JP2017090452A - Vibration characteristic discrimination unit - Google Patents

Vibration characteristic discrimination unit Download PDF

Info

Publication number
JP2017090452A
JP2017090452A JP2016215584A JP2016215584A JP2017090452A JP 2017090452 A JP2017090452 A JP 2017090452A JP 2016215584 A JP2016215584 A JP 2016215584A JP 2016215584 A JP2016215584 A JP 2016215584A JP 2017090452 A JP2017090452 A JP 2017090452A
Authority
JP
Japan
Prior art keywords
vibration
coil
determination
detection signal
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016215584A
Other languages
Japanese (ja)
Other versions
JP6590373B2 (en
Inventor
太輔 後藤
Taisuke Goto
太輔 後藤
伸行 赤津
Nobuyuki Akatsu
伸行 赤津
坂元 和也
Kazuya Sakamoto
和也 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amitec Corp
Original Assignee
Amitec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amitec Corp filed Critical Amitec Corp
Priority to JP2016215584A priority Critical patent/JP6590373B2/en
Publication of JP2017090452A publication Critical patent/JP2017090452A/en
Application granted granted Critical
Publication of JP6590373B2 publication Critical patent/JP6590373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pinball Game Machines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely detect, with high precision, abnormal vibration or an impact applied artificially to a game machine (amusement equipment) of pachinko etc.SOLUTION: A vibration characteristic discrimination unit comprises: a sensor part (10) which detects mechanical vibration; and a determination part (20) which determines abnormal vibration or an impact based upon a time for which the level of a vibration detection signal of the sensor part is being continuously equal to or higher than a predetermined threshold. The determination part (20) sets different determination reference times corresponding to one or more different thresholds respectively so as to determine one or more different kinds of abnormal vibration or impact. The sensor part comprises: a coil (11) which varies in inductance according to mechanical vibration; a self-oscillation circuit (13) which has the coil built in as an oscillation element; and a computing part (14) which generates a measurement value corresponding to an oscillation frequency thereof, finds a temporal difference value of the measurement value as speed data, and also integrates the speed data to find displacement data, and then outputs the displacement data as the vibration detection signal.SELECTED DRAWING: Figure 1

Description

本発明は、振動又は衝撃を検出するための振動特性判別器に関し、特に、パチンコ等の遊技機(アミューズメント機器)等に対して作為的に加えられる異常振動又は衝撃を検出するのに適したものである。   The present invention relates to a vibration characteristic discriminator for detecting vibrations or shocks, and particularly suitable for detecting abnormal vibrations or shocks that are artificially applied to game machines (amusement equipment) such as pachinko machines. It is.

パチンコ等の遊技機(アミューズメント機器)においては、遊技中の使用者が機器を叩く等の不正行為を行なうことがある。そのため、セキュリティ対策として、そのような不正行為によって機器にもたらされる異常振動又は衝撃を適切に検出することが従来より行なわれている。例えば、下記特許文献1においては、環状コイル上に鋼球を設置し、振動・衝撃による鋼球の移動変位をコイルのインダクタンス変位から電圧信号として捕らえ、所定の閾値にて判定出力する。この場合、電圧信号のレベルが所定の閾値を超えたかどうかのみに基づき判定を行なっているため、判定精度が悪いという問題がある。そこで、遊技機状態(入賞球、その他)の信号を入力し、該状態に応じてその都度閾値を変更することにより、判定精度を高めている。しかし、そのため、遊技機状態を検出しなければならないという不利がある。   In a gaming machine (amusement device) such as a pachinko, a user during the game may perform an illegal act such as hitting the device. For this reason, as a security measure, it has been conventionally performed to appropriately detect abnormal vibrations or shocks caused to such devices by such illegal acts. For example, in Patent Document 1 described below, a steel ball is installed on an annular coil, and the movement displacement of the steel ball due to vibration / impact is captured as a voltage signal from the inductance displacement of the coil, and is determined and output at a predetermined threshold value. In this case, since the determination is performed only based on whether the level of the voltage signal exceeds a predetermined threshold, there is a problem that the determination accuracy is poor. Therefore, the determination accuracy is improved by inputting a signal of the gaming machine state (winning ball, etc.) and changing the threshold value each time according to the state. However, there is a disadvantage that the gaming machine state must be detected.

下記特許文献2においては、衝撃センサとして圧電素子を使用し、その出力電圧信号をフィルタ処理することにより、遊技機台を揺らす周波数と叩く周波数の弁別を行なうことを開示している。また、前述と同様に、遊技機状態を監視し該遊技機状態とセンサによる検出情報とを組み合わせることにより、不正判定の精度を高めることを開示している。下記特許文献3においても、衝撃センサとして圧電素子を使用し、その出力電圧信号をフィルタ処理することにより、遊技機台を揺らす周波数と叩く周波数の弁別を行なうことを開示しており、また、弁別した各周波数に対してゲインを変えることにより不正判定を行なうようにしている。しかし、これらの従来技術においては、周波数弁別用のフィルタを必要とするという不利がある。   In the following Patent Document 2, a piezoelectric element is used as an impact sensor, and the output voltage signal is filtered to discriminate between the frequency at which the gaming machine table is shaken and the frequency at which it is tapped. Further, as described above, it is disclosed that the accuracy of fraud determination is improved by monitoring the gaming machine state and combining the gaming machine state and detection information by a sensor. The following Patent Document 3 also discloses that a piezoelectric element is used as an impact sensor and the output voltage signal is filtered to discriminate between the frequency at which the gaming machine base is shaken and the frequency at which it is tapped. The fraud determination is performed by changing the gain for each frequency. However, these conventional techniques have the disadvantage of requiring a filter for frequency discrimination.

