の電流値、パルス幅、及びパルス周期を調整して、前記電池容量に対応する所定の大きさ以上の前記パルスパワーを発生させるように前記放電パルス電流供給部を制御することとしてもよい。   At this time, according to an aspect of the present invention, the control unit adjusts a current value, a pulse width, and a pulse period of the discharge pulse current to obtain the pulse power having a predetermined magnitude or more corresponding to the battery capacity. The discharge pulse current supply unit may be controlled so as to be generated.

このような条件で放電パルス電流を電極に印加することによって、電極表面に形成されたサルフェーションを電極の内側からより確実に破壊できる。   By applying a discharge pulse current to the electrode under such conditions, the sulfation formed on the electrode surface can be more reliably destroyed from the inside of the electrode.

また、本発明の一態様では、前記制御部は、前記電極に供給する前記パルスパワーの基準として、前記電池容量に対する1C放電電流と前記鉛蓄電池の定格電圧を掛けて算出される電力値以上の大きさのパルスパワーを発生させるように、前記放電パルス電流供給部を制御することとしてもよい。ここで、1Cとは、電池の定格容量アンペアアワーを1時間で放電終了する電流値[アンペア]のことである。   Moreover, in one aspect of the present invention, the control unit has a power value that is equal to or greater than a power value calculated by multiplying a 1 C discharge current with respect to the battery capacity and a rated voltage of the lead storage battery as a reference for the pulse power supplied to the electrode. The discharge pulse current supply unit may be controlled so as to generate a pulse power having a magnitude. Here, 1 C is a current value [ampere] at which discharge of the rated capacity ampere hour of the battery is completed in one hour.

このように、電池容量の大きさに対応したパルスパワーを発生させる放電パルス電流を電極から放電させることによって、過剰な電流印加に伴う電極の発熱による悪影響を軽減しながら、電極表面に形成されたサルフェーションを電極の内側からより確実に破壊できる。   In this way, the discharge pulse current that generates the pulse power corresponding to the size of the battery capacity is discharged from the electrode, thereby reducing the adverse effects caused by the heat generation of the electrode due to excessive current application, and formed on the electrode surface. Sulfation can be destroyed more reliably from the inside of the electrode.

以上説明したように本発明によれば、電池容量の大きさに対応したパルスパワーを発生させる放電パルス電流を充電時に電極に印加し、電池放電時には、パルス放電をしないので、過放電を防止しながら、鉛蓄電池の電極表面に付着したサルフェーションがより確実に除去されるようになる。このため、電池の保護の観点からの実用性も高く、かつ、鉛蓄電池の長寿命化を効率よく確実に図れるようになる。   As described above, according to the present invention, a discharge pulse current that generates pulse power corresponding to the size of the battery capacity is applied to the electrode during charging, and pulse discharge is not performed during battery discharge, thus preventing overdischarge. However, the sulfation adhering to the electrode surface of the lead storage battery is more reliably removed. For this reason, the practicality from the viewpoint of battery protection is high, and the life of the lead storage battery can be increased efficiently and reliably.

本発明の一実施形態に係る鉛蓄電池再生装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the lead acid battery reproducing | regenerating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鉛蓄電池再生装置から印加される放電パルス電流のパルス波形図である。It is a pulse waveform diagram of the discharge pulse current applied from the lead acid battery regeneration device concerning one embodiment of the present invention. 本発明の一実施形態に係る鉛蓄電池再生装置の性能評価試験における電池電圧と経過時間の関係、及び当該鉛蓄電池再生装置から放電パルス電流を印加するタイミングを示す説明図である。It is explanatory drawing which shows the relationship between the battery voltage and elapsed time in the performance evaluation test of the lead acid battery reproducing | regenerating apparatus which concerns on one Embodiment of this invention, and the timing which applies a discharge pulse current from the said lead acid battery reproducing | regenerating apparatus. 本発明の一実施形態に係る鉛蓄電池再生装置が放電パルス電流を印加する実施態様を示すブロック図である。It is a block diagram which shows the embodiment with which the lead storage battery reproducing | regenerating apparatus which concerns on one Embodiment of this invention applies a discharge pulse current. (a)乃至(c)は、本発明の一実施形態に係る鉛蓄電池再生装置によるサルフェーション除去の動作説明図である。(A) thru | or (c) are operation | movement explanatory drawings of the sulfation removal by the lead acid battery reproducing | regenerating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鉛蓄電池再生装置の評価実験における充放電サイクル数とサイクル毎の放電終了電圧との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging cycle number in the evaluation experiment of the lead acid battery reproducing | regenerating apparatus which concerns on one Embodiment of this invention, and the discharge completion voltage for every cycle.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.

まず、本発明の一実施形態に係る鉛蓄電池再生装置の概略構成について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る鉛蓄電池再生装置の概略構成を示すブロック図である。   First, a schematic configuration of a lead-acid battery regeneration device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a lead-acid battery regeneration device according to an embodiment of the present invention.

本発明の一実施形態に係る鉛蓄電池再生装置100は、鉛蓄電池10の電極12に向けて放電パルス電流を流すことによって、当該電極12(12a、12b)の表面に付着した硫酸鉛層であるサルフェーションを除去して、当該鉛蓄電池10の長寿命化を図る装置である。本実施形態の鉛蓄電池再生装置100は、図1に示すように、電極12にパルス電流を供給する放電パルス電流供給部102と、当該放電パルス電流供給部102から供給される放電パルス電流Ipのパルス波形や電流値・タイミング等を制御する制御部104を備える。   Lead storage battery regeneration device 100 according to an embodiment of the present invention is a lead sulfate layer attached to the surface of electrode 12 (12a, 12b) by flowing a discharge pulse current toward electrode 12 of lead storage battery 10. This is a device for removing the sulfation and extending the life of the lead storage battery 10. As shown in FIG. 1, the lead-acid battery regeneration device 100 of the present embodiment includes a discharge pulse current supply unit 102 that supplies a pulse current to the electrode 12, and a discharge pulse current Ip that is supplied from the discharge pulse current supply unit 102. A control unit 104 that controls the pulse waveform, current value, timing, and the like is provided.

