JP2017090399A - Test device and test method - Google Patents

Test device and test method Download PDF

Info

Publication number
JP2017090399A
JP2017090399A JP2015224561A JP2015224561A JP2017090399A JP 2017090399 A JP2017090399 A JP 2017090399A JP 2015224561 A JP2015224561 A JP 2015224561A JP 2015224561 A JP2015224561 A JP 2015224561A JP 2017090399 A JP2017090399 A JP 2017090399A
Authority
JP
Japan
Prior art keywords
soil
cell
metal structure
water
supply mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015224561A
Other languages
Japanese (ja)
Other versions
JP6449757B2 (en
Inventor
真悟 峯田
Shingo Mineta
真悟 峯田
康弘 東
Yasuhiro Azuma
康弘 東
守 水沼
Mamoru Mizunuma
守 水沼
香織 根岸
Kaori Negishi
香織 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015224561A priority Critical patent/JP6449757B2/en
Publication of JP2017090399A publication Critical patent/JP2017090399A/en
Application granted granted Critical
Publication of JP6449757B2 publication Critical patent/JP6449757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a test device capable of easily and clearly comprehending the influences of macro corrosion on a metal structure which is buried across heterogeneous soils depending on combination of soils while controlling the soil circumstances.SOLUTION: The test device 1 includes: two or more cells 2 in which a soil S and a metal structure K are placed with a part or entire of which being berried in the soil S; pressurizing mechanism 4 that applies a pressure to the soil S in each of the cells 2; a water supply mechanism 5 for supplying water inside the cells 2; a gas supply mechanism 6 for supplying a gas other than oxygen inside the cells 2; and a potential measurement mechanism 3 for measuring a potential difference between the metal structures K each being placed in the different cells 2.SELECTED DRAWING: Figure 2

Description

本発明は、試験装置および試験方法に関する。   The present invention relates to a test apparatus and a test method.

鋼管柱、支持アンカや配管等のインフラ設備に代表される金属構造物は、全体またはその一部が地中に埋設された状態で利用される。通常、金属構造物は土壌または地下水に接するために腐食すなわち土壌腐食し、経過年数とともに減肉していく(非特許文献1〜3参照)。   Metal structures represented by infrastructure equipment such as steel pipe columns, supporting anchors and piping are used in a state where the whole or a part thereof is buried in the ground. Usually, a metal structure corrodes in contact with soil or groundwater, that is, soil corrodes, and decreases in thickness with the lapse of years (see Non-Patent Documents 1 to 3).

土壌腐食により、金属構造物の減肉が進行していくと、本来構造物が発揮するべき機能が担保されなくなる恐れがある。そのため、点検・保守、防食方法、更に腐食進展を予測する手法などの検討が行われている。   If the metal structure is reduced in thickness due to soil corrosion, the function that the structure should originally exhibit may not be secured. For this reason, inspection / maintenance methods, anticorrosion methods, and methods for predicting corrosion progress are being studied.

適切な点検・保守、防食方法および高精度かつ高信頼性の腐食進展予測を行うためには、金属の土壌腐食機構に関する充分な知見が必須である。このような知見を得るためには、土壌腐食に影響を及ぼす因子のそれぞれを制御した系で、腐食減肉量や腐食生成物などを調査し、腐食機構を明らかにする必要がある。   In order to perform appropriate inspection / maintenance, anticorrosion methods and highly accurate and reliable corrosion progress prediction, sufficient knowledge about the soil corrosion mechanism of metals is essential. In order to obtain such knowledge, it is necessary to investigate the corrosion thinning amount and corrosion products in a system in which each factor affecting soil corrosion is controlled, and to clarify the corrosion mechanism.

土壌腐食の程度は、土壌の種類や性質、金属構造物の構造や地中への埋設状態、および気象条件の差異によって著しく異なる。土壌腐食に影響を及ぼす因子として、土壌の種類、温度、気温、pH、比抵抗、含水量、可溶性塩類濃度、酸素濃度、ガス類、バクテリア活動等が挙げられる(非特許文献1,2参照)。土壌腐食はこれらの因子が関係した複雑な機構で進行する。   The degree of soil corrosion varies markedly depending on the type and nature of the soil, the structure of the metal structure, the state of burial in the ground, and the weather conditions. Factors affecting soil corrosion include soil type, temperature, air temperature, pH, specific resistance, water content, soluble salt concentration, oxygen concentration, gases, and bacterial activity (see Non-Patent Documents 1 and 2). . Soil corrosion proceeds by a complex mechanism involving these factors.

特に、複数種の層状の土壌にまたがって設置された金属構造物では、マクロ腐食が促進される場合が多く、注意を要する。マクロ腐食とは、各土壌中の金属構造物の間で電位差が生じ、アノード部とカソード部とが巨視的に分離してマクロセルが形成されて生じる腐食であり、実用上で問題が生じるような大きな速度で激しい腐食が進行する事例が多数確認されている。マクロ腐食の発生には、例えば、地中深さ方向における土壌密度、水分量、および酸素濃度等の土壌環境の因子の差が影響するものと考えられる。   In particular, in a metal structure installed across multiple types of layered soil, macro-corrosion is often promoted and attention is required. Macro corrosion is corrosion that occurs when a potential difference occurs between metal structures in each soil, macroscopic separation occurs between the anode part and the cathode part, and a macro cell is formed. Many cases of severe corrosion progressing at a high rate have been confirmed. The occurrence of macro-corrosion is considered to be affected by differences in soil environment factors such as soil density, water content, and oxygen concentration in the depth direction of the ground.