特許第5211502号公報Japanese Patent No. 5211502 特開2010−124999号公報JP 2010-124999 A 特許第4987552号公報Japanese Patent No. 4987552

上述した従来技術においては、遊技機に対する外力による振動(衝撃)を検出するに当たり、検出感度を高くすると、実質的な外力が無い状態で振動検出する場合が発生することがある。これを回避するには、検出感度を低くすれば良いが、そうすると本来の外力による振動を検出できない不都合が生じる。そこで、遊技機の状態を監視し、入賞球に関係無い場合、センサ判定を無効にしたり、判定用の閾値を上げて検出感度を低くする一方で、入賞球の時は、検出感度を高くして判定するようにしている。そのため、遊技機状態を検出するためのシステム構成を採用しなければならないという不都合がある。また、外力による振動を検出し易い場所(入賞口近傍)にセンサを設置する必要があるが、センサ1個では検出確度が低い為、2個以上設置する必要があり、センサ単体での検出が非常に困難な現状がある。   In the above-described prior art, when detecting vibration (impact) due to external force on the gaming machine, if detection sensitivity is increased, vibration may be detected in the absence of substantial external force. In order to avoid this, it is only necessary to lower the detection sensitivity. However, in that case, there is a disadvantage that vibration due to an external force cannot be detected. Therefore, the state of the gaming machine is monitored, and if it is not related to the winning ball, sensor detection is disabled or the detection threshold is increased to lower the detection sensitivity, while in the case of a winning ball, the detection sensitivity is increased. Judgment is made. Therefore, there is an inconvenience that a system configuration for detecting the gaming machine state must be adopted. In addition, it is necessary to install a sensor in a place where it is easy to detect vibration due to external force (near the prize opening). However, since one sensor has low detection accuracy, it is necessary to install two or more sensors. There is a very difficult current situation.

本発明は、上述の点に鑑みてなされたもので、パチンコ等の遊技機(アミューズメント機器)等に対して作為的に加えられる振動又は衝撃を、簡単な構成で、精度よく検出するのに適した振動特性判別器を提供しようとするものであり、さらには、精度の良い振動検出装置を提供しようとするものである。   The present invention has been made in view of the above points, and is suitable for accurately detecting vibrations or impacts that are artificially applied to a gaming machine (amusement device) such as a pachinko with a simple configuration. The present invention intends to provide a vibration characteristic discriminator, and further provides a highly accurate vibration detection device.

本発明に係る振動特性判別器は、機械的振動を検出するセンサ部と、前記センサ部による振動検出信号のレベルが所定閾値以上持続する時間に基づき振動又は衝撃を判定する判定部とを備える。   The vibration characteristic discriminator according to the present invention includes a sensor unit that detects mechanical vibration and a determination unit that determines vibration or impact based on a time during which the level of a vibration detection signal from the sensor unit lasts a predetermined threshold or more.

本発明によれば、センサ部による振動検出信号のレベルが所定閾値以上持続する時間に基づき振動又は衝撃を判定する構成であるから、判定しようとする振動又は衝撃の種類に対応して、所定閾値以上のレベル変化とその持続時間の組み合わせを適切に設定することにより、遊技機状態を検出することなく、また、周波数弁別用のフィルタを設けることなく、特定の種類の振動又は衝撃を容易に判定することができる。   According to the present invention, since the vibration or impact is determined based on the time during which the level of the vibration detection signal from the sensor unit lasts more than the predetermined threshold, the predetermined threshold corresponding to the type of vibration or impact to be determined. By appropriately setting the combination of the above level change and its duration, it is possible to easily determine a specific type of vibration or impact without detecting the gaming machine state and without providing a filter for frequency discrimination. can do.

一実施例において、前記判定部は、1以上の異なる閾値のそれぞれに対応して異なる判定基準時間を設定することにより、1以上の異なる種類の振動又は衝撃を判定するように構成してよい。   In one embodiment, the determination unit may be configured to determine one or more different types of vibrations or impacts by setting different determination reference times corresponding to each of the one or more different thresholds.