放電パルス電流供給部102は、例えば、図2に示すようなパルス波形を有する放電パルス電流を電極12に供給する。放電パルス電流供給部102は、例えば、不図示の発振器及び放電パルス電流発生器から構成され、当該発振器から出力された信号波により、放電パルス電流発生器に備わるMOSFET、IGBT等の電子スイッチあるいは電磁リレーを駆動させて、図2に示すように、パルス幅T1、及びパルス周期Tのパルス波形を有する放電パルス電流Ipを発生させる。そして、放電パルス電流供給部102は、当該放電パルス電流Ipを鉛蓄電池10の接続端子15(15a、15b)を介して電極12(12a、12b)に印加する。なお、印加する放電パルス電流Ipは、周期T毎にパルス状に電流値が変動するような所定の周期を有する電流であればよいので、その波形は、図2に示す矩形波以外にも、レイズドコサイン波、三角波、鋸歯状波等の他の波形形状やその合成である複数の孤立的な波形も適用可能である。なお、実際の装置では、パルス電流の繰り返し周期Tは、必ずしも固定である必要はなく、周期そのものが不規則に変化するものであってもよい。   For example, the discharge pulse current supply unit 102 supplies a discharge pulse current having a pulse waveform as shown in FIG. The discharge pulse current supply unit 102 includes, for example, an oscillator (not shown) and a discharge pulse current generator, and an electronic switch such as a MOSFET or IGBT provided in the discharge pulse current generator or an electromagnetic wave is generated by a signal wave output from the oscillator. As shown in FIG. 2, the relay is driven to generate a discharge pulse current Ip having a pulse width T1 and a pulse waveform with a pulse period T. The discharge pulse current supply unit 102 applies the discharge pulse current Ip to the electrode 12 (12a, 12b) via the connection terminal 15 (15a, 15b) of the lead storage battery 10. The discharge pulse current Ip to be applied may be a current having a predetermined cycle such that the current value fluctuates in a pulse shape every cycle T. Therefore, the waveform is not limited to the rectangular wave shown in FIG. Other waveform shapes such as a raised cosine wave, a triangular wave, and a sawtooth wave, and a plurality of isolated waveforms that are a combination thereof are also applicable. In an actual apparatus, the repetition period T of the pulse current is not necessarily fixed, and the period itself may change irregularly.

制御部104は、鉛蓄電池再生装置100に備わる各種構成要素等を制御する。本実施形態では、制御部104は、鉛蓄電池10の充電時を検知して、充電時のみに後述する放電パルス電流Ip、パルス幅T1、パルス間隔T2、及びパルス周期Tを調整し、当該放電パルス電流Ipが所定の大きさ以上のパルスパワーを発生させるように、放電パルス電流供給部102を制御することを特徴とする。具体的には、制御部104は、鉛蓄電池10の充電時に当該鉛蓄電池10の電池容量に対応する所定の大きさ以上のパルスパワーを発生させて、当該パルスパワーを電極12に供給するように、放電パルス電流供給部102を制御する。なお、制御部104における放電パルス電流供給部102の制御の詳細については、後述する。   The control unit 104 controls various components provided in the lead storage battery regeneration device 100. In the present embodiment, the control unit 104 detects when the lead storage battery 10 is charged, and adjusts a discharge pulse current Ip, a pulse width T1, a pulse interval T2, and a pulse period T, which will be described later, only during the charging. The discharge pulse current supply unit 102 is controlled so that the pulse current Ip generates a pulse power having a predetermined magnitude or more. Specifically, the control unit 104 generates pulse power of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery 10 when the lead storage battery 10 is charged, and supplies the pulse power to the electrode 12. The discharge pulse current supply unit 102 is controlled. Details of the control of the discharge pulse current supply unit 102 in the control unit 104 will be described later.

本明細書中で言及する「パルスパワー」とは、放電パルス電流Ipと、定格電池電圧Vに対し、Ip×Vで算出される値を言い、卵の殻がある一定値以上の運動量を加えることによって、破壊できるのと同様に、ある閾値以上の放電パワーを電池に投入させる単位時間当たりの電力[ワット]を意味する。すなわち、本発明者は、従来から行われているような微少パルスパワーでは、決して得られない非線形現象によってサルフェーションを効果的に除去できることと、サルフェーション除去は、電池の放電時ではなく、充電時において放電パルス電流を発生させて供給することによって、効果的にサルフェーション除去がなされることを発見し、それを実現する装置として本発明の創作に至った。   “Pulse power” referred to in the present specification refers to a value calculated by Ip × V with respect to the discharge pulse current Ip and the rated battery voltage V, and the momentum above a certain value is added to the egg shell. In the same way that it can be destroyed, it means the power [watt] per unit time that causes the discharge power exceeding a certain threshold to be applied to the battery. In other words, the present inventor can effectively remove sulfation by a non-linear phenomenon that can never be obtained with a small pulse power as conventionally performed, and sulfation removal is not at the time of discharging the battery but at the time of charging. It has been discovered that sulfation removal is effectively achieved by generating and supplying a discharge pulse current, and the present invention has been created as a device for realizing this.

また、ここで言及する「パルス幅T1」とは、図2に示す放電パルス電流Ipの時間幅をいい、「パルス間隔T2」とは、図2に示す放電パルス電流Ipの時間間隔をいう。すなわち、パルス幅T1とパルス間隔T2の和が放電パルス電流Ipの周期Tとなる。なお、多少複雑なパルス波形を用いた場合は、その全体を包含するパルス発生時間をもって、パルス幅T1とみなすことができる。また、「平均パルスパワー」とは、放電パルス電流Ipにより所定の大きさを有する電力[ワット]をいうものとし、放電パルス電流Ip、パルス幅T1、パルス周期T、及び定格電池電圧Vを用いて、下記の式(1)により算出される。この放電パルス電流Ipの下限値は、前述した使用する鉛蓄電池10の電池容量に対応する値である。なお、制御部104による放電パルス電流Ipの制御の詳細については、後述する。
(平均パルスパワー)=V×Ip×T1/T・・・・・・・・・・・・・・・(1)
Further, “pulse width T1” referred to here refers to the time width of the discharge pulse current Ip shown in FIG. 2, and “pulse interval T2” refers to the time interval of the discharge pulse current Ip shown in FIG. That is, the sum of the pulse width T1 and the pulse interval T2 becomes the cycle T of the discharge pulse current Ip. When a somewhat complicated pulse waveform is used, the pulse generation time including the entire pulse waveform can be regarded as the pulse width T1. The “average pulse power” means power [watts] having a predetermined magnitude by the discharge pulse current Ip, and uses the discharge pulse current Ip, the pulse width T1, the pulse period T, and the rated battery voltage V. And calculated by the following equation (1). The lower limit value of the discharge pulse current Ip is a value corresponding to the battery capacity of the lead storage battery 10 to be used. Details of the control of the discharge pulse current Ip by the control unit 104 will be described later.
(Average pulse power) = V × Ip × T1 / T (1)