門井守夫,高橋紹明,矢野浩太郎,「金属材料の土壌腐食についての研究(第1報)」,防蝕技術,1967年,Vol.16,No.6,pp.10-18Morio Kadoi, Shoaki Takahashi, Kotaro Yano, "Studies on soil corrosion of metal materials (1st report)", Corrosion protection technology, 1967, Vol.16, No.6, pp.10-18 宮田義一,朝倉祝治,「電気化学的手法を中心とした土壌腐食計測(その2)」,材料と環境,1997年,Vol.46,pp.610-619Yoshikazu Miyata, Shuji Asakura, “Measurement of Soil Corrosion Focusing on Electrochemical Method (Part 2)”, Materials and Environment, 1997, Vol.46, pp.610-619 江向直美,高沢壽佳,「モデル実験による鋼棒の土壌腐食」,材料と環境,1993年,Vol.42,pp.136-143Naomi Emu and Yuka Takasawa, “Soil corrosion of steel bars by model experiment”, Materials and Environment, 1993, Vol.42, pp.136-143

しかしながら、マクロ腐食に影響を及ぼす土壌環境の因子の差について、定量的に把握されている情報は少ない。マクロ腐食に影響を及ぼす環境因子の影響を確認するために、例えば、異種の土壌を積層した容器に、異種の土壌をまたぐように金属構造物を埋設する試験系が想定される。この試験系において、金属構造物の腐食状態は、長期間埋設した後に取り出された金属構造物を用いて分析できる。しかしながら、このような試験系においては、異種の土壌にまたがっていても、導電体である金属構造物について測定される自然電位の値は1つであり、異種の各土壌の部分で生じる電位差を把握することはできない。したがって、異種の土壌環境にまたがって埋設されている金属構造物において、どれだけマクロ腐食が生じるかを定量的に把握することは困難であった。また、この試験系においては、異種の各土壌について、土壌環境の因子である土壌密度、水分量、および酸素濃度を制御することは困難であった。   However, there is little information that is quantitatively grasped about differences in factors of the soil environment affecting macro corrosion. In order to confirm the influence of environmental factors affecting macro corrosion, for example, a test system is assumed in which a metal structure is embedded in a container in which different types of soil are stacked so as to straddle different types of soil. In this test system, the corrosion state of the metal structure can be analyzed using the metal structure taken out after being buried for a long time. However, in such a test system, the value of the natural potential measured for a metal structure as a conductor is one even if the soil is spread over different types of soil, and the potential difference generated in each different type of soil is not detected. I can't figure it out. Accordingly, it has been difficult to quantitatively grasp how much macro corrosion occurs in a metal structure embedded across different soil environments. Moreover, in this test system, it was difficult to control the soil density, water content, and oxygen concentration, which are factors of the soil environment, for each different type of soil.

本発明は、上記に鑑みてなされたものであって、異種の土壌にまたがって埋設される金属構造物に生じるマクロ腐食への土壌の組み合わせの影響を、土壌環境を制御して簡便かつ明確に把握することを目的とする。   The present invention has been made in view of the above, and it is easy and clear to control the soil environment to influence the influence of soil combination on macro corrosion generated in metal structures embedded over different types of soil. The purpose is to understand.

上述した課題を解決し、目的を達成するために、本発明に係る試験装置は、土壌と該土壌に一部または全部が埋設された金属構造物とが収容される2以上のセルと、各セル内の土壌に圧力をかける加圧機構と、各セル内に給水する給水機構と、各セル内に酸素以外のガスを供給するガス供給機構と、異なるセルに収容される金属構造物間の電位差を測定する電位測定機構と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a test apparatus according to the present invention includes two or more cells in which soil and a metal structure partially or entirely embedded in the soil are accommodated, Between a pressurizing mechanism that applies pressure to the soil in the cell, a water supply mechanism that supplies water into each cell, a gas supply mechanism that supplies a gas other than oxygen into each cell, and a metal structure housed in a different cell And a potential measuring mechanism for measuring a potential difference.

本発明によれば、異種の土壌にまたがって埋設される金属構造物に生じるマクロ腐食への土壌の組み合わせの影響を、土壌を制御して簡便かつ明確に把握することができる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of the combination of the soil to the macro corrosion produced in the metal structure embed | buried over different soil can be grasped | ascertained simply and clearly by controlling soil.

図1は、本発明の一実施形態の概要を説明するための図である。FIG. 1 is a diagram for explaining an outline of an embodiment of the present invention. 図2は、本実施形態の試験装置の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of the test apparatus of the present embodiment. 図3は、本実施形態の試験処理の電位差の測定結果を例示した図である。FIG. 3 is a diagram illustrating the measurement result of the potential difference in the test processing of the present embodiment. 図4は、本実施形態の試験処理手順を示すフローチャートである。FIG. 4 is a flowchart showing the test processing procedure of the present embodiment.

以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

まず、図1を参照して、本実施形態の概要について説明する。本実施形態に係る試験装置による試験処理では、図1に例示するように、深さ方向に積層された異種の土壌S1および土壌S2にまたがって埋設される金属構造物Kに生じるマクロ腐食への土壌S1および土壌S2の影響を把握する。図1に示す例において、土壌S1中における金属構造物Kの電位と、土壌S2中における金属構造物Kの電位との差が大きいほど、マクロ腐食が発生しやすいことが知られている。そこで、本実施形態では、土壌S1および土壌S2の土壌環境を個別に制御して、土壌S1中における金属構造物Kの電位と、土壌S2中における金属構造物Kの電位との差を測定することにより、マクロ腐食への土壌S1と土壌S2との組み合わせの影響を把握する。   First, an outline of the present embodiment will be described with reference to FIG. In the test processing by the test apparatus according to the present embodiment, as illustrated in FIG. 1, macro corrosion that occurs in the metal structure K that is buried across different types of soil S1 and soil S2 stacked in the depth direction. Grasp the influence of soil S1 and soil S2. In the example shown in FIG. 1, it is known that the larger the difference between the potential of the metal structure K in the soil S1 and the potential of the metal structure K in the soil S2, the easier the macro corrosion occurs. Therefore, in this embodiment, the soil environment of the soil S1 and the soil S2 is individually controlled, and the difference between the potential of the metal structure K in the soil S1 and the potential of the metal structure K in the soil S2 is measured. Thus, the influence of the combination of the soil S1 and the soil S2 on the macro corrosion is grasped.