一実施例において、前記センサ部は、コイルと、検出対象である機械的振動に応じて前記コイルに対して変位するように配置された磁気応答部材と、前記コイルを発振要素として組み込み、該コイルに対する前記磁気応答部材の変位に応じた該コイルのインダクタンス変化に応じて発振周波数が変化する自励発振回路と、前記自励発振回路の発振出力信号に基づき発振周波数に応じた計測値を生成し、該計測値の時間的差分値を速度データとして求め、該速度データを積分することにより変位データを求め、該変位データを前記振動検出信号として出力する演算部とを備える。これにより、コイルの出力信号を処理する演算部は全デジタル回路として構成され、精度の良い計測を行うことができる。また、発振周波数の変化から速度データを求め、該速度データから変位データを求める構成であるため、コイルのインダクタンス変化に応じた発振周波数変化に基づき衝撃又は振動に応じた変位データを適切に生成することができ、精度の良い振動検出を行うことができる。   In one embodiment, the sensor unit includes a coil, a magnetic response member arranged to be displaced with respect to the coil in response to a mechanical vibration to be detected, and the coil as an oscillating element. Generating a measurement value corresponding to the oscillation frequency based on the oscillation output signal of the self-excited oscillation circuit, and a self-excited oscillation circuit whose oscillation frequency changes according to the inductance change of the coil according to the displacement of the magnetic response member A calculation unit that obtains a temporal difference value of the measured value as velocity data, obtains displacement data by integrating the velocity data, and outputs the displacement data as the vibration detection signal. Thereby, the calculating part which processes the output signal of a coil is comprised as an all digital circuit, and can perform a measurement with sufficient precision. Further, since the speed data is obtained from the change in the oscillation frequency and the displacement data is obtained from the speed data, the displacement data corresponding to the impact or vibration is appropriately generated based on the change in the oscillation frequency according to the change in the inductance of the coil. Therefore, accurate vibration detection can be performed.

本発明の別の観点に従えば、前記コイルを用いた前記センサ部は、単体の振動検出装置として応用することができる。すなわち、本発明に係る振動検出装置は、コイルと、検出対象である機械的振動に応じて前記コイルに対して変位するように配置された磁気応答部材と、前記コイルを発振要素として組み込み、該コイルに対する前記磁気応答部材の変位に応じた該コイルのインダクタンス変化に応じて発振周波数が変化する自励発振回路と、前記自励発振回路の発振出力信号に基づき発振周波数に応じた計測値を生成し、該計測値の時間的差分値を速度データとして求め、該速度データを積分することにより変位データを求め、該変位データを振動検出信号として出力する演算部とを備える。これによれば、コイルのインダクタンス変化に応じた発振周波数の変化から速度データを求め、該速度データから変位データを求める構成であるため、コイルのインダクタンス変化に応じた発振周波数変化に基づき衝撃又は振動に応じた変位データを適切に生成することができ、精度の良い振動検出を行うことができる。   If another viewpoint of this invention is followed, the said sensor part using the said coil can be applied as a single vibration detection apparatus. That is, the vibration detection device according to the present invention incorporates a coil, a magnetic response member disposed so as to be displaced with respect to the coil in accordance with a mechanical vibration to be detected, and the coil as an oscillation element, A self-excited oscillation circuit whose oscillation frequency changes according to a change in inductance of the coil according to the displacement of the magnetic response member with respect to the coil, and a measurement value according to the oscillation frequency is generated based on the oscillation output signal of the self-excited oscillation circuit And a calculation unit that obtains a temporal difference value of the measured value as velocity data, obtains displacement data by integrating the velocity data, and outputs the displacement data as a vibration detection signal. According to this configuration, the speed data is obtained from the change in the oscillation frequency according to the change in the coil inductance, and the displacement data is obtained from the speed data. Therefore, the shock or vibration is generated based on the change in the oscillation frequency according to the change in the coil inductance. Displacement data according to the frequency can be appropriately generated, and vibration detection with high accuracy can be performed.

本発明の一実施例を示すブロック図。The block diagram which shows one Example of this invention. 図1における判定部の動作例を示すタイミングチャート。The timing chart which shows the operation example of the determination part in FIG. 図1におけるセンサ部の詳細例を示すブロック図。The block diagram which shows the detailed example of the sensor part in FIG. (a)は図1におけるコイルと磁気応答部材の組み合わせの一例を示す斜視図、(b)は図1におけるコイルと磁気応答部材の組み合わせの別の一例を示す側面図。(A) is a perspective view which shows an example of the combination of the coil and magnetic response member in FIG. 1, (b) is a side view which shows another example of the combination of the coil and magnetic response member in FIG.