鉛蓄電池10は、ケーシング11内に電極12として所定の位置に配置された相対向する正極12a及び負極12bがセパレータ14を介して隔てて設けられ、これら正極12a、負極12bが十分に浸漬されるように、希硫酸(HSO)を主成分とする電解液13が充填されている。正極12aは、少なくともその表面に活物質として機能する多孔質の二酸化鉛から構成され、負極12bは、少なくともその表面が活物質として機能する多孔質の鉛から構成されている。 The lead storage battery 10 is provided with a positive electrode 12a and a negative electrode 12b opposite to each other arranged at predetermined positions as an electrode 12 in a casing 11 with a separator 14 therebetween, and the positive electrode 12a and the negative electrode 12b are sufficiently immersed. as an electrolytic solution 13 consisting primarily of dilute sulfuric acid (H 2 sO 4) is filled. The positive electrode 12a is composed of porous lead dioxide that functions as an active material at least on its surface, and the negative electrode 12b is composed of porous lead that functions as an active material on at least its surface.

前述した構成の鉛蓄電池10は、下記の反応式(2)及び(3)に従って放電され、下記の反応式(4)及び(5)に従って充電される。すなわち、正極12a、負極12bの双方から電解液13中に硫酸イオンが移動することによって充電され、電解液13中の硫酸イオンが正極12a、負極12bの双方に移動することによって放電が行われる。
(放電時)
正極:PbO + 4H + SO 2− + 2e
→ PbSO + 2HO・・・ (2)
負極:Pb + SO 2− → PbSO + 2e・・・・・・・・・・ (3)
(充電時)
正極:PbSO + 2H
→ PbO + 4H + SO 2− + 2e・・・(4)
負極:PbSO + 2e → Pb + SO 2−・・・・・・・・・・・ (5)
The lead storage battery 10 having the above-described configuration is discharged according to the following reaction formulas (2) and (3) and charged according to the following reaction formulas (4) and (5). That is, the sulfate ions move from both the positive electrode 12a and the negative electrode 12b into the electrolytic solution 13 to be charged, and the sulfate ions in the electrolytic solution 13 move to both the positive electrode 12a and the negative electrode 12b to discharge.
(During discharge)
Positive electrode: PbO 2 + 4H + + SO 4 2 + + 2e
→ PbSO 4 + 2H 2 O (2)
Negative electrode: Pb + SO 4 2− → PbSO 4 + 2e (3)
(When charging)
Positive electrode: PbSO 4 + 2H 2 O
→ PbO 2 + 4H + + SO 4 2− + 2e (4)
Negative electrode: PbSO 4 + 2e → Pb + SO 4 2− (5)

前述したように、放電及び充電を繰り返したり、経時的な自然放電状態、放電状態が所定期間継続されると、化学反応によって正極12a及び負極12bの表面に硫酸鉛(PbSO)が結晶化されたサルフェーションが析出される。特に、鉛蓄電池10の放電時に析出されたサルフェーションが長期間放置されると、結晶化されたサルフェーションが硬質化し、再び充電しても電解液に戻らなくなってしまい、鉛蓄電池10の内部抵抗の増大や、充電効率の低下、蓄電能力の低下及び放電パワーの低下を誘発し、バッテリ性能を著しく低下させる。 As described above, when the discharge and charge are repeated or the natural discharge state and the discharge state are continued for a predetermined period, lead sulfate (PbSO 4 ) is crystallized on the surfaces of the positive electrode 12a and the negative electrode 12b by a chemical reaction. Sulfuration is deposited. In particular, if the sulfation deposited during the discharge of the lead storage battery 10 is left for a long period of time, the crystallized sulfation will harden and will not return to the electrolyte even if it is charged again, increasing the internal resistance of the lead storage battery 10. In addition, the battery performance is remarkably lowered by inducing a decrease in charging efficiency, a decrease in power storage capacity, and a decrease in discharge power.

本実施形態では、鉛蓄電池再生装置100は、電極12に付着したサルフェーションを除去するために、電極12に所定の大きさ以上の大電流となるような放電パルス電流Ipを鉛蓄電池10の充電時にのみ印加することを特徴とする。本発明者は、前述した本発明の目的を達成するために鋭意検討を重ねた結果、鉛蓄電池10の充電時に鉛蓄電池10の電池容量に対応する所定の大きさ以上のパルスパワーを発生させる放電パルス電流Ipを電極12に印加することによって、電流印加に伴う電極12の発熱による悪影響を軽減しながら、サルフェーションを確実に除去して、鉛蓄電池10の長寿命化を図れることを見出した。   In the present embodiment, the lead storage battery regeneration device 100 applies a discharge pulse current Ip that causes the electrode 12 to have a large current of a predetermined magnitude or more during charging of the lead storage battery 10 in order to remove sulfation attached to the electrode 12. Only applied. As a result of intensive studies in order to achieve the above-described object of the present invention, the present inventor has made a discharge that generates a pulse power of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery 10 when the lead storage battery 10 is charged. It has been found that by applying the pulse current Ip to the electrode 12, sulfation can be reliably removed and the life of the lead-acid battery 10 can be extended while reducing the adverse effects caused by the heat generation of the electrode 12 due to the current application.