[試験装置の構成]
図2は、本実施形態に係る試験装置の概略構成を示す模式図である。図2に示すように、試験装置1は、2つ以上のセル2(21,22)と、電位測定機構3とを備える。
[Configuration of test equipment]
FIG. 2 is a schematic diagram showing a schematic configuration of the test apparatus according to the present embodiment. As shown in FIG. 2, the test apparatus 1 includes two or more cells 2 (21, 22) and a potential measurement mechanism 3.

各セル2には、試験対象の金属構造物Kが埋設された1種類の土壌Sが収容される。セル21に収容される土壌S1とセル22に収容される土壌S2とは同種であってもよいし、異種であってもよい。土壌S1に埋設される金属構造物K1と土壌S2に埋設される金属構造物K2とは、同一の材質でもよいし異なる材質でもよい。ここで、合金組成や製造・加工方法が異なる金属構造物は異なる材質とする。なお、土壌S1と土壌S2との組み合わせについては後述する。   Each cell 2 accommodates one kind of soil S in which the metal structure K to be tested is embedded. The soil S1 accommodated in the cell 21 and the soil S2 accommodated in the cell 22 may be the same or different. The metal structure K1 embedded in the soil S1 and the metal structure K2 embedded in the soil S2 may be the same material or different materials. Here, metal structures having different alloy compositions and manufacturing / processing methods are made of different materials. In addition, the combination of soil S1 and soil S2 is mentioned later.

各土壌Sは、1種類以上の酸化物種からなる粒状物を含んでいればよく、土壌の構成物種および粒状物の粒径については特に限定されない。実土壌の土壌環境に近づけるため、例えば、実土壌の構成物として代表的な二酸化ケイ素、酸化アルミニウム、酸化鉄、酸化カルシウム、および酸化マグネシウム等を混合するとよい。その場合に、さらに各構成物の混合比率や粒径を制御してもよい。これにより、実土壌の土壌環境の再現性が高まることが期待される。さらに、塩化物、硫酸塩、または硝酸塩等を混合してもよい。   Each soil S should just contain the granular material which consists of 1 or more types of oxide seed | species, and it does not specifically limit about the particle | grain size of the constituent species of a soil and a granular material. In order to approximate the soil environment of actual soil, for example, silicon dioxide, aluminum oxide, iron oxide, calcium oxide, and magnesium oxide, which are typical constituents of actual soil, may be mixed. In that case, you may control the mixing ratio and particle size of each component further. Thereby, it is expected that the reproducibility of the soil environment of the real soil is enhanced. Furthermore, you may mix a chloride, a sulfate, or nitrate.

あるいは、各土壌Sに実土壌を用いてもよい。実土壌の回収場所や回収条件は特に限定されないが、本実施形態で実土壌を用いる場合には、水分量を制御するため、予め十分に加熱して水分を除去しておくことが好ましい。また、草、根、または昆虫類等の混合物をふるいにかけたりして除去することが好ましい。   Alternatively, real soil may be used for each soil S. The location and conditions for collecting the actual soil are not particularly limited, but when using the actual soil in the present embodiment, it is preferable to sufficiently heat and remove the moisture beforehand in order to control the amount of water. Further, it is preferable to remove a mixture of grass, roots, insects or the like by sieving.

各セル2に収容される土壌Sの量は特に限定されず、金属構造物Kの腐食状態を確認したい部分が埋設されればよい。また、各セル2のサイズおよび形状は特に限定されず、金属構造物Kのサイズおよび土壌Sの量を考慮して、金属構造物Kが埋設された土壌Sを収容できればよい。また、各セル2の材質は、後述する加圧機構4による加圧に耐える強度および化学的安定性があるものであればよい。例えば、ポリ塩化ビニル製やアクリル等の透明プラスチックを用いれば、セル2内の様子を常時確認できる。   The amount of soil S accommodated in each cell 2 is not particularly limited as long as the portion of the metal structure K to be checked for corrosion is buried. Moreover, the size and shape of each cell 2 are not particularly limited, and it is only necessary to accommodate the soil S in which the metal structure K is embedded in consideration of the size of the metal structure K and the amount of the soil S. Moreover, the material of each cell 2 should just have the intensity | strength and chemical stability which can be equal to the pressurization mechanism 4 mentioned later. For example, if a transparent plastic made of polyvinyl chloride or acrylic is used, the state in the cell 2 can be constantly confirmed.

各セル2は、加圧機構4、給水機構5、およびガス供給機構6を備え、各セル2に収容される土壌Sの土壌環境が個別に制御される。なお、各セル2はセンサ7を備え、適時にセル2内の土壌Sの土壌環境の因子の測定が行われる。センサ7には、温度計、水分量計、導電率測定器、pH測定器、または圧力計等が例示される。   Each cell 2 includes a pressurizing mechanism 4, a water supply mechanism 5, and a gas supply mechanism 6, and the soil environment of the soil S accommodated in each cell 2 is individually controlled. Each cell 2 includes a sensor 7 and measures factors of the soil environment of the soil S in the cell 2 in a timely manner. Examples of the sensor 7 include a thermometer, a moisture meter, a conductivity measuring device, a pH measuring device, or a pressure gauge.