図1において、本発明の一実施例に係る振動特性判別器は、センサ部10と判定部20とを備える。センサ部10は、遊技機(例えばパチンコ)の内部の適宜の位置に設けられ、該遊技機に対して外部から加えられる機械的振動を検出するものである。この機械的振動とは、例えば遊技者が遊技機を叩く若しくは揺する等のセキュリティ上好ましくないものである。センサ部10は例えば該機械的振動の変位に応じたレベルを持つ振動検出信号(変位検出データ)を出力する。センサ部10としては、後述するようなコイル(インダクタンス要素)を用いたもの、あるいは圧電素子を用いたものなど、適宜の振動検出デバイスを使用してよい。なお、センサ部10の出力信号は、振動の中点(変位の0点)を0として、正負の値を持つものとする。   In FIG. 1, a vibration characteristic discriminator according to an embodiment of the present invention includes a sensor unit 10 and a determination unit 20. The sensor unit 10 is provided at an appropriate position inside a gaming machine (for example, a pachinko machine), and detects mechanical vibration applied to the gaming machine from the outside. This mechanical vibration is undesirable in terms of security, for example, when a player strikes or shakes a gaming machine. For example, the sensor unit 10 outputs a vibration detection signal (displacement detection data) having a level corresponding to the displacement of the mechanical vibration. As the sensor unit 10, an appropriate vibration detection device such as one using a coil (inductance element) as described later or one using a piezoelectric element may be used. It is assumed that the output signal of the sensor unit 10 has a positive / negative value with the midpoint of vibration (0 point of displacement) being 0.

判定部20は、前記センサ部10による振動検出信号のレベルLdが所定閾値以上持続する時間に基づき振動又は衝撃を判定するものであり、1以上の異なる閾値L1,L2のそれぞれに対応して異なる判定基準時間Th1,Th2を設定することにより、1以上の異なる種類の異常振動又は衝撃を判定するように構成されている。図1においては、一例として、判定部20は2つの判定系列を含む。第1の判定系列において、比較部21は、前記振動検出信号のレベルLdの絶対値が所定の第1閾値L1以上であるか否かを判定する。すなわち、正又は負の値からなるレベルLdを、第1閾値L1の正の+L1及び負の値−L1とそれぞれ比較し、Ld≧+L1又はLd≦−L1が成立するかを判定する。持続時間カウント部23は、「Ld≧+L1」又は「Ld≦−L1」が連続的に成立している持続時間T1をカウントし、比較部25は、該持続時間T1が所定の判定基準時間Th1以上であるか否かを判定する。また、第2の判定系列においても同様に、比較部22が前記振動検出信号のレベルLdの絶対値が所定の第2閾値L2以上であるか否か(つまり、Ld≧+L2又はLd≦−L2が成立するか否か)を判定し、持続時間カウント部24において「Ld≧+L2」」又は「Ld≦−L2」が連続的に成立している持続時間T2をカウントし、比較部26は該持続時間T2が所定の判定基準時間Th2以上であるか否かを判定する。   The determination unit 20 determines vibration or impact based on the time during which the level Ld of the vibration detection signal from the sensor unit 10 lasts a predetermined threshold value or more, and is different corresponding to each of one or more different threshold values L1 and L2. By setting the determination reference times Th1 and Th2, one or more different types of abnormal vibrations or impacts are determined. In FIG. 1, as an example, the determination unit 20 includes two determination sequences. In the first determination series, the comparison unit 21 determines whether or not the absolute value of the level Ld of the vibration detection signal is greater than or equal to a predetermined first threshold L1. That is, the level Ld composed of positive or negative values is compared with the positive + L1 and negative value −L1 of the first threshold value L1, respectively, and it is determined whether Ld ≧ + L1 or Ld ≦ −L1 is satisfied. The duration counting unit 23 counts the duration T1 in which “Ld ≧ + L1” or “Ld ≦ −L1” is continuously established, and the comparison unit 25 determines that the duration T1 is a predetermined determination reference time Th1. It is determined whether it is above. Similarly, in the second determination series, the comparison unit 22 determines whether the absolute value of the level Ld of the vibration detection signal is equal to or greater than a predetermined second threshold L2 (that is, Ld ≧ + L2 or Ld ≦ −L2). And the duration counting unit 24 counts the duration T2 in which “Ld ≧ + L2” or “Ld ≦ −L2” is continuously established. It is determined whether or not the duration T2 is equal to or longer than a predetermined determination reference time Th2.

第1の判定系列は、遊技機を叩く等の比較的短時間の強い衝撃が加えられたことを判定するように、前記所定の第1閾値L1及び判定基準時間Th1が設定される。そのような衝撃に関して、センサ部10から出力される振動検出信号の周波数は相対的に高く、また、振幅レベルも相対的に高い。一方、第2の判定系列は、遊技機を揺する等の振動が加えられたことを判定するように、前記所定の第2閾値L2及び判定基準時間Th2が設定される。そのような、揺する等の振動に関して、センサ部10から出力される振動検出信号の周波数は相対的に低く、また、振幅レベルも相対的に低い。そうすると、各閾値及び判定基準時間の関係は、一般的に、L1>L2及びTh1<Th2というような関係になる。   In the first determination sequence, the predetermined first threshold value L1 and the determination reference time Th1 are set so as to determine that a relatively short time strong impact such as hitting a gaming machine has been applied. Regarding such an impact, the frequency of the vibration detection signal output from the sensor unit 10 is relatively high, and the amplitude level is also relatively high. On the other hand, in the second determination series, the predetermined second threshold L2 and the determination reference time Th2 are set so as to determine that vibration such as shaking the gaming machine has been applied. Regarding such vibrations such as shaking, the frequency of the vibration detection signal output from the sensor unit 10 is relatively low, and the amplitude level is also relatively low. Then, the relationship between each threshold value and the determination reference time is generally such that L1> L2 and Th1 <Th2.