また、本発明者は、特に、電解液13から負極12bに電流が向かう充電時にのみ強大な放電パルス電流Ipを流すことによって、電池充電電流に対して逆向きの電流を発生させられ、負極12bの内部からのイオンによる表面サルフェーションの破壊が一層効果的に行えることを見出した。このため、本実施形態では、図3に示すように、充電期間のみに放電パルス電流Ipを電極12に印加することによって、負極内部からのイオンによる電極12の表面に付着したサルフェーションの破壊を効率的に行っている。   In addition, the inventor can generate a current in the opposite direction to the battery charging current by flowing a strong discharge pulse current Ip only during charging in which current flows from the electrolyte 13 to the negative electrode 12b. It was found that the surface sulfation can be more effectively destroyed by ions from inside. For this reason, in this embodiment, as shown in FIG. 3, by applying the discharge pulse current Ip to the electrode 12 only during the charging period, the destruction of the sulfation attached to the surface of the electrode 12 by the ions from the inside of the negative electrode is efficiently performed. Is going.

本実施形態では、制御部104は、鉛蓄電池10への充電状況の検知結果に基づいて、充電時のみに鉛蓄電池10に放電パルス電流Ipを印加することによって、鉛蓄電池10への過放電を防止しながら、効率的なサルフェーション付着を防止できるようにしている。本実施形態の鉛蓄電池再生装置100は、図4に示すように、電源16に接続された充電器18の鉛蓄電池10への充電状態のオン・オフを検出して、充電器18の鉛蓄電池10への充電状態がオンであることを検知すると、制御部104は、鉛蓄電池10の電極12(図1参照)に放電パルス電流Ipの印加を開始するように、放電パルス電流供給部102を制御する。   In the present embodiment, the control unit 104 applies overdischarge to the lead storage battery 10 by applying the discharge pulse current Ip to the lead storage battery 10 only at the time of charging based on the detection result of the charging state of the lead storage battery 10. While preventing, efficient sulfation adhesion can be prevented. As shown in FIG. 4, the lead storage battery regeneration device 100 according to the present embodiment detects the on / off state of charging of the lead storage battery 10 of the charger 18 connected to the power supply 16, and the lead storage battery of the charger 18. 10 detects that the charging state to 10 is ON, the control unit 104 causes the discharge pulse current supply unit 102 to start applying the discharge pulse current Ip to the electrode 12 of the lead storage battery 10 (see FIG. 1). Control.

例えば、本実施形態の鉛蓄電池再生装置100を自動車搭載スターター用鉛蓄電池に適用した場合では、負荷20となる自動車のエンジンがかかって、充電が行われている場合にのみ放電パルス電流Ipを印加する。これによって、自動車のエンジンが停止した駐車中は、鉛蓄電池10に放電による負担がかからないようにできる。その他の用途でも、充電が行われた場合のみに、放電パルス電流Ipを印加することによって、過放電を防止しながら、サルフェーションを確実に除去できる実用的な装置とすることができる。   For example, when the lead storage battery regeneration device 100 of the present embodiment is applied to a lead storage battery for an automobile-mounted starter, the discharge pulse current Ip is applied only when the automobile engine serving as the load 20 is applied and charged. To do. Thereby, it is possible to prevent the lead storage battery 10 from being burdened by discharge during parking when the automobile engine is stopped. Also in other applications, by applying the discharge pulse current Ip only when charging is performed, it is possible to provide a practical device that can reliably remove sulfation while preventing overdischarge.

さらに、本発明者は、電極12に付着したサルフェーションを除去するために印加する適切な放電パルス電流Ipの値は、著しく鉛蓄電池10の容量に依存する旨を見出した。すなわち、本発明者は、電極12に付着したサルフェーション除去の効果を奏するパルスパワーの好適値が鉛蓄電池10の容量に依存する旨を見出した。本実施形態では、当該パルスパワーの好適値として、鉛蓄電池10の電池容量の大きさに対応したパルスパワーを発生させる放電パルス電流Ipを鉛蓄電池10に印加することによって、過剰な電流印加に伴う電極12の発熱による悪影響を軽減しながら、電極12の表面に形成されたサルフェーションを電極12の内側からより確実に破壊するようにしている。   Furthermore, the present inventor has found that the appropriate value of the discharge pulse current Ip applied to remove sulfation attached to the electrode 12 remarkably depends on the capacity of the lead storage battery 10. That is, the present inventor has found that the preferred value of the pulse power that exerts the effect of removing sulfation attached to the electrode 12 depends on the capacity of the lead storage battery 10. In the present embodiment, as a preferable value of the pulse power, by applying a discharge pulse current Ip that generates a pulse power corresponding to the battery capacity of the lead storage battery 10 to the lead storage battery 10, an excess current is applied. The sulfation formed on the surface of the electrode 12 is more reliably destroyed from the inside of the electrode 12 while reducing adverse effects due to the heat generation of the electrode 12.

また、本実施形態では、鉛蓄電池10に放電パルス電流Ipを印加する際に、制御部104が放電パルス電流Ip、パルス幅T1、及びパルス周期Tを調整して、鉛蓄電池10の充電時に当該鉛蓄電池10の電池容量に対応する所定の大きさ以上のパルスパワーを発生させるように、放電パルス電流供給部102を制御することを特徴とする。具体的には、鉛蓄電池再生装置100は、制御部104が電極12に供給するパルスパワーとして、鉛蓄電池10の電池容量に対する1C放電電流と鉛蓄電池12の定格電圧を掛けて算出される電力値以上の大きさのパルスパワーを含む放電パルス電流Ipを発生させるように、放電パルス電流供給部102を制御する。   Further, in the present embodiment, when applying the discharge pulse current Ip to the lead storage battery 10, the control unit 104 adjusts the discharge pulse current Ip, the pulse width T1, and the pulse period T, so that the lead storage battery 10 is charged. The discharge pulse current supply unit 102 is controlled so as to generate a pulse power of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery 10. Specifically, the lead storage battery regeneration device 100 calculates the power value calculated by multiplying the 1C discharge current with respect to the battery capacity of the lead storage battery 10 by the rated voltage of the lead storage battery 12 as the pulse power supplied to the electrode 12 by the control unit 104. The discharge pulse current supply unit 102 is controlled so as to generate the discharge pulse current Ip including the above-described pulse power.