加圧機構4は、セル2内の土壌Sに圧力をかける。加圧機構4は、例えば、セル2内に設けられた内蓋をネジ等で押し込んだりガスで加圧したりすることにより実現される。これにより、セル2内の土壌Sの土壌密度を制御することができる。なお、センサ7としての圧力計により、土壌Sに印加された圧力をモニタすることが好ましい。   The pressurizing mechanism 4 applies pressure to the soil S in the cell 2. The pressurizing mechanism 4 is realized, for example, by pushing an inner lid provided in the cell 2 with a screw or the like or pressurizing with a gas. Thereby, the soil density of the soil S in the cell 2 can be controlled. In addition, it is preferable to monitor the pressure applied to the soil S with a pressure gauge as the sensor 7.

加圧機構4は、例えば、各セル2内の土壌Sに所定の地中深さに応じた圧力をかける。ここで、所定の地中深さとは、再現したい土壌環境の地中深さを意味する。すなわち、加圧機構4は、図1に例示したように積層された土壌S1と土壌S2との深さ方向の位置関係を再現するために、下層の土壌S2に、上層の土壌S1の重量に相当する圧力を加える。すなわち、土壌S1が収容されたセル21は解放圧すなわち加圧0の大気圧条件とされる一方、土壌S2が収容されたセル22には、土壌S1の層の厚み、密度およびセル2の底面積から算出された重量に相当する圧力が加えられる。   The pressurizing mechanism 4 applies, for example, a pressure corresponding to a predetermined underground depth to the soil S in each cell 2. Here, the predetermined underground depth means the underground depth of the soil environment to be reproduced. In other words, the pressurizing mechanism 4 uses the weight of the upper soil S1 in the lower soil S2 in order to reproduce the positional relationship in the depth direction between the soil S1 and the soil S2 stacked as illustrated in FIG. Apply the corresponding pressure. That is, the cell 21 in which the soil S1 is stored is subjected to an atmospheric pressure condition of release pressure, that is, zero pressure, while the cell 22 in which the soil S2 is stored includes the thickness and density of the layer of the soil S1 and the bottom of the cell 2. A pressure corresponding to the weight calculated from the area is applied.

なお、加圧にともなって土壌Sに埋設された金属構造物Kの深さ方向の位置が変わらないように、金属構造物Kを台座に載せることが好ましい。台座は、塩化ビニル製等の耐腐食性の高い材質で形成されることが好ましい。また、金属構造物Kの腐食環境にさらされる深さ方向の位置が限定されるように、金属構造物Kの上面または下面のみを露出させて絶縁樹脂に埋設してもよい。この絶縁樹脂が台座と一体的に形成されてもよい。   In addition, it is preferable to place the metal structure K on the pedestal so that the position in the depth direction of the metal structure K embedded in the soil S does not change with the pressurization. The pedestal is preferably formed of a highly corrosion-resistant material such as vinyl chloride. Further, only the upper surface or the lower surface of the metal structure K may be exposed and embedded in the insulating resin so that the position in the depth direction where the metal structure K is exposed to the corrosive environment is limited. This insulating resin may be formed integrally with the base.

また、加圧機構4に対向する金属構造物Kおよび台座の面積をできるだけ小さくすることが好ましい。これにより、金属構造物Kおよび台座の抵抗が抑制され、土壌Sへの均一な加圧が行われる。   Moreover, it is preferable to make the areas of the metal structure K and the pedestal facing the pressurizing mechanism 4 as small as possible. Thereby, the resistance of the metal structure K and the base is suppressed, and the uniform pressurization to the soil S is performed.

給水機構5は、セル2内に給水する。例えば、給水機構5は、セル2内への給水口51と排水口52とで構成され、量が調整された水をセル2内に供給することにより実現される。本実施形態では、給水機構5は、給水口51に連結された水容器53を備え、水容器53内の液面高さにより、セル2内の水分量を調整する。すなわち、水容器53内の液面高さとセル2内に給水された水の液面高さとが等しくなることにより、水分量が調整される。この場合に、金属構造物Kの近傍の土壌Sの水分量は、セル2内での金属構造物Kの深さ方向の位置に水容器53の液面高さとの関係により調整される。給水機構5は、例えば、各セル2内に所定の地中深さすなわち再現したい土壌環境の地中深さに応じた水分量を給水する。   The water supply mechanism 5 supplies water into the cell 2. For example, the water supply mechanism 5 includes a water supply port 51 and a drain port 52 into the cell 2, and is realized by supplying the adjusted amount of water into the cell 2. In the present embodiment, the water supply mechanism 5 includes a water container 53 connected to the water supply port 51, and adjusts the amount of water in the cell 2 according to the liquid level in the water container 53. That is, the amount of water is adjusted by making the liquid level in the water container 53 equal to the liquid level in the water supplied into the cell 2. In this case, the moisture content of the soil S in the vicinity of the metal structure K is adjusted to the position in the depth direction of the metal structure K in the cell 2 according to the relationship with the liquid level of the water container 53. For example, the water supply mechanism 5 supplies a predetermined amount of water in each cell 2, that is, a water amount corresponding to the depth of the soil environment to be reproduced.