図2は、判定部20の動作例を示すタイミングチャートである。図2(a)における波形1及び2は、遊技機を叩く等の比較的短時間の強い衝撃が加えられたときにセンサ部10から出力される振動検出信号の一例を示している。この場合、波形1の最初のピーク(正のピーク)において、該波形1からなる振動検出信号のレベルLdが所定の第1閾値L1以上持続する時間T1が所定の判定基準時間Th1以上となり、比較部25から異常衝撃判定信号D1が出力される。一方、波形2の最初のピーク(負のピーク)において、該波形2からなる振動検出信号のレベルLdの絶対値が所定の第1閾値L1よりも大きくなることがあるが、その持続時間T1は所定の判定基準時間Th1未満のため、比較部25からは異常衝撃判定信号D1が出力されない。   FIG. 2 is a timing chart illustrating an operation example of the determination unit 20. Waveforms 1 and 2 in FIG. 2A show an example of a vibration detection signal output from the sensor unit 10 when a strong impact is applied for a relatively short time such as hitting a gaming machine. In this case, at the first peak (positive peak) of the waveform 1, the time T1 in which the level Ld of the vibration detection signal consisting of the waveform 1 lasts for the predetermined first threshold L1 or more becomes the predetermined determination reference time Th1 or more. The abnormal impact determination signal D1 is output from the unit 25. On the other hand, at the first peak (negative peak) of the waveform 2, the absolute value of the level Ld of the vibration detection signal composed of the waveform 2 may be larger than the predetermined first threshold L1, but the duration T1 thereof is Since it is less than the predetermined determination reference time Th1, the abnormal impact determination signal D1 is not output from the comparison unit 25.

図2(b)における波形3は、遊技機を揺する等の振動が加えられたときにセンサ部10から出力される振動検出信号の一例を示している。この場合、波形3の最初のピーク(正のピーク)において、該波形3からなる振動検出信号のレベルLdの絶対値が所定の第2閾値L2以上持続する時間T2が所定の判定基準時間Th2以上となり、比較部26から異常振動判定信号D2が出力される。   A waveform 3 in FIG. 2B shows an example of a vibration detection signal output from the sensor unit 10 when a vibration such as shaking the gaming machine is applied. In this case, at the first peak (positive peak) of the waveform 3, the time T2 in which the absolute value of the level Ld of the vibration detection signal comprising the waveform 3 lasts for the predetermined second threshold L2 or more is the predetermined determination reference time Th2 or more. Thus, the abnormal vibration determination signal D2 is output from the comparison unit 26.

比較部25又は26から出力された異常判定信号D1又はD2は、オア回路27を介して異常判定信号としてオア合成される。なお、異常衝撃判定信号D1と異常振動判定信号D2をオア合成することなく、異なる種類の異常判定信号として適宜利用するようにしてもよい。   The abnormality determination signal D1 or D2 output from the comparison unit 25 or 26 is OR-combined as an abnormality determination signal via the OR circuit 27. The abnormal impact determination signal D1 and the abnormal vibration determination signal D2 may be appropriately used as different types of abnormality determination signals without OR synthesis.

図1では、2つの判定系列を設けているが、1つの判定系列のみ又は3以上の判定系列を設けてもよく、要は、1以上の各判定系列におけるレベル判定用の閾値と持続時間判定用の基準時間とをそれぞれ判定対象とする衝撃又は振動の種類に合わせて、適宜異なる値に設定すればよい。このように、本発明によれば、遊技機の状態を検出することなく、また、周波数弁別用のフィルタを設けることなく、1以上の異なる種類の振動又は衝撃を簡単な構成で判定することができる。   In FIG. 1, two determination sequences are provided, but only one determination sequence or three or more determination sequences may be provided. In short, thresholds and duration determinations for level determination in one or more determination sequences The reference time for use may be set to a different value as appropriate according to the type of shock or vibration to be determined. Thus, according to the present invention, it is possible to determine one or more different types of vibrations or impacts with a simple configuration without detecting the state of the gaming machine and without providing a filter for frequency discrimination. it can.