すなわち、本実施形態では、使用する鉛蓄電池10の電池容量(Ah、アンペアアワー)に対する1C放電電流と当該鉛蓄電池10の定格電圧を掛けた電力値をP0(W)と定義したとき、その電力値P0以上のパルスパワーPが含まれる放電パルス電流Ipを電極12に印加する。   That is, in this embodiment, when a power value obtained by multiplying the 1C discharge current for the battery capacity (Ah, ampere hour) of the lead storage battery 10 to be used and the rated voltage of the lead storage battery 10 is defined as P0 (W), A discharge pulse current Ip including a pulse power P greater than or equal to the value P0 is applied to the electrode 12.

例えば、交渉電圧12Vで電池容量20Ahの鉛蓄電池10を使用した際に、40Aのパルス放電をすれば、パルスパワーPは、480Wが放電印加されたことになる。一方、1C放電での電流は、20Aであることから、当該電力値P0は、240Wとなる。この場合では、鉛蓄電池10の電池容量(Ah)に対する1C放電電流と当該鉛蓄電池10の定格電圧を掛けた電力値P0以上の大きさとなるパルスパワーPを発生させる放電パルス電流Ipを電極12に印加したことになる。なお、放電パルス電流Ipは、図2においては、簡単にピーク値として決められるが、前述したように、より複雑な波形の場合には、その平均値あるいは実効値をもって、ほぼIpと置き換えてみなし、本発明の一実施形態に係る鉛蓄電池再生装置100に含まれるものとする。   For example, when a lead storage battery 10 having a negotiating voltage of 12 V and a battery capacity of 20 Ah is used, if pulse discharge of 40 A is performed, 480 W of pulse power P is applied by discharge. On the other hand, since the current in the 1C discharge is 20 A, the power value P0 is 240W. In this case, a discharge pulse current Ip for generating a pulse power P having a magnitude equal to or larger than a power value P0 obtained by multiplying the 1C discharge current with respect to the battery capacity (Ah) of the lead storage battery 10 by the rated voltage of the lead storage battery 10 is applied to the electrode 12. It is applied. In FIG. 2, the discharge pulse current Ip is easily determined as a peak value. However, as described above, in the case of a more complicated waveform, the average value or effective value thereof is regarded as being replaced with almost Ip. The lead-acid battery regeneration device 100 according to an embodiment of the present invention is included.

このように、鉛蓄電池10の電池容量の大きさに対応したパルスパワーPを発生させる放電パルス電流Ipを電極12に印加することによって、過剰な電流印加に伴う電極12の発熱による悪影響を軽減しながら、電極12の表面に形成されたサルフェーションを電極12の内側からより確実に破壊できるようになる。   In this way, by applying the discharge pulse current Ip that generates the pulse power P corresponding to the size of the battery capacity of the lead storage battery 10 to the electrode 12, adverse effects due to heat generation of the electrode 12 due to excessive current application are reduced. However, the sulfation formed on the surface of the electrode 12 can be more reliably destroyed from the inside of the electrode 12.

前述したように、従来では、電極12に付着したサルフェーションを除去するために印加するパルス電流は、0.01〜0.10A程度の微弱なパルス電流のものが多かった。このため、鉛蓄電池10の使用条件やサルフェーションの進行程度によっては、サルフェーションが十分に除去されずに、鉛蓄電池10を再生できない場合があった。   As described above, conventionally, the pulse current applied to remove the sulfation attached to the electrode 12 is often a weak pulse current of about 0.01 to 0.10 A. For this reason, depending on the use conditions of the lead storage battery 10 and the progress of the sulfation, the sulfation may not be sufficiently removed and the lead storage battery 10 may not be regenerated.

これに対して、本実施形態では、鉛蓄電池10に放電パルス電流として、鉛蓄電池10の充電時に鉛蓄電池10の電池容量の大きさに対応した所定の大きさ以上の放電パルス電流を電極12に繰り返し印加して、電極12、特にサルフェーションによる劣化が顕著にみられる負極12bの活性化を行って、サルフェーションを除去するようにしている。   On the other hand, in this embodiment, a discharge pulse current of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery 10 is charged to the electrode 12 as a discharge pulse current for the lead storage battery 10 when the lead storage battery 10 is charged. The electrode 12 is repeatedly applied to activate the electrode 12, particularly the negative electrode 12b in which deterioration due to sulfation is noticeable, so that the sulfation is removed.

このように、本実施形態では、鉛蓄電池10の充電時に鉛蓄電池10の電池容量の大きさに対応した所定の大きさ以上の放電パルス電流を電極12に印加して、サルフェーションを除去して、バッテリ性能を向上させて鉛蓄電池10の長寿命化を図っている。すなわち、鉛蓄電池10の充電時に電極12に鉛蓄電池10の電池容量の大きさに対応した所定の大きさ以上のパワーを持つ放電パルス電流Ipを印加して、そのパルスパワーを発生させることによって、サルフェーションの除去に必要最小限となる衝撃を電極12に与えられるようになる。   Thus, in this embodiment, when charging the lead storage battery 10, a discharge pulse current of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery 10 is applied to the electrode 12 to remove sulfation, The battery performance is improved to extend the life of the lead storage battery 10. That is, by applying a discharge pulse current Ip having a power of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery 10 to the electrode 12 when charging the lead storage battery 10, and generating the pulse power, The electrode 12 can be given a shock that is minimally necessary for removing the sulfation.

このため、過剰な電流印加に伴う電極12の発熱による悪影響を軽減しながら、電極12の表面の活性化を図って、電極12に付着したサルフェーションをより確実に除去できるようになる。また、電極12に付着したサルフェーションの除去に必要最小限のパルスパワーを含む放電パルス電流Ipを電極12に印加して、確実にサルフェーションを除去するので、過剰電流を電極12に印加するリスクを低減して、鉛蓄電池再生装置100によるサルフェーション除去の省電力化も図れるようになる。   For this reason, the surface of the electrode 12 can be activated and the sulfation adhering to the electrode 12 can be more reliably removed while reducing the adverse effect of the heat generation of the electrode 12 due to excessive current application. Further, since the discharge pulse current Ip including the minimum pulse power necessary for removing the sulfation attached to the electrode 12 is applied to the electrode 12 to reliably remove the sulfation, the risk of applying an excessive current to the electrode 12 is reduced. Thus, it is possible to save power by removing the sulfation by the lead storage battery regeneration device 100.