ガス供給機構6は、セル2内にガスを供給する。例えば、ガス供給機構6は、セル2に備えたガスの供給口と排気口とで構成され、供給口から供給されたガスを排気口から排気することによりセル2内を循環させる。供給されるガスは、例えば窒素Nがある。セル2内に酸素以外のガスを循環させることにより、土壌S中の酸素濃度を低下させることができる。これにより、土壌S中の酸素濃度を、土壌密度および水分量のみによる調整よりさらに低下させることができる。なお、ガスの供給圧力は、セル2内の土壌Sの土壌密度等を変化させないように、大気圧よりやや高くなる程度であることが好ましい。ガス供給機構6は、例えば、各セル2内の酸素濃度を所定の地中深さすなわち再現したい土壌環境の地中深さに応じて低下させる。 The gas supply mechanism 6 supplies gas into the cell 2. For example, the gas supply mechanism 6 includes a gas supply port and an exhaust port provided in the cell 2, and circulates in the cell 2 by exhausting the gas supplied from the supply port from the exhaust port. The supplied gas is, for example, nitrogen N 2 . By circulating a gas other than oxygen in the cell 2, the oxygen concentration in the soil S can be reduced. Thereby, the oxygen concentration in the soil S can be further lowered than the adjustment based only on the soil density and the water content. In addition, it is preferable that the supply pressure of gas is a grade which becomes a little higher than atmospheric pressure so that the soil density etc. of the soil S in the cell 2 may not be changed. For example, the gas supply mechanism 6 reduces the oxygen concentration in each cell 2 according to a predetermined underground depth, that is, an underground depth of a soil environment to be reproduced.

電位測定機構3は、異なるセル2に収容される金属構造物Kの間の電位差を測定する。例えば、電位測定機構3は、セル21に収容される金属構造物K1とセル22に収容される金属構造物K2とを電圧計を介して導線で接続することにより実現される。この場合には、電圧計の内部抵抗ができるだけ高いことが好ましい。電位差の測定は、常時行われてもよいし、定期的に行われてもよい。   The potential measurement mechanism 3 measures a potential difference between the metal structures K accommodated in different cells 2. For example, the potential measuring mechanism 3 is realized by connecting the metal structure K1 accommodated in the cell 21 and the metal structure K2 accommodated in the cell 22 with a conductive wire via a voltmeter. In this case, it is preferable that the internal resistance of the voltmeter is as high as possible. The measurement of the potential difference may be performed constantly or periodically.

このように構成された試験装置1において、各セル2内の土壌Sは、加圧機構4、給水機構5およびガス供給機構6により土壌環境が個別に制御される。そして、土壌環境が異なる土壌S1と土壌S2にそれぞれ埋設された金属構造物K1と金属構造物K2との間の電位差が測定される。測定された電位差が大きいほど、マクロ腐食が起こりやすいと判定される。   In the test apparatus 1 configured as described above, the soil environment of the soil S in each cell 2 is individually controlled by the pressurization mechanism 4, the water supply mechanism 5, and the gas supply mechanism 6. And the electrical potential difference between the metal structure K1 and the metal structure K2 each embed | buried in soil S1 and soil S2 from which soil environment differs is measured. It is determined that macro corrosion is more likely to occur as the measured potential difference is larger.

図3は、電位差の測定結果を例示する図である。図3の例では、金属構造物K1と金属構造物K2との形状および材質が同一である場合に、土壌S1と土壌S2との組み合わせを変えて、土壌1と土壌2、土壌3と土壌4、土壌5と土壌6との3つの異なる組み合わせに対する電位差が測定されている。図3に例示するように、土壌S1と土壌S2との組み合わせが異なれば、電位差が異なり、マクロ腐食の起こりやすさが異なる。   FIG. 3 is a diagram illustrating the measurement result of the potential difference. In the example of FIG. 3, when the shapes and materials of the metal structure K1 and the metal structure K2 are the same, the combination of soil S1 and soil S2 is changed to change soil 1 and soil 2, soil 3 and soil 4 The potential difference for three different combinations of soil 5 and soil 6 has been measured. As illustrated in FIG. 3, if the combination of the soil S1 and the soil S2 is different, the potential difference is different and the likelihood of macro corrosion is different.

なお、本実施形態では、電位測定機構3によって電位差を測定しているが、電位測定機構3の代わりに電流計を設置してもよい。この場合に、セル21に収容される金属構造物K1とセル22に収容される金属構造物K2とを電流計を介して接続することで、異なる環境下にさらされた金属構造物Kのマクロ腐食に関わる反応の大小を、電流値という形で計測できる。この場合に、電流計の内部抵抗は限りなくゼロに近いことが好ましい。   In the present embodiment, the potential difference is measured by the potential measuring mechanism 3, but an ammeter may be installed instead of the potential measuring mechanism 3. In this case, by connecting the metal structure K1 accommodated in the cell 21 and the metal structure K2 accommodated in the cell 22 via an ammeter, the macro of the metal structure K exposed to different environments. The magnitude of the reaction related to corrosion can be measured in the form of current value. In this case, the internal resistance of the ammeter is preferably close to zero.

このように、金属構造物K1と金属構造物K2との形状、材質およびセル2内の埋設位置を同一にして、土壌S1と土壌S2とを異種とすれば、同一の金属構造物Kにおけるマクロ腐食への土壌S1と土壌S2との組み合わせの影響を把握することが可能となる。   As described above, if the shape, material, and burying position in the cell 2 of the metal structure K1 and the metal structure K2 are the same, and the soil S1 and the soil S2 are different, the macro in the same metal structure K It becomes possible to grasp the influence of the combination of the soil S1 and the soil S2 on the corrosion.