図3は、検出要素としてコイルを使用する場合におけるセンサ部10の一具体例を示す。図3において、センサ部10は、1つのコイル11と、検出対象である機械的振動に応じて該コイル11に対して相対的に変位するように配置された磁気応答部材12と、該コイル11を発振要素として組み込み、該コイル11に対する該磁気応答部材12の変位に応じた該コイル11のインダクタンス変化に応じて発振周波数が変化する自励発振回路13とを備える。センサ部10は、更に、前記自励発振回路13の発振出力信号に基づき前記検出対象である機械的振動に応じた変位データを求めるための演算部14を備える。演算部14は、前記自励発振回路13の発振出力信号に基づき発振周波数に応じた計測値を生成し、該計測値の時間的差分値を速度データとして求め、該速度データを積分することにより変位データを求め、該変位データを前記振動検出信号として出力するように構成されている。   FIG. 3 shows a specific example of the sensor unit 10 when a coil is used as the detection element. In FIG. 3, the sensor unit 10 includes one coil 11, a magnetic response member 12 disposed so as to be relatively displaced with respect to the coil 11 in accordance with a mechanical vibration to be detected, and the coil 11. Is incorporated as an oscillating element, and a self-excited oscillation circuit 13 whose oscillation frequency changes according to the inductance change of the coil 11 according to the displacement of the magnetic response member 12 with respect to the coil 11 is provided. The sensor unit 10 further includes a calculation unit 14 for obtaining displacement data corresponding to the mechanical vibration to be detected based on the oscillation output signal of the self-excited oscillation circuit 13. The calculation unit 14 generates a measurement value corresponding to the oscillation frequency based on the oscillation output signal of the self-excited oscillation circuit 13, obtains a temporal difference value of the measurement value as speed data, and integrates the speed data. Displacement data is obtained and the displacement data is output as the vibration detection signal.

図4(a)は、前記コイル11と磁気応答部材12の組み合わせの一例を示す斜視図である。図4(a)の例においては、フラットコイルからなるコイル11が固定部15に固定され、磁性材質又は非磁性かつ導電材質からなる板バネ状の可動部16が磁気応答部材12として機能する。検出対象である機械的振動に応じて板バネ状の可動部16が振動し、コイル11と該可動部16とのギャップが変化することにより、該機械的振動に応じたインダクタンス変化がコイル11に生じる。   FIG. 4A is a perspective view showing an example of a combination of the coil 11 and the magnetic response member 12. In the example of FIG. 4A, the coil 11 made of a flat coil is fixed to the fixed portion 15, and the leaf spring-like movable portion 16 made of a magnetic material or a nonmagnetic and conductive material functions as the magnetic response member 12. The leaf spring-like movable portion 16 vibrates in accordance with the mechanical vibration to be detected, and the gap between the coil 11 and the movable portion 16 changes, whereby an inductance change corresponding to the mechanical vibration is applied to the coil 11. Arise.

図4(b)は、前記コイル11と磁気応答部材12の組み合わせの別の一例を示す側面図である。図4(b)の例においては、フラットコイルからなるコイル11が固定部15に固定され、フラットコイルの一面に対向して磁性材質からなる板バネ状の第1可動部17が配置され、該フラットコイルの他面に対向して非磁性かつ導電材質からなる板バネ状の第2可動部18が配置され、両可動部17及び18が磁気応答部材12として機能する。この場合も、検出対象である機械的振動に応じて板バネ状の第1及び第2可動部17、18が振動し、コイル11と該第1及び第2可動部17、18とのギャップが変化することにより、該機械的振動に応じたインダクタンス変化がコイル11に生じる。なお、この構成においては、検出対象である機械的振動に応じて一方の磁性可動部17がコイル11に近づくとき他方の非磁性可動部18がコイル11から遠ざかる、というようにプッシュプルで変位することにより、コイル11に生じるインダクタンスが相加的に変化し、検出精度が向上する。   FIG. 4B is a side view showing another example of the combination of the coil 11 and the magnetic response member 12. In the example of FIG. 4B, the coil 11 made of a flat coil is fixed to the fixed portion 15, and a plate spring-like first movable portion 17 made of a magnetic material is disposed opposite to one surface of the flat coil, A flat spring-like second movable portion 18 made of a nonmagnetic and conductive material is disposed opposite the other surface of the flat coil, and both movable portions 17 and 18 function as the magnetic response member 12. Also in this case, the leaf spring-like first and second movable parts 17 and 18 vibrate in accordance with the mechanical vibration to be detected, and the gap between the coil 11 and the first and second movable parts 17 and 18 is increased. By changing, an inductance change corresponding to the mechanical vibration occurs in the coil 11. In this configuration, when one magnetic movable part 17 approaches the coil 11 according to the mechanical vibration to be detected, the other nonmagnetic movable part 18 moves away from the coil 11 so as to be displaced by push-pull. As a result, the inductance generated in the coil 11 changes additively, and the detection accuracy is improved.

図3に戻り、演算部14は、前記自励発振回路13の発振出力信号に基づき発振周波数に応じた計測値を生成するための手段として、発振周期計測ステップ30を含む。この場合、例えば、発振周波数の周期をカウントし易いように、前記発振出力信号を適宜分周することにより、拡張した周期を持つ矩形波信号を生成し、該矩形波信号が持つ拡張した周期をカウントすることにより、前記発振周波数に応じた計測値を生成するとよい。   Returning to FIG. 3, the calculation unit 14 includes an oscillation period measurement step 30 as means for generating a measurement value corresponding to the oscillation frequency based on the oscillation output signal of the self-excited oscillation circuit 13. In this case, for example, by appropriately dividing the oscillation output signal so as to easily count the oscillation frequency period, a rectangular wave signal having an extended period is generated, and the extended period of the rectangular wave signal is set. It is preferable to generate a measurement value corresponding to the oscillation frequency by counting.