次に、本発明の一実施形態に係る鉛蓄電池再生装置100によるサルフェーション除去の動作について、図面を使用しながら説明する。図5(a)乃至(c)は、本発明の一実施形態に係る鉛蓄電池再生装置100によるサルフェーション除去の動作説明図である。   Next, the operation of sulfation removal by the lead storage battery regeneration device 100 according to one embodiment of the present invention will be described with reference to the drawings. FIGS. 5A to 5C are operation explanatory views of sulfation removal by the lead-acid battery regeneration device 100 according to one embodiment of the present invention.

図5(a)に示すように、鉛蓄電池10の放電時に電極12の表面12cに非伝導性の硫酸鉛の結晶皮膜であるサルフェーションSuが発生する。サルフェーションSuは、発生時点では、極めて柔らかい物質であるため、柔軟な態様で電極12の表面12cに付着しているが、時間と共に強固な結晶に成長していく。   As shown in FIG. 5A, sulfation Su, which is a non-conductive lead sulfate crystal film, is generated on the surface 12c of the electrode 12 when the lead storage battery 10 is discharged. Since sulfation Su is a very soft substance at the time of generation, it adheres to the surface 12c of the electrode 12 in a flexible manner, but grows into a strong crystal over time.

しかしながら、鉛蓄電池10の放電と充電を繰り返すことによって、図5(b)に示すように、電極12の表面12cに付着したサルフェーションSuが硬質化して、電極12の表面12cを被覆してしまう。特に、鉛蓄電池10に析出されたサルフェーションSuが自己放電状態で長期間放置されると、結晶化されたサルフェーションSuが著しく硬質化し、再び充電しても電解液13に戻らなくなってしまう。   However, by repeating the discharging and charging of the lead storage battery 10, the sulfation Su attached to the surface 12c of the electrode 12 becomes hard and covers the surface 12c of the electrode 12 as shown in FIG. In particular, when the sulfation Su deposited on the lead storage battery 10 is left in a self-discharged state for a long period of time, the crystallized sulfation Su becomes extremely hard and does not return to the electrolyte 13 even if it is charged again.

このため、本実施形態では、図5(c)に示すように、サルフェーションSuが電極12の表面12cに析出された後の充電時において、定期的に所定の大きさ以上のパルスパワーを発生させる放電パルス電流Ipを電極12に印加して、電極12の表面12cに付着したサルフェーションSuを当該表面12cから浮遊させるようにしている。このとき、電極12に印加する放電パルス電流Ipを所定の大きさ以上のパルスパワーを発生させるように、大きな放電パルス電流Ipを電解液13から負極12bに電流が向かう充電時のタイミングに印加するので、逆向きの電流を発生させて、負極12bの内部からのイオンによるサルフェーションSuの破壊が効率的に行えるので、電極12の表面12cから確実にサルフェーションSuを除去することができる。   For this reason, in the present embodiment, as shown in FIG. 5C, a pulse power of a predetermined magnitude or more is periodically generated during charging after the sulfation Su is deposited on the surface 12c of the electrode 12. A discharge pulse current Ip is applied to the electrode 12 so that the sulfation Su attached to the surface 12c of the electrode 12 is suspended from the surface 12c. At this time, a large discharge pulse current Ip is applied at the time of charging when the current flows from the electrolyte 13 to the negative electrode 12b so that the discharge pulse current Ip applied to the electrode 12 generates a pulse power of a predetermined magnitude or more. Therefore, since the reverse current is generated and the sulfation Su can be efficiently destroyed by the ions from the inside of the negative electrode 12b, the sulfation Su can be reliably removed from the surface 12c of the electrode 12.

すなわち、鉛蓄電池10の充電時に所定の大きさ以上のパルスパワーを発生させるような大きさの放電パルス電流Ipを電極12に印加することによって、硬質化したサルフェーションSuを容易に破壊して除去することができる。このため、硬質化したサルフェーションSuによる電極12の劣化を解消して、鉛蓄電池10がより確実にバッテリ性能を回復させることができるので、鉛蓄電池10の長寿命化が図れるようになる。   That is, the hardened sulfation Su is easily destroyed and removed by applying to the electrode 12 a discharge pulse current Ip having a magnitude that generates a pulse power of a predetermined magnitude or more when the lead storage battery 10 is charged. be able to. For this reason, since the deterioration of the electrode 12 due to the hardened sulfation Su is eliminated and the lead storage battery 10 can recover the battery performance more reliably, the life of the lead storage battery 10 can be extended.

次に、前述した本発明の一実施形態における効果を実証する実験結果について説明する。本実施例では、本発明の一実施形態に係る鉛蓄電池再生装置100で試験体となる鉛蓄電池10の電極12に印加する放電パルス電流Ip、パルス幅T1、パルス周期Tを調整して、パルスパワーを変えた場合における充放電サイクル数とサイクル毎の放電終了電圧との関係を調べた。そして、放電パルス電流Ipの電流値I、パルス幅T1、パルス周期T、及びパルスパワーを変えた場合におけるサイクル数の増加に伴う放電終了電圧の経時変化を調べて、当該放電終了電圧の変動を解析して、放電パルス電流Ipの印加による鉛蓄電池10のサルフェーションの除去による鉛蓄電池10の寿命延伸効果を確認した。なお、本発明は、本実施例に限定されるものではない。   Next, experimental results that demonstrate the effects of the above-described embodiment of the present invention will be described. In this example, the pulse current Ip, the pulse width T1, and the pulse period T applied to the electrode 12 of the lead storage battery 10 that is a test body in the lead storage battery regeneration device 100 according to one embodiment of the present invention are adjusted, and the pulse The relationship between the number of charge / discharge cycles and the discharge end voltage for each cycle when the power was changed was investigated. Then, the time-dependent change in the discharge end voltage with the increase in the number of cycles when the current value I, the pulse width T1, the pulse period T, and the pulse power of the discharge pulse current Ip are changed, and the fluctuation of the discharge end voltage is determined. By analyzing, the life extension effect of the lead storage battery 10 by removing the sulfation of the lead storage battery 10 by applying the discharge pulse current Ip was confirmed. In addition, this invention is not limited to a present Example.