また、土壌S1と土壌S2とを同種にして、一方のセル22にのみ、他方のセル21内の土壌S1の重量に相当する圧力と、地中深さに応じた水分量とを加え、窒素ガスを供給して酸素濃度を低下させれば、地中深さに応じた土壌環境を再現することができる。すなわち、セル21内の土壌S1において地表側の土壌環境が再現され、セル22内の土壌S2において深層の土壌環境が再現される。この場合に、実土壌についての地表深さに応じた土壌密度、水分量、および酸素濃度の実測値に応じて、各セル2内の土壌Sの土壌環境を制御することが好ましい。これにより、試験処理の精度および信頼性が高くなる。   Moreover, soil S1 and soil S2 are made the same type, and only one cell 22 is added with a pressure corresponding to the weight of the soil S1 in the other cell 21 and a moisture amount according to the depth of the ground, and nitrogen is added. If gas concentration is supplied and oxygen concentration is reduced, the soil environment according to underground depth can be reproduced. That is, the soil environment on the ground surface side is reproduced in the soil S1 in the cell 21, and the deep soil environment is reproduced in the soil S2 in the cell 22. In this case, it is preferable to control the soil environment of the soil S in each cell 2 according to the measured values of soil density, water content, and oxygen concentration according to the surface depth of the actual soil. This increases the accuracy and reliability of the test process.

この同種の土壌Sが収容され地中深さに応じた土壌環境が再現されたセル21およびセル22のそれぞれに、形状および材質が同一の金属構造物Kを埋設すれば、地中の地表側から深層に向かって埋設された金属構造物Kにおいてマクロ腐食が起こりやすいか否かの傾向を把握することができる。あるいは、地中の深さによって形状または材質の異なる金属構造物Kにおいてマクロ腐食が起こりやすいか否かを把握することもできる。例えば、この同種の土壌Sが収容され地中深さに応じた土壌環境が再現されたセル21およびセル22のそれぞれに、地中の深さに応じた形状または材質の金属構造物K1、K2を埋設すればよい。   If a metal structure K having the same shape and material is embedded in each of the cells 21 and 22 in which the same kind of soil S is accommodated and the soil environment according to the depth of the ground is reproduced, the underground surface side in the ground It is possible to grasp the tendency of whether or not macro corrosion is likely to occur in the metal structure K embedded toward the deep layer. Or it can also be grasped | ascertained whether the macro corrosion tends to occur in the metal structure K from which a shape or a material differs with depth in the ground. For example, each of the cell 21 and the cell 22 in which the soil S of the same kind is accommodated and the soil environment according to the depth of the ground is reproduced, the metal structures K1, K2 having a shape or material according to the depth of the ground. Should be buried.

[試験処理]
次に、図4のフローチャートを参照して、試験装置1における試験処理手順について説明する。図4に例示するように、まず、各セル2内の土壌Sは、加圧機構4、給水機構5およびガス供給機構6により土壌環境が個別に制御される。すなわち、加圧機構4が、各セル2内の土壌に圧力をかけ(ステップS101)、給水機構5が、各セル2内に給水し(ステップS102)、ガス供給機構6が、各セル2内に酸素以外のガスを供給する(ステップS103)。なお、ステップS101〜S103の処理の処理順は相互に入れ替えてもよい。
[Test processing]
Next, the test processing procedure in the test apparatus 1 will be described with reference to the flowchart of FIG. As illustrated in FIG. 4, first, the soil environment in each cell 2 is individually controlled by the pressurizing mechanism 4, the water supply mechanism 5, and the gas supply mechanism 6. That is, the pressurizing mechanism 4 applies pressure to the soil in each cell 2 (step S101), the water supply mechanism 5 supplies water to each cell 2 (step S102), and the gas supply mechanism 6 is in each cell 2. A gas other than oxygen is supplied (step S103). Note that the processing order of steps S101 to S103 may be interchanged.

そして、異なるセル21およびセル22のそれぞれに収容された、土壌環境が制御された土壌S1および土壌S2のそれぞれに埋設された金属構造物K1と金属構造物K2との間の電位差が測定される(ステップS104)。   Then, the potential difference between the metal structure K1 and the metal structure K2 embedded in each of the soil S1 and the soil S2 that are housed in the different cells 21 and 22 and whose soil environment is controlled is measured. (Step S104).

以上、説明したように、本実施形態の試験装置1は、土壌Sと該土壌Sに一部または全部が埋設された金属構造物Kとが収容される2以上のセル2と、各セル2内の土壌Sに圧力をかける加圧機構4と、各セル2内に給水する給水機構5と、各セル2内に酸素以外のガスを供給するガス供給機構6と、異なるセル2に収容される金属構造物K間の電位差を計測する電位測定機構3と、を備える。   As described above, the test apparatus 1 of this embodiment includes two or more cells 2 in which the soil S and the metal structure K partially or entirely embedded in the soil S are accommodated, and each cell 2. Stored in a different cell 2, a pressurizing mechanism 4 that applies pressure to the soil S inside, a water supply mechanism 5 that supplies water into each cell 2, a gas supply mechanism 6 that supplies a gas other than oxygen into each cell 2, and And a potential measuring mechanism 3 that measures a potential difference between the metal structures K.

これにより、各セル2に収容される土壌Sの土壌環境を、例えば地中深さに応じて制御して、異なる土壌環境の組み合わせで生じる電位差を測定できるので、電位差が大きくマクロ腐食がおこりやすい土壌環境の組み合わせを把握することができる。したがって、本実施形態の試験装置1は、異種の土壌にまたがって埋設される金属構造物Kに生じるマクロ腐食への土壌の組み合わせの影響を、土壌環境を制御して簡便かつ明確に把握することができる。   Thereby, the soil environment of the soil S accommodated in each cell 2 can be controlled according to, for example, the depth of the ground, and the potential difference generated by the combination of different soil environments can be measured. Therefore, the potential difference is large and macro corrosion easily occurs. The combination of soil environment can be grasped. Therefore, the test apparatus 1 of the present embodiment can easily and clearly grasp the influence of the combination of soils on the macro-corrosion generated in the metal structure K embedded over different kinds of soils by controlling the soil environment. Can do.