次のステップ31では、前記ステップ30で求めた前記計測値の時間的差分値を求めることにより速度データを算出する。次に、ステップ32では、前記ステップ31で求めた速度データを積分することにより変位データLdを算出する。   In the next step 31, the speed data is calculated by obtaining the time difference value of the measurement value obtained in step 30. Next, in step 32, the displacement data Ld is calculated by integrating the speed data obtained in step 31.

演算部14におけるステップ32で求められた変位データLdが、図3及び図4に示されたセンサ部10により検出された振動検出信号として、図1における前記判定部20に供給される。図3及び図4の構成例においては、検出対象の衝撃又は振動が発振周波数の変化として一次的に検出されるが、図3に示された演算部14の処理により、検出対象の衝撃又は振動を、取り扱い易い変位データに変換して二次的に検出するので、実用性が高いという優れた効果を奏する。したがって、図3及び図4に示されたセンサ部10は、前記判定部20から切り離して、単独の振動検出装置として、適宜の計測分野において有利に応用され得る。   The displacement data Ld obtained in step 32 in the calculation unit 14 is supplied to the determination unit 20 in FIG. 1 as a vibration detection signal detected by the sensor unit 10 shown in FIGS. In the configuration examples of FIGS. 3 and 4, the impact or vibration of the detection target is primarily detected as a change in the oscillation frequency, but the shock or vibration of the detection target is processed by the processing of the calculation unit 14 illustrated in FIG. 3. Is converted into easy-to-handle displacement data and secondarily detected, and thus has an excellent effect of high practicality. Therefore, the sensor unit 10 shown in FIGS. 3 and 4 can be advantageously applied in an appropriate measurement field as a single vibration detection device by being separated from the determination unit 20.

なお、演算部14の機能は、マイクロコンピュータと各ステップの処理を実現するためのソフトウェアとの組み合わせで実現するようにしてよいが、それに限らず、専用のデジタル回路で実現してもよい。また、図1における前記判定部20の機能も、マイクロコンピュータと各部21〜27の処理を実現するためのソフトウェアとの組み合わせによって実現することができるし、あるいは、専用のデジタル回路で実現するようにしてもよい。   The function of the calculation unit 14 may be realized by a combination of a microcomputer and software for realizing the processing of each step, but is not limited thereto, and may be realized by a dedicated digital circuit. Also, the function of the determination unit 20 in FIG. 1 can be realized by a combination of a microcomputer and software for realizing the processing of each unit 21 to 27, or can be realized by a dedicated digital circuit. May be.

10 センサ部
11 コイル
12 磁気応答部材
13 自励発振回路
14 演算部
20 判定部
DESCRIPTION OF SYMBOLS 10 Sensor part 11 Coil 12 Magnetic response member 13 Self-excited oscillation circuit 14 Calculation part 20 Determination part

Claims (3)

機械的振動を検出するセンサ部と、
前記センサ部による振動検出信号のレベルが所定閾値以上持続する時間に基づき振動又は衝撃を判定する判定部と
を備える振動特性判別器。
A sensor unit for detecting mechanical vibration;
A vibration characteristic discriminator comprising: a determination unit that determines vibration or impact based on a time during which a level of a vibration detection signal from the sensor unit lasts a predetermined threshold value or more.
前記判定部は、1以上の異なる閾値のそれぞれに対応して異なる判定基準時間を設定することにより、1以上の異なる種類の振動又は衝撃を判定する、請求項1の振動特性判別器。   The vibration characteristic discriminator according to claim 1, wherein the determination unit determines one or more different types of vibrations or shocks by setting different determination reference times corresponding to each of the one or more different threshold values. 前記センサ部は、
コイルと、
検出対象である機械的振動に応じて前記コイルに対して変位するように配置された磁気応答部材と、
前記コイルを発振要素として組み込み、該コイルに対する前記磁気応答部材の変位に応じた該コイルのインダクタンス変化に応じて発振周波数が変化する自励発振回路と、
前記自励発振回路の発振出力信号に基づき発振周波数に応じた計測値を生成し、該計測値の時間的差分値を速度データとして求め、該速度データを積分することにより変位データを求め、該変位データを前記振動検出信号として出力する演算部と
を備える、請求項1又は2に記載の振動特性判別器。
The sensor unit is
Coils,
A magnetic response member arranged to be displaced with respect to the coil in response to a mechanical vibration to be detected;
A self-oscillation circuit in which the coil is incorporated as an oscillating element, and an oscillation frequency is changed according to an inductance change of the coil in accordance with a displacement of the magnetic response member with respect to the coil;
A measurement value corresponding to an oscillation frequency is generated based on an oscillation output signal of the self-excited oscillation circuit, a time difference value of the measurement value is obtained as speed data, and displacement data is obtained by integrating the speed data, The vibration characteristic discriminator according to claim 1, further comprising a calculation unit that outputs displacement data as the vibration detection signal.
JP2016215584A 2016-11-02 2016-11-02 Vibration characteristic discriminator Active JP6590373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215584A JP6590373B2 (en) 2016-11-02 2016-11-02 Vibration characteristic discriminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215584A JP6590373B2 (en) 2016-11-02 2016-11-02 Vibration characteristic discriminator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015216767 Division 2015-11-04 2015-11-04