本実施例では、試験体となる鉛蓄電池10として、電池容量が12V20Ahのもの5つを使用して、鉛蓄電池1つに対して日本スタビライザー工業製の充電器(SB−15)、及びパルス発生器となる本発明の一実施形態に係る鉛蓄電池再生装置100を取り付けて試験を行った。また、本実施例における鉛蓄電池10の充電・放電のサイクルは、充電が16時間、放電が8時間の計24時間を1サイクルとして、かかるサイクルを1日あたり1回行った。   In this example, five lead storage batteries 10 having a battery capacity of 12V20Ah were used as test specimens, a battery charger (SB-15) manufactured by Japan Stabilizer Industry for one lead storage battery, and pulse generation A lead storage battery regeneration device 100 according to an embodiment of the present invention, which is a container, was attached and tested. Moreover, the cycle of charging / discharging of the lead storage battery 10 in the present example was performed once per day, with a total of 24 hours of charging for 16 hours and discharging for 8 hours as one cycle.

本実施例における各試験体P1乃至P5へのパルスパワー印加条件となる放電パルス電流Ipの態様を下記の表1に示す。   Table 1 below shows the modes of the discharge pulse current Ip, which is the condition for applying the pulse power to each of the specimens P1 to P5 in this example.

表1に示すように、試験体P1は、放電パルス電流Ipを20A、パルス幅T1を0.01秒、パルス周期Tを900秒としたので、発生するパルスパワーが240W、パルス毎のエネルギーが2.4J、平均パルスパワーが0.0027Wとなった。一方、試験体P2は、放電パルス電流Ipを20A、パルス幅T1を0.2秒、パルス周期Tを300秒としたので、発生するパルスパワーが240W、パルス毎のエネルギーが48J、平均パルスパワーが0.160Wとなった。また、試験体P3は、放電パルス電流Ipを20A、パルス幅T1を0.2秒、パルス周期Tを3600秒としたので、発生するパルスパワーが240W、パルス毎のエネルギーが48J、平均パルスパワーが0.013Wとなった。また、試験体P4は、放電パルス電流Ipを60A、パルス幅T1を0.01秒、パルス周期Tを300秒としたので、発生するパルスパワーが720W、パルス毎のエネルギーが7.2J、平均パルスパワーが0.024Wとなった。さらに、試験体P5は、放電パルス電流Ipの印加を行わなかったので、放電パルス電流Ipが0A、パルス幅T1が0秒、パルス周期Tが0秒であり、発生するパルスパワーが0W、パルス毎のエネルギーが0J、平均パルスパワーが0Wであった。   As shown in Table 1, the test specimen P1 has a discharge pulse current Ip of 20 A, a pulse width T1 of 0.01 seconds, and a pulse period T of 900 seconds. Therefore, the generated pulse power is 240 W, and the energy per pulse is The average pulse power was 2.4 J and 2.4 J. On the other hand, the specimen P2 has a discharge pulse current Ip of 20A, a pulse width T1 of 0.2 seconds, and a pulse period T of 300 seconds, so that the generated pulse power is 240 W, the energy per pulse is 48 J, and the average pulse power. Was 0.160W. In addition, since the test body P3 has a discharge pulse current Ip of 20A, a pulse width T1 of 0.2 seconds, and a pulse period T of 3600 seconds, the generated pulse power is 240 W, the energy per pulse is 48 J, and the average pulse power. Was 0.013W. In addition, since the test body P4 has a discharge pulse current Ip of 60 A, a pulse width T1 of 0.01 seconds, and a pulse period T of 300 seconds, the generated pulse power is 720 W, the energy per pulse is 7.2 J, and the average The pulse power was 0.024W. Further, since the test body P5 did not apply the discharge pulse current Ip, the discharge pulse current Ip was 0 A, the pulse width T1 was 0 seconds, the pulse period T was 0 seconds, the generated pulse power was 0 W, the pulse Each energy was 0 J, and the average pulse power was 0 W.

また、各試験体P1乃至P5への充放電サイクル数とサイクル毎の放電終了電圧との関係のグラフを図6に示す。図6に示すように、パルスパワーを電極に印加しない試験体P5では、サイクル数の増加に伴い放電終了電圧の着実な低下が見られるのに対して、パルスパワーを電極に印加した試験体P1乃至P4は、何れもサイクル数が増加しても、放電終了電圧の低下が見られずに、所定の数値範囲内に収まった状態となっていた。   Moreover, the graph of the relationship between the charging / discharging cycle number to each test body P1 thru | or P5 and the discharge completion voltage for every cycle is shown in FIG. As shown in FIG. 6, in the test body P5 in which the pulse power is not applied to the electrode, the discharge end voltage is steadily decreased as the number of cycles increases, whereas the test body P1 in which the pulse power is applied to the electrode. In all of P4 to P4, even if the number of cycles increased, the discharge end voltage did not decrease and was within a predetermined numerical range.

このことから、電極に供給するパルスパワーの基準として、電池容量に対する1C放電電流と鉛蓄電池の定格電圧Vを掛けて算出される電力値以上の大きさのパルスパワーを印加することによって、電極に生成されたサルフェーションを破壊するので、放電終了電圧の降下を抑制していることが分かった。すなわち、使用する鉛蓄電池の電池容量に対する1C放電電流と当該鉛蓄電池の定格電圧Vを掛けた電力値P0以上のパルスパワーPが含まれる放電パルス電流Ipを電極に印加することによって、鉛蓄電池の放電終了電圧の降下を抑制できるので、鉛蓄電池の延命化が図れることが分かった。   From this, as a reference for the pulse power supplied to the electrode, by applying a pulse power having a magnitude greater than or equal to the power value calculated by multiplying the 1C discharge current to the battery capacity by the rated voltage V of the lead acid battery, Since the generated sulfation was destroyed, it was found that the discharge end voltage drop was suppressed. That is, by applying to the electrodes a discharge pulse current Ip containing a power value P0 that is equal to or higher than the 1C discharge current for the battery capacity of the lead storage battery to be used and the rated voltage V of the lead storage battery. It was found that the life of the lead-acid battery can be extended because the drop in the discharge end voltage can be suppressed.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although the embodiments and examples of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、鉛蓄電池再生装置の構成、動作も本発明の各実施形態で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the configuration and operation of the lead-acid battery regeneration device are not limited to those described in the embodiments of the present invention, and various modifications can be made.