また、加圧機構4は、各セル2内の土壌Sに所定の地中深さに応じた圧力をかける。また、給水機構5は、各セル2内に所定の地中深さに応じた水分量を給水する。また、ガス供給機構6は、各セル2内の酸素濃度を所定の地中深さに応じて低下させる。これにより、積層された土壌Sの土壌環境が地中深さに応じて再現される。   Moreover, the pressurization mechanism 4 applies the pressure according to the predetermined underground depth to the soil S in each cell 2. Further, the water supply mechanism 5 supplies water in each cell 2 according to a predetermined underground depth. Moreover, the gas supply mechanism 6 reduces the oxygen concentration in each cell 2 according to a predetermined underground depth. Thereby, the soil environment of the laminated soil S is reproduced according to the underground depth.

また、セル2に連結した水容器53を備え、該水容器53内の液面高さによりセル2内の液面高さを調整する。これにより、簡易にセル2内の水分量を調整することができる。   A water container 53 connected to the cell 2 is provided, and the liquid level in the cell 2 is adjusted by the liquid level in the water container 53. Thereby, the moisture content in the cell 2 can be adjusted easily.

なお、試験装置1は、3つ以上のセル2を備えてもよい。この場合に、電位測定機構3は、3つ以上のセル2のうちのいずれか2つのセル2内の金属構造物K間の電位差を測定する。また、各セル2に2つ以上の金属構造物Kが埋設されてもよい。この場合に、電位測定機構3は、同一セル2内の2つ以上の金属構造物Kのいずれか1つと、他のセル2内の金属構造物Kのいずれか1つとの間の電位差を測定する。複数の電位測定機構3により、同時に他の金属構造物Kの組み合わせの電位差を測定してもよい。   Note that the test apparatus 1 may include three or more cells 2. In this case, the potential measuring mechanism 3 measures the potential difference between the metal structures K in any two of the three or more cells 2. Further, two or more metal structures K may be embedded in each cell 2. In this case, the potential measuring mechanism 3 measures the potential difference between any one of the two or more metal structures K in the same cell 2 and any one of the metal structures K in the other cell 2. To do. You may measure the electrical potential difference of the combination of the other metal structure K by the several electrical potential measurement mechanism 3 simultaneously.

以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。   As mentioned above, although embodiment which applied the invention made | formed by this inventor was described, this invention is not limited with the description and drawing which make a part of indication of this invention by this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 試験装置
2,21,22 セル
3 電位測定機構
4 加圧機構
5 給水機構
51 給水口
52 排水口
53 水容器
6 ガス供給機構
7 センサ
K,K1,K2 金属構造物
S,S1,S2 土壌
DESCRIPTION OF SYMBOLS 1 Test apparatus 2,21,22 Cell 3 Potential measurement mechanism 4 Pressurization mechanism 5 Water supply mechanism 51 Water supply port 52 Drain port 53 Water container 6 Gas supply mechanism 7 Sensor K, K1, K2 Metal structure S, S1, S2 Soil

Claims (6)

土壌と該土壌に一部または全部が埋設された金属構造物とが収容される2以上のセルと、
各セル内の土壌に圧力をかける加圧機構と、
各セル内に給水する給水機構と、
各セル内に酸素以外のガスを供給するガス供給機構と、
異なるセルに収容される金属構造物間の電位差を測定する電位測定機構と、
を備えることを特徴とする試験装置。
Two or more cells in which the soil and a metal structure partly or entirely embedded in the soil are accommodated;
A pressure mechanism that applies pressure to the soil in each cell;
A water supply mechanism for supplying water into each cell;
A gas supply mechanism for supplying a gas other than oxygen into each cell;
A potential measuring mechanism for measuring a potential difference between metal structures housed in different cells;
A test apparatus comprising:
前記加圧機構は、前記各セル内の土壌に所定の地中深さに応じた圧力をかけることを特徴とする請求項1に記載の試験装置。   The test apparatus according to claim 1, wherein the pressurizing mechanism applies a pressure corresponding to a predetermined underground depth to the soil in each cell. 前記給水機構は、前記各セル内に所定の地中深さに応じた水分量を給水することを特徴とする請求項1または2に記載の試験装置。   The test apparatus according to claim 1 or 2, wherein the water supply mechanism supplies a water amount corresponding to a predetermined underground depth into each cell. 前記ガス供給機構は、前記各セル内の酸素濃度を所定の地中深さに応じて低下させることを特徴とする請求項1〜3のいずれか1項に記載の試験装置。   The test apparatus according to claim 1, wherein the gas supply mechanism reduces the oxygen concentration in each cell according to a predetermined underground depth. 前記給水機構は、前記セルに連結された水容器を備え、該水容器内の液面高さにより前記セル内の水分量を調整することを特徴とする請求項1〜4のいずれか1項に記載の試験装置。   The said water supply mechanism is equipped with the water container connected with the said cell, The water content in the said cell is adjusted with the liquid level height in this water container, The any one of Claims 1-4 characterized by the above-mentioned. The test apparatus described in 1. 土壌と該土壌に一部または全部が埋設された金属構造物とを異なるセルに収容する収容工程と、
各セル内の土壌に圧力をかける加圧工程と、
各セル内に給水する給水工程と、
各セル内に酸素以外のガスを供給するガス供給工程と、
異なるセルに収容される金属構造物間の電位差を測定する電位測定工程と、
を含んだことを特徴とする試験方法。
A housing step of housing the soil and a metal structure partially or entirely embedded in the soil in different cells;
A pressurizing step of applying pressure to the soil in each cell;
A water supply process for supplying water into each cell;
A gas supply step of supplying a gas other than oxygen into each cell;
A potential measurement step for measuring a potential difference between metal structures housed in different cells;
The test method characterized by including.
JP2015224561A 2015-11-17 2015-11-17 Test apparatus and test method Active JP6449757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015224561A JP6449757B2 (en) 2015-11-17 2015-11-17 Test apparatus and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015224561A JP6449757B2 (en) 2015-11-17 2015-11-17 Test apparatus and test method