Publications (2)

Publication Number Publication Date
JP2017090452A true JP2017090452A (en) 2017-05-25
JP6590373B2 JP6590373B2 (en) 2019-10-16

Family

ID=58770589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215584A Active JP6590373B2 (en) 2016-11-02 2016-11-02 Vibration characteristic discriminator

Country Status (1)

Country Link
JP (1) JP6590373B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112528753A (en) * 2020-11-18 2021-03-19 西安因联信息科技有限公司 Preprocessing method for impact vibration signals in rolling process of rolling mill
JP7458277B2 (en) 2020-09-16 2024-03-29 株式会社東芝 Information processing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156675A (en) * 1976-06-22 1977-12-27 Tokyu Kensetsu Kk Feedback control type vibrometer
JPH03218421A (en) * 1989-11-02 1991-09-26 Fuji Electric Co Ltd Oscillation mode measuring device
JPH05314357A (en) * 1992-05-12 1993-11-26 Omron Corp Burglar preventing device
JPH08240477A (en) * 1995-03-01 1996-09-17 Tokyo Gas Co Ltd Seismic device
JPH11183514A (en) * 1997-12-22 1999-07-09 Any:Kk Acceleration detecting device
JP2008125662A (en) * 2006-11-17 2008-06-05 Newgin Corp Game machine
JP2010107481A (en) * 2008-10-31 2010-05-13 Kyoraku Sangyo Kk Vibration detection device
WO2013089205A1 (en) * 2011-12-13 2013-06-20 株式会社アミテック Position detection device
JP2014094130A (en) * 2012-11-09 2014-05-22 Newgin Co Ltd Game machine
KR20150053039A (en) * 2013-11-07 2015-05-15 주식회사 센서웨이 Vibration analysis device and vibration pattern recognition method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156675A (en) * 1976-06-22 1977-12-27 Tokyu Kensetsu Kk Feedback control type vibrometer
JPH03218421A (en) * 1989-11-02 1991-09-26 Fuji Electric Co Ltd Oscillation mode measuring device
JPH05314357A (en) * 1992-05-12 1993-11-26 Omron Corp Burglar preventing device
JPH08240477A (en) * 1995-03-01 1996-09-17 Tokyo Gas Co Ltd Seismic device
JPH11183514A (en) * 1997-12-22 1999-07-09 Any:Kk Acceleration detecting device
JP2008125662A (en) * 2006-11-17 2008-06-05 Newgin Corp Game machine
JP2010107481A (en) * 2008-10-31 2010-05-13 Kyoraku Sangyo Kk Vibration detection device
WO2013089205A1 (en) * 2011-12-13 2013-06-20 株式会社アミテック Position detection device
JP2014094130A (en) * 2012-11-09 2014-05-22 Newgin Co Ltd Game machine
KR20150053039A (en) * 2013-11-07 2015-05-15 주식회사 센서웨이 Vibration analysis device and vibration pattern recognition method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458277B2 (en) 2020-09-16 2024-03-29 株式会社東芝 Information processing device
CN112528753A (en) * 2020-11-18 2021-03-19 西安因联信息科技有限公司 Preprocessing method for impact vibration signals in rolling process of rolling mill

Also Published As

Publication number Publication date
JP6590373B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6590373B2 (en) Vibration characteristic discriminator
JPH02103423A (en) Method and device for detecting passage of blade
JP2001143048A (en) Pedometer
JP2010019846A (en) Method and sensing device for detecting motion of element
US20130289933A1 (en) Detecting shaft rotation with short or missing teeth
JP7524518B2 (en) Inductive sensor device and method for detecting object motion - Patents.com
CN107064540B (en) Rotation detecting apparatus
KR101031996B1 (en) Apparatus and method for touch sensing using linearly varying frequency
JP5001669B2 (en) Pedometer
JP2009268752A (en) Game machine and detection method of fraudulent magnet to game machine
JP2008014695A (en) Device for measuring semiconductor laser digital vibration
JP2018140079A (en) Magnet detection device and game machine
JP6822223B2 (en) Magnet detector and game machine
JP4650016B2 (en) Wheel speed sensor
JP3744331B2 (en) Seismic device
JPH10206225A (en) Method for counting wave number and vibration-measuring apparatus using the same
JP2717334B2 (en) Radiation measuring instrument
JP3392341B2 (en) Level sudden fluctuation detection method and circuit
GB2470779A (en) Eddy current proximity probe system and method of measuring that mitigates errors due to temperature fluctuations
JPH109943A (en) Measuring apparatus for vibration
KR20080022371A (en) Vehicle speed calculation apparatus
JPH02183155A (en) Method and apparatus for detecting fine foreign matter in stationary electric equipment and collision sound sensor provided in this apparatus
JP4175570B2 (en) Proximity sensor and proximity detection method
JP6232298B2 (en) Steel ball detector
JP3744333B2 (en) Seismic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6590373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250