10 鉛蓄電池、11 ケーシング、12 電極、12a 正極、12b 負極、12c 表面、13 電解液、14 セパレータ、15 端子、16 電源、18 充電器、20 負荷、100 鉛蓄電池再生装置、102 放電パルス電流供給部、104 制御部、Su サルフェーション、Ip 放電パルス電流、I 電流値、T1 パルス幅、T2 パルス間隔、T パルス周期 DESCRIPTION OF SYMBOLS 10 Lead acid battery, 11 Casing, 12 Electrode, 12a Positive electrode, 12b Negative electrode, 12c Surface, 13 Electrolyte, 14 Separator, 15 Terminal, 16 Power supply, 18 Charger, 20 Load, 100 Lead acid battery regeneration device, 102 Discharge pulse current supply Part, 104 control part, Su sulfation, Ip discharge pulse current, I current value, T1 pulse width, T2 pulse interval, T pulse period

Claims (3)

鉛蓄電池の電極に付着したサルフェーションを除去する鉛蓄電池再生装置であって、
前記電極に放電パルス電流を供給する放電パルス電流供給部と、
前記鉛蓄電池の充電時を検知して、前記充電時のみに該鉛蓄電池の電池容量に対応する所定の大きさ以上のパルスパワーを発生させて、該パルスパワーを前記電極に供給するように前記放電パルス電流供給部を制御する制御部を備えることを特徴とする鉛蓄電池再生装置。
A lead-acid battery regeneration device that removes sulfation adhering to the electrode of the lead-acid battery,
A discharge pulse current supply unit for supplying a discharge pulse current to the electrode;
Detecting when the lead storage battery is charged, generating pulse power of a predetermined magnitude or more corresponding to the battery capacity of the lead storage battery only at the time of charging, and supplying the pulse power to the electrode A lead-acid battery regeneration device comprising a control unit for controlling a discharge pulse current supply unit.
前記制御部は、前記放電パルス電流の電流値、パルス幅、及びパルス周期を調整して、前記電池容量に対応する所定の大きさ以上の前記パルスパワーを発生させるように前記放電パルス電流供給部を制御することを特徴とする請求項1に記載の鉛蓄電池再生装置。   The control unit adjusts a current value, a pulse width, and a pulse period of the discharge pulse current so as to generate the pulse power having a predetermined magnitude or more corresponding to the battery capacity. The lead-acid battery regeneration device according to claim 1, wherein: 前記制御部は、前記電極に供給する前記パルスパワーの基準として、前記電池容量に対する1C放電電流と前記鉛蓄電池の定格電圧を掛けて算出される電力値以上の大きさのパルスパワーを発生させるように、前記放電パルス電流供給部を制御することを特徴とする請求項1に記載の鉛蓄電池再生装置。   The control unit generates a pulse power having a magnitude equal to or larger than a power value calculated by multiplying a 1 C discharge current with respect to the battery capacity by a rated voltage of the lead storage battery as a reference of the pulse power supplied to the electrode. The lead storage battery regeneration device according to claim 1, wherein the discharge pulse current supply unit is controlled.
JP2015218770A 2015-11-06 2015-11-06 Lead-acid battery regeneration device Active JP6751879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218770A JP6751879B2 (en) 2015-11-06 2015-11-06 Lead-acid battery regeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218770A JP6751879B2 (en) 2015-11-06 2015-11-06 Lead-acid battery regeneration device

Publications (2)

Publication Number Publication Date
JP2017091738A true JP2017091738A (en) 2017-05-25
JP6751879B2 JP6751879B2 (en) 2020-09-09

Family

ID=58768305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218770A Active JP6751879B2 (en) 2015-11-06 2015-11-06 Lead-acid battery regeneration device

Country Status (1)

Country Link
JP (1) JP6751879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215810A1 (en) * 2020-04-22 2021-10-28 주식회사 어겐 Lead storage battery management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215810A1 (en) * 2020-04-22 2021-10-28 주식회사 어겐 Lead storage battery management system

Also Published As

Publication number Publication date
JP6751879B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP3510795B2 (en) How to recycle lead-acid batteries
JP3902212B2 (en) Apparatus and method for removing lead sulfate film produced in lead acid battery
KR101415156B1 (en) Bipolar overvoltage battery pulser and method
JP4565362B1 (en) Prevention and regeneration device for storage capacity deterioration due to electrical treatment of lead acid battery
WO2004100338A1 (en) Lead battery conditioner
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
JP6774700B2 (en) Lead-acid battery regeneration device
JP2005327737A (en) Method for regenerating storage battery
JP2006244973A (en) Lifetime prolongation method for lead-acid battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP2004134139A (en) Recycling treatment method of storage battery
JP6751879B2 (en) Lead-acid battery regeneration device
JP5616043B2 (en) Lead acid battery regeneration method and lead acid battery regeneration device used in the method
TW200926554A (en) Reproduction processing method and reproduction processor of storage battery
KR20150053182A (en) Battery charger
KR20160115433A (en) Apparatus for extending life cycle of lead storage battery
JP2003189498A (en) Charging method and charger of secondary battery
KR101499816B1 (en) Multi-pulse power charge device to lead storage battery enhancement
JP2010062007A (en) Method of regenerating lead-acid battery
JP2010129538A (en) Method for reproducing lead storage battery and reproducing apparatus thereof
WO2001056106A1 (en) Method of regenerating lead storage batteries
KR20110094642A (en) Battery regenerator
JP6369514B2 (en) Lead acid battery
KR20120035242A (en) The regenerating system of battery
WO2012126252A1 (en) Storage battery repairing method and device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200728

R150 Certificate of patent or registration of utility model

Ref document number: 6751879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250