Publications (2)

Publication Number Publication Date
JP2017090399A true JP2017090399A (en) 2017-05-25
JP6449757B2 JP6449757B2 (en) 2019-01-09

Family

ID=58768150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015224561A Active JP6449757B2 (en) 2015-11-17 2015-11-17 Test apparatus and test method

Country Status (1)

Country Link
JP (1) JP6449757B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020234958A1 (en) * 2019-05-20 2020-11-26
JP2021173589A (en) * 2020-04-22 2021-11-01 日本製鉄株式会社 Soil corrosion test device and soil corrosion test method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138792U (en) * 1976-04-15 1977-10-21
JPS566139A (en) * 1979-06-27 1981-01-22 Nisshin Steel Co Ltd Method and device for testing soil corrosion of metal
JPH02291945A (en) * 1989-05-01 1990-12-03 Nippon Steel Corp Underground-environment testing apparatus
JPH0371040A (en) * 1989-08-09 1991-03-26 Kobe Steel Ltd Underground environmental simulation device
JP2001108797A (en) * 1999-10-06 2001-04-20 Kobe Steel Ltd Device for simulating actual undergound environment
CN101210871A (en) * 2006-12-29 2008-07-02 中国科学院金属研究所 Soil erosion researching device
JP2016224001A (en) * 2015-06-03 2016-12-28 日本電信電話株式会社 Testing device and method for testing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138792U (en) * 1976-04-15 1977-10-21
JPS566139A (en) * 1979-06-27 1981-01-22 Nisshin Steel Co Ltd Method and device for testing soil corrosion of metal
JPH02291945A (en) * 1989-05-01 1990-12-03 Nippon Steel Corp Underground-environment testing apparatus
JPH0371040A (en) * 1989-08-09 1991-03-26 Kobe Steel Ltd Underground environmental simulation device
JP2001108797A (en) * 1999-10-06 2001-04-20 Kobe Steel Ltd Device for simulating actual undergound environment
CN101210871A (en) * 2006-12-29 2008-07-02 中国科学院金属研究所 Soil erosion researching device
JP2016224001A (en) * 2015-06-03 2016-12-28 日本電信電話株式会社 Testing device and method for testing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020234958A1 (en) * 2019-05-20 2020-11-26
WO2020234958A1 (en) * 2019-05-20 2020-11-26 日本電信電話株式会社 Corrosion evaluation support device and corrosion evaluation support method
JP7201947B2 (en) 2019-05-20 2023-01-11 日本電信電話株式会社 Corrosion evaluation support device and corrosion evaluation support method
JP2021173589A (en) * 2020-04-22 2021-11-01 日本製鉄株式会社 Soil corrosion test device and soil corrosion test method
JP7415170B2 (en) 2020-04-22 2024-01-17 日本製鉄株式会社 Soil corrosion test equipment and soil corrosion test method

Also Published As

Publication number Publication date
JP6449757B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
Papavinasam Electrochemical polarization techniques for corrosion monitoring
CA2915652C (en) Apparatus and method for assessing subgrade corrosion
Tan et al. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method
US5537045A (en) Detection and location system for monitoring changes in resistivity in three dimensions
EP1152235A1 (en) System to measure the state of corrosion of buried metallic structures continuously in time and in length
US4155814A (en) Method and apparatus for galvanostatic and potentiostatic electrochemical investigation of the rate of corrosion processes
JP2017215300A (en) Soil corrosion test apparatus and test method thereof
CN103630480A (en) Corrosion testing device for metal inside gaps under stripped coatings
JP6449757B2 (en) Test apparatus and test method
Wang et al. The effect of electrode surface area on corrosion initiation monitoring of X65 steel in soil
CN113919115A (en) Method for establishing existing concrete chloride ion erosion life prediction model
JP6348454B2 (en) Test apparatus and test method
CN202744629U (en) Corrosion testing device for metal inside gaps under stripped coatings
Popov et al. Cathodic protection of pipelines
CN113686773A (en) Buried pipeline stray current interference monitoring device, system and method
US11624743B2 (en) Apparatus and method for the non-destructive measurement of hydrogen diffusivity
Li et al. Damage evolution of coated steel pipe under cathodic-protection in soil
CN216208480U (en) Buried pipeline stray current interference monitoring device and system
CN104120430A (en) Device for measuring two-dimensional potential distribution in gap under release coating
Larché et al. Study of Cathodic Protection in Soils with the use of Specific Coupons
Azoor et al. Modelling the influence of differential aeration in underground corrosion
van Ede et al. Nondestructive detection and quantification of localized corrosion rates by electrochemical tomography
Werenskiold et al. New Tool for CP inspection
Dube Effectiveness of impressed current cathodic protection system on underground steel Engen refinery transfer lines system
Adler Flitton et al. Simulated Service Testing in Soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150